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Abstract

Static analyses make the increasingly tenuous assumption that all source code is available for analysis;
for example, large libraries often call into native code that cannot be analyzed. We propose a
points-to analysis that initially makes optimistic assumptions about missing code, and then inserts
runtime checks that report counterexamples to these assumptions that occur during execution. Our
approach guarantees eventual soundness, which combines two guarantees: (i) the runtime checks
are guaranteed to catch the first counterexample that occurs during any execution, in which case
execution can be terminated to prevent harm, and (ii) only finitely many counterexamples ever
occur, implying that the static analysis eventually becomes statically sound with respect to all
remaining executions. We implement Optix, an eventually sound points-to analysis for Android
apps, where the Android framework is missing. We show that the runtime checks added by Optix

incur low overhead on real programs, and demonstrate how Optix improves a client information
flow analysis for detecting Android malware.
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1 Introduction

To guarantee soundness, static analyses often assume that all program source code can be
analyzed. This assumption has become tenuous as programs increasingly depend on large
libraries and frameworks that are prohibitively di�cult to analyze [34]. For example, mobile
app stores can use static analysis to improve the quality of published apps by searching
for malicious behaviors [23, 21, 5, 25] or security vulnerabilities [20, 39, 17]. However,
Android apps depend extensively on the Android framework, which makes frequent use of
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11:2 Eventually Sound Points-To Analysis with Specifications

native code and reflection, both of which are practical barriers to static analysis and are
often ignored by the analysis [5, 21, 25]. Furthermore, the Android framework contains
deep call hierarchies, which can pose problems since static points-to analyses typically have
limited context sensitivity [9]. Thus, the Android framework is often omitted from the static
analysis [52, 8, 12]. We refer to such omitted code as missing. In any large software system,
there are inevitably parts that are missing and cannot be handled soundly [34].

Two possible approaches are to sacrifice either soundness (by making optimistic assump-
tions about missing code) or precision (by making pessimistic assumptions about missing
code). For many applications, pessimistic assumptions are so imprecise that they make the
static analysis results unusable; therefore, soundness is often sacrificed instead, but doing
so is a significant compromise [34]. For example, consider malware detection—a security
analyst must examine every app that is potentially malicious, making false positives costly,
yet unsoundness can be exploited by a knowledgeable attacker to avoid detection.

Broadly speaking, two alternative strategies have been proposed to handle missing code: (i)
using runtime instrumentation, and (ii) using handwritten specifications. The first approach
uses runtime instrumentation to enforce soundness—e.g., dynamic information flow control
can be used to prevent information leaks [6, 14, 18]. More recent systems have focused on
using dynamic analysis to fill gaps in a static analysis. These systems first statically analyze
the program, keeping track of any unsound assumptions made by the static analysis, and
then instrument the program to check if these assumptions are violated during runtime; if so,
then execution can be terminated or continued in a safe environment such as a sandbox. This
approach has been applied to type checking [22], reflective call targets [10], and determining
reachable code [7]; more general systems have also been proposed [11, 15]. However, the
runtime instrumentation used by these systems is typically limited—e.g., they check either
lightweight type-based properties, or program invariants that can be checked locally.

In the second approach, the human user writes specifications (also known as models,
annotations, or stubs) that summarize missing code [52, 8]. This approach is very flexible,
since specifications can be used to model arbitrary missing code—e.g., systems have used
specifications to model part [5, 25] or all [21] of the Android framework, including production
systems [19]. However, specifications are costly to write, since many thousands of specifi-
cations may be needed [8]. In addition, handwritten specifications can be error prone [28],
and must be updated whenever the missing code changes. Approaches have been proposed
for inferring specifications [52, 8, 12, 28, 9], but the user must manually check each inferred
specification, including ones that turn out to be wrong or irrelevant.

In this paper, we study the problem of handling unsoundness in a static points-to analysis
for Android apps, where part or all of the Android framework is omitted from the analysis.
We focus on points-to analysis since it lies at the core of many static analyses, and we believe
that clients (e.g., static information flow analysis) can be designed around our analysis.

We propose a system that handles missing code by combining runtime monitoring and
specifications. Given a program (e.g., an Android app), our system first runs the static
points-to analysis that optimistically assumes missing code is empty. If no errors are found,
then our system instruments the program to detect counterexamples to the optimistic
assumptions—i.e., missing points-to edges that occur during an execution but are missing
from the (optimistic) static analysis. Points-to edges are a whole-program property, so
instrumenting programs to detect missing points-to edges is challenging. In particular:

Naïvely using a dynamic points-to analysis to detecting counterexamples can incur huge
overhead—e.g., as much as 20◊ [12] or even two orders of magnitude [38].



O. Bastani, R. Sharma, L. Clapp, S. Anand, and A. Aiken 11:3

It is often impossible to insert runtime checks into missing code (e.g., native code). Thus,
we restrict our analysis to instrument only available code (in our case, the app code).

We describe how we address these challenges in more detail below. Next, the instrumented
program is published (e.g., on Google Play). If our instrumentation ever detects a coun-
terexample, then it is reported back to the publisher (e.g., Google), who can update their
specifications and re-run the static analysis. Finally, we show how detected counterexamples
can be used to infer specifications that summarize missing code—intuitively, these specifica-
tions transfer the knowledge gained from the counterexample to benefit the analysis of future
programs. While inferred specifications need to be validated by a human, our approach
focuses specification inference on addressing gaps in the static analysis that occur in actual
program executions. Importantly, adding new specifications (either handwritten or inferred)
can help reduce instrumentation overhead.

With an appropriate instrumentation scheme, our system satisfies two key properties:
Eventual soundness: As soon as a counterexample occurs during execution, it is
detected by the program instrumentation and reported to the static analysis. Furthermore,
only finitely many counterexamples are ever reported.
Precision: The analysis is at least as precise as having all specifications available.

The key property of interest is eventual soundness, which combines two guarantees. The first
guarantee is a dynamic soundness guarantee analogous to that provided by dynamic type
checking: at the cost of some runtime overhead, we guarantee that unsoundness is detected
at the point when it occurs, which allows us to prevent damage (e.g., leaking of sensitive
information) from occuring.

The second guarantee is that with every reported counterexample, the specifications
become progressively more complete—in particular, the specifications guarantee that the
static analysis is sound with respect to all executions observed so far. More precisely, suppose
that a counterexample is reported for an execution e. Based on this information, the static
analysis either discovers a bug (e.g., an information leak), in which case the program is repaired
or removed, or concludes that the program is safe even with the updated specifications.
In the latter case, for any subsequent execution identical to e, no counterexamples will be
reported since the static analysis is now sound with respect to all behaviors exhibited in e
and has concluded that all of these behaviors are safe.

Furthermore, note that we guarantee that only finitely many counterexamples are ever
reported (this observation is a simple consequence of the fact that even in the worst case,
there are only a finite number of potential counterexamples). Thus, the static analysis
eventually becomes statically sound with respect to all subsequent executions. Even though
we cannot detect when convergence is reached, it suggests that in practice, fewer and fewer
counterexamples are reported over time. Indeed, we empirically observe this trend in our
evaluation. Even if the static analysis itself never fully converges, the dynamic soundness
guarantee ensures that the overall system is sound.

As described above, our key contribution is an instrumentation scheme for detecting
counterexamples that ensures eventual soundness. To address the challenge of high runtime
overhead, we leverage the fact that to be eventually sound, we do not need the program
instrumentation to report every counterexample that occurs during an execution. Instead,
it is su�cient that for any execution, the instrumentation detects the first counterexample
to occur. For example, let x Òæ o and y Òæ o be two potentially missing points-to edges; if
we can guarantee that for any execution, x Òæ o can only occur after y Òæ o has already
occured (and we are furthermore guaranteed to detect that y Òæ o has occured before
x Òæ o can occur), then we only need to monitor whether y Òæ o occurs. By leveraging this
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11:4 Eventually Sound Points-To Analysis with Specifications

property, we substantially reduce the amount of required instrumentation. For programs
where instrumentation in performance-critical parts is required, the overhead can be further
reduced by manually adding specifications summarizing the relevant missing code.

For the challenge of being unable to instrument missing code, note that because we
use specifications, we are already unable to discover relationships about the missing code.
Indeed, for many clients, only relationships between variables in the available code are of
interest—e.g., Android malware can be characterized by relationships between variables
in the app code alone [21]. However, these relationships typically depend on relationships
between variables in the missing code. For points-to analysis, we cannot observe when
variables in the app might be aliased because they both point to the same object allocated
in missing code. To address this issue, our analysis introduces proxy objects that correspond
to concrete objects allocated in missing code,1 which enable us to soundly and precisely
compute client relations that refer only to available code (e.g., aliasing and concrete types).

