
Perfect Pipelining:A New Loop Parallelization Technique�Alexander AikenAlexandru NicolauComputer Science DepartmentCornell UniversityIthaca, New York 14853 USAAbstractParallelizing compilers do not handle loops in a satisfactory manner. Fine-grain transformationscapture irregular parallelism inside a loop body not amenable to coarser approaches but have limitedability to exploit parallelism across iterations. Coarse methods sacri�ce irregular forms of parallelismin favor of pipelining (overlapping) iterations. In this paper we present a new transformation, PerfectPipelining, that bridges the gap between these �ne- and coarse-grain transformations while retainingthe desirable features of both. This is accomplished even in the presence of conditional branchesand resource constraints. To make our claims rigorous, we develop a formalism for parallelization.The formalism can also be used to compare transformations across computational models. As anillustration, we show that Doacross, a transformation intended for synchronous and asynchronousmultiprocessors, can be expressed as a restriction of Perfect Pipelining.1 IntroductionA signi�cant amount of research has been done on parallelization, the extraction of parallelism fromsequential programs. The extraction of �ne-grain parallelism|parallelism at the level of individualinstructions|using code compaction has emerged as an important sub-�eld. The model of computationfor compaction-based parallelization is generally some form of shared-memory parallel computer consist-ing of many synchronous, statically-scheduled functional units with a single ow of control. Programs forthese machines may be depicted as program graphs where nodes can contain multiple operations. Trans-formations on these programs rearrange operations to shorten|compact|the paths through the programgraph. Numerous commercial machines (including Multiow's Trace series, CHOPP, Cydrome, the FPSseries, horizontal microengines, and RISC machines) use compaction techniques to exploit parallelism.The standard approach to extracting parallelism from a loop through compaction is to compact theloop body. This yields some performance improvement, but does not exploit parallelism that may bepresent between separate iterations of a loop. To alleviate this problem, most systems unroll (replicate)the loop body a number of times before compacting. If a loop is unrolled k times, parallelism can beexploited inside this unrolled loop body, but the new loop still imposes sequentiality between every groupof k iterations. We present a new loop parallelization technique, Perfect Pipelining, that overcomes thisproblem by achieving the e�ect of unbounded unrolling and compaction of a loop.The program graph in Figure 1a illustrates the importance of Perfect Pipelining. (We have simpli�edthe loop control code for clarity: the induction variable i is incremented implicitly on the backedge, as in aFortran DO loop.) The running time of this loop is 4n steps, where n is the number of iterations executed.Multiple iterations of this loop may be overlapped subject to the constraint that the �rst operation ofan iteration is dependent on the result of the �rst operation of the previous iteration. Figure 1b shows aschedule after the loop has been unwound three times and compacted. (Two additional memory locationsare allocated to each array to handle the extra references generated when i = n.) Operation labels havebeen substituted for the operations; subscripts indicate the increment to the induction variable. Multipleoperations within a node are evaluated concurrently. The running time of this loop is 2n steps. Figure 1cshows the loop unwound �ve times and compacted; in this case the running time is 85n steps. Note thelow parallelism at the beginning and end of the loop body in both of these examples.Additional unrolling and compaction will improve the running time further, although this becomesexpensive very rapidly. Existing compaction transformations can achieve the schedules in Figures 1b�This work was supported in part by NSF grant DCR-8502884 and the Cornell NSF Supercomputing Center.1



(a) Original loop. (b) Unwound three times and compacted.

(c) Unwound �ve times and compacted. (d) Loop after pipelining.Figure 1: A Perfect Pipelining example.



