Implementing Regular Tree Expressions

Alexander Aiken
IBM Almaden Research Center
650 Harry Rd.
San Jose, CA 95120

aiken@ibm.com

Brian R. Murphy
Computer Science Department
Stanford University
Stanford, CA 94305

brm@cs.stanford.edu

Abstract

Regular tree expressions are a natural formalism for describing the
sets of tree-structured values that commonly arise in programs; thus,
they are well-suited to applications in program analysis. We describe
an implementation of regular tree expressions and our experience with
that implementation in the context of the FL type system. A combi-
nation of algorithms, optimizations, and fast heuristics for computa-
tionally difficult problems yields an implementation efficient enough
for practical use.

1 Introduction

Regular tree expressions are a natural formalism for describing the sets of
tree-structured values that commonly arise in programs. As such, several
researchers have proposed using (variations on) regular tree expressions in
type inference and program analysis algorithms [JMT79, Mis84, MR85, HJ90,

1

HJ91, AM91]. We are not aware of any implementations based on regular
tree expressions, however, except for our own work on type analysis for the
functional language FL [B*89].

A previous paper described the theoretical basis for our FL type inference
system, in which types are represented by regular tree expressions [AM91].
This paper describes an implementation of regular tree expressions and our
experience with that implementation in the context of the FL type system.
Implementing regular tree expressions efficiently is challenging, because some
of the basic operations have exponential time complexity [Sei89]. Even some
operations with polynomial time algorithms perform poorly in practice. The
fundamental operations on regular tree expressions are: computing fixed
points, union, intersection, negation, and testing inclusion (including solving
sets of inclusion constraints). Of these, both negation and inclusion require
exponential time in general. This is particularly troublesome in the case
of inclusion, because in our system it is by far the most commonly used
operation, and we would expect the same to be true for most applications.

We give an abstract description of a complete implementation of regular
tree expressions, including algorithms, heuristics (where necessary), and a
number of optimizations. We also present the results of performance mea-
surements on our implementation. The performance measurements show
that the amortized cost per regular tree operation is nearly constant in our
system.

We begin in Section 2 with a straightforward definition of regular tree
expressions; we use this representation to illustrate their usefulness. In Sec-
tion 3, we introduce the representation used in our system: leaf-linear systems
of equations [GS84, MR85]. We discuss why leaf-linear systems are better
suited to implementation than the representation of Section 2. Section 4 out-
lines an incremental algorithm to test whether a leaf-linear system is empty.
The next several sections describe, at a high level, implementations of the
operations on regular tree expressions. For brevity, we call these operations
reqular tree operations. In Section 6, we present a fast heuristic for testing
inclusion of leaf-linear systems. The heuristic is conservative: the result is

? This heuristic works

either “yes, the containment holds” or “don’t know.
surprisingly well in our application; in almost a year of use in the FL type
analysis system, we have yet to find a practical example where the quality of
information produced by the system is affected by the use of this heuristic.

Section 7 covers two simple optimizations that substantially improve the

E = 0 T(0,0) = 0
| 1 U(l,0) = H
| « U(a,0) = ola)
| BV E, V(B By o) = W(E,o)UW(Ey,o0)
| B A B, V(B A Eyo) = W(E,o)NU(Ey,0)
| -E V(=Ey,0) = H—W(E,o0)
| fiz a. by U(fir a.By,0) = least T s.t.
T = W(Ey, ola — T))
| e(Ery oo En) | Y(e(Er, ... By o) = {clty, ... t)|ti € U(E;,0)}

Figure 1: Syntax and semantics of regular tree expressions.

performance of intersection, union, negation, and testing inclusion. Both
optimizations focus on avoiding computations whenever possible. The first
optimization comes from facts such as (A C B) & (AN B=A). If it is
known that A C B, then we can save time and space by not computing
AN B but just returning A. Applying similar ideas uniformly dramatically
improves performance. The second optimization is to use memoization to
record and reuse the results of operations [Mic68]. While the usefulness of
this optimization depends on the particular application, in our system it
is very common for the same operations to be performed again and again.
The performance of the system with these two optimizations is more than two
orders of magnitude faster than without them. Measurements and discussion
of the system’s performance are also presented in Section 7.

It is worth explaining our choice of the term “regular tree expression”. In
[MR85], a regular tree is what we term a regular tree expression. We use a
different name because the term “regular tree” is usually a finite or infinite
tree with a finite number of subtrees [Cou83]. Using this definition, a regular
tree expression together with a substitution denotes a set of regular trees.
Regular tree expressions can also be thought of as tree automata with free
variables; we discuss this view in Section 3.

2 Regular Tree Expressions

In this section, we introduce regular tree expressions, describe some of their
properties, and develop a few examples. The representation shown here is
not the one used for implementation; however, we present it first because
it is easy to understand and illustrates the important operations. We begin
with some basic definitions. Let C' = {b,¢,...} be a set of constructors, each
with an arity a(c). We assume this set is constant hereafter.

Definition 2.1 Let C° be the set of zero-ary constructors in C'. The Her-
brand universe is the least set of terms H such that

H = COU {c(tl,...,ta(c))|c € C,tZ € H}

Definition 2.2 A substitution o is a function from some set of variable
symbols V' to the power set of H. We define o T A to be the substitution o
restricted to the set of variables A.

Regular tree expressions denote sets of terms of the free algebra H. A
syntax and semantics for regular tree expressions is given in Figure 1. The
meaning function ¥ maps an expression under an environment o to a subset
of H. A variable « is bound in an expression if it appears in the scope E of a
fix a.F; otherwise the variable is free. We restrict the negation operator to
argument expressions with no free variables; this ensures that ¥ is monotonic
in its second argument, and thus the least fixed-point operator is well-defined.

