
How is Aliasing Used in Systems Software?

Brian Hackett Alex Aiken
Computer Science Department

Stanford University

Abstract
We present a study of all sources of aliasing in over one mil-
lion lines of C code, identifying in the process the common
patterns of aliasing that arise in practice. We find that alias-
ing has a great deal of structure in real programs and that
just nine programming idioms account for nearly all aliasing
in our study. Our study requires an automatic alias analysis
that both scales to large systems and has a low false positive
rate. To this end, we also present a new context-, flow-, and
partially path-sensitive alias analysis that, together with a
new technique for object naming, achieves a false aliasing
rate of 26.2% on our benchmarks.

General Terms
Verification, Experimentation

Categories and Subject Descriptors
Software [Software Engineering]: Program Verification

Keywords
aliasing, program analysis, satisfiability

1. INTRODUCTION
Many program analyses have been designed to model alias-

ing relationships and many methods have been developed
for the control and specification of aliasing. However, to
the best of our knowledge, there has been no systematic at-
tempt to document or describe how and how often aliasing
is actually used in large systems. We set out to try.

Our long-term goal is to develop an alias analysis suf-
ficiently precise and scalable to be used in sound verifica-
tion tools for multi-million line software systems, and as a
first step we wanted to carry out a study of the important
aliasing patterns and their frequency in real code. Unfor-
tunately, current alias analyses that scale to even one mil-
lion lines of code are known to be imprecise with respect to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT’06/FSE-14, November 5–11, 2006, Portland, Oregon, USA.
Copyright 2006 ACM 1-59593-468-5/06/0011 ...$5.00.

the aliasing that actually exists at run-time [21, 25]. More
precise approaches using context-sensitive or object-sensitive
[23] analysis have recently been shown to scale to hundreds
of thousands of lines [3, 29, 26] while flow- or path-sensitive
approaches have scaled to tens of thousands of lines [7, 31,
22]. However, we needed all these features to understand
the aliasing structure of large programs without being over-
whelmed by false positives, as well as to support the larger
goal of verification.

This paper makes three primary contributions. First, we
present a new context-, flow-, and partially path-sensitive
alias analysis, as well as a new, precise form of object nam-
ing that helps greatly in keeping information about distinct
data structures distinct. (For the reader unfamiliar with the
technical jargon of program analysis, we explain these terms
in Section 3.) Path-sensitivity is only intraprocedural; the
other features are not restricted, and in particular context-
sensitivity and object naming are not k-limited [16]. Our
analysis is sound and fully automatic, although it can also
take advantage of user-supplied alias annotations.

Second, we show this analysis scales well; our largest bench-
mark is nearly 600,000 LOC. We have used the analysis on
programs with millions of lines of code, though we do not
include such programs in this paper—the manual effort re-
quired to classify all aliasing in multi-million line programs
is beyond our resources.

Third, we use the analysis to carry out a study of how
aliasing is used in large C system programs and in the pro-
cess show that the analysis is much more precise than pre-
viously reported results for static alias analysis of large sys-
tems. Using our analysis, we have identified and classified
by hand all sources of aliasing in over one million lines of
C code. The false aliasing rate (the fraction of discovered
aliasing relationships that are incorrect due to analysis im-
precision) is 26.2%, which is much lower than the false alias-
ing reported by previous efforts to measure the precision of
static alias analysis [25, 21]. This accuracy is also what
makes the system usable for our study.

We have identified and measured the frequency of the id-
ioms programmers use to create aliasing (Section 5). Per-
haps surprisingly, we have found that there is little diversity
in aliasing: just nine patterns account for almost all the
aliasing in our study. We believe this data will be useful
in the design of software tools and language constructs that
deal with aliasing. In fact, we used early results of this study
to help design our alias analysis for scalability. We also find
some examples of apparently unintentional and potentially
dangerous aliasing; one such instance has been confirmed

as a subtle bug in PostgreSQL, a widely used open source
database system (Section 5.1).

Pointer aliasing occurs when multiple pointers are used
to access the same data. Any pointer copy creates the po-
tential for aliasing, if both the original and copy are later
used. A key insight that we gained from our study is that
in real programs aliasing occurs on multiple different scales
reflecting the structure of the program. For example, there
is aliasing specific to particular data types, and in fact all
instances of a type often have a specific aliasing relationship
throughout the program; in our study, 7.8% of user-defined
types (struct’s in C) are associated with aliasing. Other
examples of structure in aliasing is aliasing associated with
particular global pointers or particular functions.

We have used the fact that aliasing occurs at different
scales in the design of our analysis. Consider a tree data
structure with parent pointers. It is wasteful and expensive
to rediscover the aliasing of the parent through the child at
every use of that data type in a large program. However, by
treating this aliasing as a program-wide aliasing invariant,
we can record the information in one place instead of at
(potentially) every program point. Factoring out aliasing
specific to specific types and global variables dramatically
reduces the amount of data that must be represented. Our
results show that outside of the user-defined data structures
that use aliasing, aliasing is actually rare. In our study,
only 5.1% of all global pointers are involved in aliasing. If
one discounts aliased data types and global pointers, only
3.5% of functions and 13.2% of loops make use of additional
aliased values. Because aliasing outside of globals and data
types is so rare, we can use precise methods to track it with
reasonable cost.

1.1 Threats to Validity
There are four threats to the validity of our study. The

first is that the systems programs in our study may not be
representative of programs in other domains. For example,
object-oriented programs may have more aliasing patterns
than the ones we discovered.

Second, our alias analysis can be used either automat-
ically or with hand annotations. We believe fully auto-
matic alias analysis is often undesirable in verification of
low-level C programs; a very few annotations can capture
user-knowledge that is difficult to infer automatically. For
this study we used 19 annotations on custom memory al-
locators to treat them like malloc. (We did not annotate
malloc wrappers, which we infer automatically.) As far as
we know, all alias analyses assume primitive allocation rou-
tines are specified as part of the input.

Third, the manual process of inspecting the alias anal-
ysis results by hand introduces a source of error; we may
have made mistakes in categorizing the sources of aliasing
discovered by the analysis. We believe the misclassification
rate is quite low, because we have found the vast major-
ity of aliasing is simple and easy to classify. Also, over the
course of this study we did the full manual analysis of all
the benchmarks several times as we refined our methodol-
ogy, giving multiple opportunities for mistakes to be found
and corrected.

Fourth, we believe our alias analysis is sound for C under
a few common assumptions (e.g., assuming memory safety
and that programs do not hide or manufacture pointers).
However, we have not done a formal proof of soundness.

struct packet { void packet_set_conn(...) {
struct packet *next; if (...) {
struct packet **prev; out.first = NULL;
u_char type; out.last = &out.first; }
Buffer payload; }

};
struct packetlist { void packet_send2() {

struct packet *first; struct packet *p;
struct packet **last; if (...) {

} out; p = xmalloc(sizeof(packet));
p->prev = out.last;

void main(...) { *out.last = p;
packet_set_conn(...); out.last = &(p->next); }
while (...) { if (...) {
packet_send2(); } p = out.first; }

} }

Figure 1: An example program.