and 1c. Perfect Pipelining derives the program shown in Figure 1d. Intuitively, the transformationaccomplishes this by noticing that the fourth and �fth nodes of Figure 1c execute the same operationsfrom di�erent iterations, and that further unrolling and compaction creates more nodes of the same type.The transformation achieves continuous (or perfect) pipelining of the loop iterations. The running timefor this loop is n+ 3 steps.In the example, the pattern detected by Perfect Pipelining is very simple because there are no branches(other than exits) in the loop body. A surprising property of Perfect Pipelining is that it �nds such apattern on all paths given arbitrary ow of control within the loop body. This is a substantial improvementover previous techniques, which rely on heuristics to estimate the runtime ow of control [Fis81] or ignorebranches altogether. Another important property of Perfect Pipelining is that the transformation applieseven in the presence of resource constraints. We prove that the transformation �nds a pattern givenarbitrary resources and provide an example illustrating its performance when the loop has unpredictableow of control and machine resources are a limiting factor.Perfect Pipelining is de�ned using the primitive transformations of Percolation Scheduling [Nic85b]and loop unrolling. To make our claims precise, we develop a formal account of our transformations. Wede�ne the language to which the transformations apply and provide an operational semantics. A binaryrelation �p is de�ned on programs using the operational semantics; �p measures when one programis \more parallel" than another. We use �p to prove that Perfect Pipelining is better than any �niteunrolling with compaction.The resulting formalism is powerful enough to capture the intuitive notion of program improvementused informally throughout the literature on parallelization. Thus, we can use �p to compare seeminglyunrelated transformations in a meaningful way. As an example, we show that Doacross [Cyt86] canbe derived as a restriction of Perfect Pipelining. Since Doacross is a loop pipelining transformationintended for synchronous or asynchronous (loosely-coupled) multiprocessors, this result suggests that ourformalism is generally applicable across the various models of computation and transformations proposedin the �eld of program parallelization.2 A Simple LanguageIn this section we give an informal description of SPL, a Simple Parallel Language. In the next section wedevelop a formal de�nition of the language and an operational semantics. We have minimized the detailsof language design while keeping the language rich enough to allow discussion of the important problems.SPL is not so much a \real" programming language as a tool convenient for discussing parallelizingtransformations.SPL is graphical; programs are represented by a control ow graph as in Figure 1a. Each node inthe graph contains zero or more primitive operations. These operations are divided into two categories:assignments and tests. The evaluation of an assignment updates the store, while tests a�ect the ow ofcontrol. Execution begins at the start node and proceeds sequentially from node to node. When controlreaches a particular node, all operations in that node are evaluated concurrently; the assignments updatethe store and the tests return the next node in the execution sequence (see discussion below). Operationsevaluated in parallel perform all reads before any assignment performs a write. Write conicts within anode are not permitted.Care must be taken to de�ne how multiple tests are evaluated in parallel. The set of tests within anode is given as a directed acyclic graph (dag). Each test in the dag has two successors correspondingto its true and false branches. A successor of a test is either another test or a name; a name is a pointerto a program node. We require that the dag of tests be rooted|that it have a single element with nopredecessors. To evaluate a dag in a state, select the (unique) path from the root to a name such thatthe branches on the path correspond to the value (true or false) of the corresponding test in the state.Evaluation of the dag returns the node name that terminates this path. On a real machine the evaluationof multiple tests can be very sophisticated to exploit parallelism. A hardware mechanism that e�cientlyimplements general dags of tests is described in [KN85]; less general multiway jump mechanisms are usedin many horizontal microengines and the Multiow architecture.SPL is powerful enough to model execution of a tightly-coupled parallel machine at the instructionlevel. It is at this level that our transformational system extracts parallelism from programs. A sample



Bool = tt + �Loc = ZStore = Loc! ValAssign = Store! Loc �ValTest = Store! Bool succ: Node! P(Node)succ(n) = H where n = hA; hB; select ; r;Hiipred: Node! P(Node)pred(n) = fn0jn 2 succ(n0)gop: Node! P(Assign + Test)op(n) = A�B where n = hA; hB; select; r;Hiinode: Assign + Test! Nodenode(x) = n where x 2 op(n)(a) Basic domains. (b) Useful functions.Figure 2: Some de�nitions.SPL program is shown in Figure 1a. Note that this program has only one operation per node; such aprogram is sequential. Another, more parallel version of the same program is given in Figure 1b.3 Language De�nition and Operational SemanticsThe formal de�nition of SPL and its operational semantics provide a framework for proving propertiesof program transformations. In subsequent sections we develop a formalism for our transformations;this formalism uses the operational semantics of SPL to de�ne when one program is more parallel thananother. The operational semantics of SPL closely follows the structural style advocated by Plotkin [Plo].Figure 2a lists the basic domains of SPL. Val is a domain of basic values|integers, oating-pointnumbers, etc. An assignment, a function of type Assign, deviates from the standard approach in that itdoes not return an updated store. Instead, an assignment returns a pair hl; vi, where v is the new valueof location l. This allows us to de�ne the parallel execution of several assignments as the parallel bindingof the new values to the updated locations. A program is a tuple hN;n0; F i where:N is a �nite set of nodesn0 2 N is the start nodeF � N is the set of �nal nodesA node is a pair hA;Ci where:A is a set of assignmentsC is a dag; a four-tuple hB; select ; r;Hi where:B is a set of testsselect : B � Bool! B +H is an edge functionr is the root test or a node nameH is a set of node namesIn what follows, s and s0 range over stores; variants of v, l, a, and t range over values, locations,assignments, and tests respectively. We assume that assignments and tests are total atomic actions oftype Assign or Test. We use n for both the name of a node and the node itself; the meaning is clear fromthe context.The transformations we de�ne require knowledge of the locations that are read and written by theprimitive operations to model dependency analysis. Dependency analysis determines when two programstatements may refer to the same memory location. The analysis is used to determine when it is safe toperform instructions in parallel. We de�ne write(a; s) to be the location written by assignment a in stores; read(a; s) is the set of locations read by assignment (or test) a in store s.In Section 2, we discussed well-formedness conditions and semantic constraints on programs that arenot implemented by the above description. We omit the formal de�nition of these requirements; thedetails can be found in [AN87b]. The constraints ensure that the dag of tests is well-formed and thattwo assignments in a node cannot write the same location. In addition, the start node should have nopredecessors and a �nal node should have no successors. A �nal node contains a distinguished operation,result, that reads and returns the result of the computation. For the purposes of this paper, we assumethat result returns the entire �nal store.