Other proposals for program analysis systems based on regular tree ex-
pressions adopt slightly different definitions, depending upon the application.
For example, Mishra and Reddy restrict the use of disjunction in a type infer-
ence algorithm for a statically typed functional language [MR85], and Heintze
and Jaffar use projection functions in a program analysis for logic programs
[HJ90]. Almost all of our implementation design would apply to these other
systems with little or no modification.

The following examples illustrate the usefulness of regular tree expres-
sions. Let ¢ be a binary constructor and let b be a zero-ary constructor. If
we interpret ¢ as describing a Lisp cons operation and b as describing the
atom nil, then the set of Lisp lists is fiz a.c¢(1,«) V b. Similarly, the set of
binary trees with leaves described by /3 is fix a.c(a,) V 3. A more sophisti-
cated example uses regular tree expressions to infer the types of recursively

4

defined functions. Consider a recursive function def f = e(f). If we assume
that f may return a member of the set a and prove from this assumption
that e(f) returns a term in the set F(«), we can conclude that f returns any
term in fir . F(a).

The grammar of Figure 1 illustrates most of the important operations
on regular tree expressions (least fixed-points, union, intersection, and nega-
tion). It is also possible to add a greatest fixed-point operation, but this
introduces no new ideas in an implementation, so we we do not consider
it here. Two other important algorithms test emptiness and inclusion rela-
tionships. In the type inference example above, it may be useful to know if
fix a.E(«) is empty, since this amounts to a proof that f is a non-terminating
function (i.e., f’s set of possible results is empty). A more general method to
determine the results of recursive functions involves the solution of inclusion
constraints on regular tree expressions [AM91].

In the sections that follow, we describe a high-level implementation of
these operations with considerable attention to efficiency. As a rule, we state
results needed to justify our algorithms, but omit the proofs for brevity.
Many of these results may be found in the literature [GS84, MR85, HJ90,
AWO1].

3 Systems of Equations

Regular tree expressions are easy to understand, but are not well suited
to the implementation of some algorithms. The algorithms we present are
formalized as transformations on sets of equations of the form {x; = Rhs,},
where the x; are variables and the Rhs; are regular tree expressions not using
the fiz operator. To discuss the correctness of such transformations, we use
the following definition.

Definition 3.1 Let S = {2; = Rhs;} be a set of equations. We define the
following functions on S: Vars(S) is the set of variables in S, Bound(S) is
the set of bound variables z; appearing on the left-hand side of equations,

and Free(S) is the set of free variables Vars(S) — Bound(5).

Throughout this paper, we uniformly use x; for bound variables, greek let-
ters for free variables, and v for an arbitrary free or bound variable. We
also assume that every system of equations contains an equation ry =

S = {xy = Rhsy,...,z, = Rhs,
O e }blc ! ! } Vs(zj,0)=W(z;,0')
Rhs e 0 |7C£/\T | Rhsy V Rhs where o’ is the unique
G o o A Aa ! ? substitution such that
B V;her:é ‘oz' EkFree(S) o' 1 Free(S) = o 1 Free(S)
T oi= 1y ' V(o)) and, for all (z; = Rhs;) € S,
” Wherehy;'g)(a(cc) cC U(z;,0") = U(Rhs;, o)

Figure 2: Syntax and Semantics of Systems of Leaf-Linear Equations

Veece(xm,...). This allows a concise description of negation (see Section 4).

Note that Rhsg = 1.

Definition 3.2 The set of solutions S(.5) of S is the set of substitutions for
variables in Vars(.S) that satisfy the equations:

S(9) ={o|V(x;,0) = V(Rhs;,0)}

Two sets of equations S; and Sy are equivalent (written S; = S3) if S(51) =
S(S2). Si and Sy are equivalent over a set of variables A if their solutions
are the same over those variables:

Sl =A SQ f= {0’ T A|0’ - S(Sl)} = {0' T A|0' S 8(52)}

The inputs and outputs of our algorithms are leaf-linear systems of equa-
tions [MR85] or regular ¥.X -grammars [GS84]. These are systems of equa-
tions with conjunction and disjunction operators syntactically restricted. A
syntax and semantics for leaf-linear systems is given in Figure 2. The follow-
ing theorem shows that the semantics is well-defined [AWO91].

Theorem 3.3 Let S be a leaf-linear system. Then for any substitution o for
variables Free(.S), there is exactly one substitution o’ for variables Vars(.5)
such that o’ extends o and ¢’ € S(5).

In other words, each substitution for the free variables determines a substitu-
tion for the bound variables. Regular tree expressions and leaf-linear systems
are equivalent in a strong sense [MRS85]:

6

Theorem 3.4 For any regular tree expression R there is a leaf-linear system
of equations S, and for any leaf-linear system of equations S there is a regular
tree expression R such that

Vo W(R,0) = WYg(a,0)

Thus far, we have treated a leaf-linear system as a system of equations;
however, a leaf-linear system also can be viewed as a tree automaton [GS84].
We occasionally adopt this view to make use of results from automata the-
ory. When a leaf-linear system is viewed as a tree automaton, an equation
represents a state and the transition function for that state. By convention,
a1 1s the initial state. The variable on the left-hand side of an equation is
the name of the state, and the right-hand side represents the possible tran-
sitions. A disjunction corresponds to non-determinism; the automaton may
choose one of several transitions. A constructor transition ¢(zy,...,Zq())
accepts if the input is of the form ¢(ty,...,1,()) and each x; accepts ¢;. A1
transition accepts everything; a 0 transition rejects everything. Given some
substitution o for the free variables in a leaf-linear system S, the language
L(S) accepted by a leaf-linear system S is just Ug(xq,0).

