
Implementing Regular Tree ExpressionsAlexander AikenIBM Almaden Research Center650 Harry Rd.San Jose, CA 95120aiken@ibm.comBrian R. MurphyComputer Science DepartmentStanford UniversityStanford, CA 94305brm@cs.stanford.eduAbstractRegular tree expressions are a natural formalism for describing thesets of tree-structured values that commonly arise in programs; thus,they are well-suited to applications in program analysis. We describean implementation of regular tree expressions and our experience withthat implementation in the context of the FL type system. A combi-nation of algorithms, optimizations, and fast heuristics for computa-tionally di�cult problems yields an implementation e�cient enoughfor practical use.1 IntroductionRegular tree expressions are a natural formalism for describing the sets oftree-structured values that commonly arise in programs. As such, severalresearchers have proposed using (variations on) regular tree expressions intype inference and program analysis algorithms [JM79, Mis84, MR85, HJ90,1

HJ91, AM91]. We are not aware of any implementations based on regulartree expressions, however, except for our own work on type analysis for thefunctional language FL [B+89].A previous paper described the theoretical basis for our FL type inferencesystem, in which types are represented by regular tree expressions [AM91].This paper describes an implementation of regular tree expressions and ourexperience with that implementation in the context of the FL type system.Implementing regular tree expressions e�ciently is challenging, because someof the basic operations have exponential time complexity [Sei89]. Even someoperations with polynomial time algorithms perform poorly in practice. Thefundamental operations on regular tree expressions are: computing �xedpoints, union, intersection, negation, and testing inclusion (including solvingsets of inclusion constraints). Of these, both negation and inclusion requireexponential time in general. This is particularly troublesome in the caseof inclusion, because in our system it is by far the most commonly usedoperation, and we would expect the same to be true for most applications.We give an abstract description of a complete implementation of regulartree expressions, including algorithms, heuristics (where necessary), and anumber of optimizations. We also present the results of performance mea-surements on our implementation. The performance measurements showthat the amortized cost per regular tree operation is nearly constant in oursystem.We begin in Section 2 with a straightforward de�nition of regular treeexpressions; we use this representation to illustrate their usefulness. In Sec-tion 3, we introduce the representation used in our system: leaf-linear systemsof equations [GS84, MR85]. We discuss why leaf-linear systems are bettersuited to implementation than the representation of Section 2. Section 4 out-lines an incremental algorithm to test whether a leaf-linear system is empty.The next several sections describe, at a high level, implementations of theoperations on regular tree expressions. For brevity, we call these operationsregular tree operations. In Section 6, we present a fast heuristic for testinginclusion of leaf-linear systems. The heuristic is conservative: the result iseither \yes, the containment holds" or \don't know." This heuristic workssurprisingly well in our application; in almost a year of use in the FL typeanalysis system, we have yet to �nd a practical example where the quality ofinformation produced by the system is a�ected by the use of this heuristic.Section 7 covers two simple optimizations that substantially improve the2

E ::= 0 	(0; �) = ;j 1 	(1; �) = Hj � 	(�; �) = �(�)j E1 _ E2 	(E1 _ E2; �) = 	(E1; �) [(E2; �)j E1 ^ E2 	(E1 ^ E2; �) = 	(E1; �) \	(E2; �)j :E1 	(:E1; �) = H �	(E1; �)j �x �:E1 	(�x �:E1; �) = least T s.t.T = 	(E1; �[� T])j c(E1; : : : ; En) 	(c(E1; : : : ; En); �) = fc(t1; : : : ; tn)jti 2 	(Ei; �)gFigure 1: Syntax and semantics of regular tree expressions.performance of intersection, union, negation, and testing inclusion. Bothoptimizations focus on avoiding computations whenever possible. The �rstoptimization comes from facts such as (A � B) , (A \ B = A). If it isknown that A � B, then we can save time and space by not computingA \ B but just returning A. Applying similar ideas uniformly dramaticallyimproves performance. The second optimization is to use memoization torecord and reuse the results of operations [Mic68]. While the usefulness ofthis optimization depends on the particular application, in our system itis very common for the same operations to be performed again and again.The performance of the system with these two optimizations is more than twoorders of magnitude faster than without them. Measurements and discussionof the system's performance are also presented in Section 7.It is worth explaining our choice of the term \regular tree expression". In[MR85], a regular tree is what we term a regular tree expression. We use adi�erent name because the term \regular tree" is usually a �nite or in�nitetree with a �nite number of subtrees [Cou83]. Using this de�nition, a regulartree expression together with a substitution denotes a set of regular trees.Regular tree expressions can also be thought of as tree automata with freevariables; we discuss this view in Section 3.3

2 Regular Tree ExpressionsIn this section, we introduce regular tree expressions, describe some of theirproperties, and develop a few examples. The representation shown here isnot the one used for implementation; however, we present it �rst becauseit is easy to understand and illustrates the important operations. We beginwith some basic de�nitions. Let C = fb; c; : : :g be a set of constructors, eachwith an arity a(c). We assume this set is constant hereafter.De�nition 2.1 Let C0 be the set of zero-ary constructors in C. The Her-brand universe is the least set of terms H such thatH = C0 [fc(t1; : : : ; ta(c))jc 2 C; ti 2 HgDe�nition 2.2 A substitution � is a function from some set of variablesymbols V to the power set of H. We de�ne � " � to be the substitution �restricted to the set of variables �.Regular tree expressions denote sets of terms of the free algebra H: Asyntax and semantics for regular tree expressions is given in Figure 1. Themeaning function 	 maps an expression under an environment � to a subsetof H. A variable � is bound in an expression if it appears in the scope E of a�x �:E; otherwise the variable is free. We restrict the negation operator toargument expressions with no free variables; this ensures that 	 is monotonicin its second argument, and thus the least �xed-point operator is well-de�ned.Other proposals for program analysis systems based on regular tree ex-pressions adopt slightly di�erent de�nitions, depending upon the application.For example, Mishra and Reddy restrict the use of disjunction in a type infer-ence algorithm for a statically typed functional language [MR85], and Heintzeand Ja�ar use projection functions in a program analysis for logic programs[HJ90]. Almost all of our implementation design would apply to these othersystems with little or no modi�cation.The following examples illustrate the usefulness of regular tree expres-sions. Let c be a binary constructor and let b be a zero-ary constructor. Ifwe interpret c as describing a Lisp cons operation and b as describing theatom nil, then the set of Lisp lists is �x �:c(1; �) _ b. Similarly, the set ofbinary trees with leaves described by � is �x �:c(�;�) _ �. A more sophisti-cated example uses regular tree expressions to infer the types of recursively4