We implement our eventually sound points-to analysis in a tool called Optix
2, which

analyzes Android apps treating the entire Android framework as missing. We show that our
instrumentation typically incurs low overhead—the median overhead is 4.6%, the overhead
is less than 20% for more than 90% of apps in our benchmark, and the highest is about
50%. The overhead of the outliers can be reduced as described above; in particular, only
a few manually provided specifications are needed to reduce the overhead of the outliers
to reasonable levels (see Section 8.1). Also, we show that the instrumentation can be used
to detect missing points-to specifications in the information flow client from [21], which
computes explicit information flows [42]. This tool uses specifications to model missing code
(i.e., the Android framework). We empirically show that we can detect missing specifications
that are relevant to the information flow client. In summary, our contributions are:

We propose an eventually sound points-to analysis for programs with calls to missing code
that is also precise and automatic (Section 3). In particular, our analysis adds runtime
instrumentation in the available code that detects and reports counterexamples, and can
guarantee that soundness is never compromised (i.e., malicious functionality never gets
executed) by terminating execution as soon as a counterexample is detected.
We minimize instrumentation to reduce runtime overhead (Section 3) and introduce proxy
objects to handle allocations in missing code (Section 4).
We implement Optix, a points-to analysis for Android apps that treats the entire Android
framework as missing.
We show that the instrumentation overhead is manageable (Section 8), and that Optix

can detect missing specifications relevant to the explicit information flow client from [21].
The largest app in our benchmark has over 300K lines of Jimple code.

2 Overview

Consider the program in Figure 1. Suppose that a security analyst asks whether the program
leaks the return value of mkStr to the Internet via a call to sendHttp, which requires knowing
that str and dataCopy may be aliased. We use points-to analysis to determine which variables
may be aliased. In particular, a points-to analysis computes points-to edge x Òæ o if variable
x may point to a concrete object ō allocated at allocation statement o œ O (called an abstract
object) during execution. Two variables may be aliased if they may point to the same abstract

1 The term proxy object is ours, but the concept has occurred in prior work [8].
2

Optix stands for Optimistic Points-To Information from eXecutions.
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void main() { // program
String str = mkStr();
List list = new List(); // o_list
list.add(str);
Object data = list.get(0);
if(randBool()) {

Object dataCopy = data;
sendHttp(dataCopy); }}

String mkStr() { // library
String libStr = new String(); // o_str
return libStr; }

void sendHttp(String str) { ... } // library
class List { // library

Object f;
void add(Object ob) { f = ob; }
Object get(int i) { return f; } }

Figure 1 Program main (left) calls various library functions, for which the analyst provides
specifications (right). Abstract objects olist and ostr are labeled in comments.

object. Our example program exhibits points-to edges such as list Òæ olist, str Òæ ostr, and
dataCopy Òæ ostr, so the points-to analysis concludes that str and dataCopy may be aliased.

Suppose that the library code is missing. For example, static analyses for Android apps
often have di�culty analyzing Android framework code. In particular, the framework code
makes substantial use of native code and reflection, which are too di�cult to analyze, and
are thus unsoundly ignored by most state-of-the-art static analyses [52, 5, 8], and because
it uses deep call hierarchies, which can cause significant imprecision, since static points-to
analyses often have limited context sensitivity [9]. Thus, the Android framework is missing
from the perspective of the static analyses.

For many clients (including static information flow analysis), it su�ces to compute
edges for visible variables x œ VP in the available code; however, these edges often depend
on relationships in the missing code. Pessimistically assuming that missing code can be
arbitrary is very imprecise, e.g., we may have data Òæ olist in case the implementation of get
is return this. Alternatively, optimistically assuming that missing code is empty can be
unsound, for example, failing to compute data Òæ ostr and dataCopy Òæ ostr. Such dynamic
points-to edges that are not computed statically are missing.

A typical approach in practice is to provide specifications, which are code fragments that
overapproximate the points-to behaviors of library functions; see Figure 1 for examples. For
instance, because our static points-to analysis collapses arrays into a single field, we can
overapproximate the array of elements stored by the List class as a single field f.

Suppose that the analyst has provided specifications for frequently used library functions
such as mkStr and sendHttp, but a long tail of specifications remain missing, including those
for add and get. Therefore, the (optimistic) static information flow analysis incorrectly
concludes that dataCopy cannot point to str, and that mkStr therefore does not leak to the
Internet. Furthermore, dynamic information flow control cannot be applied since the missing
code cannot be instrumented without modifying every end user’s Android installation.

Our analysis instruments the Android app to detect whether counterexamples to the
optimistic assumption that every missing specification is empty; this instrumentation only
inserts runtime checks in the available code. The instrumented app is published on Google
Play. If the instrumentation observes that a counterexample occurs during an execution, then
the counterexample is reported back to Google Play, which recomputes the static analysis to
account for this new information. Our example program main is instrumented to record the
concrete objects pointed to by libStr and data. When the program is run: (i) libStr points
to concrete object ōstr, so our analysis concludes that ōstr is allocated at ostr, and (ii) data
points to ōstr, so our analysis concludes that data Òæ ostr and reports this counterexample.
Upon receiving this report, we add data Òæ ostr to the known counterexamples.
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11:6 Eventually Sound Points-To Analysis with Specifications

Given a new counterexample x Òæ o, the static analysis at the very least learns that
x Òæ o is a points-to edge that may occur. There are two ways in which the static analysis
can generalize from this fact. First, it can compute additional missing points-to edges that
are consequences of this fact according to the rules of the static analysis. For example, given
the counterexample data Òæ ostr, our static analysis additionally computes its consequence
dataCopy Òæ ostr, and determines that str and dataCopy may be aliased. Thus, the security
analyst learns that the return value of mkStr may leak to the Internet, and can report any
newly discovered bugs to the developer. In this case, the leak is discovered even if randBool
returns false and the data is not leaked in that specific execution.

Second, the static analysis can use specification inference to try to identify which missing
specification may have been the “cause” of the missing points-to edge. By doing so, the static
analysis generalizes the counterexample to eliminate unsoundness when analyzing future
apps. In Section 5, we show how our tool leverages specification inference to automatically
infer candidate specifications that “explain” the counterexample. For example, given coun-
terexample data Òæ ostr, the specification inference algorithm would infer the specifications
for add and get shown in Figure 1. One caveat is that the inferred specifications must be
validated by a human, since it is impossible to guarantee that they are correct. We show
that in practice, the inference algorithm has high accuracy.

Next, we describe how our analysis instruments apps to detect missing points-to edges.
Naïvely, we could use a dynamic points-to analysis, which instruments every allocation,
assignment, load, and store operation in the program to determine all of the dynamic
points-to edges that occur during an execution. However, this approach requires far more
instrumentation than necessary. In particular, suppose that multiple counterexamples occur
during an execution; to be eventually sound, the instrumentation only has to detect the
first one that occurs during execution. Leveraging this property enables us to substantially
reduce the required instrumentation. For example, note that the missing points-to edge
dataCopy Òæ ostr can only occur during execution where the missing points-to edge data Òæ ostr

has already occured. Furthermore, once data Òæ ostr has occured, it is added to the static
analysis, which computes dataCopy Òæ ostr as a consequence. Therefore, we never need to
detect or report dataCopy Òæ ostr.

Another challenge with the instrumentation is how to handle allocations in missing
code. For example, if the specification for mkStr were also missing, then our analysis cannot
instrument libStr to determine that ōstr was allocated at ostr. Nevertheless, we can reason
about such missing abstract objects based on observations in available code. In particular,
suppose we instrument str and list. During execution, this instrumentation detects that
str points to a concrete object ōstr. Since ōstr was not allocated at olist, it must have been
allocated in mkStr. We represent this fact by introducing a proxy object pmkStr pointed to by
the return value rmkStr of mkStr. We discuss proxy objects in Section 4.

Finally, we propose an eventually sound points-to analysis. Future work is needed to
design an eventually sound information flow analysis; we describe a candidate in Section 9,
but implementing and evaluating this analysis is beyond the scope of our work.

3 Eventually Sound Points-To Analysis

We describe our eventually sound points-to analysis, summarized in Figure 3.
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1. (allocation)
x Ω X(), o = (x Ω X())

x Òæ o œ �

2. (assignment) x Ω y, y Òæ o œ �
x Òæ o œ �

3. store x.f Ω y, x Òæ oÕ
œ �, y Òæ o œ �

oÕ.f Òæ o œ �O

4. load x Ω y.f, y Òæ oÕ
œ �, oÕ.f Òæ o œ �O

x Òæ o œ �

5. (missing) x Òæ o œ �miss
x Òæ o œ �

Figure 2 Rules to compute sound points-to sets. Rules 1-4 are standard. Rule 5 adds reported
counterexamples to the analysis.

3.1 Background and Assumptions

Consider a program P (whose code is available) containing calls to functions in a library
L (whose code is missing). There are five kinds of statements: allocations (x Ω X(),
where X œ C is a class), assignments (x Ω y, where x, y œ VP are program variables),
loads (x Ω y.f , where f œ F is a field), stores (x.f Ω y), and calls to library functions
m œ M library (x Ω m(y)). We omit control flow statements since our static analysis is
flow-insensitive. We let pm (resp., rm) denote the parameter (resp., return value) of library
function m. For convenience, we assume that each library function has exactly one argument,
and that there are no functions in P .

