Noname manuscript No.
(will be inserted by the editor)

From Invariant Checking to Invariant Inference
Using Randomized Search

Rahul Sharma - Alex Aiken

Received: date / Accepted: date

Abstract We describe a general framework €21 for generating an invariant
inference procedure from an invariant checking procedure. Given a checker and
a language of possible invariants, C2I generates an inference procedure that
iteratively invokes two phases. The search phase uses randomized search to
discover candidate invariants and the validate phase uses the checker to ei-
ther prove or refute that the candidate is an actual invariant. To demonstrate
the applicability of €21, we use it to generate inference procedures that prove
safety properties of numerical programs, prove non-termination of numeri-
cal programs, prove functional specifications of array manipulating programs,
prove safety properties of string manipulating programs, and prove functional
specifications of heap manipulating programs that use linked list data struc-
tures.

Keywords Verification - Loop Invariants - Markov Chain Monte Carlo
(MCMC) - Satisfiability Modulo Theories (SMT)

This work was supported by National Science Foundation grant CCF-1160904, a Microsoft
fellowship, and the Air Force Research Laboratory under agreement number FA8750-12-2-
0020. The U.S. Government is authorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright notation thereon.

R. Sharma
Department of Computer Science, Stanford University
E-mail: sharmar@cs.stanford.edu

A. Aiken
Department of Computer Science, Stanford University
E-mail: aiken@cs.stanford.edu

2 Rahul Sharma, Alex Aiken

1 Introduction

In traditional program verification, a human annotates the loops of a given
program with invariants and a decision procedure checks these invariants by
proving some verification conditions (VCs). We explore whether decision pro-
cedures can also be used to infer the loop invariants; doing so helps automate
one of the core problems in verification (discovering appropriate invariants)
and relieves programmers from a significant annotation burden.

The idea of using decision procedures for invariant inference is not new [30,
18]. However, this approach has been applied previously only in domains with
some special structure, e.g., when the VCs belong to theories that admit quan-
tifier elimination, such as linear rational arithmetic (Farkas’ lemma) or linear
integer arithmetic (Cooper’s method). For general inference tasks, such theory-
specific techniques do not apply, and the use of decision procedures for such
tasks has been restricted to invariant checking: to prove or refute a given
manually provided candidate invariant.

We describe a general framework €21 that, given a procedure for check-
ing invariants, uses that checker to produce an invariant inference engine for a
given language of possible invariants. We apply €21 to various classes of invari-
ants; we use it to generate inference procedures that prove safety properties
of numerical programs, prove non-termination of numerical programs, prove
functional specifications of array manipulating programs, prove safety prop-
erties of string manipulating programs, and prove functional specifications of
heap manipulating programs that use linked list data structures. The two main
characteristics of C21 are

— The decision procedure is only used to check a program annotated with
candidate invariants (in contrast to approaches that use the decision pro-
cedure directly to infer an invariant).

— €21 uses a randomized search algorithm to search for candidate invariants.
Empirically, the search technique is effective for generating good candidates
for various classes of invariants.

The use of a decision procedure as a checker for candidate invariants is also
not novel [37,39,53,54,46,22,21]. The main contribution of this paper is a
general and effective search procedure that makes a framework like 21 feasible.
The use of randomized search is motivated by its recent success in program
synthesis [51,1] and recognizing that invariant inference is also a synthesis
task. More specifically, our contributions are:

— We describe a framework €21 that iteratively invokes randomized search
and a decision procedure to perform invariant inference. The randomized
search combines random walks with hill climbing and is an instantiation of
the well-known Metropolis Hastings MCMC sampler [11].

— We empirically demonstrate the generality of our search algorithm. We use
randomized search for finding numerical invariants, recurrent sets [29], uni-
versally quantified invariants over arrays, invariants over string operators,

From Invariant Checking to Invariant Inference Using Randomized Search 3

and invariants involving reachability predicates for linked list manipulat-
ing programs. These studies show that invariant inference is amenable to
randomized search.

— Randomized search is effective only when done efficiently. We describe op-
timizations that allow us to obtain effective randomized search algorithms
for invariant inference.

Even though we expect the general inference engines based on randomized
search to be inferior in performance to the domain specific invariant infer-
ence approaches, our experiments show that randomized search has compet-
itive performance with the more specialized techniques. This outcome does
not prove that randomized search will always be competitive with techniques
tuned to a particular domain, but does show that randomized search is worth
evaluating, as it is usually simple to implement. A subset of the results shown
in this paper appear in [52].} The rest of the paper is organized as follows.
We describe our search algorithm in Section 2. Next, we describe inference of
numerical invariants in Section 3, universally quantified invariants over arrays
in Section 4, string invariants in Section 5, and invariants over linked lists
in Section 6. Finally, we discuss related work in Section 7 and conclude in
Section 8.

2 Preliminaries

An imperative program annotated with invariants can be verified by checking
some verification conditions (VCs), which must be discharged by a decision
procedure. As an example, consider the following program:

assume P;while B do S od;assert ()

The loop has a pre-condition P. The entry to the loop is guarded by the
predicate B and S is the loop body (which, for the moment, we assume to
be loop-free). We assert that the states obtained after execution of the loop
satisfy). Given a loop invariant I, we can prove that the assertion holds if
the following three VCs are valid:

P=1 (1)
{I A B}S{I} (2)
IN-B=Q (3)

Given a candidate invariant C, a decision procedure checks the conditions of
Equations 1, 2, and 3. Since there are three conditions for a predicate to be
an invariant, there are three queries that need to be discharged to check a
candidate. Each query, if it fails, generates a different kind of counterexample.
We discuss these next.

1 The conference version, [52], lacks a comparison between pure random search and
MCMC search. The treatment of numerical invariants also differs.

4 Rahul Sharma, Alex Aiken

Equation 1 states that for any invariant I, any state that satisfies P also
satisfies I. However, if P A —=C' has a satisfying assignment g, then P(g) is true
and C(g) is false and hence g proves C is not an invariant. We call any state
that must be satisfied by an actual invariant, such as g, a good state. Now
consider Equation 2. A pair (s,t) satisfies the property that s satisfies B and
if the execution of S is started in state s then S can terminate in state ¢. Since
an actual invariant I is inductive, it should satisfy I(s) = I(t). Hence, a pair
(s,t) satisfying C'(s) A =C(t) proves C is not an invariant. Finally, consider
Equation 3. A satisfying assignment b of C' A =B A =Q proves C is inadequate
to discharge the post-condition. For an adequate invariant I, I(b) should be
false. We call a state that must not be satisfied by an adequate invariant,
such as b, a bad state. Hence, given an incorrect candidate invariant and a
decision procedure that can produce counterexamples, the decision procedure
can produce either a good state, a pair, or a bad state as a counterexample to
refute the candidate.

Problems other than invariant inference can also be reduced to finding some
unknown predicates to satisfy some VCs [23]. Consider the following problem:
prove that the loop while B do S od goes into non-termination if executed
with input é. One can obtain such a proof by demonstrating a recurrent set [9,
29] I which makes the following VCs valid.

I(); {IAB}S{I}; I=B (4)

Our inference algorithm consumes such VCs with some unknown predicates.
We use the term invariant for any such unknown predicate that we want to
infer. In the rest of this section, we focus on the case when we need to infer a
single predicate. The development here can be easily generalized to the case
where we need to infer multiple predicates.

Our search algorithm is based on Markov Chain Monte Carlo (MCMC)
sampling. Specifically, we use the Metropolis Hastings algorithm, which we
describe next.

2.1 Metropolis Hastings

We denote the verification conditions by V., the unknown invariant by I, a
candidate invariant by C, the set of predicates that satisfy V' by Z (more than
one predicate can satisfy V'), and the set of all possible candidates C' by S.

We view inference as a cost minimization problem. For each predicate P €
S we assign a non-negative cost cy (P) where the subscript indicates that
the cost depends on the VCs. Suppose the cost function is designed to obey
C € T & ¢y(C) = 0. Then by minimizing ¢y we can find an invariant.
In general, ¢y is highly irregular and not amenable to exact optimization
techniques. In this paper, we use a MCMC sampler to minimize cy .