de�ned functions. Consider a recursive function def f � e(f). If we assumethat f may return a member of the set � and prove from this assumptionthat e(f) returns a term in the set E(�), we can conclude that f returns anyterm in �x �:E(�).The grammar of Figure 1 illustrates most of the important operationson regular tree expressions (least �xed-points, union, intersection, and nega-tion). It is also possible to add a greatest �xed-point operation, but thisintroduces no new ideas in an implementation, so we we do not considerit here. Two other important algorithms test emptiness and inclusion rela-tionships. In the type inference example above, it may be useful to know if�x �:E(�) is empty, since this amounts to a proof that f is a non-terminatingfunction (i.e., f 's set of possible results is empty). A more general method todetermine the results of recursive functions involves the solution of inclusionconstraints on regular tree expressions [AM91].In the sections that follow, we describe a high-level implementation ofthese operations with considerable attention to e�ciency. As a rule, we stateresults needed to justify our algorithms, but omit the proofs for brevity.Many of these results may be found in the literature [GS84, MR85, HJ90,AW91].3 Systems of EquationsRegular tree expressions are easy to understand, but are not well suitedto the implementation of some algorithms. The algorithms we present areformalized as transformations on sets of equations of the form fxi = Rhsig,where the xi are variables and the Rhsi are regular tree expressions not usingthe �x operator. To discuss the correctness of such transformations, we usethe following de�nition.De�nition 3.1 Let S = fxi = Rhsig be a set of equations. We de�ne thefollowing functions on S: Vars(S) is the set of variables in S, Bound(S) isthe set of bound variables xi appearing on the left-hand side of equations,and Free(S) is the set of free variables Vars(S)�Bound(S).Throughout this paper, we uniformly use xi for bound variables, greek let-ters for free variables, and v for an arbitrary free or bound variable. Wealso assume that every system of equations contains an equation xH =5

S ::= fx1 = Rhs1; : : : ; xn = RhsngC ::= fb; c; : : :gRhs ::= 0 j G ^ T j Rhs1 _Rhs2G ::= �1 ^ : : : ^ �kwhere �i 2 Free(S)T ::= 1 j c(y1; : : : ; ya(c))where yi 2 X; c 2 C 	S(xj; �) = 	(xj; �0)where �0 is the uniquesubstitution such that�0 " Free(S) = � " Free(S)and, for all (xi = Rhsi) 2 S,	(xi; �0) = 	(Rhsi; �0)Figure 2: Syntax and Semantics of Systems of Leaf-Linear Equations_c2Cc(xH; :::). This allows a concise description of negation (see Section 4).Note that RhsH = 1.De�nition 3.2 The set of solutions S(S) of S is the set of substitutions forvariables in Vars(S) that satisfy the equations:S(S) = f�j	(xi; �) = 	(Rhsi; �)gTwo sets of equations S1 and S2 are equivalent (written S1 � S2) if S(S1) =S(S2). S1 and S2 are equivalent over a set of variables � if their solutionsare the same over those variables:S1 �� S2 , f� " �j� 2 S(S1)g = f� " �j� 2 S(S2)gThe inputs and outputs of our algorithms are leaf-linear systems of equa-tions [MR85] or regular �X-grammars [GS84]. These are systems of equa-tions with conjunction and disjunction operators syntactically restricted. Asyntax and semantics for leaf-linear systems is given in Figure 2. The follow-ing theorem shows that the semantics is well-de�ned [AW91].Theorem 3.3 Let S be a leaf-linear system. Then for any substitution � forvariables Free(S), there is exactly one substitution �0 for variables Vars(S)such that �0 extends � and �0 2 S(S).In other words, each substitution for the free variables determines a substitu-tion for the bound variables. Regular tree expressions and leaf-linear systemsare equivalent in a strong sense [MR85]:6