2. ALIASING STRUCTURE
Real programs use aliasing at multiple levels of granular-

ity. Compactly and precisely representing aliasing requires
exploiting this structure. We have identified four commonly
used levels of aliasing structure:

• entry aliasing specific to the entry state of a function.

• exit aliasing specific to the exit state of a function.

• global invariant aliasing specific to a global variable.

• type invariant aliasing specific to all values of a type.

The following example illustrates these levels.

Example 1. Code adapted from openssh-3.9p1/packet.c

is in Figure 1. A doubly linked list of packets is managed
using head and tail pointers in global structure out. The
last and prev pointers hold addresses of either the first or
next pointers in the list. Function packet set conn is called
before packet send2, which may be called any number of
times. Function packet set conn introduces aliasing between
*out.last and out.first, affecting later calls to packet send2.

We could interpret this aliasing at multiple levels:

• This aliasing is particular to the exit state of
packet set conn and entry state of packet send2.

• This aliasing is a property of global variable out, where
out.last may generally point to out.first.

• This aliasing is a property of all values of type packetlist,
where last may generally point to first.

These interpretations are all technically correct, but dif-
fer in how well they describe the program’s behavior. The
last best fits our intuitive understanding of the program’s
structure: this aliasing is a property of the packetlist type.
Under the first two interpretations, we must redundantly ac-
count for similar aliasing on other variables of type packetlist,
or other functions manipulating such variables. 2

2.1 Documenting Aliasing
In this section, we describe how the levels of aliasing struc-

ture are documented in our algorithm, and how this docu-
mentation is combined to produce aliasing information for
the entire program. We assume a conventional typed imper-
ative language with functions, dynamic allocation of typed
data, pointers, and field accesses and updates; we specify
such a language more precisely in Section 3.

To discuss aliasing we need to name memory locations so
that we can say when two pointers point to the same loca-
tion. We represent locations by labels, which are sequences
of field accesses and pointer dereferences from a variable
name or the special name this, which we discuss shortly:

l ∈ Label ::= x | this | l.f | ∗ l

Labels may be either singleton, representing at most one
location at any point, or unbounded, representing arbitrarily
many locations. Unbounded labels may be arrays or sets of
elements of recursive structures. The predicate unbounded :
Label → {true, false} distinguishes unbounded labels from
singletons.

We represent aliasing indirectly using guarded points-to
graphs. In a points-to graph nodes are labels and edges
(l1, l2) mean that pointers at locations in l1 may point to
locations in l2. Aliasing information is recovered easily from
points-to graphs; for example, edges (x, l) and (y, l) show
that x and y may be aliased, as they both may point to
locations in label l. Guarded points-to graphs generalize
points-to graphs by associating each edge with a guard, a
predicate stating under what condition the points-to rela-
tionship holds. Guards contribute to the precision of our
analysis; for example, if x and y may both point to l, but
with guards that cannot simultaneously hold, they are not
aliased. We use formulas over boolean variables b for guards.

g ∈ Guard ::= true | false | b | g0 ∧ g1 | g0 ∨ g1 | ¬g

ρ ∈ PTGraph = (Label × Label)→ Guard⊥

Points-to graphs are partial—they may not be defined on all
edges. An undefined edge is represented by PTGraph(l1, l2) =
⊥. Partial graphs allow us to distribute the full set of edges
across several graphs.

Our algorithm is summary-based: for each function f we
summarize f ’s aliasing behavior and use only the summary
in analyzing sites where f is called. A summary for f is
a pair (ρin,ρout) of partial points-to graphs, ρin for entry
aliasing and ρout for exit aliasing of f .

The summary points-to graphs are partial, defined only
for labels involved with entry or exit aliasing. Targets (i.e.,
pointed-to labels) for all other labels are given by invari-
ants on global variables and user-defined types. Partition-
ing points-to information into summaries encoding what is
unique to each function and a set of global invariants is a
key aspect of our approach.

The points-to graph ρinv records the invariant targets of
each label. Any partial points-to graph ρ lifts to a complete
points-to graph ρ̄ defined for all edges, which uses ρinv to
get the targets of labels not in ρ:

ρ̄(l1, l2) = if ρ(l1, l2) 6= ⊥ then ρ(l1, l2) else ρinv(l1, l2)

We factor ρinv into ρg, ρτ , and ρdef , representing, respec-
tively, invariants on global variables and each type τ (a sepa-
rate graph for each type), and default points-to relationships
for edges not otherwise defined.

ρinv(l1, l2) =

8

<

:

ρg(l1, l2) if defined
ρτ (l1, l2) if defined for τ

ρdef (l1, l2) otherwise

The default points-to graph ρdef sets the only target of
each label l to ∗ l. Since this value is unique to l, no two

labels have aliased targets by default.

∀l1, l2. ρdef (l1, l2) ⇔ (l2 = ∗ l1)

Type invariants use the special label this to quantify over
all labels of the type. For example, (this.f, ∗this.g) indicates
for all values of type t, fields f and g are aliased. The this

notation compactly represents type invariants, but requires
instantiation of the this to perform lookups on ρτ . For sim-
plicity we write ρτ (l1, l2), treating ρτ as a map where all
instances are already instantiated.

We return to the program from Example 1, showing the
different ways that the observed aliasing can be documented.

Example 2. Consider again the aliasing between *out.last

and out.first that may exist in Figure 1. This aliasing can
be documented at the function, global, or type level.

To document aliasing at the function level, the exit alias-
ing on packet set conn and entry aliasing on packet send2

are added to these functions’ summaries. In particular, the
points-to edge (out.last, out.first) with guard true is added
to ρout of packet set conn and to ρin of packet send2. This
aliasing must also be documented for the many other func-
tions which directly or indirectly access out.

At the global level, out.last always points to the last next
pointer in the list, which is either the first pointer or a next
pointer. We add the global invariants

(out.last, out.first), (out.last, *(out.first).next)

Any other values of type packetlist must also be docu-
mented. At the type level, the invariants

(this.last, this.first), (this.last, *(this.first).next)

document aliasing for all values of type packetlist. 2

3. CHECKING AND INFERENCE
In this section, we first give an algorithm to check the

correctness of given points-to information. We discuss flow-
and path-sensitive intraprocedural analysis (Section 3.1),
context-sensitive interprocedural analysis of function calls
(Section 3.2), and finally our object naming scheme (Sec-
tion 3.3). Section 3.4 extends checking to an algorithm for
inferring function summaries.

Consider a function f that calls function g; we want to
check that given summaries for f and g are correct. Assume
the entry state for f satisfies its entry points-to graph, and
that at the call to g the exit state satisfies g’s exit points-to
graph. To verify correctness of the points-to information we
must check two things:

1. The exit state for f satisfies f ’s exit points-to graph.

2. The entry state for the call to g satisfies g’s entry
points-to graph.

If conditions (1) and (2) are satisfied simultaneously for
all functions and call sites, then the points-to information is
consistent and correct.