Our static may points-to analysis, shown in Figure 2, is a standard flow- and context-
insensitive analysis for computing points-to edges � ™ VP ◊ O [3, 46, 8]; we describe how our
results can be extended to context- and object-sensitive analyses with on-the-fly callgraph
construction in Section 6.4. Rule 1 handles object allocations x Ω X(). In particular, recall
that an abstract object is an allocation statement o = (x Ω X()), representing all concrete
objects allocated at that statement. Then, the rule says that x may point to o. Rule 2
handles assignments x Ω y—i.e., if y may point to o, then x may point to o as well. Rules
3-4 handle program loads and stores. They introduce a new relationship �O ™ O ◊ F ◊ O,
which denotes points-to relationships between abstract objects. Intuitively, the relationship
oÕ.f Òæ o œ �O (written oÕ.f may point to o) means that a field f of abstract object oÕ may
reference an abstract object o. Rule 3 handles stores—given a statement x.f Ω y, it says
that if y may point to o and x may point to oÕ, then oÕ.f may point to o. Rule 4 handles
loads—given a statement x Ω y.f , it says that if y may point to oÕ and oÕ.f may point to o,
then x may point to o. Together, rules 3 and 4 are equivalent to the single rule

x Ω y.f, z.f Ω w, y Òæ oÕ
œ �, z Òæ oÕ

œ �, w Òæ o œ �
x Òæ o œ � .

Rule 5 handles known counterexamples �miss ™ VP ◊ O. A function call x Ω m(y) is treated
as an assignment of y to the parameter pm and an assignment of the return value rm to x.

We initially make three simplifying assumptions. First, we assume library functions
do not contain allocations; we remove this assumption in Section 4. Second, we make the
disjoint fields assumption, which says that FL fl FP = ÿ, where FL (resp., FP ) are fields
accessed by load and store statements in the library (resp., program), i.e., there are no shared
fields f œ FL fl FP . 3 We discuss how to weaken this assumption in Section 6.1. Third, the
programs we consider do not have callbacks; we discuss how to handle callbacks in Section 6.2.
Finally, Optix assumes that library functions do not access global variables; we describe
how we could remove this assumption in Section 9.

3 In practice, a shared field is typically a public field in the library code that is accessed by the program.
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11:8 Eventually Sound Points-To Analysis with Specifications

3.2 Eventual Soundness

We first define soundness relative to an execution:

I Definition 1. Let � be a points-to set. We say an execution e exhibits a counterexample
with respect to � if during the execution, there is a dynamic points-to edge x Òæ o ”œ �. We
say � is sound with respect to e if e does not exhibit any counterexamples.

Consider a points-to analysis that for a sequence of instrumented executions e1, e2, . . .
computes a sequence of points-to sets �1, �2, . . ., both indexed by the natural numbers i œ N.
Here, �i is computed as a function of the previous points-to set �i≠1 and the counterexamples
from ei (if any). Note that the instrumentation for ei+1 can be chosen adaptively based on
�i and that �i ™ �j if i Æ j.

I Definition 2. The points-to analysis is eventually sound if for any sequence e1, e2, . . .
of executions, (i) for any execution ei, the instrumentation detects and reports the first
counterexample (if any) that occurs during the execution, and (ii) there are only finitely
many i œ N such that the execution ei exhibits a counterexample with respect to the previous
points-to set �i≠1.

Intuitively, the first property says that counterexamples are detected as soon as they occur
(which ensures that any bugs or malicious behaviors are detected as soon as they occur).
The second property implies that the points-to sets eventually become sound with respect to
all subsequent executions—more precisely, there exists n œ N such that the points-to set �n

is sound with respect to all executions ei such that n Æ i < Œ.4
We remark that we do not require that the di�erent executions use the same inputs,

random seeds, or have the same execution time. We can also handle programs that run
continuously—we simply split the execution into intervals (e.g., 1st hour, 2nd hour, ...) and
treat each interval as a di�erent execution. However, one of our optimizations may need to
be disabled, since it requires that the instrumentation be modified over time, which may not
be possible for a continuously running program.

I Definition 3. The points-to analysis is precise if for every i œ N, the points-to set �i is a
subset of the points-to set computed by analyzing the implementation of the missing code.

Note that while progress towards static soundness is guaranteed, it is not possible to
report how many sources of static unsoundness remain at any point in time. Even if all
program paths are executed, there may be missing points-to edges—e.g., in the following,
suppose that foo is missing; then, if randInt never evaluates to 0, y Òæ o remains missing:

void main() { // program
Object x = new Object(); // o
Object y = foo(x); }

Object foo(Object ob) { // library
Object[] arr = new Object[2];
arr[0] = ob;
return arr[randInt()]; }

Despite the inability to quantify progress, the property of eventual soundness is useful,
since (in addition to guaranteeing dynamic soundness) it guarantees that only a finite number
of counterexamples can possibly occur. In particular, this property implies that the number
of counterexamples reported must decrease over time (eventually to zero). For example,
suppose we try to construct an eventually sound interval analysis for a program x Ω m()

4 Note the upper bound i < Œ; this property only holds for executions indexed by the natural numbers N.
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with an integral variable x by abstracting a set of counterexamples with the smallest interval
that contains all the counterexamples. Such an analysis is not eventually sound. On the
other hand, an analysis that abstracts counterexamples with (≠Œ, Œ) is sound and therefore
(vacuously) eventually sound. Finally, the former analysis is eventually sound (but not
precise) if after n counterexamples, the analysis outputs (≠Œ, Œ).

Also, it is permissible for a counterexample to simply never occur in any execution—e.g.,
in the above code, if the call to randInt in foo always returns 1, then the counterexample
y Òæ o does not occur in any execution. Eventual soundness is still satisfied, since it is
defined relative to the sequence of observed executions—if a counterexample exists but is
never observed, then the analysis is still statically sound for all observed executions.

3.3 Naïve Algorithm

We first describe a naïve eventually sound points-to analysis.

Optimistic analysis. We use the static analysis in Figure 2 to compute static points-to
edges �, assuming that calls to library functions are no-ops—in particular, the set of
counterexamples is initially empty, i.e., �miss Ω ÿ.

Runtime checks. A monitor is instrumentation added to a statement x Ω ú (where ú

stands for any valid subexpression). After executing this statement, the monitor issues a
report (x Ω ú, ō)—i.e., it records the value of the concrete object ō pointed to by x after
executing x Ω ú. Note that upon executing, a monitor only records a single integer—i.e., the
memory address pointed to by x; it does not traverse the heap more deeply. Thus, a monitor
is very lightweight instrumentation. A monitoring scheme M is a set of program statements
to be monitored. Our goal is to design monitoring schemes that satisfy the following:

I Definition 4. We say a monitoring scheme M is sound if for any execution, M reports
the first counterexamples that occurs (if any), and we say M is precise if it only reports
counterexamples, i.e., it does not report false positives.

Naïvely, it is sound and precise to monitor every variable x œ VP . Then, we can map
each concrete object ō to its allocation:

I Definition 5. An abstract object mapping for an execution is a mapping ō o, where ō is
a concrete object allocated at abstract object o.

For every report (x Ω X(), ō), we add ō  o to the abstract object mapping, where
o = (x Ω X()). Then, for every report (x Ω ú, ō) and ō  o, we conclude that x Òæ o
occurred dynamically; if missing, we report it as a counterexample. In our example, we
monitor libStr, detect that ōstr  ostr, and report counterexample data Òæ ōstr.

Updating the static analysis. We add every reported counterexample to �miss. Our static
analysis in Figure 2 adds �miss to � and computes the consequences of these added edges.
Continuing our example, our static analysis adds data Òæ ostr to � (rule 5), and computes
its consequence dataCopy Òæ ostr (rule 2).

Guarantees. Let �ú be the points-to edges computed in the case that �miss = �ú
miss

holds,
where �ú

miss
is the set of all missing points-to edges. Then, our analysis is:
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Data Structure Rules for Construction

monitors (allocation) Malloc = OP (function call) x Ω m(y)
(x Ω m(y)) œ Mcall

¿

reports (allocation) x Ω X(), x Òæ ō

(x Ω X(), ō) œ Ralloc
(function call) x Ω m(y), x Òæ ō

(x Ω m(y), ō) œ Rcall

¿

abstract object

mapping

(program abstract objects) (x Ω X(), ō) œ Ralloc
ō o = (x Ω X())

(proxy objects) (ú, ō) ”œ Ralloc, ’i œ {1, ..., k} (xi Ω mi(yi), ō) œ Rcall
ō p = {m1, ..., mk}

¿

missing

points-to edges

(x Ω m(y), ō) œ Rcall, ō o, x Òæ o ”œ �
x Òæ o œ �miss

¿

optimistic static

points-to edges
� = (apply Figure 2 with the constructed �miss)

Figure 3 Given a program P , Optix adds monitors to P . It uses reports issued by these monitors
during executions to compute the counterexamples �miss, which the static analysis in Figure 2 uses
to compute optimistic points-to edges � ™ VP ◊ (OP fi P).