Representing regular tree expressions by leaf-linear systems in an imple-
mentation has two significant advantages. First, leaf-linear systems allow
sharing among equations, whereas subexpressions are not shared in regular
tree expressions. This is obviously more economical. Second, two of the
most important algorithms, testing emptiness and containment, are more
easily expressed and efficiently implemented using leaf-linear systems. The
potential disadvantage of using leaf-linear systems is that they may be, in the
worst case, exponentially larger than the smallest equivalent regular tree ex-
pression. We have found that, in practice, all of this potential size explosion
can be avoided by using the algorithms and optimizations presented here.

As an example, the expression fir a.c(1,a) Vb (the set of Lisp lists) is
represented by the leaf-linear system:

r1 = c(ag,x) Vb
o = 1

Our system implements leaf-linear systems almost exactly as described
here. A system of equations is represented by an array. Free and bound
variables are indices into the array, and right-hand sides of equations are the

entries in the array. There are four types of right-hand sides: one each for 0,
1, free variables, and disjunctions of constructor expressions. As operations
are performed, new equations may be added, extending the array, and free
variables may be instantiated, in which case the corresponding index of the
array acquires a new entry.

4 Testing Emptiness

One fundamental problem is determining whether an expression denotes the
empty set under all substitutions for free variables. More formally, for a given
leaf-linear system S, we wish to test the predicate Vo € S(S) ¥s(F, o) = 0.
Testing emptiness is useful for two reasons. First, it can be an important
part of the application. For example, in our type inference algorithm for
FL, proving that a function is type-safe is reduced to proving that a regular
tree expression is empty [AM91]. Second, emptiness testing is important for
the efficiency of the system. It is wasteful, both of time and space, to build
and maintain expressions of the form ¢(Y, X) or Y A X where Y is empty.
The following easy lemma shows that the problem of testing emptiness in all
substitutions reduces to the problem of testing emptiness in one particular
substitution.

Lemma 4.1 Let 7 be the substitution Vo 7(v) = H. Then
Vo Us(E,0)=1 & Ue(FE,7)=0

To test whether Wg(x;, 7) = (), we use the function ® defined in Figure 3.
This definition is a straightforward adaptation of algorithms for reachability
and emptiness for finite automata [HUT9, GS84].

Lemma 4.2 Let S = {1 = Rhsy,...,2; = Rhs;} be a leaf-linear system,
and let ®g be defined as in Figure 3. Then

(I)S(l'z) =1 A= \Ils(l‘i,T) =0
Proof: [sketch] It is easy to show by induction on the height of terms ¢ that

Pg(x;) =L & YVt height(t) < k=1t ¢ Wg(a;, 1)

®g is the least function (under the ordering L < T) s.t.
q)s(l'z) = q)s(RhSZ)
ds(1)
ds(0) =
Gs(c(Er,..., En))

T
1
T
1 otherwise
Os(Fy A Ey) = I if @5(81) = T and ®s(Fz) = T
T
1
T if

ifvVidg(F) =T

otherwise
if (I)S(El) =Tor (I)S(EQ) =T
otherwise

a € Free(5)

Gs(EyV Ey) =
Ps(a) =

Figure 3: Testing for emptiness

To finish the proof, we observe that the language of a tree automaton of k
states is non-empty if and only if it accepts a term of height at most k [GS84].
O

Let n be the total number of symbols appearing in a leaf-linear system
S. The function ®g is computable for every equation in the system in O(n?)
time using a standard fixed-point computation. Initially, ®s(x;) is assumed
to be L for all x;. Iteratively updating ®s requires at most O(n) passes to
compute a fixed point, and each iteration requires examining O(n) right-hand
side symbols.

In our application, we found that up to a third of expressions turn out to
be empty. Consequently, our system maintains the following invariant:

Invariant 4.3 Let S = {z; = Rhs;}, and let F be any subexpression ap-
pearing in a Rhs;.

Vo e S(8) Us(E,o)=0 = (E=0)

Thus if x; is empty in all solutions, then Rhs; = 0. This makes testing
whether an equation is empty very cheap; it is empty if its right-hand side is
0. In the rest of this section, we describe the incremental algorithm used to
maintain this invariant.

El/\E2 — EQ/\El

BV Ey, = EyVE
EA0 = 0
EAnl = F
ENE = F
Ev0) = F
Evl = 1
EVE = FE
o(By, Bay) Ael By, Ely) = By ANEY,. . Eag A Elgy)
..)Nd(...) = 0ifc#£d
e(...,0,...) = 0
-0 = 1
-1 = 0
-—F = K
—(EyANEy) = BV oE,
(EIVE2) = - A-E,
—(c(Ery .. Bay) = Vaeo—ge dzm, .. .)

\ \/lgiga(c) C(. - TH, _'Eiv r,..)
Figure 4: Simplifying expressions.

The function @5 is the basis for the first transformation on sets of equa-
tions.

SuU {J?Z = RhSZ} = SuU {J?Z = 0} if q)s(l'z) =1 (1)

This transformation enforces Invariant 4.3 for entire right-hand sides. To
enforce the invariant for every expression, we introduce a group of equiva-
lences given in Figure 4. These are obvious simplifications, and, when re-
garded as rewrite rules from left to right, form a confluent rewrite system
that is noetherian up to the commutativity of A and V. For an expression F,
Simp(F) is the normalization of expressions under the rules of Figure 4. The

10

Vars(E) = Free(E)U Bound(FE)
Users(v) = {a;|v € Vars(Rhs;)
()

}
AllUsers(v) = least V = Users(v) U {x;|x; € Users(v'),v" € V'}

Figure 5: Simple functions on leaf-linear systems.

complexity of computing Simp(FE) is potentially exponential in the size of
FE due to the rules for intersection and negation; however, in practice right-
hand sides of equations are quite small, so this has not been a problem in
our implementation. Using these simplifications, the rest of Invariant 4.3 is
enforced by the following transformation.