C = hB; select ; r;Hi; t 2 B; select (t; t(s)) = t0hC; s; ti; hC; s; t0iC = hB; select ; r;Hi; n0 2 HhC; s; n0i; n0A = faig ; ai(s) = hli; vii; s [: : : ; li  vi; : : :] = s0hA; si; s0n = hA;Ci; C = hB; select ; r;Hi; n 62 F; hC; s; ri �; n0; hA; si; s0hn; si ! hn0; s0iFigure 3: Operational semantics of SPL.Figure 3 gives an operational semantics for SPL. The semantics consists of a set of rewriting rulesin the style of inference rules of formal logic. There are two types of transitions: ;, which de�nestransitions within a node, and!, which de�nes transitions between nodes. Rules are read as stating thatthe assertion below the line holds if the assertions above the line hold. The �rst two rules deal with theevaluation of a dag of tests; the third rule describes the parallel evaluation of assignments. The fourthrule de�nes the execution of a node in terms of the evaluation of the node's test dag and assignments.A rewriting sequence is an execution history of one computation of a program. For our purposes, acomplete sequence contains much irrelevant detail; in particular, we are rarely interested in the internalevaluation of a node (the ; transitions). The following de�nition puts a rewriting sequence at the rightlevel of abstraction for viewing execution as transitions from nodes to nodes:De�nition 3.1 The execution trace of program P in initial store s, written T (P; s), is the sequencehn0; s0i ! hn1; s1i ! hn2; s2i ! : : : ! hnk; ski where s0 = s, n0 is the start node of P , and nk 2 F .Traces are de�ned only for terminating computations.4 The Core TransformationsThe core transformations are the building blocks of Perfect Pipelining. These primitive transformationsare local, involving only adjacent nodes of the program graph. Though simple, the core transformationscan be used to express very powerful code motions [AN88].De�nition 4.1 The result R(P; s) of a computation is the �nal store of T (P; s). Two programs P andP 0 are strongly equivalent if 8s R(P; s) = s0 , R(P 0; s) = s0.If T is a program transformation, then T is correct if T (P ) is strongly equivalent to P for all P . Werequire that transformations be correct; this guarantees that any sequence of transformations is stronglyequivalent to the original program. The formal de�nitions of the transformations and proofs of correctnesscan be found in [AN87b]. In this paper, we briey describe and illustrate each transformation.Figure 2b lists some useful functions. Succ returns the immediate successors of a node; when it isconvenient we refer to an edge (m;n) instead of writing n 2 succ (m). Pred returns the immediatepredecessors of a node. The function op returns the operations in a node. Node(x) is the node containingoperation x (we assume there is some way of distinguishing between multiple copies of the same operation).The Delete transformation removes a node from the program graph if it is empty (contains no oper-ations) or unreachable. A node may become empty or unreachable as a result of other transformations.Figure 4a gives a picture. Only the relevant portion of the program graph is shown; incoming edges aredenoted by Ij and exiting edges by Ej. Note that an empty node has exactly one successor.The Unify transformation moves a single copy x of identical assignments from a set of nodes fnjg toa common predecessor node m. This is done if no dependency exists between x and the operations ofm and x does not kill any value live at m. Care must be taken not to a�ect the computation of pathspassing through n but not through m. To ensure this, the original node n is preserved on all other paths.An illustration is given in Figure 4b.