Eventually sound: Since we monitor every variable and abstract object, we are guar-
anteed to detect any counterexample, including the first to occur during execution.
Furthermore, since �ú

miss
is finite, only finitely many counterexamples are ever reported.

Thus, there exists some execution i0 œ N of the program during which the last counterex-
ample is reported. Then, the points-to set �i computed by our algorithm after the ith
execution is sound for all executions i Ø i0.
Precise: Any sound set of points-to edges �Õ must contain the missing points-to edges
�ú

miss
. Therefore, �miss ™ �ú

miss
™ �Õ. Since computing a transitive closure is monotone,

it follows that � ™ �ú
™ �Õ.

Automatic: Our static analysis requires no human input.
In our example, the static points-to set � is sound after the counterexample data Òæ ostr

is reported, since the static analysis then computes the remaining missing points-to edge
dataCopy Òæ ostr.

3.4 Optimized Monitoring

We now describe how to reduce monitoring.
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Restricting to function calls. Recall that monitoring dataCopy is unnecessary—the missing
edge dataCopy Òæ ostr is computed by the static analysis once data Òæ ostr is reported, so it
su�ces to monitor data. In general, it su�ces to monitor function calls and allocations:

I Proposition 6. The monitoring scheme Mmin = Malloc fi Mcall is sound and precise, where
Malloc = O and Mcall = {x Ω m(y) | m œ M}.

We give a proof in Appendix A.1. Figure 3 shows our algorithm using Mmin.

Restricting to leaked abstract objects. We can further reduce the size of Malloc—library
functions can only access abstract objects reachable from the parameter y of a call x Ω m(y),
which implies that the return value rm can only point to such an abstract object o, so it
su�ces to restrict Malloc to include abstract objects that may leak into missing code. It is
even sound to use the monitoring scheme M̃alloc, which monitors allocations o such that o
may be explicitly passed to the library via a function call x Ω m(y), where y Òæ o:

M̃alloc = {o œ O | y Òæ o œ � where x Ω m(y)}.

This monitoring scheme is subtler than the schemes described previously, since the monitors
M̃alloc depend on the current points-to edges �. Therefore, the instrumentation may need to
be updated when counterexamples are reported and � is updated. In particular, if y Òæ o is
newly added to �, where x Ω m(y), then o is added to M̃alloc so the instrumentation must
be updated. We can soundly use M̃min = M̃alloc fi Mcall:

I Proposition 7. The monitoring scheme M̃min constructed using the current points-to
edges � is sound and precise.

We give a proof in Appendix A.2. Since the number of possible counterexamples is still finite,
at some point no further counterexamples are reported. By Proposition 7, no counterexamples
occur in any subsequent executions, i.e., � is sound for all subsequent executions.

Minimality. Our monitoring scheme is minimal in the following sense:

I Proposition 8. Assume that the rules used to compute M̃alloc do not generate any false
positives, i.e., for every allocation o œ M̃alloc, there exists an execution during which a
concrete object allocated at o is passed as an argument to a library function. Then, for any
strict subset M ( M̃min, there exist implementations of the library and program executions
such that M fails to report a counterexample, i.e., using M is not eventually sound.

In other words, our monitoring scheme is minimal except for potential imprecision when
computing M̃alloc. We give a proof in Appendix A.3.

4 Abstract Objects in the Library

We now remove the assumption that no allocations occur inside missing code.

4.1 Proxy Objects

Suppose that allocations can occur inside library code. Let O = OP fi OL, where abstract
objects in OP are in available code and abstract objects in OL are in missing code. Then,
our analysis cannot compute points-to edges x Òæ o, where o œ OL. As described previously,
we assume that the static analysis only needs to compute relations involving program values.
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However, points-to edges x Òæ o œ VP ◊ OL (i.e., x is in the program but o is not) are often
needed to compute relations between program variables, e.g., aliasing and concrete types.

For example, in Figure 1, if mkStr is missing, then ostr is missing, so our static analysis
cannot compute str Òæ ostr (among others). Furthermore, we do not assume the ability to
instrument missing code, so we cannot dynamically detect these points-to edges. However,
this points-to edge is needed to determine that str may have type String, and that str and
data may be aliased.

We handle allocations in library code by constructing the following:

I Definition 9. A proxy object mapping „ maps ō p, where ō is a concrete object allocated
in missing code, and p = „(ō) œ P is a fresh abstract object called a proxy object; here, P is
the set of all proxy objects.

In other words, „ is the abstract object mapping for concrete objects allocated in missing
code. We describe how to construct „ and P below.

Given „, our analysis proceeds as before. It makes optimistic assumptions, initializes
�miss Ω ÿ, and instruments the program using the monitoring scheme M̃min defined in
Proposition 6. For any report (x Ω ú, ō), if ō is not allocated at a visible allocation, our
analysis concludes that ō must have been allocated in missing code, so it adds ō p = „(ō)
to the abstract object mapping. Now, if a detected dynamic points-to edge x Òæ p is missing,
it is reported as a counterexample and added to �miss ™ VP ◊ (OP fiP), and � is recomputed
using the static analysis in Figure 2. As long as P is finite, then this approach is eventually
sound, since there can only be a finite number of counterexamples x Òæ p.

In our example, str is monitored since mkStr is missing. Upon execution, our instru-
mentation detects str Òæ ōstr, and determines that ōstr (allocated at ostr) is allocated in
missing code. Supposing that pstr = „(ōstr) œ P, our analysis adds ōstr  pstr to the abstract
object mapping. Thus, our instrumentation reports the counterexample str Òæ pstr. Assum-
ing execution continues, then our instrumentation additionally reports the counterexample
data Òæ pstr. Both counterexamples are added to �miss, from which our static analysis
computes dataCopy Òæ pstr œ �.

We now discuss how to construct „ and P. The relevant information characterizing a
concrete object is the following:

I Definition 10. The dynamic footprint of a concrete object ō is the set of all visible variables
that ever point to ō during an execution.

The concrete type of ō may also be available to the static analysis, which we discuss in
Section 6.3. Aside from concrete types, the dynamic footprint contains all information about
ō available to the static analysis, namely, the visible variables that point to ō.

Then, the proxy object mapping „ should map each concrete object ō to a proxy object p
so that the corresponding static footprint {x œ VP | x Òæ p œ �ú

} soundly overapproximates
the dynamic footprint of ō as precisely as possible. This way, clients of the points-to analysis
can be eventually soundly and precisely computed (as long as they only depend on available
information), e.g., it ensures that aliasing for program variables is eventually soundly and
precisely computed (concrete types are eventually soundly and precisely computed using a
simple extension; see Section 6.3).

On the other hand, „ should also avoid introducing unnecessary proxy objects, or else
more executions may be required for the analysis to become sound. Two extremes highlight
these opposing desirable properties:

Unbounded P: Map each concrete object to a fresh proxy object „(ō) = pō.
Singleton P: Map each concrete object to a single proxy object „(ō) = p.
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On the one hand, if we use a fresh proxy object for every concrete object, then there would
be an unbounded number of proxy objects, which would mean our algorithm is no longer
eventually sound (since there may be an unbounded number of missing points-to edges).
Alternatively, using a single proxy object can be very imprecise; for example, for any pair of
calls x Ω m(y) and xÕ

Ω mÕ(yÕ), our analysis concludes that x and xÕ may be aliased.
We first describe an ideal proxy object mapping, which constructs P as the set of possible

dynamic footprints, and constructs „ to map ō to its dynamic footprint. Points-to sets
computed using any static analysis together with the ideal proxy object mapping satisfy
the above property, i.e., that the static footprints soundly overapproximate the dynamic
footprints as precisely as possible.

Because the static analysis is flow-insensitive, the ideal proxy mapping is actually more
precise than necessary. Therefore, our analysis uses a coarser proxy object mapping computed
by our analysis, which essentially restricts the dynamic footprint to function return values.
Finally, we show that this coarser proxy object mapping is as precise as the ideal proxy
object mapping for our points-to analysis described in Figure 2.

4.2 Ideal Proxy Object Mapping

Our “ideal” construction of proxy objects exactly captures dynamic footprints:

I Definition 11. An ideal proxy object p̃ œ P̃ = 2VP is a set of visible variables. The ideal
proxy object mapping „̃(ō) œ P̃ is the dynamic footprint of ō.