We present our analysis using a simple imperative lan-
guage (but we use examples that go outside this language).
A program consists of global variables, types, and functions.
A function body is a command and a set of local stack vari-
ables; arguments are passed to functions through assignment
to global variables. Basic commands c are stores, calls, and
dynamic allocations, and are composed with sequences and

non-deterministic branches. Functions are loop-free; in our
implementation for C, loops are represented as tail-recursive
functions for which summaries are required. Expressions e
are either the address of a variable, the sum of another ex-
pression and the fixed offset of a field, or the dereference of
another expression.

e ::= &x | e+ f | ∗ e

c ::= c0; c1 | if ? c0 c1 | e0 ← e1 | call f | e← new(τ)

A points-to graph ρ2 is more conservative than ρ1 if when-
ever (l1, l2) holds in ρ1 it also holds in ρ2. For a set of edges
L, we define a relation ≤L on points-to graphs:

ρ1 ≤L ρ2 ⇔ ∀(l1, l2) ∈ L. ρ1(l1, l2)⇒ ρ2(l1, l2)

where ⊥ (i.e., an undefined edge) is interpreted as the predi-
cate false. To check correctness of a function f with body c
against an aliasing summary (ρin, ρout), we apply the trans-
fer function (defined below) [[c]] to ρin to compute the exit
points-to graph ρ and verify that

ρ ≤L ρout where L = dom(ρout) ∪ dom(ρ) (∗)

where dom(f) is the domain (the edges) on which points-to
graph f is defined. (We also sometimes abuse notation and
write l ∈ dom(f), treating the set of edges as the set of all
nodes mentioned in the edges.)

3.1 Function Body Evaluation
The following C fragment conditionally swaps two values:

a = x; b = y; // *x != *y

if (...) { t = a; a = b; b = t; }

f(a,b);

It is easy to see that a and b are never aliased at the call
f(a,b). To prove this fact, the analysis must be flow-
sensitive, that is, it must respect the order of assignments
in the branch. (In contrast, flow-insensitive analysis ignores
the order of statements and thus loses information about the
order of side effects.) We also need path-sensitivity, mean-
ing we must distinguish the two execution paths to recognize
that a and b never point to the same value on the same path.

A transfer function [[c]] models the effect of command c on
a partial points-to graph ρ (possibly also using the global
invariants ρinv as needed). Thus, a transfer function maps
points-to graphs to points-to graphs. The transfer function
for command sequences is standard:

[[c0; c1]]ρ = [[c1]]([[c0]]ρ)

We write function application [[c]](ρ) using juxtaposition [[c]] ρ
to avoid cluttering definitions with parentheses.

For path-sensitivity, fresh boolean variables are used to
separate points-to information along branches. Even with-
out branch condition information (i.e., ignoring the actual
predicate of the conditional), path information can track
correlations between side effects, as in the swap example
above.1

[[if ? c0 c1]] ρ (l, l′) =
let ρ0 = [[c0]]ρ in
let ρ1 = [[c1]]ρ in
let b be a fresh boolean variable in

(b ∧ ρ̄0(l, l
′)) ∨ (¬b ∧ ρ̄1(l, l

′))

1Our implementation for C also analyzes branch conditions
as in [32].

The transfer function for store commands uses E [[e]], which
maps a pointer expression e to a function from e’s labels to
their guards under a given points-to graph:

E [[e]]ρ ∈ Label→ Guard

E [[&x]]ρ l = if l = x then true else false

E [[e+ f]]ρ l = if l = l
′
.f then E [[e]]ρ l′ else false

E [[∗e]]ρ l =
_

l′

(E [[e]]ρ l′ ∧ ρ̄(l′, l))

The transfer function for stores adds the potential targets
of the source to the potential targets of the destination. If a
destination target is singleton, its old targets are removed;
this strong update is made possible by flow-sensitivity and
singleton labels [5].

[[e0 ← e1]]ρ = store(ρ,E [[e0]]ρ, E [[e1]]ρ)

store(ρ,m0,m1) (l, l′) =
(m0 l ∧m1 l

′) ∨ (ρ̄(l, l′) ∧ (unbounded(l) ∨ ¬m0 l))

The auxiliary function store defines the points-to graph
resulting from the store command. In this graph, l points
to l′ if l was assigned l′ by the store command (the predicate
m0 l∧m1 l

′), or l pointed to l′ in the old state and l is either
unbounded or was not the target of the assignment (the
predicate ρ̄(l, l′) ∧ (unbounded(l) ∨ ¬m0 l)).

Returning to the swap example, let z be the value of the
condition and let a, b, and t be singleton (local variables
are always singleton). At the call site we have (a, ∗y), (b, ∗x)
under guard z and (a, ∗x), (b, ∗y) under guard ¬z.

3.2 Function Call Evaluation
Consider the following C code fragment:

int *h, *g, *x, *y;

int *f(int *a) { return a; }

x = f(h); // 1

y = f(g); // 2

To accurately analyze this example, we must separate the
two calls to f so that we discover the points-to facts (x,*h)
at call site (1) and (y,*g) at call site (2) but not, say, that
(x,*g). This is context-sensitivity, the ability to analyze a
function separately in each context where it is called.

For alias analysis a key aspect of context-sensitivity is that
a function’s summary need not be concerned with labels
the function does not access. In the example above, f’s
summary need not mention global variables h and g or the
aliasing relationship between those variables and f’s formal
parameter a, because while the globals are in scope in f

they are not used by f. From f’s point of view a is locally
unaliased or restricted [1]: f’s sole access to *a is through the
name a, and thus f’s behavior is polymorphic in a, regardless
of what aliases exist outside of f. To exploit this form of
polymorphism we require sets of accessed labels ψ for each
function call site (i.e., the set of labels read or written by
the call). While these sets are often considerably larger than
the function summaries, they are easy to compute using a
simple, safe over-approximation. Returning to the example,
ψ1 = {h} at call site (1) and ψ2 = {g} at call site (2).

Consider a call site where ρ is the caller’s points-to graph
and ρin is the input points-to graph of the callee’s sum-
mary. Recall that points-to graphs are partial, and that the
domains of ρ and ρin are different (because the caller and

callee functions have different name spaces). Thus we need a
label renaming mapping labels l in ρ to corresponding labels
σ(l) in ρin. We lift renamings to points-to graphs:

σ(ρ′)(l1, l2) = ρ
′(σ(l1), σ(l2))

The correctness condition relating the caller and callee is
that the callee’s input points-to graph must be conservative
with respect to the caller’s points-to graph for corresponding
labels under the renaming:

ρ ≤ψ∩dom(ρ) σ(ρin)

where σ is the label renaming and

ψ ∩ dom(ρ) = {(l1, l2) ∈ dom(ρ)|l1, l2 ∈ ψ}

The condition must hold only for labels accessed by the
callee (ψ) and observed by the caller (dom(ρ)); thus, there is
polymorphism in what the caller does not observe and what
the callee does not use.