The basic idea of a Metropolis Hastings sampler is given in Figure 1. The
algorithm maintains a current candidate C'. It also has a set of moves. A move,
m: S — S, mutates a candidate to a different candidate. The goal of the search

From Invariant Checking to Invariant Inference Using Randomized Search 5

Search(J: Initial candidate)
Returns: A candidate C' with ¢y (C) = 0.

1. C:=J
2: while ¢y (C) # 0 do

3: m := SampleMove(rand())

4 C":=m(C)

5. ¢o:=cy(C), cn = cy(C)

6: if ¢y, < co or e~ V(en—co) > % then
7 c:=cC

8: end if

9: end while

10: return C

Fig. 1: Metropolis Hastings for cost minimization.

is to sample candidates with low cost. By applying a randomly chosen move,
the search transitions from a candidate C' to a new candidate C’. If C' has
lower cost than C' we keep it and C’ becomes the current candidate. If C’ has
higher cost than C', then with some probability we still keep C’. Otherwise, we
undo this move and apply another randomly selected move to C'. Using these
random mutations, combined with the use of the cost function, the search
moves towards low cost candidates. We continue proposing moves until the
search converges: the cost reduces to zero.

The algorithm in Figure 1, when instantiated with a suitable proposal
mechanism (SampleMove) and a cost function (cy), can be used for a variety of
optimization tasks. If the proposal mechanism is designed to be symmetric and
ergodic then the algorithm in Figure 1 has interesting theoretical guarantees.

A proposal mechanism is symmetric if the probability of proposing a transi-
tion from C; to C is equal to the probability of proposing a transition from Cy
to C1. Note that the cost is not involved here: whether the proposal is accepted
or rejected is a different matter. Symmetry just talks about the probability
that a particular transition is proposed from the available transitions.

A proposal mechanism is ergodic if there is a non-zero probability of reach-
ing every possible candidate C5 starting from any arbitrary candidate Cy. That
is, there is a sequence of moves, m,mao, ..., myg, such that the probability of
sampling each m; is non-zero and Cy = my(...(m1(C1)...). This property is
desirable because it says that it is not impossible to reach Z starting from a
bad initial guess. If the proposal mechanism is symmetric and ergodic then
the following theorem holds [3]:

Theorem 1 In the limit, the algorithm in Figure 1 samples candidates in
inverse proportion to their cost.

Intuitively, this theorem says that the candidates with lower cost are sampled
more frequently. A corollary of this theorem is that the search always con-
verges. The proof of this theorem relies on the fact that the search space S
should be finite dimensional. Note that MCMC sampling has been shown to
be effective in practice for extremely large search spaces and, with good cost

6 Rahul Sharma, Alex Aiken

functions, is empirically known to converge well before the limit is reached [3].
Hence, we design our search space of invariants to be a large but finite dimen-
sional space that contains most useful invariants by using templates. For exam-
ple, our search space of disjunctive numerical invariants restricts the boolean
structure of the invariants to be a DNF formula with ten disjuncts where
each disjunct is a conjunction of ten linear inequalities. This very large search
space is more than sufficient to express all the invariants in our numerical
benchmarks.

Theorem 1 has limitations. The guarantee is only asymptotic and conver-
gence could require more than the remaining lifetime of the universe. However,
if the cost function is arbitrary then it is unlikely that any better guarantee can
be made. In practice, for a wide range of cost functions with domains ranging
from protein alignment [44] to superoptimization [51], MCMC sampling has
been demonstrated to converge in reasonable time. Different cost functions do
result in different convergence rates. Empirically, cost functions that provide
feedback to the search have been found to be useful [51]. If the search makes
a move that takes it closer to the answer then it should be rewarded with a
decrease in cost. Similarly, if the search transitions to something worse then
the cost should increase. We next present our cost function.

2.2 Cost Function

Consider the VCs of Equations 1, 2, and 3. One natural choice for the cost
function is
cv(C) =1 — Validate(V[C/I])

where Validate(X) is 1 if predicate X is valid and 0 otherwise. We substitute
the candidate C' for the unknown predicate I in the VCs and if the VCs are
valid then the cost is zero and otherwise the cost is one. This cost function
has the advantage that a candidate with cost zero is an invariant. However,
this cost function is a poor choice for two reasons:

1. Validation is slow. A decision procedure takes several milliseconds in the
best case to discharge a query. For a random search to be effective we need
to be able to explore a large number of proposals quickly.

2. This cost function does not give any incremental feedback. The cost of all
incorrect candidates is one, although some candidates are clearly closer to
the correct invariant than others.

Empirically, search based on this cost function times out on even the simplest
of our benchmarks. Instead of using a decision procedure in the inner loop of
the search, we use a set of concrete program states that allows us to quickly
identify incorrect candidates. As we shall see, concrete states also give us a
straightforward way to measure how close a candidate is to a true invariant.
Recall from the discussion of the VCs that there are three different kinds
of interesting concrete states. Assume we have a set of good states G, a set of
bad states B, and a set of pairs Z. The data elements encode constraints that

From Invariant Checking to Invariant Inference Using Randomized Search 7

a true invariant must satisfy. A good candidate C' should satisfy the following
constraints:

1. It should separate all the good states from all the bad states: Vg € G.Vb €
B.~(C(g) < C(b)).

2. It should contain all good states: Vg € G.C(g).

3. It should exclude all bad states: Vb € B.=C(b).

4. Tt should satisfy all pairs: V(s,t) € Z.C(s) = C(¢).

For most classes of predicates it is easy to check whether a candidate satisfies
these constraints for given sets G, B, and Z without using decision procedures.
For every violated constraint, we assign a penalty cost. In general, we can
assign different weights to different constraints, but for simplicity, we weigh
them equally. The reader may notice that the first constraint is subsumed by
constraints 2 and 3. However, we keep it as a separate constraint as it encodes
the amount of data that justifies a candidate. If a move causes a candidate
to satisfy a bad state (which it did not satisfy before) then intuitively the
increase in cost should be higher if the initial candidate satisfied many good
states than if it satisfied only one good state. The third constraint penalizes
equally in both scenarios (the cost increases by 1) and in such situations the
first constraint is useful. The result is a cost function that does not require
decision procedure calls, is fast to evaluate, and can give incremental credit to
the search: the candidates that violate more constraints are assigned a higher
cost than those that violate only a few constraints.

ev(C) = Yy Ypen (7C(g) x ~C(b) + C(g) * C(b))
+ deG ~C(g) + > e C(b) (5)
+2 (syez Cls) ¥ ~C (1)

In evaluating this expression, we interpret false as zero and true as one. The
first line encodes the first constraint, the second line encodes the second and
the third constraints, and the third line encodes the fourth constraint.

This cost function has one serious limitation: Even if a candidate has zero
cost, still the candidate might not be an invariant. Once a zero cost candidate
C is found, we check whether C' is an invariant using a decision procedure; note
this decision procedure call is made only if C' satisfies all the constraints and
therefore has at least some chance of actually being an invariant. If C' is not an
invariant one of Equation 1, 2, or 3 will fail and if the decision procedure can
produce counterexamples then the counterexample will also be one of three
possible kinds. If the candidate violates Equation 1 then the counterexample
is a good state and we add it to G. If the candidate violates Equation 2 then
the counter example is a pair that we add to Z, and finally if the candidate
violates Equation 3 then we get a bad state that we add to B. We then search
again for a candidate with zero cost according to the updated data. Thus our
inference procedure can be thought of as a counterexample guided inductive
synthesis (CEGIS) procedure [57], in particular, as an ICE learner [22]. Note
that a pair (s,t) can also contribute to G or B. If s € G then ¢ can be added
to G. Similarly, if ¢ € B then s can be added to B. If a state is in both G and

8 Rahul Sharma, Alex Aiken

B then we abort the search. Such a state is both a certificate of the invalidity
of the VCs and of a bug in the original program.