(a) The delete transformation. (b) The unify transformation.Figure 4: Primitive transformations.The Move-test transformation moves a test x from a node n to a node m through an edge (m;n)provided that no dependency exists between x and the operations of m. Paths passing through n butnot through m must not be a�ected; n is preserved on the other paths. Because we allow an arbitraryrooted dag of tests in a node and the test being moved may come from an arbitrary point in that dag, nis split into nt and nf , where nt and nf correspond to the true and false branches of x. An illustrationof the transformation is given in Figure 5. In the illustration, a represents the dag of tests (in n) notreached by x, b represents the dag of tests reached on x's true branch, and c the dag of tests reached onx's false branch.Loop unrolling (or unwinding) is a standard non-local transformation. When a loop is unrolled,the loop body is replicated to create a new loop. Loop unrolling helps exploit �ne-grain parallelismby providing a large number of operations (the unrolled loop body) for scheduling. The operationsin the unwound loop body come from previously separate iterations and are thus freer of the orderimposed by the original loop. Recent work has focused on the correct unwinding of multiple nested loops[Nic85a, AN87a, CCK87]. The shorthand uiL denotes the loop where i copies of the loop body of L areunrolled.5 A Formalization of ParallelismIn this section we develop a formal account of our transformations. This allows us to make precise claimsabout the e�ect of Perfect Pipelining and to compare Perfect Pipelining with other transformations. Werestrict the development to transformations that exploit only control and dependency information; this isa natural and large class of transformations (including our transformations) dominating the literature onparallelization. Examples of transformations in this class include: vectorization, the hyper-plane method[Lam74], loop distribution [Kuc76], loop interchange [AK84], trace scheduling [FERN84], and Doacross[Cyt86].We introduce a preorder on programs, \sim" (for similarity), that captures when one program ap-proximates the control and dependency structure of another. We then introduce a relation �p that is arestriction of sim. If P �p P 0, then P 0 is a more parallel program than P .Informally, a program P is sim to P 0 if P 0 executes the same operations as P in an order compatiblewith the data and control dependencies present in P . P 0 may, however, have additional operations onsome paths that do not a�ect the output of the program. The sample program in Figure 1b has moreoperations on some paths than the program in Figure 1a, but the two programs compute the samefunction. The purpose of sim is to establish a dependency-preserving mapping between operations intraces of P and operations in traces of P 0.De�nition 5.1 We say that y depends on x in trace T (P; s), written x � y, if y reads a value writtenby x. Formally, let hn0; s0i �! hni; sii �! hnj ; sji. Then x � y if x 2 op (ni), y 2 op (nj), write(x; si) �read(y; sj), and there is no operation z in nk for i < k < j such that write(x; si) = write(z; sk).



Figure 5: The move-test transformation.The relation � models true dependencies [Kuc76], which correspond to actual de�nitions and uses ofvalues during execution. This is not conservative dependency analysis|the relation � precisely capturesthe ow of values through an execution of a program. This is all that is required to de�ne the relationsim.De�nition 5.2 (Similarity) P sim P 0 if and only if there exists a function f satisfying:8s x � y in T (P; s)) f(x) � f(y) in T (P 0; s)^f(x) � y0 in T (P 0; s)) x � f�1(y0) in T (P; s)where f is 1-to-1 from operations in T (P; s) to operations in T (P 0; s) and f(x) is an occurrence of x.The function f provides a mapping demonstrating that P 0 preserves the dependency structure of P .It can be shown that P is strongly equivalent to P 0 if P sim P 0. We now introduce the relation �p. IfP �p P 0, then all operations in P 0 are executed at least as early in the trace as corresponding operationsin P . We use �p to prove that some improvement results from the application of the core transformations.De�nition 5.3 Let x 2 op (ni) in T (P; s). The position of x, written pos (x), is i.P �p P 0, P sim P 0 ^ 8s pos (x) in T (P; s) � pos (f(x)) in T (P 0; s)Theorem 5.4 Let T be any core transformation or unrolling. Then for all P , P �p T (P ).Proof: [sketch] The transformations preserve dependencies and do not remove an operation from anypath on which it occurs|thus P sim T (P ). For each core transformation, if it succeeds, at least oneoperation appears earlier on at least one path, so P �p T (P ). 26 Pipelining Loop IterationsExisting compaction systems all use the same technique to exploit parallelism across iterations of aloop. The loop is unwound a number of times and the new loop body is compacted. If there are no