Theorem 3.4 For any regular tree expression R there is a leaf-linear systemof equations S, and for any leaf-linear system of equations S there is a regulartree expression R such that8� 	(R;�) = 	S(x1; �)Thus far, we have treated a leaf-linear system as a system of equations;however, a leaf-linear system also can be viewed as a tree automaton [GS84].We occasionally adopt this view to make use of results from automata the-ory. When a leaf-linear system is viewed as a tree automaton, an equationrepresents a state and the transition function for that state. By convention,x1 is the initial state. The variable on the left-hand side of an equation isthe name of the state, and the right-hand side represents the possible tran-sitions. A disjunction corresponds to non-determinism; the automaton maychoose one of several transitions. A constructor transition c(x1; : : : ; xa(c))accepts if the input is of the form c(t1; : : : ; ta(c)) and each xi accepts ti. A 1transition accepts everything; a 0 transition rejects everything. Given somesubstitution � for the free variables in a leaf-linear system S, the languageL(S) accepted by a leaf-linear system S is just 	S(x1; �).Representing regular tree expressions by leaf-linear systems in an imple-mentation has two signi�cant advantages. First, leaf-linear systems allowsharing among equations, whereas subexpressions are not shared in regulartree expressions. This is obviously more economical. Second, two of themost important algorithms, testing emptiness and containment, are moreeasily expressed and e�ciently implemented using leaf-linear systems. Thepotential disadvantage of using leaf-linear systems is that they may be, in theworst case, exponentially larger than the smallest equivalent regular tree ex-pression. We have found that, in practice, all of this potential size explosioncan be avoided by using the algorithms and optimizations presented here.As an example, the expression �x �:c(1; �) _ b (the set of Lisp lists) isrepresented by the leaf-linear system:x1 = c(x2; x1) _ bx2 = 1Our system implements leaf-linear systems almost exactly as describedhere. A system of equations is represented by an array. Free and boundvariables are indices into the array, and right-hand sides of equations are the7

entries in the array. There are four types of right-hand sides: one each for 0,1, free variables, and disjunctions of constructor expressions. As operationsare performed, new equations may be added, extending the array, and freevariables may be instantiated, in which case the corresponding index of thearray acquires a new entry.4 Testing EmptinessOne fundamental problem is determining whether an expression denotes theempty set under all substitutions for free variables. More formally, for a givenleaf-linear system S, we wish to test the predicate 8� 2 S(S) 	S(E; �) = ;.Testing emptiness is useful for two reasons. First, it can be an importantpart of the application. For example, in our type inference algorithm forFL, proving that a function is type-safe is reduced to proving that a regulartree expression is empty [AM91]. Second, emptiness testing is important forthe e�ciency of the system. It is wasteful, both of time and space, to buildand maintain expressions of the form c(Y;X) or Y ^ X where Y is empty.The following easy lemma shows that the problem of testing emptiness in allsubstitutions reduces to the problem of testing emptiness in one particularsubstitution.Lemma 4.1 Let � be the substitution 8v � (v) = H. Then8� 	S(E; �) = ; , 	S(E; �) = 0To test whether 	S(xi; �) = ;, we use the function �S de�ned in Figure 3.This de�nition is a straightforward adaptation of algorithms for reachabilityand emptiness for �nite automata [HU79, GS84].Lemma 4.2 Let S = fx1 = Rhs1; : : : ; xk = Rhskg be a leaf-linear system,and let �S be de�ned as in Figure 3. Then�S(xi) =? , 	S(xi; �) = ;Proof: [sketch] It is easy to show by induction on the height of terms t that�S(xi) =? , 8t height(t) � k) t =2 	S(xi; �)8

�S is the least function (under the ordering ? � >) s.t.�S(xi) = �S(Rhsi)�S(1) = >�S(0) = ?�S(c(E1; : : : ; En)) = (> if 8i �S(Ei) = >? otherwise�S(E1 ^ E2) = (> if �S(E1) = > and �S(E2) = >? otherwise�S(E1 _ E2) = (> if �S(E1) = > or �S(E2) = >? otherwise�S(�) = > if � 2 Free(S)Figure 3: Testing for emptinessTo �nish the proof, we observe that the language of a tree automaton of kstates is non-empty if and only if it accepts a term of height at most k [GS84].2 Let n be the total number of symbols appearing in a leaf-linear systemS. The function �S is computable for every equation in the system in O(n2)time using a standard �xed-point computation. Initially, �S(xi) is assumedto be ? for all xi. Iteratively updating �S requires at most O(n) passes tocompute a �xed point, and each iteration requires examiningO(n) right-handside symbols.In our application, we found that up to a third of expressions turn out tobe empty. Consequently, our system maintains the following invariant:Invariant 4.3 Let S = fxi = Rhsig, and let E be any subexpression ap-pearing in a Rhsi.8� 2 S(S) 	S(E; �) = ;) (E = 0)Thus if xi is empty in all solutions, then Rhsi = 0. This makes testingwhether an equation is empty very cheap; it is empty if its right-hand side is0. In the rest of this section, we describe the incremental algorithm used tomaintain this invariant. 9

E1 ^ E2 = E2 ^ E1E1 _ E2 = E2 _ E1E ^ 0) 0E ^ 1) EE ^ E) EE _ 0) EE _ 1) 1E _ E) Ec(E1; : : : ; Ea(c)) ^ c(E 01; : : : ; E 0a(c))) c(E1 ^ E 01; : : : ; Ea(c) ^ E 0a(c))c(: : :) ^ d(: : :)) 0 if c 6= dc(: : : ; 0; : : :)) 0:0) 1:1) 0::E) E:(E1 ^ E2)) :E1 _ :E2:(E1 _ E2)) :E1 ^ :E2:(c(E1; : : : ; Ea(c)))) Wd2C�fcg d(xH ; : : :)_W1�i�a(c) c(: : : ; xH ;:Ei; xH; : : :)Figure 4: Simplifying expressions.The function �S is the basis for the �rst transformation on sets of equa-tions. S [fxi = Rhsig � S [fxi = 0g if �S(xi) =? (1)This transformation enforces Invariant 4.3 for entire right-hand sides. Toenforce the invariant for every expression, we introduce a group of equiva-lences given in Figure 4. These are obvious simpli�cations, and, when re-garded as rewrite rules from left to right, form a con
uent rewrite systemthat is noetherian up to the commutativity of ^ and _. For an expression E,Simp(E) is the normalization of expressions under the rules of Figure 4. The10