The crux of the test given above is computing a renaming
satisfying the condition; renaming fails when there are alias
relationships in the caller not modeled in the callee. To
compute σ for our restricted language initially σ(x) = x for
any globals shared between the caller and callee (for C, we
also include renamings between formal and actual parameter
names in the initial renaming). We then extend σ to satisfy
the following two conditions for labels in ψ ∩ dom(ρ):

σ(l.f) = σ(l).f

ρ(l1, l2) ⇒ ρin(σ(l1), σ(l2))

The second condition says that if l1 points to l2, then σ(l2)
must be chosen to be a member of σ(l1)’s points-to set; any
choice satisfying the implication is sound.

The call transfer function uses the label renaming to add
new aliasing relationships resulting from the call:

[[call f]]ρ (l1, l2) =
let (ρin, ρout) = summary of f in
let ψ = labels accessed by f in
let σ = a satisfying label renaming on ψ ∩ dom(ρ) in

ρ̄(l1, l2) ∨ ρ̄out(σ(l1), σ(l2))

Returning to this subsection’s example, both the input
and output points-to graph of f is (a,*a) (note globals h

and g are not mentioned). At call site (1) the renaming
σ1(h) = a allows us to prove that x points to *h after the
call; at call site (2) the renaming σ2(g) = a shows that y

points to *g.

3.3 Allocation Sites
Consider the following program fragment:

f(int **a) { *a = h(); ... }

g(int **b) { *b = h(); ... }

int *h() { return (int *) malloc(...); }

It is important that the treatment of dynamically allo-
cated data distinguish among data allocated at different call
sites. Otherwise we may conflate reused structures such as
generic lists and hash tables, as functions allocating such
structures are also typically reused. In the example above,
we wish to know that a and b are different, despite the fact
that a single allocation site in h allocates both. This issue
is known as object naming [23]. In our summary-based ap-
proach, the problem reduces to integrating freshly allocated
data with a function’s summary.

Allocation is normally used to grow a pre-existing struc-
ture or to replace a pre-existing value. For each allocated
value, then, we find a role label, an existing label that repre-
sents the role the new value serves in the data manipulated
by the function. As we cannot determine whether dynam-
ically allocated locations escape and have a role until the
allocating function exits, we give new locations a fresh label
and rename them to their roles at exit.

The transfer function for an allocation statement creates
a fresh label x and stores a pointer to it.

[[e← new(τ)]]ρ = store(ρ, E [[e]]ρ, λl.(l = x))

At function exit we remove fresh labels from a points-to
graph ρ by assigning roles consistent with an exit points-
to graph ρout. We construct a label renaming π such that
for each newly allocated label x ∈ dom(ρ) we have π(x) ∈
dom(ρout). We need to find a π such that

ρ ≤L π(ρout) where L = dom(ρout) ∪ dom(ρ)

which refines the exit correctness condition (∗) given at the
beginning of Section 3.

We construct π as follows. For each newly allocated label
x, we set π(x) = l2 if there is a label l1 such that ρ(l1, x) and
ρout(l1, l2). Intuitively, if l1 points to x in ρ, then any non-
new value l1 points to in ρout is a good role for x. If there
are multiple possibilities for l2 we pick one arbitrarily. While
this heuristic can fail in the sense that it may produce poor
roles, in our experience that is rare because unique roles are
extremely common.

Consider the function h in the example above. For C,
we model return values as assignment to a special variable
return. On exit, we have the points-to relation (return,x),
where x is the newly allocated location. Since return does
not point to anything but its default *return in the exit
summary, x is renamed to *return. An output points-to
relation (return,*return) is the signature of a function
returning freshly allocated memory (e.g., it is the signature
of malloc) and we treat such functions analogously to new
above, introducing a new, distinct label at each call site.
These new labels will in turn be renamed according to the
roles of a and b in functions f and g, respectively.

3.4 Summary Inference
The core of the checking algorithm is verifying ρ ≤L ρ

′ for
two guarded points-to graphs ρ and ρ′. Testing ≤L requires
computing for each (l1, l2) ∈ L whether ρ(l1, l2)⇒ ρ′(l1, l2),
which can be done using a solver for boolean satisfiability.

The checking algorithm assumes that global invariants
and function summaries are supplied and verifies their cor-
rectness; we now extend the checking algorithm to an infer-
ence algorithm that also computes invariants and function
summaries. We begin with empty summaries for all func-
tions and an empty set of invariants and run the checking
algorithm. When checking fails at function exit, callee alias-
ing is not reflected in the caller; when checking fails at a call
site, caller aliasing is not reflected in the callee. We add
the alias relationship(s) that caused checking to fail to the
function summaries. The points-to relationships of function
pointers are discovered as part of the analysis (just like for
other pointers), allowing the call graph to be constructed
on-the-fly. The process of checking function summaries and
reanalyzing functions if checking fails repeats until checking
succeeds simultaneously for all functions, which is clearly

Invariants Functions Loops
Application KLOC Time Atype Aglob Count Ain Aout Count Ain Aout

openssh-3.9p1 64 2:45 14 15 1147 43 145 492 72 203
openssl-0.9.7e 225 21:28 185 120 4109 180 1662 1381 209 963
httpd-2.0.53 230 12:27 149 91 1980 102 1373 1070 308 1049
postgresql-8.0.2 575 4:22:06 597 343 7842 810 2720 4262 1431 4626
Overall 1094 4:58:06 945 569 15078 1135 5900 7205 2020 6841

Table 1: Analysis results: application size, analysis time, type and global invariant aliasing points-to edges,
and summary counts and instances of entry and exit aliasing generated for functions and loops.

sound. The remaining issues are termination and efficiency.
To guarantee termination, we use unguarded points-to

graphs in function summaries (i.e., the guards in summaries
are all either true or false; any satisfiable guard in a sum-
mary is promoted to true). This conservative approxima-
tion has two practical ramifications. First, it limits path sen-
sitivity to within function bodies, as no non-trivial guards
are propagated between functions. As a result, the size of
the largest boolean formula that must be solved is limited
by the size of the largest function, and because function size
does not grow (or grow very much) with the size of a pro-
gram, we are not limited by the scalability of SAT solvers.
Second, termination becomes much easier to reason about if
summaries do not include guards. If the set of labels (nodes)
in an unguarded points-to graph is bounded, it follows that
the size of the unguarded points-to graph is bounded. Since
the inference procedure only monotonically adds unguarded
points-to edges to summaries, inference must terminate.

To bound the set of labels it suffices to bound label length.
We require that all types of locations in labels be distinct;
since a program has a finite number of types, this bounds
the length of the longest label. During inference a label
may arise that would have the same type in two positions;
in that case we identify the two positions together, which
may require making some singleton values unbounded and
combining points-to sets of the formerly distinct locations.
This identification is just the standard approximation of col-
lapsing recursive data types; for example, instead of trying
to distinguish each element of list, the approximation treats
all list elements as one, unbounded location.

Another issue is that new introduces new labels. How-
ever, role renaming guarantees the new labels do not appear
in function summaries and so cannot affect termination.

Turning to efficiency, this approach often fails to halt in
reasonable time even for moderately sized programs because
of the base inefficiency of using only summaries to represent
aliasing behavior. As discussed in Section 2, summaries gen-
erated in this fashion collectively contain much redundant
information, which accumulates up and down the call graph.