dependencies between the unwound iterations, then for a �xed size machine there is an unwinding thatyields near optimal resource utilization after compaction.If there are dependencies between the unwound iterations the result can be much worse. Typically, thecompacted loop has nodes containing many operations near the beginning of the loop, but towards the endof the loop body operations \thin out" because of dependency chains between unwound iterations. Thusthe code becomes increasingly sequential towards the end of the compacted loop body. The problem canbe somewhat alleviated by additional unwinding and compaction; however, this becomes computationallyexpensive rapidly and there will still be a \tail" of sequential code at the end of the loop body.We apply the results of the previous sections to develop a new loop transformation, Perfect Pipelining,that has the e�ect of unbounded unwinding and compaction. This transformation cannot be achieveddirectly using the core transformations. For this reason, the relation �p is crucial to proving propertiesof Perfect Pipelining.6.1 The ProblemFor simplicity, we disregard the particular strategy for compacting a loop and assume only that weare given a deterministic compaction operator C built on the core transformations. We assume that aprogram is a simple (innermost) loop of the type discussed in the section on unrolling. Nested loops canbe handled using techniques for unrolling multiple loops [AN87a].Consider the sequence CuL; Cu2L; Cu3L; : : :. If 8i CuiL �p Cui+1L, then C is well-behaved. We givea method, for a class of programs and well-behaved compaction operators, to compute a program Cu1Lsatisfying 8i CuiL �p Cu1L6.2 The ProgramsA loop uiL consists of unwound iterations L1; : : : ; Li. A loop carried dependency [AK84] is a dependencybetween separate iterations of a loop. In this context we are referring to the approximate dependencygraphs a compiler computes using conservative dependency analysis, rather than the precise trace de-pendency graphs used to de�ne �p. We consider simple loops satisfying the following property for anyunwinding:Constraint 6.1 Assume there is a loop carried dependency between operations x and y in L. Then inuiL, there is a dependency between operations x of Lj and y of Lj+1 for all j.Virtually all loops encountered in practice can be mechanically rewritten to satisfy this constraint[MS87]. In essence, the requirement is that the dependencies present in a loop unwound i times are agood predictor of the dependencies in the loop unwound i+ 1 times. In practice, these conditions can bechecked by inspection of the loop without resorting to computation of the dependency graph.7 Compaction OperatorsWe are interested in the class of bounded compaction operators. The key characteristic of these operatorsis that on any path of CuiL the distance between the �rst and last scheduled operations of Lj is boundedby a constant. The fact that any iteration Lj cannot be \stretched" too much allows us to computeCu1L. We present the simplest bounded operator, the simple rule. More powerful bounded operatorsare discussed in [AN87b]. Initially we assume that computational resources are unlimited; in Section 9we discuss Perfect Pipelining when resources are bounded.7.1 The Simple RuleTo simplify the algorithms, we combine the primitives Unify and Move-test into one operation Move(see Figure 6a). The simple rule moves an iteration Lj as far \up" in the program graph on as many pathsas possible. Operations in the iteration remain in adjacent nodes and the iteration keeps its \shape"|operations appear in the order of the original loop body. These restrictions are not great; the original