Vars(E) = Free(E) [Bound(E)Users(v) = fxijv 2 Vars(Rhsi)gAllUsers(v) = least V = Users(v) [fxijxi 2 Users(v0); v0 2 V gFigure 5: Simple functions on leaf-linear systems.complexity of computing Simp(E) is potentially exponential in the size ofE due to the rules for intersection and negation; however, in practice right-hand sides of equations are quite small, so this has not been a problem inour implementation. Using these simpli�cations, the rest of Invariant 4.3 isenforced by the following transformation.S [fxi = 0; xj = E(xi)g � S [fxi = 0; xj = Simp(E(0))g (2)For e�ciency, we would like to locate the equation xj in Rule (2) quickly.The set Users(x), de�ned in Figure 5, is the set of all equations that mentionx on the right-hand side. Our system incrementally maintains Users(x) foreach equation, thus allowing candidates for the application of Rule (2) to belocated in constant time.Lemma 4.4 Let S0 be any leaf-linear system closed under application ofRules (1) and (2). Then S0 satis�es Invariant 4.3.As an example, consider the following system.x1 = d(x2; x2)x2 = c(x2)Both x1 and x2 are empty in all substitutions. Rule (1) sets x2 to 0, thenRule (2) sets x1 to 0.Given any leaf-linear system, we can apply Rules (1) and (2) to producea leaf-linear system that satis�es the invariant. However, a more practicalsituation is that a leaf-linear system S satisfying the invariant is modi�ed inone equation to produce a slightly di�erent system S 0, and then we wish toenforce the invariant for S0. 11

We brie
y describe an incremental version of this algorithm that solvesthis problem e�ciently. Let xi = Rhsi be the equation of S that is modi�edto produce S 0. The meaning of an equation can change as a result of thismodi�cation only if it depends, directly or indirectly, on xi. The functionAllUsers, de�ned in Figure 5, captures the set of equations that depend ona particular variable. A straightforward restriction of the function �S toAllUsers(xi) is all that is required. We add one new clause to the de�nitionin Figure 3: �S(xj) = > if xj =2 fxig [AllUsers(xi)In practice, an incremental algorithm is important, because the size of AllUsers(xi)is small (typically tens) compared to the number of equations in the system(typically thousands). Our implementation computes AllUsers using the ob-vious O(n3) �xed-point computation.5 Construction, Or, And, Fix, and NotIn this section we show how to perform the operations given in Section 2 onleaf-linear systems. Section 7 covers the optimization of these algorithms.In the following, E1; : : : ; En are regular tree expressions, S is a leaf-linearsystem where 8� 	S(xi; �) = 	(Ei; �)and x is a fresh variable. For each operation f(E1; : : : ; En), we show how toextend S to a leaf-linear system S0 with an equation x = E 0 such that8� 	S(x; �) = 	(f(E1; : : : ; En); �)For each case, unless otherwise noted, it is necessary to enforce Invari-ant 4.3 for all new and modi�ed equations. We begin with the base cases andconstructor expressions. If E1 is a free variable �, we de�ne S0 = S [fx =� ^ 1g. If E1 is 0 or 1, we de�ne S0 = S [fx = 0 or 1g.5.1 ConstructorsConstructors are the easiest operations to implement using leaf-linear sys-tems. Consider a regular tree expression c(E1; : : : ; Ea(c)). We de�ne a leaf-linear system S0 = S[fx = c(x1; : : : ; xn)g. This is a constant time operation.12

5.2 OrUnion is also a constant-time operation on leaf-linear systems. Consider aregular tree expression E1 _ E2. We de�ne a new leaf-linear system S 0 asfollows: S0 = S [fx = Rhs1 _Rhs2gClearly x = x1_x2, as desired. Furthermore, S 0 is in leaf-linear form, becausethe disjunction of right-hand sides is still a valid right-hand side. Finally, if Ssatis�es Invariant 4.3, then S0 satis�es Invariant 4.3 without any additionalwork.5.3 AndIntersection is easy if we are not concerned with e�ciency. Consider a regulartree expression E1 ^ E2. To build a leaf-linear system with an equationrepresenting x1 ^ x2, we may add all equations of the formxi ^ xj = Simp(Rhsi ^Rhsj)and then replace conjunctions of bound variables xi ^ xj by new variablenames [MR85]. This is wasteful, however, because many of these equationsmay not be required to express the desired intersection, and this algorithmalways uses �(n2) time and space. Thus a series of only m intersections ofsystems of n equations consumes �(nm) time and space.While we cannot improve on the worst-case time and space complexity, adi�erent algorithm does much better in the typical case. The idea is to gen-erate only those conjunctions of bound variables that are needed to expressthe result. We de�ne a system S0 as follows:S0 = S [fx = Simp(Rhs1 ^ Rhs2)gS0 is not necessarily a leaf-linear system, but only a limited violation of leaf-linearity can occur in S0.Lemma 5.1 Let Rhsi and Rhsj be right-hand sides in leaf-linear form.Then, if Simp(Rhsi ^Rhsj) is not in leaf-linear form, it contains subex-pressions of the form c(: : : ; xh ^ xk; : : :).13