For a concrete object ō allocated in missing code, we can compute „̃(ō) by monitoring all
visible variables and identifying all visible variables that ever point to ō. In our example,
suppose that we continue executing main even if a counterexample is detected and reported.
Furthermore, suppose that the concrete object ōstr is allocated at missing abstract object
ostr in an execution where randBool returns false. Then, „̃ maps ōstr to ideal proxy object
p̃str = {str, data}. The reported counterexamples

�̃miss = {str Òæ p̃str, data Òæ p̃str}

are added to our static analysis, which additionally computes dataCopy Òæ p̃str.
Let �̃ú

miss
™ VP ◊ (OP fi P̃) be the missing points to edges when using ideal proxy objects,

and let �̃ú
™ VP ◊ (OP fi P̃) be the points-to edges computed using �miss = �̃ú

miss
. Then:

I Proposition 12. If x Òæ ō occurs during execution and ō is allocated at abstract object o,
then x Òæ o œ �̃ú (if o œ OP ) or x Òæ p̃ œ �̃ú (where p̃ = „̃(ō)).

In other words, clients of the points-to analysis that only refer to program variables are
eventually sound. For example, if two program variables x and y may be aliased, then there
must be some execution in which they both point to a concrete object ō. Then, our analysis
finds points-to edges x Òæ p̃ and y Òæ p̃, where p̃ = „̃(ō), so the alias analysis determines that
x and y may be aliased. Also:

I Proposition 13. Let � ™ VP ◊ (OP fi OL) be the points-to set computed using the static
analysis in Figure 2 with all code available (and �miss = ÿ). For o œ OP , if x Òæ o œ �̃ú, then
x Òæ o œ �. For p̃ = „̃(ō) œ P̃, if x Òæ õ œ �ú, then x Òæ o œ �, where o is the statement
where ō was allocated.

In other words, �̃ú is at least as precise as the points-to edges � computed with all code
available. We prove these two propositions in Appendix B.1 & B.2. In our example, with all
code available, we compute str Òæ ostr, data Òæ ostr, and dataCopy Òæ ostr, which is equivalent
to �̃ú (replacing p̃str with ostr).
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4.3 Proxy Object Mapping

The ideal proxy object mapping is more precise than necessary. Continuing our exam-
ple (where we assume execution continues even after counterexamples are detected and
reported), consider a second execution where randBool returns true. Then, the concrete
object ōÕ

str
allocated at missing abstract object ostr is mapped to the ideal proxy object

p̃Õ
str

= {str, data, dataCopy}. However, the static footprint of p̃Õ equals that of p̃ (from the
first execution, where randBool returns false), even though p̃ ”= p̃Õ—i.e., ōstr and ōÕ

str
map to

di�erent ideal proxy objects, but their relevant points-to behaviors appear identical to the
(flow-insensitive) static analysis. In fact, all information about a concrete object available to
the static analysis can be summarized by the following:

I Definition 14. The dynamic function footprint of a concrete object ō is the set of library
functions m œ M such that rm Òæ ō during execution.

Now, we use the following proxy object mapping:

I Definition 15. A proxy object p œ P = 2M is a set of library functions. The proxy object
mapping „(ō) œ P is the dynamic function footprint of ō.

To compute „, it su�ces to monitor calls x Ω m(y) to missing functions. Continuing
our example, „ maps the concrete object ōstr allocated at missing abstract object ostr to
pstr = {mkStr, get} regardless of the return value of randBool. If randBool returns true, then
the reported counterexamples are

�miss = {str Òæ pstr, data Òæ pstr, data Òæ pstr},

in which case our static points-to analysis does not compute any additional edges. If randBool
returns false, then the reported counterexamples are

�miss = {str Òæ pstr, data Òæ pstr},

from which our static analysis also computes dataCopy Òæ pstr. The static footprint of pstr is
the same either way, and also equals those of p̃str and p̃Õ

str
.

Let �ú
miss

™ VP ◊ (OP fi P) be the set of all missing points-to edges using proxy objects,
and let �ú

™ VP ◊ (OP fi P) be the points-to edges computed using �miss = �ú
miss

. Then:

I Proposition 16. For any abstract object o œ OP , x Òæ o œ �̃ú
… x Òæ o œ �ú. Further-

more, for any concrete object ō allocated in missing code, letting p̃ = „̃(ō) and p = „(ō), we
have x Òæ p̃ œ �̃ú

… x Òæ p œ �ú.

In other words, the points-to edges computed using our proxy object mapping is as sound
and precise as using the ideal proxy object mapping. Therefore, using proxy objects is also
sound and precise in the sense of Propositions 12 and 13. We prove this proposition in
Appendix B.3. Finally, the following result says that the monitoring scheme described in
Section 3.4 is still sound (it follows since we can compute „ using only Mcall):

I Proposition 17. The monitoring scheme M̃min is sound and precise.

5 Specification Inference

Rather than simply adding reported missing points-to edges to �miss, we can use them to
infer specifications summarizing missing code, which transfers information learned from
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Object m_gen(Object ob) {
while(true) {

ob = new Object();
ob.f = ob;
ob = ob.f; }

return ob; }

Object m_res(Object ob) {
Object r;
this.f = ob;
r = ob;
r = this;
r = this.f;
return r; }

Figure 4 Pessimistic functions used for specification inference; mgen (left) is fully general (assuming
functions do not access global state), whereas mres (right) is restricted in various ways. For simplicity,
we omit the receiver in mgen.

the counterexample to other calls to the same library function. We use the specification
inference algorithm in [8]. Given a reported missing points-to edge x Òæ o, this algorithm
infers specifications in two steps:

Pessimistic assumptions: Take m̂ = mpess for every missing function m œ M, for
some function mpess (see below), and run the static analysis using m̂ in place of m.
Minimal statements: Compute a minimal subset of pessimistic statements (i.e., state-
ments in the functions mpess) that are needed to compute x Òæ o statically; these
statements are the inferred specifications.

The second step involves computing the static analysis using a shortest-path style algorithm,
where pessimistic statements are assigned weight 1 and all other statements are assigned
weight 0. When computing the transitive closure according to the rules in Figure 2, a priority
queue is used in place of a worklist, where the priority of each points-to edge in the queue
is the number of pessimistic statements needed to derive it. In particular, the priority of
the derived points-to edge is the sum of the weights of the statements in the premise as well
as the priorities of points-to edges in the premise. Thus, if a computed points-to edge has
positive weight, we know that it can only be derived using a statement in mpess.

Pessimistic function. A key design choice is the pessimistic function mpess to use. The
choice in [8], which we term the general function mgen, is shown in Figure 4 (left). The
code shown in this figure is compilable Java code, except we have added a new field f to the
Object class. In particular, this code can be analyzed by our static analysis. As described
above, during specification inference, we run our static analysis using either mgen or mres in
place of m for every missing function m œ M.

Using mgen is sound, assuming library functions do not access global fields; see [8] for
a formal proof. Intuitively, the argument ob of mgen can be assigned to its return value
rmgen ; furthermore, the while loop ensures that arbitrary fields in the argument ob can be
stored into fields in the return value rmgen or into other fields of ob. In principle, we could
even modify mgen to handle library functions that access global fields by adding statements
x = X.g and X.g = x, for every global field X.g. However, none of the specifications we
have written so far access global fields, so this restriction improves running time without
unsoundness in practice.

Unfortunately, even with this restriction, using mgen results in a huge search space of
candidate specifications. As a consequence, when using mgen, the specification inference
algorithm infers many incorrect specifications—in particular, there may be many specifications
that yield a missing points-to edge, so the algorithm may infer the wrong ones.

Instead, we use pessimistic assumptions that restrict the search space to only consider
candidate specifications that are common in practice, thus reducing the possibility of inferring
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an incorrect specification (at the cost of being unable to infer more complex specifications).
In particular, we only consider candidate specifications that (i) do not accesses deep field
paths, (ii) only access receiver fields, and (iii) does not allocate objects. These constraints
lead to the restricted function mres shown in Figure 4 (right).

Proxy object specifications. One of the restrictions on mres is to assume that the candidate
specifications do not allocate objects. To alleviate the consequences of this restriction, we
separately infer specifications that allocate objects. In particular, we infer proxy object
specifications of the form (X, {m}), where X œ C and m œ M is a library function. This
specification says that a new object of type X is allocated onto the return value of a function.
We infer a proxy object specification for any proxy object p œ P we observe dynamically
such that the function footprint of p consists of a single function m.

6 Extensions

6.1 Shared Fields

In Section 3.1, we made the assumption that no shared fields f œ FP flFL exist. Our analysis
handles a shared field f by converting stores x.f Ω y and loads x Ω y.f in the program into
calls to setter and getter functions, respectively. To do so, we have to know which fields may
be accessed by the library. We make the weaker assumption that the library does not access
fields defined in the program—then, our analysis performs this conversion for every field f
defined in the library that is accessed by the program.

6.2 Callbacks

Android apps can register callbacks to be invoked by Android when certain events occur, e.g.,
the program can implement the callback onLocationChanged, which is invoked when the user
location changes. If callbacks are not specified, then the static analysis may unsoundly mark
them as unreachable. We use the approach in [7] to eventually soundly compute reachable
program functions. In particular, a potential callback, is a program function that overrides
a framework function. Intuitively, potential callbacks are the functions “known” to the
framework. For each potential callback m that is marked as unreachable by the static analysis,
we instrument m to record whether m is ever reached. This algorithm is eventually sound
since there are only finitely many potential callbacks. Also, the instrumentation eventually
incurs no overhead—once no more counterexamples are reported, the instrumentation is
never triggered.