loop body L could have been compacted prior to application of unrolling and the simple rule, in whichcase the operations in an unwound Lj are actually nodes containing multiple operations.One step of the simple rule moves each operation in one copy of an iteration up one node in theprogram graph. An algorithm that accomplishes this is given in Figure 6b. We assume that operationsare identi�ed with their Lj . A fail command causes the entire recursive computation to terminate andrestores the original program graph.The simple rule is given in Figure 7. The algorithm guarantees that all possible uni�cations areperformed, thus minimizing code explosion. As iterations move through the program graph, copies ofoperations|forming distinct copies of the iteration|are generated where paths split. The top-levelalgorithm refers to the �rst operation in each copy of the iteration; the other operations are handled byMove iteration. Let C stand for the simple rule. An important property of C is that it is maximal|for any C0 using Move iteration and for all programs P and unrollings i, CuiP 6<p C0uiP . The simplerule is well-behaved. Figure 1c shows a loop unwound and compacted using C. The only loop carrieddependency is between the �rst operation of consecutive iterations; after application of C the iterationsoverlap, staggered by one node.8 Perfect PipeliningIn this section, we require that loop carried dependencies satisfy Constraint 6.1 and that there be enoughsuch dependencies that C cannot completely overlap unwound iterations on any path. In Section 9 weremove this stronger condition. The following two properties of the simple rule are required for PerfectPipelining. Proofs of lemmas not included in this paper may be found in [AN87b].De�nition 8.1 Two nodes n and n0 are equivalent if they have the same operations (from di�erentiterations) and dag structure and there is a k such that if operation x 2 op (n) is from iteration Lj , thenx 2 op (n0) is from iteration Lj+k.Lemma 8.2 (Property 1) Let n and n0 be nodes in CuiL. Assume i is large enough that the succes-sors of n and n0 are una�ected by larger unwindings and applications of C|the stronger dependencyassumption guarantees the existence of i. If n and n0 are equivalent, then corresponding successors of nand n0 are equivalent.Lemma 8.3 (Property 2) There is a constant c, dependent only on L, satisfying8i n 2 CuiL) jop (n)j < cTheorem 8.4 (Convergence) For a su�ciently large unwinding i, on every path in CuiL there existsa node n such that there is another node n0 (not necessarily on the same path) equivalent to n.Proof: Property 2 assures the existence of n and n0, as every node can have operations from some�xed range of iterations and there are no more than c operations per node, implying that there are only�nitely many distinct classes of equivalent nodes. 2This theorem combined with Property 1 shows that a loop repeatedly unwound and compacted usingC eventually falls into a repeating pattern. The pattern itself may be very complex, but it is su�cient to�nd two equivalent nodes to detect when it repeats. For the simple rule, it is su�cient to unwind k + 1copies of L to �nd the pattern on every path, where k is the length of the longest path in the loop body.The Perfect Pipelining transformation is given in Figure 8. The algorithm �nds equivalent nodes n andn0 in the compacted program graph, deletes n0, and adds backedges from the predecessors of n0 to n.For the simple rule, it can be shown that the �rst node on any path without an operation from the �rstiteration is repeated.Lemma 8.5 Let Cu1L be the result of the application of Perfect Pipelining. For su�ciently largeunwindings i, T (Cu1L; s) is identical to T (CuiL; s) for the �rst i=2 steps.Theorem 8.6 For all i and L satisfying the dependency constraint, CuiL �p Cu1L.



move(x ; n ;m )if x is an assignmentthen P  unify(P ; x ; n ;m )else P  move-test(P ; x ; n ;m )if no change in Pthen return (False)else return (True) move iteration(x; n;m)if x 2 op (n )thenif :move(x; n;m) then fail;(� next op in it(x; n; p) is next operationin the iteration after x on edge (n; p). �)for each hp; yi such thatp 2 succ(n) ^ next op in it(x; n; p) = ydo move iteration(y ; p ; n );Delete all empty nodes;(a) The Move operator. (b) Moving an iteration.Figure 6: Higher-level transformations.(* Let P = uiL *)for each iteration L1; : : : ; Li doX  fxg where x is the �rst operation in Ljrepeat(* we assume that X always contains all copies of operation x *)1. while 9y 2 X s.t. pred(node(y)) = fpg and y's iteration can movedo move iteration (y; node(y); p)2. if 9y 2 X s.t. y can move to node p 2 pred(node(y))and the rest of the iteration can move accordingly thenselect y s.t. the depth of node(y) in the program graph is maximized;move iteration (y; node(y); p)until 2 fails.Delete all empty nodes.Figure 7: The simple rule.let k = length of longest path in the loop body L;P  Cuk+1L;for each path p through P dolet n be the �rst node on p s.t. no operationin n is from iteration L1.Find n0 equivalent to n;Replace edges (m;n0) by (m;n);Delete n0 and any other unreachable nodes;Figure 8: Perfect Pipelining.