Not all decision procedures can produce counterexamples; in fact, in many
more expressive domains of interest (e.g., the theory of arrays) generating
counterexamples is impossible in general. In such situations the data we need
can also be obtained by running the program. Consider the program point 7
where the invariant is supposed to hold. Good states are generated by running
the program with inputs that satisfy the pre-conditions and collecting the
states that reach 7. Next, we start the execution of the program from n with an
arbitrary state o; i.e., we start the execution of the program “in the middle”. If
an assertion violation happens during the execution then all the states reaching
7, including o, during this execution are bad states. Otherwise, including the
case when the program does not terminate (the loop is halted after a user-
specified number of iterations), the successive states reaching 7 can be added
as pairs. Note that successive states reaching the loop head are always pairs
and may also be pairs of good states, bad states, or even neither.

The cost function of Equation 5 easily generalizes to the case when we
have multiple unknown predicates. Suppose there are n unknown predicates
I, I, ..., I, in the VCs. We associate a set of good states GG; and bad states
B; with every predicate I;. For pairs, we observe that VCs in our benchmarks
have at most one unknown predicate symbol to the right of the implication and
one unknown predicate symbol to the left (both occurring positively), implying
that commonly n? sets of pairs suffices: a set of pairs Z;.; is associated with
every pair of unknown predicates I; and I;. A candidate C1,...,C), satisfies
the set of pairs Z; ; if V(s,t) € Z; ;.C;(s) = Cj(t). For the pair (s,t) € Z; ;, if
s € G; then we add t to G; and if ¢t € B; then we add s to B;. Each of G;, B;,
and Z; ; induces constraints and a candidate is penalized by each constraint
it fails to satisfy.

In subsequent sections we use the cost function in Equation 5 and the
search algorithm in Figure 1, irrespective of the type of program (numeric,
array, string, or list) under consideration. What differs is the instantiation of
€21 with different decision procedures and search spaces of invariants. Since a
proposal mechanism dictates how a search space is traversed, different search
spaces require different proposal mechanisms. In general, when €21 is instan-
tiated with a search space, the user must provide a proposal mechanism and
a function ewval that evaluates a predicate in the search space on a concrete
state, returning true or false. The function ewval is used to evaluate the cost
function; for the search spaces discussed in this paper, the implementation of
eval is straightforward and we omit it. We discuss the proposal mechanisms
for each of the search spaces in some detail in the subsequent sections.

3 Numerical Invariants

We describe the proposal mechanism for inferring numerical invariants. Sup-
pose x1,To,. .., &, are the variables of the program, all of type Z. A program

From Invariant Checking to Invariant Inference Using Randomized Search 9

state ¢ is a valuation of these variables: o € Z™. For each unknown predicate
of the given VCs, the search space S is formulas of the following form:

a B n o
VA (sz(ﬁ"”xk < t“‘j))
1=1

j=1 \k=1

Hence, predicates in S are boolean combinations of linear inequalities. We re-
fer to w’s as coefficients and t’s as constants. The possible values that w’s can
take are restricted to a finite bag of coefficients W = {wy,ws, ..., wyw}. In
our evaluation, the set W = {—1,0, 1} suffices. If needed, heuristics described
in [2] can be used to obtain W. The possible values of ¢’s are valuations of ex-
pression trees with leaves from a finite bag of constants F' = { f1, f2, ..., fir|}-
Binary multiplication and addition constitute the internal nodes of the expres-
sion trees. In our evaluation, the bag F' contain all of the statically occurring
constants in the program and their negations. The expression trees are created
by the GEN-E procedure (Figure 2). Possible expression trees include fi x fa,
(f1+ f2) + f3, ete.

For our experiments, for the benchmarks that require conjunctive invari-
ants we set &« = 1 and § = 10 and for those that require disjunctive invariants
we set a = 8 = 10. This search space, S, is sufficiently large to contain invari-
ants for all of our benchmarks.

3.1 Proposal Mechanism

We use y ~ Y to denote that y is selected uniformly at random from the set Y’
and [a : b] to denote the set of integers in the range {a,a+1,...,b—1,b}. Unless
stated otherwise, all random choices are derived from uniform distributions.
Before a move we make the following random selections: i ~ [1:], j ~ [1 :],
and k ~ [1 : n] .We have the following three moves, each of which is selected
with probability %:

— Coefficient move: select | ~ [1: |W|] and update w,(:’J) to W.

— Constant move: update t(»7) to GEN-E(F) (Figure 2).

— Inequality move: With probability 1 — p, apply constant move to t(7) and
coefficient move to wg”) for all h € [1: n]. Otherwise (with probability p)
remove the inequality by replacing it with true.

These moves are motivated by the fact that prior empirical studies of MCMC
have found that a proposal mechanism that has a good mixture of moves that
make minor and major changes to a candidate leads to good results [51]. The
first two moves make small changes and the last move can change an inequality
completely.

This proposal mechanism is symmetric and ergodic. Using inequality moves
we can transform any predicate in S to any other predicate in S. For proving
symmetry observe that the moves are themselves symmetric: if a move mutates
C1 to Cy with probability p then the same move also updates Cs to C with

10 Rahul Sharma, Alex Aiken

GEN-E(F: An array of integers)

100%
Returns: An integer.

75%
ti=r(F); O={+,%x,1,1}
: 0:=1(0);

: while o0# 1 do

1

2 50%
3

4: fi=r(F); t:=o(t, f); o :=r(O);

5

6

25%
: end while

: return ¢t 0%

Pure MCMC Templ
Fig. 2: Generate a random expression tree

using leaves in F' and operators in O; r(A) re- Fig. 3: Statistics for three different
turns an element selected uniformly at random

randomized searches applied to the
from the array A.

cgr2 benchmark.

probability p. It is easy to see that if all the moves are symmetric then the
proposal mechanism is symmetric. Combining this proposal mechanism with
the cost function in Equation 5 and the procedure in Figure 1 provides us a
search procedure for numerical invariants. We call this procedure MCMC in the
empirical evaluation of Section 3.3. Next, we describe two variations of this
procedure.

In the first variation, we accept every move irrespective of the cost. The
search terminates when a zero cost candidate is found. The resulting procedure
is a pure random walk through the search space. The motivation for considering
this variation is that it helps us evaluate the benefit of the cost function. We
call this search strategy Pure in the evaluation in Section 3.3.

In the second variation, we further constrain the search space. The user
provides templates to restrict the constituent inequalities of the candidate
invariants. As an example, suppose we have a program with two variables
z1 and xo and the user restricts the invariants to boolean combinations of
intervals. The inequalities must then be of the from z; < d, 1 > d, 22 <
d, and zo > d. In general, the user can restrict the coefficients using other
abstract domains like octagons [41] (bounds on sum or difference of at most
two variables £z; £ x; < d), octahedra [12] (bounds on all possible sums or
differences of variables), +x; < d), etc. In this variation, our moves need to
ensure that the inequalities in the candidate invariants satisfy the templates.
Hence, we need to modify the coefficient moves. The constant moves remain
unchanged.

We replace the coefficient move with a template move: Select an inequal-
ity and replace all the coefficients with coefficients from a randomly chosen
selection of coeflicients permitted by the template. For example, for intervals,
r1 < 2 can be mutated to —z5 < 2 by a template move. The inequality move
applies a constant move and a template move. This variation is called Templ
in the evaluation in Section 3.3.

From Invariant Checking to Invariant Inference Using Randomized Search 11

Table 1: Inference of numerical invariants for proving safety properties.