SU{x;=0,2;, = F(x;)} = SU{x; =0,2; = Simp(E£(0))} (2)

For efficiency, we would like to locate the equation x; in Rule (2) quickly.
The set Users(xz), defined in Figure 5, is the set of all equations that mention
x on the right-hand side. Our system incrementally maintains Users(x) for
each equation, thus allowing candidates for the application of Rule (2) to be
located in constant time.

Lemma 4.4 Let S’ be any leaf-linear system closed under application of
Rules (1) and (2). Then S’ satisfies Invariant 4.3.

As an example, consider the following system.

1 = d(l’g,l’g)

ry = c(xg)

Both 21 and x3 are empty in all substitutions. Rule (1) sets a3 to 0, then
Rule (2) sets 21 to 0.

Given any leaf-linear system, we can apply Rules (1) and (2) to produce
a leaf-linear system that satisfies the invariant. However, a more practical
situation is that a leaf-linear system S satisfying the invariant is modified in
one equation to produce a slightly different system S’, and then we wish to
enforce the invariant for S’

11

We briefly describe an incremental version of this algorithm that solves
this problem efficiently. Let x; = Rhs; be the equation of S that is modified
to produce S’. The meaning of an equation can change as a result of this
modification only if it depends, directly or indirectly, on x;. The function
AllUsers, defined in Figure 5, captures the set of equations that depend on
a particular variable. A straightforward restriction of the function &g to
AllUsers(x;) is all that is required. We add one new clause to the definition
in Figure 3:

Ggs(a;) =T if a; ¢ {a;} U AllUsers(x;)

In practice, an incremental algorithm is important, because the size of AllUsers(x;)
is small (typically tens) compared to the number of equations in the system
(typically thousands). Our implementation computes AllUsers using the ob-
vious O(n?) fixed-point computation.

5 Construction, Or, And, Fix, and Not

In this section we show how to perform the operations given in Section 2 on
leaf-linear systems. Section 7 covers the optimization of these algorithms.
In the following, Fy,..., E, are regular tree expressions, S is a leaf-linear
system where

Vo Ug(a;,0) =V (E;,0)

and x is a fresh variable. For each operation f(Fy,..., F,), we show how to
extend S to a leaf-linear system S’ with an equation @ = E’ such that

Vo Ug(x,0) =V (f(F,...,FE,),0)

For each case, unless otherwise noted, it is necessary to enforce Invari-
ant 4.3 for all new and modified equations. We begin with the base cases and
constructor expressions. If F; is a free variable a, we define 5" = S U {z =

aANl}. If By is 0 or 1, we define S = SU{x =0 or 1}.

5.1 Constructors

Constructors are the easiest operations to implement using leaf-linear sys-
tems. Consider a regular tree expression ¢(Fy, ..., F,)). We define a leaf-
linear system S’ = SU{x = ¢(x1,...,2,)}. Thisis a constant time operation.

12

5.2 Or

Union is also a constant-time operation on leaf-linear systems. Consider a
regular tree expression Fy V FEy;. We define a new leaf-linear system S’ as
follows:

Sl =SU {l’ = RhSl vV RhSQ}

Clearly @ = x1V a3, as desired. Furthermore, S’ is in leaf-linear form, because
the disjunction of right-hand sides is still a valid right-hand side. Finally, if S
satisfies Invariant 4.3, then S’ satisfies Invariant 4.3 without any additional
work.

5.3 And

Intersection is easy if we are not concerned with efficiency. Consider a regular
tree expression Fy A F3. To build a leaf-linear system with an equation
representing x; A x5, we may add all equations of the form

x; AN xj = Simp(Rhs; N Rhs;)

and then replace conjunctions of bound variables z; A 2; by new variable
names [MR85]. This is wasteful, however, because many of these equations
may not be required to express the desired intersection, and this algorithm
always uses ©(n?) time and space. Thus a series of only m intersections of
systems of n equations consumes ©(n™) time and space.

While we cannot improve on the worst-case time and space complexity, a
different algorithm does much better in the typical case. The idea is to gen-
erate only those conjunctions of bound variables that are needed to express
the result. We define a system S’ as follows:

S"= S U {x = Simp(Rhsy A\ Rhsy)}

S’ is not necessarily a leaf-linear system, but only a limited violation of leaf-
linearity can occur in S’.

Lemma 5.1 Let Rhs; and Rhs; be right-hand sides in leaf-linear form.
Then, if Simp(Rhs; A Rhs;) is not in leaf-linear form, it contains subex-
pressions of the form ¢(...,zp Az, ..).

13

The only way Simp(Rhs; A Rhs;) can fail to be leaf-linear is if it contains
conjunctions of pairs of bound variables inside of constructors. We use two
transformations to eliminate the conjunctions of bound variables. These
transformations use an auxiliary set of equations A.