Much of this redundancy is due to the function-level rep-
resentation of aliasing behaviors that are properties of glob-
als and types. To solve this problem our system also infers
invariants for globals and types. Consider the following ex-
ample:

struct foo {

int buf[100];

int *cur;

};

struct foo *g;

g->cur = &(g->buf);

After the assignment the points-to graph contains the pair
((*g).cur, (*g).buf) indicating that the cur field points
into the buffer buf. Whenever the two labels in a points-
to relation share a common prefix ending in a user-defined
type (*g in this example), we promote the relationship to a
global invariant by replacing the prefix by this and adding
the resulting fact to the invariant map for that type. In this
example, we add (this.cur, this.buf) to ρfoo. Aliasing
between globals or globals and types is handled similarly.

As discussed in Section 1, our system can use annotations
to tweak the analysis behavior and improve scalability or
precision. This offers substantial flexibility in modeling the
idiosyncrasies of specific code bases.

4. RESULTS
We have implemented our analysis using framework for

summary-based path-sensitive analysis based on Saturn [32].
We run the analysis bottom-up over the call graph, comput-
ing a fixed point for strongly connected components, and
generate sets of accessed labels, exit aliasing, and inferring
new invariant and entry aliasing. This new aliasing may
then trigger reanalysis of functions deeper in the call graph.
The analysis can be run in parallel, utilizing multiple cores,
each core analyzing a single function at a time.

Our aliasing study uses four widely-used applications, rang-
ing in size from 64 KLOC to 575 KLOC, with a total size of
1094 KLOC. We evaluate the results of the analysis based
on the number and accuracy of the invariant, entry and exit
aliasing generated. In Section 5 we present a detailed tax-
onomy of aliasing behavior identified in these applications.

Our overall results are shown in Table 1 (all experiments
were done on a single machine). In generating summaries
for 22283 functions and loops in the applications, we added
945 type invariant points-to edges on a total of 135 types
(7.8% of all types) and 569 global invariant edges on a to-
tal of 121 globals (5.1% of all globals). For each function
in the programs, an average of 0.075 entry aliasing edges
and 0.391 exit aliasing edges were generated. Additionally,
for each loop in the programs, an average of 0.280 entry
aliasing edges and 0.949 exit aliasing edges were generated,
significantly higher than for functions.

Counts for types and globals with invariants and func-
tions with entry aliasing are shown in Table 2. Each of
these was hand inspected to identify correct aliasing (e.g.
aliasing which corresponds to some actual runtime behav-
ior) and false aliasing (e.g. added as a result of analysis
imprecision), as well as to classify each behavior (see Sec-
tion 5). Of the 135 composite types with invariant aliasing,
119 have invariants that appear correct, while 27 have in-
variants that appear false (11 types have both correct and
false invariants). Of the 121 global variables with invariant

Type Global Entry Overall
Application T F T F T F T F
openssh-3.9p1 6 1 11 0 36 1 53 2
openssl-0.9.7e 21 2 18 1 83 10 122 13
httpd-2.0.53 21 7 9 8 27 19 57 34
postgresql-8.0.2 71 17 65 10 220 128 356 155
Overall 119 27 103 19 366 158 588 204

Table 2: True and false aliasing counts for type in-
variants, global invariants and function entry alias-
ing. Shown are counts of types/globals/functions
where either true or false aliasing was found.

aliasing generated for them, 103 have invariants that appear
correct and 19 have invariants that appear false (one global
variable has both correct and false invariants). Of the 523
functions with any entry aliasing generated for them, 366
have aliasing that appears correct, while 158 have aliasing
that appears false (one function has both correct and false
aliasing). Overall, this gives a false aliasing rate of 26.2%,
which is sufficiently accurate to make our study possible.

Additional measures relating to the generated exit aliasing
give insight not only into how the analysis performs on the
analyzed applications, but on how it is likely to perform on
larger or more complex ones. We are interested in:

• The amount of aliasing generated. This gives an over-
all understanding of the overhead required to fully
specify the summaries.

• The relationship between the type and global invari-
ants and the amount of per-function aliasing gener-
ated. Adding invariants should eliminate redundant
entry/exit aliasing and reduce analysis workload.

We performed a second series of runs without generating
any type or global invariants, examining the amount of exit
aliasing generated. Complexity measures for the runs with
and without invariants are shown in Table 3. For the run
with invariants, 5900 exit aliasing points-to edges were gen-
erated. For the run without invariants, 70735 exit aliasing
points-to edges were generated, nearly 12 times as many.
The change is most dramatic in PostgreSQL, where not us-
ing invariants raises the number of functions with at least 20
exit aliasing edges from 14 to 1799, and raises the maximum
number of exit aliasing edges from 34 to 128.

We also consider how the relationship between invariants
and generated aliasing on a function is affected by the func-
tion’s interface width, the number of global variables poten-
tially used by the function or its callees. Interface width is a
measure of the overall complexity of a function’s logic, and
generally increases for functions in larger applications and
closer to the root of the call graph. If the amount of aliasing
generated on a function is independent from the width of
that function’s interface, then analysis time for a function
is affected only by the size of that function’s body, and the
number of callees it has. As both factors are unrelated to the
size of the analyzed application, achieving this independence
allows scalability to arbitrarily large applications.

Table 3 includes the R2 measure of predictive power be-
tween interface width and exit aliasing, which indicates the
fraction of the variation in exit aliasing on a function ex-
plained by that function’s interface width. The correlation
for the runs with invariants is much weaker than that for the

runs without invariants, indicating that with invariants anal-
ysis for a function is nearly independent of interface width.

5. AN ALIASING TAXONOMY
The aliasing behavior of an application can be arbitrarily

complex, but we find that just a few programming tech-
niques cover almost all cases of aliasing we have observed.
We describe a taxonomy for the behavior documented by
the invariant and function entry aliasing generated during
the runs from Section 4. We refine these behaviors into con-
ceptually related groups, picking out distinguishing charac-
teristics between them.

We are concerned with data aliasing behaviors found, which
occur when pointers from different parts of the store share
references to mutable data. Managing data aliasing is criti-
cal to maintaining the organization of an application’s data
structures, and is the most widespread and diverse aspect
of aliasing in these applications. Instances of data aliasing
are naturally classified by their relation to unbounded data
structures (recursive structures and arrays), which may gen-
erally contain any number of elements. Unbounded struc-
tures are widespread, and observed aliasing behaviors differ
substantially from one another depending on their involve-
ment with these structures:

• incidental aliasing occurs when a pointer targets loca-
tions outside unbounded structures.

• cursor aliasing occurs when a pointer may target lo-
cations within an unbounded structure.

• false aliasing is data aliasing identified by the analysis,
but which corresponds to no runtime behavior.

Additional properties of pointers, such as which may be
NULL, which may point to (immutable) constant strings or
to functions, or which point elsewhere within an unbounded
structure, are not considered here, though these are also dis-
covered by our analysis. Table 4 organizes the invariants and
function entry aliasing generated. In the following sections
we develop finer distinctions within each type.