Proof: Let k be the length of T (CuiL; s). Consider a program CujL where j � max(i; k). By theprevious lemma, T (CujL; s) = T (Cu1L; s). Because C is well-behaved, CuiL �p CujL. We conclude thatCuiL �p Cu1L. 2This shows that Perfect Pipelining is as good as full unwinding and compaction on all paths. Thetransformation computes a closed form of the pattern generated by repeated unwinding and compactionusing C. Refer again to the loop in Figure 1a. The result of applying Perfect Pipelining to this loopis shown in Figure 1d. The length of the loop body of the original loop is four; in Figure 1c the loophas been unwound �ve times and compacted using C. The fourth and �fth nodes are equivalent. Thetransformation deletes the �fth node and all succeeding nodes and adds an edge from the fourth node toitself with an induction variable increment of one (the increment is the number k in De�nition 8.1).9 Pipelining with Limited ResourcesThus far we have assumed that our machine has unlimited resources. In practice, compilers must considerthe fact that parallel computers have restrictions on the number of operations of a particular type thatcan be executed simultaneously. In our program graph representation, a node may not contain morethan a �xed number of operations of a given type. The modi�cation to Perfect Pipelining is made in theMove transformation (Figure 6). The change is simple: an operation may not move into a node if thenode then violates the resource constraints.Resource constraints guarantee Property 2 (Lemma 8.3) by imposing a �xed upper bound on thesize of program nodes. Thus, the simple rule applies to all loops satisfying Constraint 6.1 without thestronger condition used in Section 8. A proof that Property 1 (Lemma 8.2) holds in the presence ofresource constraints may be found in [AN87b].Figure 9 shows a simple loop L. The loop searches an array of elements, saving the position of allelements that match a key in order on a list. As before, we have left the details of the loop control codeimplicit. There is also no exit test; we stress that this is only for simplicity. We assume that the targetmachine can execute up to three tests in parallel.This particular loop highlights the problem that unpredictable ow of control presents in paralleliza-tion. Note that while the path corresponding to the true branches has tight dependencies preventingspeedup, the path corresponding to the false branches has no dependencies whatsoever. Other paths(some true branches, some false branches) have intermediate parallelism.Existing restructuring transformations for multiprocessors can do very little with such a loop. Doacrossis a transformation that assigns the iterations of a loop to the processors of a synchronous or asynchronousmultiprocessor [Cyt86]. Doacross computes a delay that must be observed between the start of a loopiteration Li and the start of Li+1 on each path of Li. For this loop, the computed delay is one on bothpaths; i.e., iteration i + 1 may begin after iteration i has executed its �rst statement. The dynamicexecution of this loop using Doacross is shown in Figure 10a. An equivalent static SPL schedule is shownin Figure 10b.We now show how Perfect Pipelining applies to this loop. Figure 11 shows the original loop unwoundseven times. The operations have been replaced by labels with subscripts indicating the increment to theinduction variable. The result of applying the simple rule is shown in Figure 12. The dag of tests withineach node is arranged as a chain with the false branches pointing to the next test and the true branchesexiting the node; the lowest numbered test is the root of the dag.The �rst four nodes in the left column of Figure 12 are equivalent and the start node is equivalent tothe �rst two nodes in the right column. Figure 13 shows the result of applying Perfect Pipelining|onlythe �rst two nodes remain. In this program, three tests are performed in parallel. If Tj is the lowestnumbered test that evaluates to true, then the induction variable i is incremented by j and control passesto the node with the append operation. If none of the tests is true, control transfers to the �rst node.The second node performs an append and evaluates the next three tests.The pipelined loop executes three tests at every step, achieving optimal use of the critical resource.The �nal code can run on the Multiow machine, a commercial tightly-coupled parallel architecture thatsupports multiway jumps. The running time of Perfect Pipelining with resource constraints is dependenton the size (number of resources) of the machine as well as the original loop.



Figure 9: A simple loop L.
(a) Dynamic schedule. (b) Static SPL program.Figure 10: Doacross applied to L.

Figure 11: L unwound seven times.



Figure 12: L unwound seven times and compacted.
Figure 13: The same loop after pipelining.



move(x ; n ;m )if x is an assignmentthen if x 2 op (s) for all s 2 succ (n)P  unify(P ; x ; n ;m )else P  move-test(P ; x ; n ;m )if no change in Pthen return (False)else return (True)Figure 14: The Move operator for Dsynch .10 Comparison with DoacrossAs suggested in the previous section, loops transformed by Doacross can be represented in our formalism.In fact, a restriction on the pipelining transformation corresponds exactly to Doacross for single loops onsynchronous multiprocessors. Another, more restrictive version corresponds to Doacross for asynchronousmultiprocessors. Thus a family of transformations aimed at di�erent machine models can be directlyformulated and compared in our framework.The basic algorithm for Doacross analyzes a loop body and decides where, on each path, it is safeto begin the next iteration. A communication instruction is added to the loop at those points. Duringexecution, when a processor executing iteration i encounters a communication instruction, it sends amessage signaling another processor that execution of iteration i + 1 can begin.Let Dsynch be the compaction operator implementing Doacross for synchronous multiprocessors. Therestriction to the pipelining algorithm is made in Move (see Figure 14). The new requirement is thatif an iteration moves above a test, then it must move above that test on all paths. This restriction isnecessary for Doacross because the various processors have independent ow of control|once an iterationis started on a processor it must be able to proceed regardless of the path taken by any other processor.It is easily shown that for DsynchL, the �rst operation of iteration i+1 overlaps iteration i exactly wherethe communications are introduced by Doacross. The asynchronous case (Dasynch) is similar and canalso be written as a restriction on the pipelining transformation. The following theorem summarizes therelationship between the three transformations.Theorem 10.1 For all loops L, DasynchL �p DsynchL �p Cu1L.11 E�ciencyThere are loops satisfying Constraint 6.1 for which Perfect Pipelining requires exponential time. Inparticular, if there are no loop carried dependencies at all|iterations are completely independent|thenthe running time is exponential in the unwinding if there is at least one test in the loop body. However,this can be detected after unrolling only once, because the iterations completely overlap after applyingC. In this case, the loop is completely vectorizable and generating good code is relatively easy.It is also possible to construct examples with some loop carried dependencies for which Perfect Pipelin-ing requires exponential time. However, several conditions must be simultaneously satis�ed for this tohappen. We believe that these conditions do not commonly arise in practice. In fact, for every programwe have examined (including the examples in this paper and all of the Livermore Loops) the pipeliningalgorithm runs in low-order polynomial time and requires at most quadratic space. Convergence oftenoccurs on many or all paths for unrollings much smaller than the worst case bound; thus interleavingunwinding, compaction, and the test for equivalent nodes substantially improves the e�ciency of thealgorithm. Using simple data structures, the check for equivalent nodes can be done very quickly.