SuU {xZ = E(l‘] A l’k)} UA EVGTS(S) UAaA U {x/ = A l'k} z' new

Sbjjlaij {x/E:(J?;;]/\/\J};]E = SU{z; = E(@)}UAU{2" = a; A xy}

To transform S’ into leaf-linear form, we repeatedly apply Rules (3) and
(4) to equations that are not leaf-linear. For efficiency (and to guarantee
termination) Rule (4) is always chosen in preference to (3) when both apply.
It is easy to prove by induction on the number of transformations performed
by this algorithm that if z; A x; is a conjunction of bound variables intro-
duced by a transformation, then z; = Rhs; and z; = Rhs; are equations
in S’. Thus, this algorithm terminates because there are only O(| Vars(S)|?)
possible conjunctions of bound variables. Finally, we can drop the set A of
auxiliary equations.

Lemma 5.2 Suppose a leaf-linear system 5" U A is obtained by application
of Rules (3) and (4) to S U0, as directed above. Then S U0 = yypys) ' U A
and S’ = Vars(s) S"U A.

54 Fix

This case is easy enough that the solution can be given directly, without
additional rules. Consider a regular tree expression fiz «.F;, and let S be a
leaf linear system with free variable o such that

Vo Ug(x1,0) = V(F,0)
We define a new leaf-linear system

S" = SU{a= Least(a, Rhs1)} where
{ Least(a, W) if Rhs =WV (aAY)forY #0

Least(a, Rhs) = Rhs otherwise

14

SU{x; = E(a'), 2" = Simp(Rhs; N\ Rhsy,

{3

(4)

The system S’ differs from S in that o becomes a bound variable and there
is one new equation. The function Least is needed because o = WV (a AY)
has (potentially) many solutions for every substitution of the free variables
Free(S) — {a}; however, because fix is a least fixed-point operator, we are
interested only in the least solution. The following lemma makes this precise.

Lemma 5.3 Consider a set of equations S with free variable a. Given a
substitution 7 for Free(S) — «, let o be the least substitution that extends
7 to Vars(S) such that o € S(SU{a = Rhs1}). Then o € S(SU {a =
Least(a, Rhsy)}).

The equation o = Least(c, Rhsy) is in leaf-linear form, because Least re-
moves any occurrences of the newly bound variable from a guard in the right-
hand side of the equation. Other equations in S’ may not be in leaf-linear
form because they contain « in intersections. The algorithm for intersection
is used to restore leaf-linear form to the equations in Users(a). As an aside,
a greatest fixed point operator is obtained by using

Grist(a, W)V Grtst(a,Y) if Rhs =WV (aAY) forY #0

Grist(a, Rhs) = { Rhs otherwise

in place of Least.

5.5 Negation

Let S be a leaf-linear system for the regular tree expression F;, which contains
no free variables. A system S’ for = Fj is

S'=SU{x= Simp(—~Rhs1)}

The approach used to put S’ into leaf-linear form is very similar to the
algorithm for intersection. The transformations are:

SU{zi= E(mzj)JUA =yas) SU{zi = E(2'), 2" = Simp(=Rhs;))5)
UAU {—z; = 2'} 2’ new
SU{a = E(mej)}

UAU {2, = 2/} = SU{z; = E(z")} UAU{—x; =2’} (6)

As with the algorithm for intersection, these transformations are iterated
until neither applies, and then the set of auxiliary equations is dropped.

15

However, the resulting system may not be leaf-linear, because these transfor-
mations may introduce intersections of bound variables. These are eliminated
as before using the algorithm for intersection.

Computing a leaf linear system for —F may require time and space ex-
ponential in the size of £/, and we have found that this does, occasionally,
become a problem in practice. To compensate, we allow the computed nega-
tion to be either a subset or superset of the exact result, depending on which
direction is conservative for the context in which the result is used. The
heuristic we use is bounding the depth to which negations are computed; be-
yond this fixed depth k, the result is either 0 or 1, depending on the context.
The following revised rules express the idea.

SU{z; = E(~fz;)} UA = SU{a; = Simp(E(1))}
SU{x;=E(—gx;)fUA = S U {a; = Simp(E(0))}
SU{zi = BE(-je))} UA =yyys) SU{e = E(2f),2" = Simp(~{_, Rhs;)}
UAU {2’ = =2;} 2’ new, if £ >0
SU{J}Z':E(_'iJ}]‘)} o o / r R
UAU {2’ =z} = SU{x,=FE@)UAU{a' =z} itk >0
Note that it is necessary to discard the set of assumptions A in the first
two transformations, because when the approximation rules are used the
constraints in A may no longer hold.

6 Testing Inclusion

Given a set of equations S and two expressions £y and F5, we often wish to
test the predicates Vo Ug(Fy,0) C Wg(Fy,0)and Jo Wg(Fy,0) C Vg(Fsy, o).
Performing these tests is critical in our application. The first predicate arises
when type analysis proves that a function is always applied to an argument
in its appropriate domain (i.e., that the actual arguments are a subset of
the appropriate domain). The second predicate arises in analyzing recursive
functions, when it becomes necessary to solve constraints to assign types to
recursive functions [AM91] (in this case, it is necessary to actually compute
a substitution o that satisfies the constraints). A fast algorithm for contain-
ment has a third application: it can dramatically increase the performance

16

of the other regular tree operations (see Section 7). Given the importance of
testing inclusion, the following result is discouraging.

Theorem 6.1 Evaluating the predicates
Vo Us(Fr,0) CUg(Fs,0)

do Us(Ey,0) CUs(FE,y,0)
is exponential-time hard [AW91].

For the first predicate, Yo Wg(E1,0) C Wg(F,y,0), a decision procedure is
known with the restrictions upon negation used here [Mur90]. This algorithm
proved impractical in an implementation. The predicate 3o Wg(F4,0) C
Us(FEy,0) is computable in general, and in fact it is possible to compute
all substitutions that make the inclusion relationship true [AW91]. Unfortu-
nately, this algorithm runs in non-deterministic exponential time.