[Program [z3-H | ICE [[54] | [30] [Pure [MCMC [Templ |
cgri27] [0.0] 0.0 [02 [0.1 [0.0(10) [0.0 (10)] 0.0 (10)
cgr227] | 00 | 73 ? ? 04(6) | 04(3) [05()
figl 27] [0.0 [0.1 ? ? o1 03(5) | 03(5)

(
wl [27] 00 [0.0 [02 | 0.1 [0.0(
figd3 [24] | 0.0 | 0.0 | 0.I | 0.1 | 0.0(
figo [24] | 0.0 | 0.0 | 02 | 0.I | 0.0(
tes [36] | TO | 1.4 | 05 | 0.I | 0.7 (2)
ex23 [35] | 7 | 142 | ¢ 7 0) [0.0 (10) [0.0 (10)
ex7 [35] 00 [00 [04 | 7 0.0 (10) [0.0 (10)
ex14[35] | 00 | 0.0 [02 | 7 [0.0(0.0 (10) [0.0 (10)
array [4] | 00 | 03 | 02 | 7 [1.0(2) [06(1) | 0.9 (1)
fill [4 0.0 [0.0 [04 | 0.I [0.0(10)) (
ex11 [4 00 [06 | 02 | 0.I [0.0(10)) (
trexi 4] | 0.0 | 0.0 | 0.4 | 0. | 0.0 (10) | 0.0 (10) | 0.0 (10)

(10)) (
(10)) (

0)

0) [0.0 (10) [0.0 (10)

0) [0.0 (10) [0.0 (10)

0) [0.0 (10) [0.0 (10)

0.0 (7) [0.0 (10)
(
(
(

monniaux 5.14 0.0 1.0 0.2 0.0
nested 0.0 ? 1.0 0.0 0.1

3.2 Example

We give a simple example to illustrate the moves. Suppose we have two vari-
ables 1 and zo, a = 8 = 1, the initial candidate is C = 0% x1 + 0 *x x5 < 0,
W = {0,1}, and F = {0,1}. Then a coefficient move leaves C' unchanged with
probability 0.5 and mutates it to 1% x1 +0%xxz9 < 0or Oxxy + 1*xxo <0 with
probability 0.25 each. A constant move selects a new constant ¢ (by calling
Figure 2) to be one of {0,1} with probability 0.25 each, one of {0+ 1,1 +
0,0+0,1+1,1x0,0x1,0x0,1x 1} with probability 35 each, etc., and
mutates C to 0% x1 + 0 x xo < ¢t with the associated probability. An inequal-
ity move applies a constant move and a coeflicient move to each coefficient.
If we use intervals as templates then the possible values of the coefficients
are {(0,0),(0,1),(0,-1),(1,0),(—1,0)}. Hence a template move leaves C' un-
changed with probability 0.2 and mutates it to —x1 <0, 1 <0, —x2 <0, or
x9 < 0 with probability 0.2 each. With templates, an inequality move applies
a template move and a constant move.

3.3 Evaluation

We start with no data: G = B = Z = (). The initial candidate invariant J
is the predicate in S that has all the coefficients and the constants set to
zero: Vi,j,k.w,&l’” = 0 At = 0. The cost is evaluated using Equation 5
and when a candidate with cost zero is found then the decision procedure
Z3 [42] is called. If Z3 proves that the candidate is indeed an invariant then
we are done. Otherwise, Z3 provides a model. For better feedback, we ask Z3
for at most five distinct models. We extract counter-examples (good states,
bad states, or pairs) from the models, they are incorporated in the data and

12 Rahul Sharma, Alex Aiken

the search is restarted with J as the initial candidate. A round consists of one
search-and-validate iteration: finding a predicate with zero cost and asking Z3
to prove/refute it.

Observe that since the search space is finite-dimensional, we can also use
a decision procedure to search for a candidate invariant. This direction was
pursued in recent work by Garg et al. [22]. Similar to us, they bound the
search space to a finite set and iteratively invoke search and validate phases.
Instead of using randomized search, they rely on Z3 to find an instantiation of
the coefficients and the constants. Hence by comparing our approach against
theirs, we can compare systematic search using a decision procedure with a
randomized search.

The results of these comparisons are in Table 1. The first column is the
name of the benchmark. For each benchmark, the problem is to find an in-
variant strong enough to discharge assertions in the program. All benchmarks
except monniaux and nested are part of the benchmark suite described in [22].
The additional benchmarks are described below. Many of these benchmarks
are flagship examples used by the respective papers to motivate a new tech-
nique for invariant inference. Five of these benchmarks require disjunctive
invariants. The Z3-H column shows the time taken by Z3-HORN [32] in sec-
onds. Z3-HORN is a decision procedure inside Z3 for solving VCs with un-
known predicates. We observe that it is the fastest method for most of the
programs. However, it crashes on ex23 (7 in the table), is slow for monniaux,
and times out on tcs (TO in the table). The ICE column shows the search-and-
validate approach of [22]. While slower, it is able to handle the benchmarks
that trouble Z3-HORN. The fourth column evaluates a geometric machine
learning algorithm [54] to search for candidate invariants and the next column
is INVGEN [30] a symbolic invariant inference engine that uses concrete data
for constraint simplification. Columns ICE, [54], and [30] have been copied
verbatim from [22] and the reader is referred to [22] for details.

The experiments in the last three columns (Pure, MCMC, and Templ) are
performed on a 2.2 GHz Intel i7 with 4GB of memory. The experiments we
compare to in Table 1 and in the rest of the paper were performed on a va-
riety of machines. Our goal in reporting performance numbers is not to make
precise comparisons, but only to show that €21 has competitive performance
with other techniques. Indeed, we observe that the time measurements of the
€21 searches in Table 1 are competitive with previous techniques. It is also
worth emphasizing that because €21 is a stochastic technique, there is varia-
tion in the timing on repeated executions using the same input. Moreover, we
have observed that some runs of MCMC never succeed and timeout eventu-
ally. Therefore, in practice, it is usual to run multiple stochastic searches in
parallel that are stopped as soon as any of the searches succeeds [51]. The time
measurements reported in this paper for randomized searches are the best of
ten runs. The number of runs (out of ten) that succeed in under two seconds
are shown alongside the time measurements in parentheses.

The Pure column shows the time taken by the pure random walk of Sec-
tion 3.1. The time is the total time of all the rounds including the time for

From Invariant Checking to Invariant Inference Using Randomized Search 13

both search and validation. The naive expectation is that the unguided search
of Pure would fail for most of the benchmarks. However, the pure random walk
is able to find the invariants for almost all the benchmarks including the ones
on which the other tools fail. Moreover, the time required is comparable to
the other tools. This observation suggests that the search space of numerical
invariants is amenable to randomized search. Intuitively, there are many solu-
tions in the search space and there are many possible sequences of transitions
leading from one predicate to the other.

The MCMC column shows the effect of MCMC search that is guided by the
cost function. The expectation is that it should perform much better than the
pure random walk. We note that this expectation does not always hold (for
cgr2, figl, and nested). The reason is that MCMC search is slower. The pure
random walk makes over a million proposals per second. On the other hand,
MCMC search, with its overhead of computing the cost, is roughly an order of
magnitude slower. Hence, even though MCMC search requires fewer proposals
to converge for all the benchmarks in Table 1, it can take more time than the
pure random walk. In Section 6.2, we show that Pure does not scale to more
sophisticated search spaces and the cost function is essential. Also Pure times
out on ex23: the reason is the absence of a cost function that guides the search
towards the expression trees required for this benchmark.

The last column, Templ, shows the time when we manually provide tem-
plates to the search. The possible choices of templates are octagons and oc-
tahedra. Again, the expectation is that template based search should perform
much better than MCMC. However, the templates adversely affect the desir-
able property of the MCMC proposal mechanism that there should be a good
mixture of moves making small and large changes to the candidates.

Over all the benchmarks and all the different randomized searches fewer
than 100 data points (good, bad, and pairs) and fewer than 30 rounds are
sufficient to discover the invariant. The graph in Figure 3 shows some of the
statistics for cgr2. We do not discuss the statistics for the other benchmarks
as they are all quite similar and do not add additional insight.

The results in Figure 3 are divided into three groups. Each group corre-
sponds to a different randomized inference engine. In each group the first bar
represents the percentage of time spent in search (bottom) versus validation
(top). All three approaches spend most of their time in search. The second
bar shows the good states (bottom), bad states (middle), and pairs (top) as
percentages of the number of data elements. The number of pairs is higher
than the number of good or bad states. The third bar shows the number of
proposals accepted (bottom) and rejected (top) as the percentage of total pro-
posals. Pure accepts everything and the others reject only a small fraction of
proposals.