In addition, some callbacks are passed parameters from the Android framework. For
example, consider the code on the left:

void onLocationChanged(Location loc) {
Location copy = loc; }

void onLocationChanged() {
Location loc = Location.getLocation();
Location copy = loc; }

Here, loc points to an abstract object oloc. In this case, oloc is allocated in the framework,
but it may also be allocated in program code. We must specify the abstract objects that
loc may point to, or else our points-to analysis is unsound. The code on the right replaces
the parameter with a call that retrieves loc from the framework, which is semantically
equivalent to the code on the left. Thus, we can think of loc as a “return value” passed to
onLocationChanged; by Proposition 6, it su�ces to monitor all callback parameters.
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6.3 Concrete Types

Some client analyses additionally need the concrete type X œ C of abstract objects o = (x Ω

X()), for example, virtual call resolution. To compute concrete types for proxy objects, each
monitor x Ω ú additionally records the concrete type of the concrete object pointed to by x
after executing the statement. Then, the proxy objects are extended to P = C ◊ 2M, and
the proxy object mapping „ maps ō p = (X, F ), where F ™ 2M is the dynamic function
footprint of ō, and X œ C is the recorded concrete type of ō.

6.4 Context- and Object-Sensitivity

Our analysis extends to k-context-sensitive points-to analyses with two changes. First, the
abstract objects considered are typically pairs o = (c, h), where c is a calling context and h
is an allocation statement, so monitors on allocation statements x Ω X() also record the top
k elements of the current callstack. Second, the points-to edge typically keeps track of the
calling context d in which a variable v may point to abstract object o. Therefore, monitors on
calls to missing functions x Ω m(y) also record the top k elements of the current callstack.

In particular, our analysis may (i) detect that (d, v) Òæ ō (i.e., d is the callstack when v
pointed to ō), and (ii) ō (c, h) (i.e., ō was allocated at statement h, and c is the callstack
when ō was allocated). Then, our analysis reports missing points-to edge (d, v) Òæ (c, h). We
use a 1-CFA points-to analysis in our evaluation; in this case, the calling context is simply
the function in which the allocation or call to a missing function occurs. Our approach can
be extended to handle object-sensitive analyses, by including instrumentation that records
the calling context (which now includes the value of the receiver).

Finally, we can also handle on-the-fly callgraph construction—if a missing points-to edge
x Òæ o is reported, and there is a virtual function call x.m() in the program, then the possible
targets of x.m() are updated to take into account the concrete type of o. The instrumentation
may need to be updated based on this new information. Assuming the number of possible
call targets is finite, this approach is eventually sound and precise.

7 Implementation

We have implemented our eventually sound points-to analysis, including all extensions
described in Section 6 (using a 1-CFA points-to analysis), for Android apps in a tool
called Optix. The missing code consists of Android framework methods, which we assume
cannot be statically analyzed (since the Android framework heavily uses native code and
reflection) or instrumented (which requires a custom Android installation). The static
analysis framework we use predates Optix, and uses hand-written specifications to model
missing code. Specifications have only been written for methods deemed relevant to a static
information flow client—of the more than 4,000 Android framework classes, only 175 classes
have specifications. Framework methods without specifications appear as missing code to
our static analysis.

Optix instruments Android apps using our optimized monitoring scheme M̃min. It
computes eventually sound points-to sets and infers specifications based on reported missing
points-to edges. We instrument apps using the Smali assembler and disassembler [26].
To monitor a statement x=..., we record (i) the value System.identityHashCode(x), which
identifies the concrete object pointed to by x, (ii) the concrete type x.getClass() of x, and (iii)
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Figure 5 Sizes of the 73 apps in our benchmark in terms of Jimple list of code (LOC).

the method containing the statement and the o�set of that statement in the method. 5 This
data is uploaded to a server in batches (by default, once every 500ms), which post-processes
it to compute missing points-to edges and infer specifications. To obtain traces, we execute
apps in the Android emulator and use Monkey [24] to inject touch events. We measure
overhead using the Android profiler.

We have implemented the points-to analysis, the monitoring optimization, and the
specification inference algorithm in a version of the Chord program analysis framework [40]
modified to use Soot as a front end [48]. The specification inference algorithm is based on
shortest-path context-free reachability, described in [8]. We use a 1-CFA points-to analysis.
As we discuss Section 6.4, using our more precise points-to analysis is eventually sound.

We use the information flow client from [21], which uses specifications to model missing
code. It performs a static explicit information flow analysis [42] based on a static points-to
analysis. The information flow analysis is standard—it looks for paths from annotated
sources (e.g., location, contacts, etc.) to annotated sinks (e.g., SMS messages, Internet, etc.)
in the Android framework [23, 5]. All analyses are computed using BDDBDDB [49].

8 Evaluation

We evaluate Optix on a benchmark of 73 Android apps, including battery monitors, games,
wallpaper apps, and contact managers. The benchmarks are from two sources: the majority
(40) are provided by a major security corporation (the “industry benchmark”), and the
remaining (33) are provided as part of the DARPA APAC project on Android malware
(the “DARPA benchmark”). The industry benchmark includes apps collected from the
Google Play Store; the apps are primarily malware that leak sensitive information such as
location, contacts, SMS messages, etc. The DARPA apps were challenging malware instances
developed by a third party contractor as part of the program. Examples of apps from the
industry benchmark include an app for monitoring your battery consumption, side scrolling
action game, an implementation of the game of Mahjong, a maze game, and apps that let
you set animated wallpapers. Examples of apps from the DARPA benchmark include a note
taking app, an app that lets you use SMS messages to command your phone to perform

5 Even though System.identityHashCode is not guaranteed to return a unique hash, it is a sound
overapproximation.
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Rank
Recording Overhead (%) Data (MB/hr)

initial updated # specs worst initial worst
1 52.0 (0.38) 31.0 15 90.8 (0.02) 0.80 (0.59) 1.59 (0.16)
2 50.0 (0.02) 17.6 10 77.6 (0.01) 0.39 (0.01) 0.57 (0.39)
3 38.7 (0.10) 6.7 5 72.4 (0.04) 0.29 (0.38) 0.46 (0.30)
4 33.5 (0.65) 6.9 1 70.6 (0.15) 0.24 (0.15) 0.33 (0.78)
5 31.7 (0.10) 19.7 5 61.6 (0.23) 0.24 (0.55) 0.33 (0.64)
6 26.7 (0.25) – – 52.5 (0.03) 0.23 (0.80) 0.25 (0.04)

median 4.6 (0.10) – – 8.3 (0.10) 0.01 (0.35) 0.02 (0.30)

Figure 6 The runtime overhead from recording data and the (compressed) size of the data
generated in one hour. Each is divided into initial and worst-case. The “updated” overhead is
obtained by adding specifications to reduce monitoring, and “# specs” is the number of specifications
added to do so. For each column, the table shows the largest six values and the median value across
our benchmark. The coe�cient of variation (across three runs) is shown in parentheses.

various tasks, an app that keeps track of your jogging routes, a news collator, an app for
organizing your podcasts, and an app for sharing your location. We provide the industry
benchmark; 6 we cannot release the DARPA benchmark, but provide brief descriptions of
the apps in this benchmark in Appendix C. Finally, in Figure 5, we show a plot of the sizes
of the apps in Jimple lines of code (LOC). We omit 11 apps that fail to run on the standard
Android emulator, leaving 62 apps. First, we use Optix to instrument each Android app
and study the instrumentation overhead. Second, we show how Optix computes points-to
edges over time, and show that the number of computed edges does not explode. Third, we
show how our analysis can be used to improve an information flow client.

8.1 Instrumentation Overhead

We evaluate the runtime overhead of our monitoring scheme M̃min described in Section 3.4.
Recall from Section 3.4 that our optimized instrumentation scheme may add instrumentation
over time. We consider two settings:

Initial: This configuration represents the instrumentation overhead for a new app using
the current program analysis. In particular, we use the initial instrumentation scheme
where M̃alloc is constructed with no known counterexamples (i.e., �miss = ÿ). Also, we
use all existing handwritten points-to specifications, representing the realistic scenario
where some manually provided information is used in addition to automatic inference.
Worst: This configuration represents the absolute upper bound on the overhead. In
particular, we monitor apps using the worst-case instrumentation scheme where M̃alloc

contains all abstract objects that may leak into missing code. Furthermore, we remove
all handwritten points-to specifications.

We executed instrumented apps in a standard emulator using Monkey for one hour, and
measure instrumentation overhead in each setting, on a 3.30GHz Intel Xeon E5-2667 CPU
with 256 GB of memory. The server for collecting and analyzing reports was run concurrently
on a di�erent CPU core of the same machine. Our results are averaged over three runs.