In this section, we present a single mechanism implementing a conserva-
tive heuristic for both inclusion tests. As we discuss below, this heuristic has
worked very well in our implementation. The heuristic is formalized using
a logic with theorems of the form A F E; C FEy. The set A contains con-
straints on the free variables that make the inclusion relationship true. The
predicate Vo Wg(Fy,0) C U(k,,0) is reduced to the question) - F; C Fsy,
while the 3o Wg(Fq,0) C Ug(F,y, o) predicate reduces to finding any A such
that A = E; C F,. The logic is not complete; that is, there may be no
proof A+ E; C FEs,, even if there exists a substitution for which the inclusion
relationship holds.

The axioms and inference rules for proving inclusion relationships are
given in Figure 6. Several of the rules in Figure 6 could be combined to give a
more concise system; however, because we are presenting an implementation,
we prefer to describe the cases that are actually handled by the algorithm.
To help explain these rules, we make the following definition. For a set of
constraints A, F(A) is the subset of A consisting of constraints of the form
a C F or E C a. Note that the only other possible constraints are between
bound variables (rule [BASSUME]).

Our implementation uses a proof procedure based on these rules. This
proof procedure is goal-oriented; it begins with a fact to prove, and runs the
inference rules backward to axioms, building up the needed assumptions as

17

7@|—E§1 [ONE]
AbF Rhsy CFE
AFiCE [LONE]
BA ME
{1 Cag} by Cay [BASSUME]
A M1
{aC Bl FaCk, [VASSUMI]
dFaANECa [LVAR]
Vi A, F ECE,
A+ ECN\E [AND]
Vi A b ay C oy
UAH— c(...,xu,...)g [CONS]
i (oo e,)
ViAd;F E,CFE
JAar\VEcE [LOR]

[ZERO]

[TAUT]

AUA{xz; Cx.} + Rhs; C Rhs;
{ it IREC]

AFz; Cux;
(B Calr BiCa [VASSUM?2]
AFa CFE
AFaCaANFE [RVAR]

Al a Q E1 V Eg,
Ve(Fs,0)=H — Vg(Fy,7) [VAR]
AFaA E2 Q E1

JAFz; CO
AbFe(o.,2..)C0 [ZCONS]

1 AFFECE,

ArEC\E; [ROR]

K3

Figure 6: Inference rules for testing inclusion.

18

{a T}k a Cy[VASSUML] {21 Caz}F a1 C 2y [BASSUME]

{a Cy,21 Cay} Fe(a,21) C ey, 2z) [CONS] OFbCb[CONS]

{a Cy,21 Cay} Fe(a,21) Ce(y,22) Vb [ROR] OFbCe(y,22) Vb [ROR]

{a Cvy,21 Cag} Fela,2) VD Ce(y,z2) Vb [LOR]

{a T}tz Cay [REC]

r1 = cla,x) Vb
ry = c(y,x2) Vb

Figure 7: An inclusion example.

it goes. Figure 7 gives an example of a simple proof derived by our proof
procedure using the logic.

The rules in Figure 6 almost define a deterministic proof procedure. To
eliminate non-determinism, axioms [TAUT], [ONE], and [ZERO] are always
applied in preference to all other rules. An assumption on bound variables is
introduced by [BASSUME] if and only if there is a [REC] step to eliminate
the assumption; this constraint guarantees that the conclusion of a proof has
the form A = z; C z; where A contains assumptions only on free variables
(i.e., F(A) = A).

When both sides of an inclusion are disjunctions, [LOR] is applied to
break up the left-hand side before [ROR] is used. This is the order used in
Figure 7. Inference rules [LVAR] or [RVAR] are used, if applicable, before
[VASSUMI] or [VASSUM2]. This guarantees that in a proof there are no
assumptions of the form o Ca A For a A E C ain F(A). Finally, the last
source of non-determinism is the order in which possibilities are considered
in [ZCONS] and [ROR]; in our implementation, this order is fixed to be from
left to right.

19

6.1 Computing Substitutions from Constraints

A proof of AF z; C x; does not necessarily yield a substitution that makes
the relationship z; C x; true. For example, it is entirely possible to have a
proof

{a C0,1 Ca}Fa Cuay

In this case, the set of constraints implies (by transitivity) that 1 C 0; that
is, the set of constraints is inconsistent. The following definition identifies
the sets of constraints that do yield substitutions.

Definition 6.2 A set of constraints A is closed if
{(XCa,aCY}C A= AFXCY

Let AF a; C ;. If Ais not closed, choose constraints {X C a,a C
Y} C A that do not satisfy Definition 6.2 and and find a proof A’F X C Y.
Repeat this procedure on AU A’ until the set is closed, or an inconsistency is
discovered. This process terminates because constraints are built only from
existing expressions and expressions introduced by [VAR]. An easy calcula-
tion shows that the total number of such expressions is finite, and thus so is
the set of possible constraints. The set of constraints in Figure 7 is closed.

A closed set of constraints is simplified using the rules in Figure 8 so
that there is at most one upper and one lower bound per free variable. We
also add trivial constraints 0 C « and o C 1 to guarantee that there is
exactly one upper and lower bound per free variable. In Figure 7, there
is only one constraint; adding the trivial constraints yields the constraints
{0 Ca C~vaCy Cl1}. In the case where constraints are between free
variables only, our system performs a small optimization and does not add
trivial constraints for both variables. In this case, the set of constraints
produced by our system is {a C v C 1}.