The benchmark monniaux? illustrates a limitation of Z3-HORN.

for(i=0;i<1000;i++) ;assert (i<=10000) ;

2 http://stackoverflow.com/questions/17547132/slow-invariant-inference-with-horn-
clauses-in-z3

14 Rahul Sharma, Alex Aiken

Table 2: Results on non-termination benchmarks.
Program | Z3-H [Pure | MCMC | Templ |

terml 0.01 0.02 0.02 0.02
term2 TO 0.02 0.03 0.02
term3 TO 0.03 0.03 0.03
termd 0.01 0.03 0.05 0.02
termb 0.02 0.05 0.02 0.02
term6 TO 0.03 0.03 0.05

Intuitively, Z3-HORN is based on under-approximating strongest post-conditions
and the large constant in the loop bound results in slow convergence. Empiri-
cally, for this example, the time taken by Z3-HORN appears to grow quadrat-
ically with the loop bound. On the other hand, the time taken by randomized
search is independent of the size of the constants and is able to quickly find
the invariant.

The benchmark nested has nested loops and cannot be handled by the
implementation for simple loops described in [22]. Z3-HORN terminates on
this example but instead of finding the simple invariants ¢ > 0 and 0 < ¢ <
n A0 < j, discovered by randomized search, it finds an existentially quantified
invariant that cannot be consumed by most tools.

Since the randomized searches and Z3-HORN work with VCs, we can di-
rectly apply them to problems beyond invariant inference. Consider the prob-
lem addressed by the tool LOOPER [9]: Does a loop go into non-termination
when executed with an input ¢? A certificate of non-termination is a recur-
rent set [29], a predicate that ensures the validity of the VCs in Equation 4.
We consider the benchmarks for proving non-termination from TNT [29] and
LOOPER in Table 2. Since these papers do not include performance results, we
compare randomized search with Z3-HORN.

In Table 2, Z3-HORN is fast on half of the benchmarks and times out after
thirty minutes on the other half. This observation suggests the sensitivity
of symbolic inference engines to the search heuristics and the usefulness of
Theorem 1. For half the benchmarks, the post-condition computation of Z3-
HoRN diverges. Randomized search, with no such systematic strategy and an
asymptotic convergence guarantee, successfully handles all the benchmarks in
less than a second.

4 Arrays

We consider the inference of universally quantified invariants over arrays. A
program state for an array manipulating program contains the values of all
the numerical variables and the arrays in scope. Given an invariant, existing
decision procedures are robust enough to check that it indeed is an actual
invariant. But in our experience, the decision procedures generally fail to find
concrete counterexamples to refute incorrect candidates. This situation is a

From Invariant Checking to Invariant Inference Using Randomized Search 15

real concern, because if our technique is to be generally applicable then it
must deal with the possibility that the decision procedures might not always
be able to produce counterexamples to drive the search. Fortunately, there is
a solution to this problem. As outlined in Section 2.2, the good states, the
bad states, and the pairs required for search can be obtained from program
executions.

We use an approach similar to [54,21] to generate data. Let X denote all
states in which all numerical variables are assigned values < k, all arrays have
sizes < k, and all elements of these arrays are also < k. We generate all states
in Xy, then Y1, and so on. To generate data, we run the loop with these states
(see Section 2.2). To refute a candidate invariant, states from these runs are
returned to the search. For our benchmarks, we did not need to enumerate
beyond X, before an invariant was discovered. Better testing approaches are
certainly possible [31].

We now define a search space of invariants to simulate the fluid updates
abstraction for reasoning about arrays [17]. This abstraction is concerned with
points-to relationships given by triples (f[u], ¢, g[v]), with the interpretation
that ¢ is satisfied when f[u] points to g[v]. In [17] both may relationships
(flu] = g[v] = ¢) and must relationships (¢ = fu] = g[v]) are used. The
must relationships suffice for our benchmarks and we discuss only these here.
If z1,...,x, are the numerical variables of the program and f and g are array
variables, then we are interested in array invariants of the following form:

Vu,v.T (21, T, ..., Tn,u,v) = flu] = g[v] (6)

The variables v and v are universally quantified variables and T is a numerical
predicate in the quantified variables and the variables of the program. Using
this template, we reduce the search for array invariants to numerical predicates
T(x1,22,...,Tn,u,0).

The search for T" proceeds as described in Section 3. For all our benchmarks,
the search space with @ = 1 and 8 = 10 suffices. The only significant difference
between this search and the search in Section 3 is in the evaluation of the cost
function. Since T has quantified variables, the evaluation of the cost function
is more expensive: when evaluating whether a state satisfies a candidate, each
quantified variable results in a loop. When applying moves, quantified and free
variables are treated identically.

4.1 Evaluation

The principal difference between the evaluation here and in Section 3.3 is
that there is no feedback between the search and the decision procedure. We
manually wrote harnesses for generating data and then produced enough data
that the search discovers a numerical predicate T that is an invariant of the
array manipulating program. For all benchmarks, at most 150 data elements
were sufficient to obtain an invariant. Just as in Section 3.3, we consider three
variations of the search for 7T": Pure is a pure random walk, MCMC uses the cost

16 Rahul Sharma, Alex Aiken

Table 3: Results on array manipulating programs
Program | [17] [Z3-H | ARMC | Dual | Pure | MCMC | Templ]
init 0.01 | 0.06 0.15 0.72 0.06 | 0.02 0.01
init-nc 0.02 | 0.08 0.48 6.60 0.05 | 0.15 0.02
init-p 0.01 | 0.03 0.14 2.60 0.01 | 0.01 0.01
init-e 0.04 | TO TO TO TO TO TO

2darray 0.04 | 0.18 ? TO 0.02 | 041 0.02
copy 0.01 | 0.04 0.20 1.40 0.87 | 0.80 0.02
copy-p 0.01 | 0.04 0.21 1.80 0.09 | 0.13 0.01
copy-o 0.04 | TO ? 4.50 TO TO 0.50
reverse 0.03 | 0.12 2.28 8.50 TO 3.48 0.03
swap 0.12 | 0.41 3.0 40.60 | TO TO 0.21

d-swap 0.16 | 1.37 4.4 TO TO TO 0.51
strcpy 0.07 | 0.05 0.15 0.62 | 0.01 | 0.02 0.01
strlen 0.02 | 0.07 | 0.02 0.20 | 0.01 | 0.01 0.01
memcpy 0.04 | 0.20 16.30 0.20 0.02 0.03 0.01
find 0.02 | 0.01 0.08 0.38 2.23 | 0.30 0.02
find-n 0.02 | 0.01 0.08 0.39 | 0.07 | 0.95 0.01
append 0.02 | 0.04 1.76 1.50 TO TO 0.12
merge 0.09 | 0.04 ? 1.50 TO TO 0.41
alloc-f 0.02 | 0.02 0.09 0.69 | 0.07 | 0.10 0.01
alloc-nf | 0.03 | 0.03 | 0.13 0.42 | 049 | 0.14 0.07

function, and Templ restricts the inequalities in T" to a user supplied abstract
domain.

We evaluate these randomized search algorithms on the benchmarks of [17]
in Table 3. The VCs for these benchmarks were obtained from the repository
of the competition on software verification.®> The first column is the name
of the program. We have omitted benchmarks with bugs from the original
benchmark set; these bugs are triggered during data generation. The second
column shows the time taken by analyzing these benchmarks using the fluid
updates abstraction [17]. Using a specialized abstract domain leads to a very
efficient analysis, but the scope of the analysis is limited to array manipulating
programs that have invariants given by Equation 6.

In [7], the authors use templates to reduce the task of inferring universally
quantified invariants for array manipulating programs to numerical invariants
and show results using three different back-ends: Z3-HORN [32], ARMC [23],
and DUALITY [40]. These are reproduced verbatim as columns Z3-H, ARMC,
and Dual of Table 3. Details about these columns can be found in the original
text [7]. Note that the benchmark init-e requires a divisibility constraint
that none of these back-ends or our search algorithms currently support.

The next three columns describe our randomized searches. The time mea-
surements are the total time to search (with sufficient data) and validate an
invariant. We observe that Pure times out on several benchmarks, which sug-
gests that these problems are harder than those for numerical invariants. More-
over, whenever the pure random search times out, both ARMC and DUALITY

3 https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/ QALIA /

From Invariant Checking to Invariant Inference Using Randomized Search 17

i:=0; x :="a";

while(non_det()){ i++; x := "(" + x + ")"; }
assert(x.length == 2*i+1);

if (i>0) assert(x.contains("(a)"));

Fig. 4: A string manipulating program.

take more than a second. Hence, there seems to be some correlation between
which verification tasks are difficult for different techniques. Another factor
that adversely affects the randomized searches is that, due to the quantified
variables, the evaluation of the cost function is slower than the evaluation of
the cost function for numerical candidates.