5.1 Incidental Aliasing
Despite the potential diversity of uses for aliases, almost

all incidental aliasing we have observed follows one of five
patterns. Incidental aliasing is most often used to provide
additional indirection within a heap structure, or for a cou-
ple of behaviors on values at the same level of indirection.

• parent pointers are references to particular data closer
to the root of a structure.

• child pointers are additional references to particular
data stored deeper in a structure.

• shared immutable pointers are multiple references to
data at the same level, where all are used only for
reading.

• shared I/O pointers are two references to data at the
same level, where one is used only for reading and the
other only for writing.

• global pointers are references to a global variable and
an alias of the global within the same scope.

Table 5 organizes the incidental aliasing according to these
categories.

With Invariants Without Invariants
Application Functions Aout Aout/Func R2 Aout Aout/Func R2

openssh-3.9p1 1147 145 0.126 0.0006% 1732 1.51 83.2%
openssl-0.9.7e 4109 1662 0.404 0.07% 8918 2.17 35.8%
httpd-2.0.53 1980 1373 0.693 4.33% 2535 1.28 23.8%
postgresql-8.0.2 7842 2720 0.347 0.03% 57550 7.34 78.9%
Overall 15078 5900 0.391 70735 4.69

Table 3: Amount of function exit aliasing with and without type/global invariants.

Type Global Entry
Application Inc Cur False Total Inc Cur False Total Inc Cur False Total Total
openssh-3.9p1 1 5 1 7 8 3 0 11 7 29 1 37 55
openssl-0.9.7e 12 10 2 24 18 1 1 20 67 16 10 93 137
httpd-2.0.53 9 13 7 29 6 3 8 17 18 9 19 46 92
postgresql-8.0.2 35 41 17 93 21 46 10 77 141 81 128 350 520
Overall 57 69 27 153 53 53 19 125 233 135 158 526 804

Table 4: Kinds of type invariants, global invariants, and entry aliasing generated for each application. Counts
are numbers of types/globals/functions with the specified behavior.

Parent and child pointers provide additional methods for
traversing structures beyond their basic spanning tree. The
depth of a value is the number of indirections within the tree
used to access it. Parent pointers reference data shallower
in the tree, and child pointers skip multiple levels deeper.
(Recall that parent/child pointers within a homogeneous re-
cursive data structure are collapsed to a single unbounded
location (Section 3.4); thus, in the parent/child aliasing pat-
terns we discover the source and target of the pointer are of
different types.)

Example 3.
httpd-2.0.53/include/httpd.h: Structure conn rec holds

per-connection information. Its field remote host may ref-
erence the hostname of the remote addr field, if a DNS lookup
has been performed. [Figure 2]

postgresql-8.0.2/src/include/lib/dllist.h: Structure
Dlelem is a doubly linked list element with a pointer field
dle list to its parent.

postgresql-8.0.2/src/bin/pg dump/pg backup db.c: Function
connectDB takes strings reqdb and reqname, which may be in-
ternal to the archive handle AH passed into it as well. 2

If two potentially aliased values are at the same depth
in the heap, there is generally no clear precedence between
them. We find that such behaviors are described almost
entirely by two patterns, shared immutable and I/O aliasing.

Shared immutable aliasing occurs when neither of the two
values are used for writing. Since reads on aliased values
cannot affect each other, such aliasing is benign.

Example 4.
openssl-0.9.7e/crypto/x509/x509 vfy.c: Function

check issued checks whether certificate x was issued by issuer.
x and issuer may be identical, but neither is written to.

openssh-3.9p1/packet.c: Global structures receive context

and send context may share the same read-only field cipher,
indicating how incoming and outgoing data is encrypted. 2

Shared I/O aliasing occurs when one of two aliased values
is used for reading and the other for writing. This program-
ming model is very flexible, allowing space reuse only where

include/httpd.h:

/** Structure to store things which are per connection */

struct conn_rec {
/** remote address */

apr_sockaddr_t *remote_addr;

/** Client’s DNS name, if known. ...

* Only access this though get_remote_host() */
char *remote_host;

}

server/core.c:

const char * ap_get_remote_host(conn_rec *conn)

{ // aliasing is introduced by this function call
if (apr_getnameinfo(&conn->remote_host, conn->remote_addr)

== APR_SUCCESS) {
...

}

if (conn->remote_host != NULL) {
return conn->remote_host;

}
}

srclib/apr/network io/unix/sockaddr.c:

apr_status_t apr_getnameinfo(char **hostname,
apr_sockaddr_t *sockaddr)

{

char tmphostname[256];
...

*hostname = sockaddr->hostname = apr_pstrdup(tmphostname);
return APR_SUCCESS;

}

Figure 2: Child pointer example from httpd-2.0.53.

crypto/aes/aes core.c:

/* Encrypt a block; in and out can overlap */

void AES_encrypt(const u_char *in, u_char *out,
const AES_KEY *key) {

s0 = GETU32(in);

s1 = GETU32(in + 4);
s2 = GETU32(in + 8);

s3 = GETU32(in + 12);
...
PUTU32(out , t0);

PUTU32(out + 4, t1);
PUTU32(out + 8, t2);

PUTU32(out + 12, t3);
}

crypto/aes/aes cbc.c:

void AES_cbc_encrypt(const u_char *in, u_char *out,
u_long len, const AES_KEY *key,

u_char *ivec, const int enc) {
u_char tmp[AES_BLOCK_SIZE];
...

if (len) {
for(n=0; n < len; ++n)

tmp[n] = in[n] ^ ivec[n];
for(n=len; n < AES_BLOCK_SIZE; ++n)

tmp[n] = ivec[n];

AES_encrypt(tmp, tmp, key); // aliasing introduced
memcpy(out, tmp, AES_BLOCK_SIZE);

}
}

Figure 3: Shared I/O example from openssl-0.9.7e.

desired. However, care must be taken when writing code
that uses I/O aliasing to ensure that the input data is never
corrupted while writing.

Example 5.
openssl-0.9.7e/crypto/aes/aes core.c: Function AES encrypt

encrypts the block of data at in, storing the result at out.
in and out may overlap. [Figure 3]

postgresql-8.0.2/src/backend/utils/adt/numeric.c: Func-
tion add var (and several others) takes arguments var1, var2,
and result, storing the sum of var1 and var2 in result.
result may be the same as either var1 or var2. 2

Global aliasing on a function occurs when a pointer to
global data is passed to that function, but the function may
also directly access the global itself. Often this aliasing is
innocuous; neither pointer is written, or the global is only
accessed when the local pointer is NULL. However, some uses
require care similar to what is needed when using shared
I/O.