The only way Simp(Rhsi ^Rhsj) can fail to be leaf-linear is if it containsconjunctions of pairs of bound variables inside of constructors. We use twotransformations to eliminate the conjunctions of bound variables. Thesetransformations use an auxiliary set of equations A.S [fxi = E(xj ^ xk)g [A �Vars(S) S [fxi = E(x0); x0 = Simp(Rhsj ^Rhsk)g[A [fx0 = xj ^ xkg; x0 new (3)S [fxi = E(xj ^ xk)g[A [fx0 = xj ^ xkg � S [fxi = E(x0)g [A [fx0 = xj ^ xkg (4)To transform S0 into leaf-linear form, we repeatedly apply Rules (3) and(4) to equations that are not leaf-linear. For e�ciency (and to guaranteetermination) Rule (4) is always chosen in preference to (3) when both apply.It is easy to prove by induction on the number of transformations performedby this algorithm that if xi ^ xj is a conjunction of bound variables intro-duced by a transformation, then xi = Rhsi and xj = Rhsj are equationsin S0. Thus, this algorithm terminates because there are only O(jVars(S)j2)possible conjunctions of bound variables. Finally, we can drop the set A ofauxiliary equations.Lemma 5.2 Suppose a leaf-linear system S0 [A is obtained by applicationof Rules (3) and (4) to S [;, as directed above. Then S [; �Vars(S) S0 [Aand S0 �Vars(S) S0 [A.5.4 FixThis case is easy enough that the solution can be given directly, withoutadditional rules. Consider a regular tree expression �x �:E1, and let S be aleaf linear system with free variable � such that8� 	S(x1; �) = 	(E1; �)We de�ne a new leaf-linear systemS0 = S [f� = Least(�;Rhs1)g whereLeast(�;Rhs) = (Least(�;W) if Rhs = W _ (� ^ Y) for Y 6= 0Rhs otherwise14

The system S0 di�ers from S in that � becomes a bound variable and thereis one new equation. The function Least is needed because � = W _ (�^ Y)has (potentially) many solutions for every substitution of the free variablesFree(S)� f�g; however, because �x is a least �xed-point operator, we areinterested only in the least solution. The following lemmamakes this precise.Lemma 5.3 Consider a set of equations S with free variable �. Given asubstitution � for Free(S) � �, let � be the least substitution that extends� to Vars(S) such that � 2 S(S [f� = Rhs1g). Then � 2 S(S [f� =Least(�;Rhs1)g).The equation � = Least(�;Rhs1) is in leaf-linear form, because Least re-moves any occurrences of the newly bound variable from a guard in the right-hand side of the equation. Other equations in S0 may not be in leaf-linearform because they contain � in intersections. The algorithm for intersectionis used to restore leaf-linear form to the equations in Users(�). As an aside,a greatest �xed point operator is obtained by usingGrtst(�;Rhs) = (Grtst(�;W) _Grtst(�; Y) if Rhs = W _ (� ^ Y) for Y 6= 0Rhs otherwisein place of Least.5.5 NegationLet S be a leaf-linear system for the regular tree expressionE1, which containsno free variables. A system S 0 for :E1 isS0 = S [fx = Simp(:Rhs1)gThe approach used to put S 0 into leaf-linear form is very similar to thealgorithm for intersection. The transformations are:S [fxi = E(:xj)g [A �Vars(S) S [fxi = E(x0); x0 = Simp(:Rhsj)g(5)[A [f:xj = x0g x0 newS [fxi = E(:xj)g[A [f:xj = x0g � S [fxi = E(x0)g [A [f:xj = x0g (6)As with the algorithm for intersection, these transformations are iterateduntil neither applies, and then the set of auxiliary equations is dropped.15

However, the resulting system may not be leaf-linear, because these transfor-mations may introduce intersections of bound variables. These are eliminatedas before using the algorithm for intersection.Computing a leaf linear system for :E may require time and space ex-ponential in the size of E, and we have found that this does, occasionally,become a problem in practice. To compensate, we allow the computed nega-tion to be either a subset or superset of the exact result, depending on whichdirection is conservative for the context in which the result is used. Theheuristic we use is bounding the depth to which negations are computed; be-yond this �xed depth k, the result is either 0 or 1, depending on the context.The following revised rules express the idea.S [fxi = E(:+0 xj)g [A) S [fxi = Simp(E(1))gS [fxi = E(:�0 xj)g [A) S [fxi = Simp(E(0))gS [fxi = E(:dkxj)g [A �Vars(S) S [fxi = E(x0); x0 = Simp(:dk�1Rhsj)g[A [fx0 = :xjg x0 new; if k > 0S [fxi = E(:dkxj)g[A [fx0 = :xjg � S [fxi = E(x0)g [A [fx0 = :xjg if k > 0Note that it is necessary to discard the set of assumptions A in the �rsttwo transformations, because when the approximation rules are used theconstraints in A may no longer hold.6 Testing InclusionGiven a set of equations S and two expressions E1 and E2, we often wish totest the predicates 8� 	S(E1; �) � 	S(E2; �) and 9� 	S(E1; �) � 	S(E2; �).Performing these tests is critical in our application. The �rst predicate ariseswhen type analysis proves that a function is always applied to an argumentin its appropriate domain (i.e., that the actual arguments are a subset ofthe appropriate domain). The second predicate arises in analyzing recursivefunctions, when it becomes necessary to solve constraints to assign types torecursive functions [AM91] (in this case, it is necessary to actually computea substitution � that satis�es the constraints). A fast algorithm for contain-ment has a third application: it can dramatically increase the performance16