The surprising result is that Pure still terminates quickly on the majority
of the benchmarks. The next column shows that MCMC also times out on several
benchmarks (these are a subset of benchmarks on which Pure times out). For
these benchmarks, as shown by the last column, just specifying the abstract
domain in which the linear inequalities in the invariant belong suffices to make
the search terminate in under a second. Moreover, Templ is faster than both
ARrMC and DUALITY on all the benchmarks of Table 3. These results suggest
that randomized search is a suitable technique for inference of universally
quantified invariants over arrays and can generate results competitive with
state-of-the-art symbolic inference techniques.

5 Strings

Consider the string manipulating program of Figure 4 that computes the string
(*a)’. To validate its assertions, the invariants must express facts about the
contents of strings, integers, and lengths of strings; we are unaware of any pre-
vious inference technique that can infer such invariants. The string operations
such as length (compute the length of a string), indexof (find the position of
a string in another string), substr (extract a substring between given indices),
etc., intermix integers and strings and pose a challenge for invariant inference.
However, the decision procedure Z3-STR [60] can decide formulas over strings
and integers. We use C21I to construct an invariant inference procedure from
Z3-STR.

A program state contains the values of all the numerical and the string vari-
ables. The search space S consists of boolean combinations of predicates that
belong to a given bag P of predicates: \/;’:1 (/\’,f:1 P}) where P} € P. The bag
P is constructed using the constants and the predicates occurring in the pro-
gram. We set « = 5, 8 = 10, and for Figure 4, P has predicates x.contains(y),
Y1 = Y2, wii + wax.length + ws < 0 where y € {z, “a”, “(”,“)”, “(a)”} and
w € [—2 : 2]. A move replaces a randomly selected P} with a randomly se-
lected predicate from P. The current counterexample generation capabilities
of Z3-STR are unreliable and we generate data using the process explained

18 Rahul Sharma, Alex Aiken

Table 4: Results on string manipulating programs. The time taken (in seconds) by pure ran-
dom search, by MCMC search, and by Z3-STR (for proving the correctness of the invariants)
are shown.

[[Figure 4 [replace [index [substring]

Pure 342.6 0.01 0.06 0.5
MCMC 0.8 0.02 0.06 0.05
73-STR 0.03 TO 114.6 0.01

in Section 4. (At most 25 data elements were sufficient to obtain an invari-
ant.) For Figure 4, randomized search discovers the following invariant and
discharges the assertions:

(;g =“a" Ni = O) vV (:c.contams(“(a)”) A z.length = 2i + 1)

Due to the absence of an existing benchmark suite for string-manipulating
programs, our evaluation is limited to a few handwritten examples shown in
Table 4. The program replace uses replace (replace the first occurrence of a
string with another) in addition to the string operations present in Figure 4.
This program checks that repeatedly replacing "a" by "aa" in a loop increases
the length by the number of loop iterations. For this program Z3-STR times
out in validating the candidate invariant. We confirmed that the candidate
is an invariant manually. The program index uses indezof in addition to the
string operations in replace. This program replaces all occurrences of one
string by another and checks the relationship between the length of the output
string and the number of iterations. Finally, substring uses substr and in this
benchmark we prove that a loop which constructs an http request does not
modify the domain name.

An alternative to €21 for proving these examples requires designing a new
abstract interpretation [16,15], which entails designing an abstract domain
that incorporates both strings and integers, an abstraction function, a widen-
ing operator, and abstract transfer functions that are precise enough to find
disjunctive invariants like the one shown above. Such an alternative requires
significantly greater effort than instantiating c21. In our implementation, both
the proposal mechanism and the eval function, required to instantiate C2I, are
under 50 lines of C++ each.

6 Relations

In this section we define a proposal mechanism to find invariants over rela-
tions. We are given a program with variables z1,zo,...,z, and some rela-
tions Ry, Ra, ..., Ry. A program state is an evaluation of these variables and
these relations. For example, consider the program state i = 1,7 = 2, pts =
{(1,2),(2,1)},eq¢ = {(1,1),(2,2)} where pts is the points-to relation and eq is
the equality relation. In this state ¢ and j point to two heap cells that form
a circularly linked list. The invariants are composed of variables and such

From Invariant Checking to Invariant Inference Using Randomized Search 19

relations. The search space comnsists of predicates F' given by the following
grammar:

Predicate F ::= /\f:1 F;
Formula F* ::= /\f—:1 Gi
Subformula G* ::=VYuy,us,...,u;. T
QF Predicate T = \/$_, NI, LF (7)
Literal L ::= A | -A
Atom A := R(V4,...,V,) a= arity(R)

Argument V =z | u | Kk

A predicate in the search space is a conjunction of formulas F;. The subscript of
F; denotes the number of quantified variables in its subformulas. A subformula
is a quantified predicate with its quantifier free part T expressed in DNF. Each
atomic proposition of this DNF formula is a relation whose arguments can be a
variable of the program (z), a quantified variable (u), or some constant (k) like
null. We focus our attention on universally quantified predicates. Predicates
with existential quantifiers and arbitrary alternations can also be incorporated
easily in the search, but validating such candidates is much harder [59]. The
variables in scope of a relation in a predicate are the program variables and
the quantified variables in the associated subformula.

Next we define the moves of our proposal mechanism. We select a move
uniformly at random from the list below and apply it to the current candidate
C. As usual, we write “at random” to mean “uniformly at random”.

1. Variable move: Select an atom of C' at random. Next, select one of the
arguments and replace it with an argument selected at random from the
variables in scope and the constants.

2. Relation move: Select an atom of C' at random and replace its relation with
a relation selected at random from the set of relations of the same arity.
The arguments are unaffected.

3. Atom move: Select an atom of C' at random and replace its relation with
a relation selected at random from all available relations. Perform variable
moves to fill the arguments of the new relation.

4. Flip polarity: Negate a literal selected at random from the literals of C.

5. Literal move: Perform an atom move and flip polarity.

These moves are ergodic: using atom moves and flipping polarity it is possible
to transform any candidate Cy into any other candidate Cs. Moreover, these
moves are symmetric and hence the proposal mechanism satisfies symmetry.

Next, we evaluate the MCMC algorithm in Figure 1 with this proposal
mechanism and the cost function of Equation 5. We also evaluate a pure vari-
ation in which all moves are accepted. We do not evaluate a “template” varia-
tion as the relations can be seen as templates and it is unclear what additional
template restrictions could be added.

20 Rahul Sharma, Alex Aiken

6.1 Lists

We use the relational proposal mechanism to prove functional properties of
linked list manipulating programs. The heap is composed of cells and each
cell either contains null or the address of another cell. The reachability rela-
tion n*(4,) holds if the cell pointed to by j can be reached from ¢ using zero
or more pointer dereferences. While writing post-conditions to express func-
tional properties, it is useful to talk about the reachability relation that holds
before the program begins execution. We denote this binary relation by _n*.
Using these relations, the predicates in our search space are universally quan-
tified formulas over these reachability relations for linked list manipulating
programs.

A recently published decision procedure is complete for such candidates
via a reduction of such formulas to boolean satisfiability [33]. It takes a pro-
gram annotated with invariants as input and checks the assertions. We use this
decision procedure as our validator and randomized search to find invariants
for some standard singly linked list manipulating programs. The evaluation
of [33] shows that it can handle relations and hence can validate a variety of
programs that have been hand-annotated with invariants. During our evalu-
ation of various verification tasks, we observed that such decision procedures
for advanced logics are not able to accept all formulas in their input language.
Hence, sometimes we must perform some equality-preserving simplifications
on the candidate invariants our search discovers. Currently we perform this
step manually when necessary, but the simplifications could be automated.