Theorem 6.3 Let AF z; C z; be a proof where A is closed and
A={L; Ca; CUla; free in S}

Let f31,..., 3, be fresh variables, and let S’ be the set of equations S extended
with the additional equations (for each «;)

a;=L; V(B NTy)
Then Vo Ue(2;,0) C Ve(x;,0).

20

AU{agEl,agEg} = AU{ongl/\Eg}
AU{ElgOé,Engé} = AU{El\/EggOé}

Figure 8: Simplifying sets of constraints.

The proof of this theorem is difficult; see [AW91]. The intuition behind the
construction is that the free variable 3; allows the actual value of «; to be
anything “in between” the lower and upper bounds L; and U;. Referring
again to Figure 7, using the constraints {a C v C 1} our system produces
the system of equations

r1 = cla,x) Vb
ry = c(y,x2) Vb
7 = aVp

6.2 Discussion

For the most part, the rules in Figure 6 have the property that the conclusion
holds if and only if the hypotheses hold. The two exceptions are the inference
rules [VAR] and [ROR]. These two rules are the “heuristics” in our proof
procedure. We explain the rational behind each below.

The rule [VAR] is an approximation of the fact a A Fy C By < o C FyV
—F5. The problem is that =5 may not be expressible in our language—that
is, it may introduce negations on free variables. As discussed in Section 2,
we do not permit this because negation is not monotonic, and therefore
admitting negations at this point makes it impossible to define a least fixed-
point operator. If F, does not depend on free variables, then this rule is
precise; the effect of [VAR] is to use the best approximation of F; that does
not depend on free variables. In our system, when [VAR] is used Fy rarely
depends on free variables; thus, this heuristic appears to have little practical
effect on our system.

Rule [ROR] states that to prove ¢ C D V K, prove either C C D or
C C E. Many facts are not provable with this rule, such as

c(aVb) Cela)Veb)

21

In our application, [ROR] appears to be more than adequate. While we
cannot completely explain this, one reason is that our system optimizes dis-
junctions ¢(a) V ¢(b) into the equivalent ¢(a V b). Similarly, d(a, x) V d(b, x)
becomes d(a V b, x). Apparently this suffices to cover common cases missed
by the [ROR] rule; our type analysis system builds very complex equations,
and yet we have not found a practical example where this approximation
fails to be accurate.

It is worth pointing out that there are much stronger rules than [ROR].
Consider the following lemma.

Lemma 6.4 Let S be a subset of {1,...,n} and let S be {1,...,n} — S.

c(z,y) C el) & VS@EC V)V <V

1<i<n jes ;€S

See [Mur90] for a generalization to constructors of arbitrary arity. The prob-
lem with an inference rule based on Lemma 6.4 is that it consumes exponen-
tial time and space, since it generates exponentially many new regular tree
expressions. For an implementation, the rules in Figure 6 have the advantage
that, except for sets of assumptions, they consume no space.

7 Optimizations

The implementation we have described thus far is complete but still performs
poorly in practice. This section covers the remaining performance problems
and the optimizations that overcome them. In order to make the effectiveness
of the optimizations clear and concrete, we use an example from our type
inference system for FL. In the FL type inference algorithm, types are rep-
resented by regular tree expressions. In the process of analyzing a program,
the type inference algorithm performs many (typically thousands) of regular
tree operations. The FL type system is implemented on an IBM RT/PC in
Lucid Common Lisp 3.0.

The example we use is a heapsort program written in FL. This program
was written to exercise the type system, especially its ability to solve systems
of constraints arising from recursively defined higher-order functions. The
type system generates large and complex types while analyzing heapsort.
The text of the heapsort program is about 60 lines of FL; after parsing and

22

abbreviation elimination, the program that the type system actually analyzes
has about 100 lines.

Using the algorithms described so far, the type system analyzes heapsort
for about five minutes before the Lisp system crashes with a stack overflow.
Just before it dies, the system has generated 12,948 equations, including one
with a disjunction of 1040 constructors on the right-hand side! Inspection
shows that the intersection algorithm is generating an enormous number of
equations. Before the crash, the system computes 1407 intersections, which
require a total of 84,409 applications of Rules (3) and (4), for an average
of 60 rules per intersection computed. The cost of 60 rules per intersection
is misleading—this cost grows rapidly during the computation and would
presumably far exceed 60 rules per intersection if the Lisp system had more
stack space. Although the cost of intersections dominates in this example,
the inclusion and negations algorithms are also slow.

Analyzing the actual sequence of intersections, negations, and inclusion
tests performed reveals part of the problem: many of the operations are
being computed over and over again. Memoization is a simple optimization
that caches and reuses the results of computations [Mic68]. We have already
used something quite like memoization in the auxiliary systems of equations
used for computing intersection and negation in Section 5. If fact, instead of
discarding those auxiliary equations, they can be retained and reused if the
same computations are performed again.

We formalize memos as a set of auxiliary equations. For regular tree
operations, every memo is an equation of the form = = f(aq,...,2,) for a
regular tree operation f. Whenever one of these operations is computed, the
set of auxiliary equations is searched to see if the answer is already known.
It so, the left-hand side of the equation is used instead of performing the
computation again. If an auxiliary equation is not found, then the com-
putation is performed and the result is recorded in the auxiliary equations.
These memos cost only constant space and time; every memo is of constant
size and corresponds to some result that must be computed anyway. Fur-
thermore, lookup can be done in constant time if the auxiliary equations are
implemented as a hash table.