of the other regular tree operations (see Section 7). Given the importance oftesting inclusion, the following result is discouraging.Theorem 6.1 Evaluating the predicates8� 	S(E1; �) � 	S(E2; �)9� 	S(E1; �) � 	S(E2; �)is exponential-time hard [AW91].For the �rst predicate, 8� 	S(E1; �) � 	S(E2; �), a decision procedure isknown with the restrictions upon negation used here [Mur90]. This algorithmproved impractical in an implementation. The predicate 9� 	S(E1; �) �	S(E2; �) is computable in general, and in fact it is possible to computeall substitutions that make the inclusion relationship true [AW91]. Unfortu-nately, this algorithm runs in non-deterministic exponential time.In this section, we present a single mechanism implementing a conserva-tive heuristic for both inclusion tests. As we discuss below, this heuristic hasworked very well in our implementation. The heuristic is formalized usinga logic with theorems of the form A ` E1 � E2. The set A contains con-straints on the free variables that make the inclusion relationship true. Thepredicate 8� 	S(E1; �) � 	(E2; �) is reduced to the question ; ` E1 � E2,while the 9� 	S(E1; �) � 	S(E2; �) predicate reduces to �nding any A suchthat A ` E1 � E2. The logic is not complete; that is, there may be noproof A ` E1 � E2, even if there exists a substitution for which the inclusionrelationship holds.The axioms and inference rules for proving inclusion relationships aregiven in Figure 6. Several of the rules in Figure 6 could be combined to give amore concise system; however, because we are presenting an implementation,we prefer to describe the cases that are actually handled by the algorithm.To help explain these rules, we make the following de�nition. For a set ofconstraints A, F (A) is the subset of A consisting of constraints of the form� � E or E � �. Note that the only other possible constraints are betweenbound variables (rule [BASSUME]).Our implementation uses a proof procedure based on these rules. Thisproof procedure is goal-oriented; it begins with a fact to prove, and runs theinference rules backward to axioms, building up the needed assumptions as17

; ` E � 1 [ONE] ; ` 0 � E [ZERO]A ` RhsH � EA ` 1 � E [LONE] ; ` E � E [TAUT]fx1 � x2g ` x1 � x2 [BASSUME] A [fxi � xjg ` Rhsi � RhsjA ` xi � xj [REC]f� � E2g ` � � E2 [VASSUM1] fE1 � �g ` E1 � � [VASSUM2]; ` � ^ E � � [LVAR] A ` � � EA ` � � � ^ E [RVAR]8i Ai ` E � Ei[i A ` E � î Ei [AND] A ` � � E1 _ E3;	S(E3; �) = H � 	S(E2; �)A ` � ^E2 � E1 [VAR]8i Ai ` x1i � x2i[i Ai ` c(: : : ; x1i; : : :) �c(: : : ; x2i; : : :) [CONS] 9i A ` xi � 0A ` c(: : : ; xi; : : :) � 0 [ZCONS]8i Ai ` Ei � E[i Ai `_i Ei � E [LOR] 9i A ` E � EiA ` E �_i Ei [ROR]Figure 6: Inference rules for testing inclusion.18

f� �
g ` � �
 [VASSUM1] fx1 � x2g ` x1 � x2 [BASSUME]f� �
; x1 � x2g ` c(�; x1) � c(
; x2) [CONS]f� �
; x1 � x2g ` c(�; x1) � c(
; x2) _ b [ROR] ; ` b � b [CONS]; ` b � c(
; x2) _ b [ROR]f� �
; x1 � x2g ` c(�; x2) _ b � c(
; x2) _ b [LOR]f� �
g ` x1 � x2 [REC]x1 = c(�; x1) _ bx2 = c(
; x2) _ bFigure 7: An inclusion example.it goes. Figure 7 gives an example of a simple proof derived by our proofprocedure using the logic.The rules in Figure 6 almost de�ne a deterministic proof procedure. Toeliminate non-determinism, axioms [TAUT], [ONE], and [ZERO] are alwaysapplied in preference to all other rules. An assumption on bound variables isintroduced by [BASSUME] if and only if there is a [REC] step to eliminatethe assumption; this constraint guarantees that the conclusion of a proof hasthe form A ` xi � xj where A contains assumptions only on free variables(i.e., F (A) = A).When both sides of an inclusion are disjunctions, [LOR] is applied tobreak up the left-hand side before [ROR] is used. This is the order used inFigure 7. Inference rules [LVAR] or [RVAR] are used, if applicable, before[VASSUM1] or [VASSUM2]. This guarantees that in a proof there are noassumptions of the form � � � ^ E or � ^ E � � in F (A). Finally, the lastsource of non-determinism is the order in which possibilities are consideredin [ZCONS] and [ROR]; in our implementation, this order is �xed to be fromleft to right. 19

6.1 Computing Substitutions from ConstraintsA proof of A ` xi � xj does not necessarily yield a substitution that makesthe relationship xi � xj true. For example, it is entirely possible to have aproof f� � 0; 1 � �g ` xi � xjIn this case, the set of constraints implies (by transitivity) that 1 � 0; thatis, the set of constraints is inconsistent. The following de�nition identi�esthe sets of constraints that do yield substitutions.De�nition 6.2 A set of constraints A is closed iffX � �;� � Y g � A) A ` X � YLet A ` xi � xj. If A is not closed, choose constraints fX � �;� �Y g � A that do not satisfy De�nition 6.2 and and �nd a proof A0 ` X � Y .Repeat this procedure on A[A0 until the set is closed, or an inconsistency isdiscovered. This process terminates because constraints are built only fromexisting expressions and expressions introduced by [VAR]. An easy calcula-tion shows that the total number of such expressions is �nite, and thus so isthe set of possible constraints. The set of constraints in Figure 7 is closed.A closed set of constraints is simpli�ed using the rules in Figure 8 sothat there is at most one upper and one lower bound per free variable. Wealso add trivial constraints 0 � � and � � 1 to guarantee that there isexactly one upper and lower bound per free variable. In Figure 7, thereis only one constraint; adding the trivial constraints yields the constraintsf0 � � �
; � �
 � 1g. In the case where constraints are between freevariables only, our system performs a small optimization and does not addtrivial constraints for both variables. In this case, the set of constraintsproduced by our system is f� �
 � 1g.Theorem 6.3 Let A ` xi � xj be a proof where A is closed andA = fLi � �i � Uij�i free in SgLet �1; : : : ; �n be fresh variables, and let S 0 be the set of equations S extendedwith the additional equations (for each �i)�i = Li _ (�i ^ Ui)Then 8� 	S0(xi; �) � 	S0(xj; �). 20