6.2 Evaluation

For defining the search space using Equation 7weset « = =9 =5 and § = 2,
which is sufficient to express the invariants for all of our benchmarks. Our
evaluation results on the benchmarks of [33] are in Table 5. The first column
lists the programs, all of which perform basic manipulations of singly linked
lists. The program delete removes a specific element of the list, deleteall
deletes all the elements, filter deletes some specific elements if present in the
list, last returns the last element of the list, and reverse is in-place reversal.
The invariants for these programs are subtle and easy to get wrong.

Since these invariants are complex, pure random walk times out on all of
these benchmarks. Hence, we show the results for only the MCMC search.
Recall from Section 2.2 that it is easy to obtain good states: just run the
program and collect the reachable states. However, it is more difficult to obtain
bad states. We run our benchmarks on lists of length up to five to generate an
initial set of good states, the size of which is shown in the column G. Starting
from a non-empty set of good states results in faster convergence than starting
from an empty set. Next, we start our search with zero bad states and zero pairs
and generate candidate invariants. If the candidate is not an invariant we get
a counterexample, which is added to the data (see discussion in Section 6.1).

From Invariant Checking to Invariant Inference Using Randomized Search 21

Table 5: Results for list manipulating programs.

[Program [#G [#R [Search [Valid | Prop | Accep | [34] |
delete 50 2 0.20 0.04 4437 3949 9.32
delete-all | 20 7 1.03 0.13 8482 7225 37.35
filter 50 | 26 10.41 0.11 160489 | 126389 55.53
last 50 3 0.90 0.04 98064 87446 7.49
reverse 20 | 54 55.11 0.08 582665 | 484208 | 146.42

The number of rounds for the search to converge to an invariant is shown in the
column R. The next four columns show the statistics of the last (and also the
most expensive) round, the one that produces an invariant. The column Search
shows the time taken by the search to infer an invariant. The column Valid
shows the time taken by the validator to validate the invariant discovered by
the search. The next two columns show the number of proposals made (Prop)
and the number of proposals accepted (Accep) by the search. Observe that
the search converges in less than a million proposals for all the benchmarks.

On comparing these results with those for array invariants, we note that
the time taken by the search is higher. However, with arrays we were able to
execute many more proposals per second. The maximum number of proposals
for the results in Table 3 are about seven hundred thousand (MCMC for reverse)
which is more than the number of proposals for any benchmarks in Table 5.
Note that shape analyses like TVLA [49] can also handle the benchmarks
in Table 5 within seconds. The last column of Table 5 is a recent invariant
inference engine for lists that also uses the decision procedure of [33]. However,
due to the intermediate manual steps in our evaluation, we cannot perform a
direct comparison.

On analyzing the invariants discovered by the search, we observe that they
are different from the invariants in the manually annotated benchmarks of [33].
Consider the benchmark reverse. The variable h is the head of the initial
list, 7 is the head of the remaining list to be reversed, and j is the head of the
reversed list. The pre-condition is that the heap contains only the linked list
and nothing else. The program is as follows:

i = h; j = null; while (i !'= null) { k=*i; *i=j; j=i; i=k; }
For reverse the search discovers the following invariant:

Vu(u # null = (n*(i,u) Vn*(j,u)))
Vu, v(n* (u,0) = (20" (i,u) A n*(v,u) V0 (u,0) A =on(u,)

The decision procedure of [33] is able to validate this invariant and uses it to
show that reverse correctly reverses a linked list. Note that this invariant is
more succinct and difficult to comprehend than the invariant written by hand
in [33]:

Vu(u # null = (n*(i,u) & -n*(j,u)))

Yu, v(n*(i,u) = (n*(u,v) & n*(u,v)))

v, v(n* (o) = (0 (u,v) < n*(v,u)))

22 Rahul Sharma, Alex Aiken

This easier to understand invariant says that every node is either in the par-
tially reversed list or the to be reversed list. In the to be reversed list, the
reachability relation is unchanged and in the partially reversed list the reach-
ability relation is reverse of the initial.

Since the decision procedure of [33] is complete, it is able to consume and
verify any unusual invariants that the search produces. Generally the decision
procedures for more advanced data structures are not so robust that they can
consume arbitrary candidates. Often, one needs to write the invariants with
care and might even need to provide additional axioms or lemmas to verify
more advanced data structure manipulating programs [47]. Once the state
of the art of these decision procedures improve, we can apply randomized
search for these programs too. We do not need a complete decision procedure
as we can generate data by running the programs, just as we do for arrays
and strings. But the decision procedure should be robust enough to handle
arbitrary candidate invariants automatically.

7 Related Work

The goal of this paper is a framework to obtain inference engines from deci-
sion procedures. C2I is parametrized by the language of possible invariants.
This characteristic is similar to TVLA [49], which is a parametric shape anal-
ysis. TVLA requires specialized heuristics (focus, coerce, etc.) to maintain
precision. We do not require these heuristics and this generality aids us in ob-
taining inference procedures for verification tasks beyond shape analysis. C21
is a template-based analysis that does not use decision procedures to instan-
tiate the templates and limits their use to checking an annotated program.
We do not rely on decision procedures to compute a predicate cover [28], or
for fixpoint iterations [20,58], or on Farkas’ lemma [27,30,14,6]. Hence, C2I is
applicable to various decision procedures, including the incomplete procedures
(Section 4 and Section 5).

The literature on invariant inference is huge. Most techniques for invariant
inference are symbolic analyses that trade generality for effective techniques
in specific domains [38,30,18,10,5,34]. We are not aware of any symbolic in-
ference technique that has been successfully demonstrated to infer invariants
for the various types of programs that we consider (numeric, array, string,
and list). We have shown that invariant search using concrete data and gen-
eral search procedures such as Metropolis Hastings has the potential to be a
general solution to obtain inference procedures from checking procedures. We
discuss the related techniques that learn invariants from concrete data and
compare them with randomized search.

Concrete states can help maintain precision by aiding the computation of
the best abstract transformers [48]. However, this approach suffers from ir-
recoverable imprecision as it relies on widening heuristics for termination. In
contrast, randomized search can always recover from excessive under or over
approximations, but only provides an asymptotic guarantee of termination if

From Invariant Checking to Invariant Inference Using Randomized Search 23

an invariant exists. For numerical programs, machine learning techniques have
been used to obtain invariants from concrete data. Daikon [19] uses conjunc-
tive learning, [53,45] use equation solving, and [55] uses SVMs: these fail to
infer disjunctive invariants over inequalities. The underlying machine learning
algorithm of [54] uses geometry and hence is applicable to numerical predi-
cates only. The inference algorithm for numerical invariants described in [22]
uses decision procedures to search for candidate invariants. It is not clear
whether decision procedures can effectively search for good candidates that
satisfy data over quantified domains. There are several automata-based ap-
proaches for learning invariants [21,22,13]. It is unclear whether automata
can express numerical invariants. Domain-specific search procedures like these
seem unsuitable for a general framework for obtaining inference procedures
from checking procedures.

Algorithmic learning [39,37] based approaches also iteratively invoke search
and validate phases. They use a CDNF learning algorithm that requires mem-
bership queries (is a conjunction of atomic predicates contained in the invari-
ant) and equivalence queries (is the candidate an invariant). Since the invariant
is unknown, the membership queries are resolved heuristically. In contrast, C21
does not require membership queries. Other techniques that use concrete data
to guide verification include [24,2,26,43].

We are unaware of the any previous work that uses Metropolis Hastings for
invariant inference. In a related work, [25] uses Gibbs sampling for inference
of numerical invariants. However, the inference works directly on the program
(it computes pre-conditions and post-conditions) as opposed to concrete data.
Handling programs with pointers and arrays is left as an open problem by [25].

We use efficiency to guide the choice of parameters for randomized search.
E.g., in our evaluations, we set v in Figure 1 to log, 2. Systematic approaches
described in [56] can also be used for setting such parameters.

MCMC based search has been found to be useful in superoptimization [51],
where the goal is to infer an assembly program that satisfies some concrete
input/output examples. MCMC search has also been used in program test-
ing to achieve better coverage [50]. A randomized scheduler is used to find
concurrency bugs in [8].