Example 6.
openssl-0.9.7e/apps/apps.c: Function load cert writes logs

to both its parameter err and global variable bio err, which
are typically aliased.

postgresql-8.0.2/src/include/executor/execdesc.h: Field
dest of type QueryDesc references a table of function pointers
to call with the results of an SQL query. It typically refer-
ences one of three tables in src/backend/tcop/dest.c, either
donothingDR, debugtupDR, or spi printtupDR. 2

Of the remaining miscellaneous instances of incidental
aliasing, most seem to describe very specialized aliasing be-
haviors. We have not investigated the sources of all these

src/bin/pg dump/pg backup archiver.c:

void SortTocFromFile(ArchiveHandle *AH, RestoreOptions *ropt) {
/* Set prev entry as head of list */

TocEntry *te, *tePrev = AH->toc;

fh = fopen(ropt->tocFile, PG_BINARY_R);

while (fgets(buf, 1024, fh) != NULL) {
/* Get an ID */

id = strtol(buf, &endptr, 10);

/* Find TOC entry */

te = getTocEntryByDumpId(AH, id);
if (!te)

die_horribly("could not find entry for ID \%d\n",id);

_moveAfter(AH, tePrev, te); // tePrev & te may be aliased
tePrev = te;

}

fclose(fh);
}

TocEntry* getTocEntryByDumpId(ArchiveHandle *AH, DumpId id) {
TocEntry *te = AH->toc->next;

while (te != AH->toc) {
if (te->dumpId == id)

return te;
te = te->next;

}
return NULL;

}

void _moveAfter(ArchiveHandle *AH, TocEntry *pos, TocEntry *te) {

te->prev->next = te->next;
te->next->prev = te->prev;
te->prev = pos;

te->next = pos->next;
pos->next->prev = te;

pos->next = te;
}

Figure 4: Aliasing bug from postgresql-8.0.2.

instances. However, some appear either unexpected or, at
the least, unpredictable and potentially dangerous. One in-
stance in PostgreSQL was confirmed as a bug by the appli-
cation’s developers:

Example 7.
postgresql-8.0.2/src/bin/pg dump/pg backup archiver.c:

Function SortTocFromFile sorts a ring of TocEntry values ac-
cording to a list of IDs read from disk, calling moveAfter

successively on pairs of ring values. If the same ID is read
twice in a row, moveAfter is called with aliased values, cor-
rupting the ring. [Figure 4] 2

5.2 Cursor Aliasing
Cursors are used to organize and manage the contents

of unbounded structures. Cursors require indexes, ways to
query or traverse their contents. We classify instances of
cursor aliasing by their relation to the indexes in the struc-
ture they reference.

• index cursors support the use of an additional index
for a structure.

• tail cursors hold the end point of an existing index.

• query cursors read data internal to an existing index.

• update cursors write data internal to an existing index.

Table 6 organizes the cursor aliasing according to these
categories.

ssh-keyscan.c:

/* Keep a connection structure for each file descriptor. The state

* associated with file descriptor n is held in fdcon[n].
*/

typedef struct Connection {
...

/* Hostname of connection for errors */
char *c_name;

/* Hostname of connection for output */

char *c_output_name;
/* Quick lookup: c->c_fd == c - fdcon */

int c_fd;
/* List of connections in timeout order. */

TAILQ_ENTRY(Connection) c_link;

} con;

/* Timeout Queue */
TAILQ_HEAD(conlist, Connection) tq;

con *fdcon;

int conalloc(char *iname, char *oname, int keytype) {

char *name = xstrdup(iname);
s = tcpconnect(name);

fdcon[s].c_fd = s;
fdcon[s].c_name = name;

fdcon[s].c_output_name = xstrdup(oname);
TAILQ_INSERT_TAIL(&tq, &fdcon[s], c_link); // aliasing introduced

return (s);
}

void confree(int s) {
xfree(fdcon[s].c_name);

xfree(fdcon[s].c_output_name);
TAILQ_REMOVE(&tq, &fdcon[s], c_link);

}

void contouch(int s) {
TAILQ_REMOVE(&tq, &fdcon[s], c_link);
TAILQ_INSERT_TAIL(&tq, &fdcon[s], c_link);

}

Figure 5: Example index cursor from openssh-3.9p1.

Every unbounded structure must have a primary index;
there must be some way to retrieve or update the stored
data. Index cursors enable the use of additional indexes.
There are several ways index cursors can be used:

Example 8.
openssh-3.9p1/ssh-keyscan.c: fdcon is an array mapping

file descriptor IDs to connections. tq is a timeout queue
whose members are entries of fdcon. [Figure 5]

postgresql-8.0.2/src/backend/storage/freespace/freespace.c:
FSMHeader is a structure with two lists firstRel and usageList,
which index the same set of relations by storage order and
last access order, respectively.

postgresql-8.0.2/src/bin/pg dump/common.c: dumpIdMap is
an array mapping dump IDs to a corresponding dumpable
object. The array catalogIdMap is generated from dumpIdMap;
the entries are cursors to values in dumpIdMap. 2

If an index has a linear structure (there is no branching
in its traversal) a tail cursor can mark its end point.

Example 9.
openssl-0.9.7e/crypto/engine/eng list.c: engine list tail

is a cursor to the last value in the doubly linked list refer-
enced by engine list head.

openssl-0.9.7e/ssl/ssl ciph.c: ssl cipher apply rule takes
a cipher list; the head is *head p; the tail is *tail p. 2

src/backend/nodes/list.c:

/* Delete ’cell’ from ’list’; ’prev’ is the previous element to ’cell’
* in ’list’, if any (i.e. prev == NULL iff list->head == cell)

*/
List* list_delete_cell(List *list, ListCell *cell, ListCell *prev) {

if (prev)

prev->next = cell->next;
else

list->head = cell->next;

if (list->tail == cell)

list->tail = prev;

pfree(cell);
return list;

}

/* Delete the first element of the list. */

List* list_delete_first(List *list) {
return list_delete_cell(list, list->head, NULL);

}

Figure 6: Update cursor from postgresql-8.0.2.

Index and tail cursors together form 16.4% of all cursor
aliasing behavior found. The remainder may reference any
data accessible via a structure’s indexes and supply the prin-
cipal means by which the structure is accessed by the appli-
cation. These other cursors are grouped into query cursors
and update cursors, which are used, respectively, to sup-
port read and read/write operations on the structure. Un-
derstanding the mechanisms by which programmers man-
age separate, potentially interfering cursors to the same un-
bounded structure is an interesting area for future study.

Example 10.
postgresql-8.0.2/src/backend/nodes/list.c: list delete cell

takes a singly linked list and two list elements cell and
prev, which must be adjacent and inside list. [Figure 6]

httpd-2.0.53/srclib/apr/tables/apr hash.c: The apr hash t

structure contains an array of hash elements array and an
iterator, whose this field points into the outer array and
may be used to update it.

postgresql-8.0.2/src/backend/storage/buffer/bufmgr.c: Pa-
rameter buf of FlushBuffer must point to an element of the
global BufferDescriptors array. 2

5.3 False Aliasing
Table 7 organizes the instances of false aliasing according

to the behavior leading to the misidentification.
The great majority of false aliasing is due to the use of dis-

joint parts of unbounded data structures. If multiple point-
ers to values within an unbounded structure are created and
then accessed together, the pointers are identified as aliased
regardless of whether they must refer to disjoint parts of the
unbounded structure. Determining that values are disjoint
can require shape or path information, but most commonly
requires separation of individual array indices. One case in
particular, a parameter passing VARARGS structure in Post-
greSQL which contains an array of function arguments, is
responsible for over 1/3 of all false aliasing discovered.