12 ConclusionWe have presented a new technique, Perfect Pipelining, that allows full �ne-grain parallelization of loops.Perfect Pipelining is currently being integrated into ESP, an Environment for Scienti�c Programmingunder development at Cornell. The environment already includes Percolation Scheduling and othertransformations. We believe that Perfect Pipelining will greatly enhance the power of our environmentby subsuming the e�ects of a class of coarse-grain transformations in a uniform, integrated fashioncompatible with our �ne-grain approach.13 AcknowledgementsAnne Neirynck and Prakash Panangaden provided a great deal of helpful advice on many aspects of thiswork. Laurie Hendren, Prakash Panangaden, and Jennifer Widom criticized drafts of this paper andcontributed greatly to its �nal form.References[AK84] J. R. Allen and K. Kennedy. Automatic loop interchange. In Proceedings of the 1984 SIGPLANSymposium on Compiler Construction, volume 19, pages 233{246, June 1984.[AN87a] A. Aiken and A. Nicolau. Loop Quantization: An analysis and algorithm. Technical Report 87-821,Cornell University, March 1987.[AN87b] A. Aiken and A. Nicolau. Perfect Pipelining: A new loop parallelization technique. Technical Report87-873, Cornell University, October 1987.[AN88] A. Aiken and A. Nicolau. A development environment for horizontal microcode. IEEE Transactionson Software Engineering, 14(5):584{594, May 1988.[CCK87] D. Callahan, J. Cocke, and K. Kennedy. Estimating interlock and improving balance for pipelinedarchitectures. In Proceedings of the 1987 International Conference on Parallel Processing, pages 295{304, August 1987.[Cyt86] R. Cytron. Doacross: Beyond vectorization for multiprocessors. In Proceedings of the 1986 Interna-tional Conference on Parallel Processing, pages 836{844, August 1986.[FERN84] J. A. Fisher, J. R. Ellis, J. C. Ruttenberg, and A. Nicolau. Parallel processing: A smart compiler anda dumb machine. In Proceedings of the 1984 SIGPLAN Symposium on Compiler Construction, pages37{47, June 1984.[Fis81] J. A. Fisher. Trace Scheduling: A technique for global microcode compaction. IEEE Transactions onComputers, C-30(7):478{90, July 1981.[KN85] K. Karplus and A. Nicolau. E�cient hardware for multi-way jumps and pre-fetches. In Proceedings ofthe 18th Annual Workshop on Microprogramming, pages 11{18, December 1985.[Kuc76] D. J. Kuck. Parallel processing of ordinary programs. In Advances in Computers, volume 15, pages119{179. Academic Press, New York, 1976.[Lam74] L. Lamport. The parallel execution of DO loops. Communications of the ACM, 17(2):83{93, February1974.[MS87] A. Munshi and B. Simons. Scheduling sequential loops on parallel processors. Technical Report 5546,IBM, 1987.[Nic85a] A. Nicolau. Loop Quantization, or unwinding done right. Technical Report 85-709, Cornell University,1985.[Nic85b] A. Nicolau. Uniform parallelism exploitation in ordinary programs. In Proceedings of the 1985 Inter-national Conference on Parallel Processing, pages 614{618, August 1985.[Plo] G. D. Plotkin. A structural approach to operational semantics. Text prepared at University of Aarhus.