8 Conclusion

We have demonstrated a general procedure for generating an inference proce-
dure from a checking procedure and applied it to a variety of programs. The
inference procedure uses randomized search for generating candidate invari-
ants that are proven or refuted by the checker. Furthermore, we have presented
a cost function on concrete states that is useful in both guiding the search (es-
pecially for domains with more complex invariants, such as list-manipulating
programs) and for performance. Finally, 21 produces results competitive with
state of the art tools that are specialized for specific domains.

24

Rahul Sharma, Alex Aiken

References

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

. Alur, R., Bodik, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia, S.A.,

Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In: FM-
CAD (2013)

Amato, G., Parton, M., Scozzari, F.: Discovering invariants via simple component anal-
ysis. J. Symb. Comput. 47(12) (2012)

Andrieu, C., de Freitas, N., Doucet, A., Jordan, M.I.: An Introduction to MCMC for
Machine Learning. Machine Learning 50(1) (2003)

. Beyer, D.: Competition on Software Verification (SV-COMP) benchmarks. https://svn.

sosy-lab.org/software/sv-benchmarks/tags/svcomp13/loops/

Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker Blast.
STTT 9(5-6) (2007)

Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Invariant synthesis for
combined theories. In: VMCALI (2007)

Bjgrner, N., McMillan, K.L., Rybalchenko, A.: On solving universally quantified horn
clauses. In: SAS (2013)

. Burckhardt, S., Kothari, P., Musuvathi, M., Nagarakatte, S.: A randomized scheduler

with probabilistic guarantees of finding bugs. In: ASPLOS (2010)

Burnim, J., Jalbert, N., Stergiou, C., Sen, K.: Looper: Lightweight detection of infinite
loops at runtime. In: ASE (2009)

Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape analysis by
means of bi-abduction. In: POPL (2009)

Chib, S., Greenberg, E.: Understanding the Metropolis-Hastings Algorithm. The Amer-
ican Statistician 49(4) (1995)

Clarisé, R., Cortadella, J.: The octahedron abstract domain. In: SAS (2004)

Cobleigh, J.M., Giannakopoulou, D., Pasareanu, C.S.: Learning assumptions for com-
positional verification. In: TACAS (2003)

Colén, M., Sankaranarayanan, S., Sipma, H.: Linear invariant generation using non-
linear constraint solving. In: CAV (2003)

Costantini, G., Ferrara, P., Cortesi, A.: Static analysis of string values. In: ICFEM
(2011)

Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static anal-
ysis of programs by construction or approximation of fixpoints. In: POPL (1977)
Dillig, I., Dillig, T., Aiken, A.: Fluid updates: Beyond strong vs. weak updates. In:
ESOP (2010)

Dillig, I., Dillig, T., Li, B., McMillan, K.L.: Inductive invariant generation via abductive
inference. In: OOPSLA (2013)

Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The Daikon system for dynamic detection of likely invariants. Sci. Comput.
Program. 69(1-3) (2007)

Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for ESC/Java. In: FME
(2001)

Garg, P., Loding, C., Madhusudan, P., Neider, D.: Learning universally quantified in-
variants of linear data structures. In: CAV (2013)

Garg, P., Loding, C., Madhusudan, P., Neider, D.: ICE: A Robust Learning Framework
for Synthesizing Invariants. In: CAV (2014)

Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing software
verifiers from proof rules. In: PLDI (2012)

Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: Synergy: a
new algorithm for property checking. In: FSE (2006)

Gulwani, S., Jojic, N.: Program verification as probabilistic inference. In: POPL (2007)
Gulwani, S., Necula, G.C.: Discovering affine equalities using random interpretation. In:
POPL (2003)

Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving. In:
PLDI (2008)

Gulwani, S., Srivastava, S., Venkatesan, R.: Constraint-based invariant inference over
predicate abstraction. In: VMCAI (2009)

From Invariant Checking to Invariant Inference Using Randomized Search 25

29.

30.
31.

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

44.

45.

46.
47.

48.

49.

50.

51.

52.

53.

54.

Gupta, A., Henzinger, T.A., Majumdar, R., Rybalchenko, A., Xu, R.G.: Proving non-
termination. In: POPL (2008)

Gupta, A., Majumdar, R., Rybalchenko, A.: From tests to proofs. In: TACAS (2009)
Harder, M., Mellen, J., Ernst, M.D.: Improving test suites via operational abstraction.
In: ICSE (2003)

Hoder, K., Bjgrner, N.: Generalized property directed reachability. In: SAT (2012)
Itzhaky, S., Banerjee, A., Immerman, N., Nanevski, A., Sagiv, M.: Effectively-
propositional reasoning about reachability in linked data structures. In: CAV (2013)
Itzhaky, S., Bjgrner, N., Reps, T.W., Sagiv, M., Thakur, A.V.: Property-directed shape
analysis. In: CAV (2014)

Ivancic, F., Sankaranarayanan, S.: NECLA Static Analysis Benchmarks
http://www.nec-labs.com/research/system/systems_SAV-website/small_static_bench-
vl.1l.tar.gz

Jhala, R., McMillan, K.L.: A practical and complete approach to predicate refinement.
In: TACAS (2006)

Jung, Y., Kong, S., Wang, B.Y., Yi, K.: Deriving invariants by algorithmic learning,
decision procedures, and predicate abstraction. In: VMCALI (2010)

Kannan, Y., Sen, K.: Universal symbolic execution and its application to likely data
structure invariant generation. In: ISSTA (2008)

Kong, S., Jung, Y., David, C., Wang, B.Y., Yi, K.: Automatically inferring quantified
loop invariants by algorithmic learning from simple templates. In: APLAS (2010)
McMillan, K., Rybalchenko, A.: Combinatorial approach to some sparse-matrix prob-
lems. Tech. rep., Microsoft Research (2013)

Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computation 19(1)
(2006)

de Moura, L.M., Bjgrner, N.: Z3: An efficient SMT solver. In: TACAS (2008)

Naik, M., Yang, H., Castelnuovo, G., Sagiv, M.: Abstractions from tests. In: POPL
2012

1(\Ieuwzﬂd, A.F., Liu, J.S., Lipman, D.J., Lawrence, C.E.: Extracting protein alignment
models from the sequence database. Nucleic Acids Research 25 (1997)

Nguyen, T., Kapur, D., Weimer, W., Forrest, S.: Using dynamic analysis to discover
polynomial and array invariants. In: ICSE (2012)

Nori, A.V., Sharma, R.: Termination proofs from tests. In: ESEC/SIGSOFT FSE (2013)
Qiu, X., Garg, P., Stefanescu, A., Madhusudan, P.: Natural proofs for structure, data,
and separation. In: PLDI (2013)

Reps, T.W., Sagiv, S., Yorsh, G.: Symbolic implementation of the best transformer. In:
VMCALI (2004)

Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM
Trans. Program. Lang. Syst. 24(3) (2002)

Sankaranarayanan, S., Chang, R.M., Jiang, G., Ivancic, F.: State space exploration
using feedback constraint generation and monte-carlo sampling. In: ESEC/SIGSOFT
FSE (2007)

Schkufza, E., Sharma, R., Aiken, A.: Stochastic superoptimization. In: ASPLOS (2013)
Sharma, R., Aiken, A.: From invariant checking to invariant inference using randomized
search. In: CAV (2014)

Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Liang, P., Nori, A.V.: A data driven
approach for algebraic loop invariants. In: ESOP (2013)

Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Nori, A.V.: Program verification as
learning geometric concepts. In: SAS (2013)

. Sharma, R., Nori, A., Aiken, A.: Interpolants as classifiers. In: CAV (2012)
. Sharma, R., Nori, A.V., Aiken, A.: Bias-variance tradeoffs in program analysis. In:

POPL (2014)

. Solar-Lezama, A.: The sketching approach to program synthesis. In: APLAS (2009)
. Srivastava, S., Gulwani, S.: Program verification using templates over predicate abstrac-

tion. In: PLDI (2009)

. Srivastava, S., Gulwani, S., Foster, J.S.: VS3: SMT solvers for program verification. In:

CAV (2009)

. Zheng, Y., Zhang, X., Ganesh, V.: Z3-str: a Z3-based string solver for web application

analysis. In: ESEC/SIGSOFT FSE (2013)