Results. We show the highest runtime overheads in Figure 6, including the runtime overhead
from recording data and the amount of data generated in an hour, for both the initial setting

6 https://drive.google.com/open?id=1LzRhwtPisWWwKTd7lnHy7CE5Gf9iRkH4
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and the worst-case setting.7 Columns “updated” and “# specs” are discussed below. We
plot the runtime overhead of our recording instrumentation in Figure 7 (a), where the apps
along the x-axis are sorted according to the overhead in the worst-case setting.

Discussion. The overhead incurred by recording data is less than 5% for more than half
of the apps, showing that in most cases the automatically instrumented programs have
acceptable performance. Even in the worst case, more than half the apps have less than
10% overhead. Still, there are outliers, with 5 apps incurring more than 20% overhead with
initial instrumentation, and in the worst-case, 9 apps incurred more than 20% overhead.
Unsurprisingly, the high-overhead outliers have instrumentation in inner loops of the app; in
such cases the overhead can be reduced (see below). Finally, the amount of data generated
is very small. Even in the worst case, for all but one of the apps, less than 1.0 MB of
(compressed) data was generated in one hour. The median amount of data generated is
about 2.0 KB, which is negligible. Data can therefore be stored and transmitted when the
app is idle, so the overhead due to uploading data does not a�ect the user experience.

Reducing runtime overhead. Any program where instrumentation is required in a tight
inner loop is particularly challenging for dynamic analysis. Standard sampling techniques
can be used to reduce overhead in these cases [33], though eventual soundness may no longer
hold. Alternatively, both M̃alloc and Mcall decrease in size as specifications are added and
reach zero when there are no missing specifications. For a given program, we can test the
program to determine which monitors are frequently triggered, and compute which missing
functions require specifications for these monitors to be removed. Providing or inferring
specifications for these functions would allow us to remove the expensive monitors. We do so
for the five apps with initial overhead greater than 20%. In Figure 6 (left), we show both
the number of specifications we added for that app (“# spec”) and the resulting overhead
(“updated”). For all but the top app, we were able to reduce the overhead below 20% by
adding specifications for at most 10 Android framework methods; again, the overhead can be
reduced to any desired level by adding more specifications.

8.2 Reported Counterexamples

Next, we evaluate how the computed points-to edges vary over time. We use our algorithm
to compute points-to sets based on the reported counterexamples from Section 8.1. We show
that the number of reported counterexamples does not explode over time—otherwise, the
number of counterexamples discovered in production may be unacceptably high. Furthermore,
we show that a tail of reported counterexamples continues to occur for some apps, which
shows that running instrumented apps in production is necessary.

This experiment uses the worst-case setting where all handwritten specifications have
been removed. Note that the worst-case instrumentation detects all counterexamples since it
never needs to be updated, so this approach is sound. It may actually overapproximate the
number of counterexamples—e.g., if a points-to edge x Òæ o can be computed from another
counterexample y Òæ o that was already detected, our worst-case instrumentation reports
x Òæ o even though it is no longer a counterexample.

7 We ran a small subset of apps on a real device and consistently measured smaller overhead; the emulator
gives a coarser measure of execution time that we round up.
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Figure 7 (a) Runtime overhead of our recording instrumentation in the worst-case setting (black)
and the initial setting (red). The overheads are sorted by the overhead for the worst-case setting.
(b) The x-axis is a fraction of the execution trace, and the curve shows the fraction of discovered
missing points-to edges that discovered up to that point in the execution trace (averaged over all
apps). (c) The x-axis is again a fraction of the execution trace, and the curve shows the number
of apps for which no further missing points-to edges are reported after that point in the execution
trace. (c) The distribution of the sizes of the proxy objects (i.e., the size of its dynamic function
footprint), omitting footprints of size one.

Counterexamples over time. Figure 7 (b) shows the cumulative number of reported missing
points-to edges as execution progresses. More precisely, for each point in the execution trace
(x-axis), it shows what fraction of reported missing points-to edges were discovered before
that point. The values are averaged over all apps. By definition, at the end of the trace
(x = 1.0), the fraction of reported missing points-to edges also goes to y = 1.0.

As can be seen, a large fraction of reports are made early on, with about 65% of reports
made within 20% of the execution trace. We expect the number of reported counterexamples
to continue to converge over time, and should not grow substantially larger. However, the
curve is not yet flat at the end of the execution trace, which indicates that more missing
points-to edges are still being reported. Therefore, it is important to continue monitoring
these apps in production to detect additional counterexamples.8

Last discovered counterexample. Figure 7 (c) shows the point in the execution during
which the final reported missing points-to edge occurs. More precisely, for each point in
the execution trace (x-axis), it shows the fraction of the apps for which the final reported
missing points-to edge was reported before that point. This curve goes to y = 1.0 at x = 1.0,
but we cut o� apps that have reported missing points-to edges in the last 1% of execution.

8 Since this curve is an overapproximation of the number of counterexamples, the true curve may actually
be decreasing faster than this one. Nevertheless, we believe these results emphasize the importance of
continued monitoring, since there are inevitably previously untested code paths that may contain bugs.
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Existing Inferred Correct Accuracy

mres 299 58 49 0.84
mgen 299 159 33 0.22

proxy object 330 422 383 0.91

Figure 8 The number of specifications inferred using each mres and mgen, and the number of
proxy object specifications inferred.

App Jimple LOC Time (min.)

0C2B78 322K 3.38
b9ac05 268K 1.06
highrail 247K 1.49
game 174K 0.08

androng 170K 0.48
median 19K 0.08

Figure 9 Statistics for the five largest apps used in our evaluation, including the number of
Jimple lines of code (i.e., the intermediate representation used by Soot), and the running time of the
specification inference algorithm.

A large fraction of apps (about 45%) report no counterexamples. About 10% of apps
report no further counterexamples after the first 5% of the trace. At the opposite end of the
trace, about 20% of apps have the final reported counterexample in the last 1% to 10% of
the trace, and 20% have the final reported counterexample in the final 1% of the trace, so
more counterexamples likely remain. Again, this shows that we must continue to monitor
apps in production.

Proxy object sizes. Since there are an exponential number of possible proxy objects (in the
number of missing functions), we could hypothetically continue to discover many new proxy
objects over time. In Figure 7 (d), we show the sizes of the dynamic function footprints of
the reported proxy objects. More precisely, we show the number of reported proxy objects
(y-axis) for di�erent dynamic function footprint sizes. As can be seen, the vast majority (85%)
of reported proxy objects have four or fewer functions in their dynamic function footprint.
While there is a long tail of proxy objects with large function footprint sizes, there is no
exponential blowup in the number of proxy objects discovered, ensuring that the analysis
does not diverge due to proxy objects.

8.3 Specification Inference and a Static Information Flow Client

Finally, we evaluate whether Optix benefits an information flow client. We first infer
specifications using the algorithm in Section 5, and then run the information flow client on
various sets of specifications. The information flow analysis is standard—we look for paths
from a set of annotated sources (e.g., location) to a set of annotated sinks (e.g., Internet) in
the Android framework [23, 5, 21, 8]. We demonstrate that the inferred specifications enable
clients to discover more information flows. However, many of the information flows remain
undiscovered because the dynamic analysis is an underapproximation, which again motivates
the need to run instrumented apps in production.
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Empty Inf. Base Base fi Inf. Ex. \ Inf. Ex. Ex. fi Inf.

specs. 0 432 189 621 371 629 803
flows 0 4 3 39 34 125 125

malware 0 2 3 22 12 49 49

Figure 10 Comparison of di�erent sets of specifications: “Base” includes the most frequently
used specifications, “Inf.” includes the inferred specifications, and “Ex.” includes all handwritten
specifications. For each set of specifications, we show the number of specifications in that set
(“specs.”), the number of information flows computed using those specifications (“flows”), and the
number of malicious apps identified, i.e., some malicious information flow was discovered (“malware”).

Specification inference. We remove all points-to specifications from Optix, and then infer
specifications from reported counterexamples. Figure 8 summarizes the inferred specifications—
a specification is correct if it exactly equals the existing specification (or the one we would
have written). Using mres is substantially more accurate than using mgen, which does not
infer a single additional specification. Compared to existing specifications, we inferred 174
new points-to specifications, of which 160 were proxy object specifications.

In Figure 9, we show statistics for the five largest apps in our benchmark along with the
running time of the inference algorithm (the information flow analysis runs much faster than
the inference algorithm). As can be seen, inference scales even to very large apps.

Static information flow client. In Figure 10, we report the number of information flows
and the number of malicious apps detected with varying sets of specifications (one malicious
app can exhibit multiple flows). If we assume that all points-to specifications are missing
(“Empty”), then the information flow client does not identify any information flows, whereas
using inferred specifications (“Inf.”) computes a small number of flows.

A more representative use case is where the analysis has an incomplete baseline consisting
of the most commonly used specifications (“Base”). Our baseline contains specifications
for the essential Android framework classes Bundle and Intent, for the commonly used data
serialization classes JSONArray, JSONObject, and BasicNameValuePair, and for a few methods
in java.util. As can be seen from Figure 10, when using the baseline in conjunction with
the inferred specifications, the analysis computes a considerable number of additional flows
compared to using the baseline alone (39 vs. 3). The reason the inferred specifications
are more beneficial in this setting is that an information flow usually depends on multiple
specifications—if a single one of these specifications is missing, then the flow is missing.