Memos for inclusion are similar, but instead of auxiliary equations the
memos are auxiliary constraints. Whenever the system proves a fact ()
1 C x9, a constraint 1 C x4 is added to the system. During inclusion tests,
if the subgoal x1 C x5 is in the list of auxiliary constraints, then that subgoal

23

is discharged. Inclusion memos are more expensive than memos for regular
tree operations. While the added time to search for a memo is still effectively
constant with a hashtable implementation, the space consumed is potentially
O(n?) for a system of n equations.

With memoization of all regular tree operations and inclusion tests, the
system performs somewhat better on heapsort. In this trial, the system
nearly fills the Lisp memory and begins to thrash after running for two
hours. Stopping the computation at this point, the system has 36,194 equa-
tions. Again, the main culprit is intersection, with an average of 45 rules per
computation. The remaining problem is that many trivial operations add
new equations. For example, to compute £ A 1, the system generates a new
equation instead of just using the existing equation for F. Generalizing, if
Ey C E,, then the result of computing F; A Fy should be just the equation
for Fy, thus avoiding a possibly large number of redundant equations pro-
duced by using the intersection algorithm to compute E; A F,;. We add the
following rules to the intersection algorithm, which are applied in preference
to all other rules.

SU{z=FE(x;Nzj)} = SU{a=FE(z;)}ifbFa Cua;
SU{x=E(x; ANx;)} SU{z=FExz)}itbFa; Cua

Similarly, to compute the union Fy V FE,, if £y C E, then the equation for
Fy is used, and if Fy C F; then the equation for £y is used. If neither case
applies, the equation given in Section 5.2 is added to the system.

Combining memoization and the inclusion optimizations results in a dra-
matic improvement. Using these optimizations, the system is able to analyze
the heapsort program in just under two minutes. The system generates 5081
equations in this trial; the most complex equation has three constructors on
the right-hand side.

The first half of the table in Figure 9 gives the number of operations, the
number of steps, and the steps per operation for each of inclusion, intersec-
tion, and negation in this trial. For negation and intersection, the number of
steps is the total number of equations added and successful memo lookups.
For inclusion, it is the number of subgoals of the form x; C x5 in proofs and
the number of successful memo lookups. Thus, the measure for inclusion
counts the total number of pairs of equations that are compared.

We have run the same experiment on ten other programs; these programs

24

heapsort

operations | total steps | steps/operation
inclusion 3965 8591 217
intersection 1947 2493 1.28
negation 541 569 1.05

range for other trials

operations | total steps | steps/operation
inclusion 8098-29724 | 12765-55398 1.54-1.87
intersection | 2190-8236 | 2894-11225 1.29-1.38
negation 506-2165 540-2325 1.05-1.08

Figure 9: Results of experiments.

are between one hundred and five hundred lines long. The second half of Fig-
ure 9 gives the range of measurements in these trials. With the exception
of inclusion, the amortized cost of each operation is about the same as in
heapsort. Inclusion tests are noticeably cheaper in the general trial; presum-
ably this is because heapsort was designed specifically to stress the inclusion
algorithm. Overall, the result of this experiment shows that, with the opti-
mizations, the amortized cost of regular tree operations is nearly constant in
practice.

& Conclusion

Regular tree expressions are a powerful tool for describing sets of terms of a
free algebra; as such, several program analysis algorithms based on regular
tree expressions have been proposed. We have described our implementation
of regular tree expressions for a type inference system. Our experience is
that, with carefully designed algorithms and some optimizations, regular
tree operations can be efficiently implemented.

Acknowledgements

The authors would like to thank Jennifer Widom, John Williams, and Ed

Wimmers for discussions and their comments on earlier versions of this paper.

25

References

[AMO1]

[AWO1]

[B+89]

[Cou83|

[GS84]

[HJ90]

[HJ91]

[HU79]

[JM79]

[Mic68]

[Mis84]

A. Aiken and B. Murphy. Static type inference in a dynamically
typed language. In Fighteenth Annual ACM Symposium on Princi-
ples of Programming Languages, pages 279-290, Orlando, 1991.

A. Aiken and E. Wimmers. A decision problem for set constraints.

Research Report Forthcoming RJ, IBM, 1991.

J. Backus et al. FL language manual, parts 1 and 2. Research
Report RJ 7100, IBM, 1989.

B. Courcelle. Fundamental properties of infinite trees. Theoretical

Computer Science, 25:95-169, 1983.

F. Gecseg and M. Steinby. Tree Automata. Academei Kaido, Bu-
dapest, 1984.

N. Heintze and J. Jaffar. A finite presentation theorem for approx-
imating logic programs. In Seventeenth Annual ACM Symposium
on Principles of Programming Languages, pages 197-209, January
1990.

N. Heintze and J. Jaffar. Set-based program analysis. Draft
manuscript, 1991.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

N. D. Jones and S. S. Muchnick. Flow analysis and optimization of
LISP-like structures. In Sizth Annual ACM Symposium on Princi-
ples of Programming Languages, pages 244-256, January 1979.

D. Michie. ‘Memo’ functions and machine learning. Nature,

(218):19-22, April 1968.

P. Mishra. Towards a theory of types in PROLOG. In Proceedings of
the First IEEE Symposium in Logic Programming, pages 289-298,
1984.

26

[MR85] P. Mishra and U. Reddy. Declaration-free type checking. In Pro-
ceedings of the Twelfth Annual ACM Symposium on the Principles
of Programming Languages, pages 7T-21, 1985.

[Mur90] B. R. Murphy. A type inference system for FL. Master’s thesis,
MIT, 1990.

[Sei89] H. Seidl. Deciding equivalence of finite tree automata. In 6th Annual
Symposium on Theoretical Aspects of Computer Science. Lecture
Notes in Computer Science, February 1989.

27