A [f� � E1; � � E2g � A [f� � E1 ^ E2gA [fE1 � �;E2 � �g � A [fE1 _ E2 � �gFigure 8: Simplifying sets of constraints.The proof of this theorem is di�cult; see [AW91]. The intuition behind theconstruction is that the free variable �i allows the actual value of �i to beanything \in between" the lower and upper bounds Li and Ui. Referringagain to Figure 7, using the constraints f� �
 � 1g our system producesthe system of equations x1 = c(�; x1) _ bx2 = c(
; x2) _ b
 = � _ �6.2 DiscussionFor the most part, the rules in Figure 6 have the property that the conclusionholds if and only if the hypotheses hold. The two exceptions are the inferencerules [VAR] and [ROR]. These two rules are the \heuristics" in our proofprocedure. We explain the rational behind each below.The rule [VAR] is an approximation of the fact �^E2 � E1 , � � E1 _:E2. The problem is that :E2 may not be expressible in our language|thatis, it may introduce negations on free variables. As discussed in Section 2,we do not permit this because negation is not monotonic, and thereforeadmitting negations at this point makes it impossible to de�ne a least �xed-point operator. If E2 does not depend on free variables, then this rule isprecise; the e�ect of [VAR] is to use the best approximation of E2 that doesnot depend on free variables. In our system, when [VAR] is used E2 rarelydepends on free variables; thus, this heuristic appears to have little practicale�ect on our system.Rule [ROR] states that to prove C � D _ E, prove either C � D orC � E. Many facts are not provable with this rule, such asc(a _ b) � c(a) _ c(b)21

In our application, [ROR] appears to be more than adequate. While wecannot completely explain this, one reason is that our system optimizes dis-junctions c(a) _ c(b) into the equivalent c(a _ b). Similarly, d(a; x) _ d(b; x)becomes d(a _ b; x). Apparently this su�ces to cover common cases missedby the [ROR] rule; our type analysis system builds very complex equations,and yet we have not found a practical example where this approximationfails to be accurate.It is worth pointing out that there are much stronger rules than [ROR].Consider the following lemma.Lemma 6.4 Let S be a subset of f1; : : : ; ng and let S be f1; : : : ; ng � S.c(x; y) � _1�i�n c(xi; yi) , 8S (x � _j2S xj) _ (y � _j2S yj)See [Mur90] for a generalization to constructors of arbitrary arity. The prob-lem with an inference rule based on Lemma 6.4 is that it consumes exponen-tial time and space, since it generates exponentially many new regular treeexpressions. For an implementation, the rules in Figure 6 have the advantagethat, except for sets of assumptions, they consume no space.7 OptimizationsThe implementation we have described thus far is complete but still performspoorly in practice. This section covers the remaining performance problemsand the optimizations that overcome them. In order to make the e�ectivenessof the optimizations clear and concrete, we use an example from our typeinference system for FL. In the FL type inference algorithm, types are rep-resented by regular tree expressions. In the process of analyzing a program,the type inference algorithm performs many (typically thousands) of regulartree operations. The FL type system is implemented on an IBM RT/PC inLucid Common Lisp 3.0.The example we use is a heapsort program written in FL. This programwas written to exercise the type system, especially its ability to solve systemsof constraints arising from recursively de�ned higher-order functions. Thetype system generates large and complex types while analyzing heapsort.The text of the heapsort program is about 60 lines of FL; after parsing and22

abbreviation elimination, the program that the type system actually analyzeshas about 100 lines.Using the algorithms described so far, the type system analyzes heapsortfor about �ve minutes before the Lisp system crashes with a stack over
ow.Just before it dies, the system has generated 12,948 equations, including onewith a disjunction of 1040 constructors on the right-hand side! Inspectionshows that the intersection algorithm is generating an enormous number ofequations. Before the crash, the system computes 1407 intersections, whichrequire a total of 84,409 applications of Rules (3) and (4), for an averageof 60 rules per intersection computed. The cost of 60 rules per intersectionis misleading|this cost grows rapidly during the computation and wouldpresumably far exceed 60 rules per intersection if the Lisp system had morestack space. Although the cost of intersections dominates in this example,the inclusion and negations algorithms are also slow.Analyzing the actual sequence of intersections, negations, and inclusiontests performed reveals part of the problem: many of the operations arebeing computed over and over again. Memoization is a simple optimizationthat caches and reuses the results of computations [Mic68]. We have alreadyused something quite like memoization in the auxiliary systems of equationsused for computing intersection and negation in Section 5. If fact, instead ofdiscarding those auxiliary equations, they can be retained and reused if thesame computations are performed again.We formalize memos as a set of auxiliary equations. For regular treeoperations, every memo is an equation of the form x = f(x1; : : : ; xn) for aregular tree operation f . Whenever one of these operations is computed, theset of auxiliary equations is searched to see if the answer is already known.If so, the left-hand side of the equation is used instead of performing thecomputation again. If an auxiliary equation is not found, then the com-putation is performed and the result is recorded in the auxiliary equations.These memos cost only constant space and time; every memo is of constantsize and corresponds to some result that must be computed anyway. Fur-thermore, lookup can be done in constant time if the auxiliary equations areimplemented as a hash table.Memos for inclusion are similar, but instead of auxiliary equations thememos are auxiliary constraints. Whenever the system proves a fact ; `x1 � x2, a constraint x1 � x2 is added to the system. During inclusion tests,if the subgoal x1 � x2 is in the list of auxiliary constraints, then that subgoal23