Compared to the existing, handwritten specifications (“Ex.”), using inferred specifications
(together with the baseline specifications) identifies almost a third of the information flows.
However, random testing cannot reveal all malicious behavior, since malware developers often
try to hide malicious behaviors by triggering them only in response to very specific events,
for example, at a certain time [37]. Therefore, our instrumentation is necessary to ensure
that we identify additional malicious behaviors as soon as or before they occur, thereby
limiting potential damage. Note that we do not recover any new flows when combining
inferred specifications with existing specifications—prior to our evaluation, we have already
identified all specifications needed to recover flows in these apps.

Finally, as an alternative way to evaluate the value of the inferred specifications, we
consider omitting the inferred specifications from the set of inferred specifications. Doing
so limits the information flow client to identify only 34 flows, which demonstrates that the
inferred specifications are crucial for finding many of the information flows in these apps.
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9 Discussion

lobal variables. We have assumed that library code does not access global variables; so
far, none of the specifications we have written so far access global variables. We can extend
our framework to handle global variables by instrumenting every load and store to global
variables in the library, at the cost of additional runtime overhead. With this modification,
our theoretical results continue to hold using the same proofs—in particular, we can think of
loads and stores to global variables in the library as calls to setter and getter functions in
the library that load and store data from those variables.

Dynamically loaded code. Our approach can be used for dynamically loaded code—the
dynamically loaded code is taken to be the missing code, and the code that loads the
dynamically loaded code is the available code. We guarantee eventual soundness for points-to
edges in the available code. If points-to edges for dynamically loaded code must be computed,
then the loaded code can be reported to the static analysis, but the analysis is no longer
eventually sound—infinitely many reports may be issued since infinitely many di�erent code
fragments may be loaded.

Eventual soundness for clients. Our approach is automatically eventually sound for client
analyses that depend only on aliasing information and concrete types for visible program
variables (e.g., callgraph resolution). In general, missing code can introduce unsoundness into
the static information flow analysis beyond missing points-to edges. For example, consider

void main() { // program
int val = source();
int valDup = add(val, 1);
sink(valDup); }

int add(int x, int y) { // library
return x+y; }

which calls the missing function add. Even with a sound points-to analysis, the static analysis
would not recover the taint flow from source to sink. Sources and sinks in missing code must
be specified, since there is no way to detect whether calling missing code leaks information
out of the system or introduces sensitive information into the system.

In general, we can perform eventually sound analysis for clients that are abstract interpre-
tations with finite abstract domain (at least, satisfying the ascending chain condition) [13],
if the abstraction function – can be computed for values in the available code based on
observations in the available code alone. In particular, for a call y Ω m(x), the concrete
values of x and y are recorded. Then, we can construct a transfer function fm to be analyzed
in place of m. Initially, ‹ = fm(–(x)) for all x; whenever a previously unobserved relation
–(y) = fm(–(x)) is detected during execution, a report is issued and fm updated. Since the
abstract domain is finite, only finitely many reports can be issued. Thus, the analysis is
eventually sound. Finally, we use our points-to analysis to handle aliasing.

The challenge with information flow is that the abstraction function cannot be computed
from observations in the available code alone, since information flow is a property of the
computation, not just the input-output values. It may be possible to use techniques such as
multi-execution [16], which keep a pair of values Èxprivate, xpublicÍ for each (visible) program
variable x, where xprivate may depend on sensitive data whereas xpublic does not. For example,
the value for program variable val may be È14, 0Í, where 14 is a sensitive value and 0 is a
public value. Then, we can execute add using both x = 14 and x = 0, and obtain return value
radd = È15, 1Í. Since these two values di�er, we conclude that radd depends on the sensitive
input 14, and report that add transfers information from its argument x to its return value
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radd. Essentially, this approach transforms the program so the abstraction function becomes
computable. Alternatively, existing techniques for specification inference such as [8] may be
used to infer specifications describing how information flows through missing code.

10 Related Work

Program monitoring. There has been work using runtime checks to complement static
analysis. For instance, [10] proposes to use dynamic information to resolve reflective call
targets, and then instruments the program to report additional counterexamples. Similarly, [7]
proposes to compute reachable code by inserting runtime checks to report counterexamples
to optimistic assumptions, and [22] uses a combination of static type checking and runtime
checks to enforce type safety. General systems using dynamic analysis to detect gaps in the
static analysis, typically local invariants assumed true by the static analysis, have also been
proposed [11, 15]. Our setting is far more challenging, because (i) naïve dynamic points-to
analyses incur unreasonable overhead [38, 12], and (ii) we cannot instrument missing code.

Additionally, [29] uses dynamic information to complement static points-to analysis.
However, their analysis is unreasonably imprecise for programs that make substantial use of
native code, since they pessimistically assume returns from native code can point to arbitrary
abstract objects. For demanding, whole-program clients such as static taint analysis, such
imprecision generates a huge number of false positives, since every abstract object that leaks
into missing code becomes aliased with every return value from missing code. Even with such
coarse assumptions, their runtime overhead can be higher than 300%, which is not suitable
for use in production code. In contrast, our analysis is both completely precise and incurs
reasonable overhead.

There has also been work identifying bugs [30, 31, 33] and information leaks [6, 16, 18] by
monitoring production executions. Our work similarly monitors production code to identify
unsoundness that can be used to find bugs, information flows, and so forth, but our approach
di�ers in that we aim to use the reported counterexamples to compute static points-to sets
that are eventually sound; these points-to sets can be used with any client. Finally, there has
been work on sound gradual typing [44, 41], which uses runtime monitoring to enforce given
type specifications. The key di�erence between our approach and sound gradual typing is
that the results of our static analysis improve as more counterexamples are detected.

Specification inference. There has been work on inferring specifications, e.g., purely static
approaches that interact with a human analyst [52, 8, 1], and ones that rely on dynamic
traces [12, 28, 4, 9]. Purely static approaches can give certain soundness guarantees, but
su�er from imprecision and rely heavily on interaction. In contrast, dynamic approaches are
fully automatic, but necessarily incomplete since dynamic analysis is an underapproximation.
Our goal is to develop a fully automatic approach where runtime checks are used to detect
when specifications are missing. Furthermore, [2] enables sound callgraph analysis using only
information available in the library interface by using the separate compilation assumption,
which says that the library can be compiled separately from the program. This assumption is
similar to our disjoint fields assumption (with extensions to shared fields and callbacks)—we
assume that the only information about the program “known” to the library are fields and
methods that appear in the library interface. While the callgraph can be computed with
reasonable precision using pessimistic assumptions, the same is not true of points-to edges.

Program synthesis has been used to infer specifications from dynamic traces [28]. This ap-
proach requires fine-grained instrumentation (specifically, leveraging features of the Javascript
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language to obtain alias traces), but they recover all method functionality. Their algorithm
for doing so uses MCMC on a restricted space of potential specifications. Our approach
requires significantly less instrumentation, but our goal is only to recover aliasing behaviors,
and our specifications are furthermore flow insensitive. There have been other approaches to
synthesizing programs from traces [32, 27]. See [28] for a detailed discussion.

Static analysis with specifications. A large number of static analyses rely on specifications
to model missing code, including a number specifically designed to detect Android malware
using information flow analysis [21, 12, 25], as well as production systems designed to find
bugs in Android apps [19]. In all of these systems, specifications are implemented as needed
for the most frequently used library functions; thus, specifications relevant to the client may
be missing. Thus, Optix can be used in conjunction with these tools to detect potential
unsoundness due to missing specifications.

Static points-to analysis. There is a large literature on static points-to analysis [43, 3, 50,
36, 49, 45]. Our focus is on the new problem of automatic inference of precise points-to
information when some of the code is missing.

Static information flow analysis. Static information flow analysis has been used to verify of
security policies [35, 51, 23, 47, 5, 21, 25]. These approaches all depend on alias analysis, and
many use specifications to improve precision and scalability. Our techniques for automatically
synthesizing points-to specifications can make implementing any static analysis for large
software systems, including information flow analysis, more practical.

11 Conclusion

We have described an approach to points-to analysis when code is missing. Our approach
is completely precise and fully automatic, and while it forgoes ahead-of-time soundness, it
achieves eventual soundness by using runtime checks in production code. In particular, our
approach is dynamically sound in the sense that unsoundness (if any) is detected at the point
when it occurs, thus enabling the user to terminate execution to prevent any damage from
happening. We implement our approach in a tool called Optix to compute points-to sets
for Android apps, where the Android framework is missing. For e�ciency, Optix assumes
that library functions do not access global variables; we have empirically found that this
assumption holds. With this assumption, Optix achieves low runtime overhead and data
usage on almost all apps in a large benchmark suite.
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