is discharged. Inclusion memos are more expensive than memos for regulartree operations. While the added time to search for a memo is still e�ectivelyconstant with a hashtable implementation, the space consumed is potentiallyO(n2) for a system of n equations.With memoization of all regular tree operations and inclusion tests, thesystem performs somewhat better on heapsort. In this trial, the systemnearly �lls the Lisp memory and begins to thrash after running for twohours. Stopping the computation at this point, the system has 36,194 equa-tions. Again, the main culprit is intersection, with an average of 45 rules percomputation. The remaining problem is that many trivial operations addnew equations. For example, to compute E ^ 1, the system generates a newequation instead of just using the existing equation for E. Generalizing, ifE1 � E2, then the result of computing E1 ^ E2 should be just the equationfor E1, thus avoiding a possibly large number of redundant equations pro-duced by using the intersection algorithm to compute E1 ^ E2. We add thefollowing rules to the intersection algorithm, which are applied in preferenceto all other rules.S [fx = E(xi ^ xj)g � S [fx = E(xj)g if ; ` xi � xjS [fx = E(xi ^ xj)g � S [fx = E(xi)g if ; ` xj � xiSimilarly, to compute the union E1 _ E2, if E1 � E2 then the equation forE2 is used, and if E2 � E1 then the equation for E1 is used. If neither caseapplies, the equation given in Section 5.2 is added to the system.Combining memoization and the inclusion optimizations results in a dra-matic improvement. Using these optimizations, the system is able to analyzethe heapsort program in just under two minutes. The system generates 5081equations in this trial; the most complex equation has three constructors onthe right-hand side.The �rst half of the table in Figure 9 gives the number of operations, thenumber of steps, and the steps per operation for each of inclusion, intersec-tion, and negation in this trial. For negation and intersection, the number ofsteps is the total number of equations added and successful memo lookups.For inclusion, it is the number of subgoals of the form x1 � x2 in proofs andthe number of successful memo lookups. Thus, the measure for inclusioncounts the total number of pairs of equations that are compared.We have run the same experiment on ten other programs; these programs24

heapsortoperations total steps steps/operationinclusion 3965 8591 2.17intersection 1947 2493 1.28negation 541 569 1.05range for other trialsoperations total steps steps/operationinclusion 8098-29724 12765-55398 1.54-1.87intersection 2190-8236 2894-11225 1.29-1.38negation 506-2165 540-2325 1.05-1.08Figure 9: Results of experiments.are between one hundred and �ve hundred lines long. The second half of Fig-ure 9 gives the range of measurements in these trials. With the exceptionof inclusion, the amortized cost of each operation is about the same as inheapsort. Inclusion tests are noticeably cheaper in the general trial; presum-ably this is because heapsort was designed speci�cally to stress the inclusionalgorithm. Overall, the result of this experiment shows that, with the opti-mizations, the amortized cost of regular tree operations is nearly constant inpractice.8 ConclusionRegular tree expressions are a powerful tool for describing sets of terms of afree algebra; as such, several program analysis algorithms based on regulartree expressions have been proposed. We have described our implementationof regular tree expressions for a type inference system. Our experience isthat, with carefully designed algorithms and some optimizations, regulartree operations can be e�ciently implemented.AcknowledgementsThe authors would like to thank Jennifer Widom, John Williams, and EdWimmers for discussions and their comments on earlier versions of this paper.25

References[AM91] A. Aiken and B. Murphy. Static type inference in a dynamicallytyped language. In Eighteenth Annual ACM Symposium on Princi-ples of Programming Languages, pages 279{290, Orlando, 1991.[AW91] A. Aiken and E. Wimmers. A decision problem for set constraints.Research Report Forthcoming RJ, IBM, 1991.[B+89] J. Backus et al. FL language manual, parts 1 and 2. ResearchReport RJ 7100, IBM, 1989.[Cou83] B. Courcelle. Fundamental properties of in�nite trees. TheoreticalComputer Science, 25:95{169, 1983.[GS84] F. Gecseg and M. Steinby. Tree Automata. Academei Kaido, Bu-dapest, 1984.[HJ90] N. Heintze and J. Ja�ar. A �nite presentation theorem for approx-imating logic programs. In Seventeenth Annual ACM Symposiumon Principles of Programming Languages, pages 197{209, January1990.[HJ91] N. Heintze and J. Ja�ar. Set-based program analysis. Draftmanuscript, 1991.[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,Languages, and Computation. Addison-Wesley, 1979.[JM79] N. D. Jones and S. S. Muchnick. Flow analysis and optimization ofLISP-like structures. In Sixth Annual ACM Symposium on Princi-ples of Programming Languages, pages 244{256, January 1979.[Mic68] D. Michie. `Memo' functions and machine learning. Nature,(218):19{22, April 1968.[Mis84] P. Mishra. Towards a theory of types in PROLOG. In Proceedings ofthe First IEEE Symposium in Logic Programming, pages 289{298,1984. 26

[MR85] P. Mishra and U. Reddy. Declaration-free type checking. In Pro-ceedings of the Twelfth Annual ACM Symposium on the Principlesof Programming Languages, pages 7{21, 1985.[Mur90] B. R. Murphy. A type inference system for FL. Master's thesis,MIT, 1990.[Sei89] H. Seidl. Deciding equivalence of �nite tree automata. In 6th AnnualSymposium on Theoretical Aspects of Computer Science. LectureNotes in Computer Science, February 1989.

27