Other sources of false aliasing more specifically involve
shape and path information. Several instances are due to
moving values from one unbounded structure to another,
often via free lists maintained by random-access structures.

App/Kind Par Chi Imm I/O Glob Misc Total
openssh 4 4 7 15
openssl 3 10 26 39 16 20 114
httpd 3 2 9 3 13 30
postgresql 15 35 25 13 82 35 205
Type 21 13 14 1 13 9 71
Global 2 2 55 59
Function 32 48 55 88 11 234
Overall 21 47 64 56 101 75 364

Table 5: Incidental aliasing kinds.

App/Kind Index Tail Query Update Total
openssh 1 8 2 26 37
openssl 3 6 12 10 31
httpd 3 6 9 8 26
postgresql 3 14 120 38 175
Type 6 17 41 16 80
Global 3 3 38 9 53
Function 1 14 64 57 136
Overall 10 34 143 82 269

Table 6: Cursor aliasing kinds.

App/Kind Disjoint Varargs Moving Paths Total
openssh 1 1 2
openssl 10 3 13
httpd 15 6 13 34
postgresql 56 70 3 26 155
Type 10 3 14 27
Global 1 1 17 19
Function 71 70 5 12 158
Overall 82 70 9 43 204

Table 7: False aliasing kinds.

The remaining false aliasing originates from path-sensitive
behavior across functions. Typically, two side effects of a
function are coordinated (e.g., appending one list to another
and NULL-ing out the original); by merging them together,
spurious behavior is modeled and false aliasing results.

6. RELATED WORK
We briefly survey a wide range of related work on the eval-

uation of alias analysis and alias control. Previous studies
of alias analysis on large programs either statically compare
the precision of several pointer analyses [14, 27, 28, 12] or use
dynamic analysis to evaluate the precision of pointer analy-
ses [25, 21]. Among the dynamic analysis studies, Mock et
al. [25] find that several context-insensitive analyses heav-
ily over-approximate the points-to sets observed during a
typical run, while Liang et al. [21] find that, for Java pro-
grams, context-insensitive analyses handle most allocation
sites and programs very well, but are very imprecise for
others. Another study directly compares context-sensitive
and context-insensitive points-to analysis for Java and con-
firms that context-sensitivity is much more precise in the
sense that each individual context has very few points-to re-
lationships compared to the flow-insensitive analysis’ sum-
mary over all contexts [29]. Such empirical comparisons of
pointer analyses are critical to evaluate the effectiveness of
design decisions as such as context-sensitivity vs. context-
insensitivity. However, the metrics used, generally points-to
set sizes and related properties such as side effect sizes or
value liveness, are not useful for understanding how aliasing

is used. Earlier studies of aliasing structure focus on heap
shape properties and look at smaller programs (e.g., [13]).

Most recent scalable alias analyses use a flow-insensitive
intraprocedural core on which a context- or object-sensitive
analysis is built [3, 19, 29]. Our flow- and path-sensitive
intraprocedural analysis is different, harking back to early
work on aliasing; for example, Landi and Ryder introduced
labels for naming access paths fifteen years ago [18]. One
other recent work also uses a flow-, path-, and context-
sensitive analysis, showing good results for programs up to
13,000 LOC [22]; unfortunately, this system is not available
and we were unable to perform an empirical comparison.

Our technique for object naming is more general than
previous work, which typically selectively inlines a few al-
location functions to generate more allocation points (i.e.,
object names). Our object naming scheme achieves bene-
fits roughly similar to unlimited object-sensitivity in object-
oriented languages [23], because object-sensitivity focuses
on providing distinctions associated with data based on al-
location site rather than context-sensitivity, which provides
distinctions based on calling context.

Some common characteristics of program aliasing behav-
ior have been exploited by previous pointer analyses. Das
[9] uses the fact that pointers are commonly used for pass-
ing addresses of stack objects in C. Aiken et al. [1] find that
many locks are restricted: while multiple aliases may exist,
only one is used within a scope (e.g., a function body), al-
lowing precise flow-sensitive analysis. Our study shows that
almost all values are used in this same restricted fashion.

Several previous points-to analyses are summary-based.
Liang and Harrold [20] separate local and global pointers to
achieve a summary-based alias analysis that scales well, but
is also unification-based and flow-insensitive. Some previous
context-sensitive approaches use a similar summary to ours
(input and output points-to graphs) with similar issues (e.g.,
the mapping between caller/callee names) [18, 10, 6]. For
more expressive approaches the summaries appear to grow
excessively large for large programs [31, 30]; we avoid this
problem by exploiting heap invariants to compactly repre-
sent global information and simplify summaries.

Alias control techniques specify the presence or absence of
aliasing in programs. Uniqueness-based techniques describe
how and where pointers are unaliased [24, 4]. We believe
the linear nature of unique pointers imposes unnecessary
restrictions: it is common to copy data and have both values
be live (through function calls, local variables, etc.), though
in separate scopes. Fähndrich and Deline [11] allow aliasing
on linear values by restricting how the aliases are used.

Ownership-based techniques constrain the possible aliases
of a pointer. Early ownership techniques include Hogg’s Is-
lands [15], which restrict external aliases to the entire con-
tents of particular objects. Later work has made ownership
systems more flexible by having multiple ownership domains
for the contents of an object [8] and adding access permis-
sions between separate domains [17].

Aldrich et al. introduce AliasJava [2], which adds both
uniqueness and ownership annotations to document alias-
ing behavior in Java. While uniqueness allows AliasJava
to cleanly describe unaliased pointers, we believe the mech-
anisms offered by ownership are insufficient to accurately
describe actual aliasing. Aliased pointers are either owned,
and may be aliased with any other pointer with the same
owner, or are shared and may be aliased with any pointer.

In contrast, the annotations used and constraints generated
by our analysis directly specify the targets of aliased point-
ers, correlating closely to runtime aliasing behavior without
imposing significant documentation overhead.

7. CONCLUSION
We have developed a new context-, flow-, and partially

path-sensitive alias analysis, which we have used to iden-
tify all sources of aliasing in over one million lines of C
code. A distinctive feature of our approach is the use of
type and global invariants to avoid redundant computation
of widespread aliasing. We have found aliasing has a great
deal of structure in real programs and that just nine pro-
gramming idioms account for nearly all aliasing in our study.

8. REFERENCES
[1] A. Aiken, J. Foster, J. Kodumal, and T. Terauchi.

Checking and inferring local non-aliasing. In Proc. of the
Conference on Programming Language Design and
Implementation, pages 129–140, 2003.

[2] J. Aldrich, V. Kostadinov, and C. Chambers. Alias
annotations for program understanding. In Proc. of the
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 311–330, 2002.

[3] M. Berndl, O. Lhotak, F. Qian, L. Hendren, and
N. Umanee. Points-to analysis using BDDs. In Proc. of the
Conference on Programming Language Design and
Implementation, pages 103–114, 2003.

[4] J. Boyland. Alias burying: Unique variables without
destructive reads. Softw. Pract. Exper., 31(6):533–553,
2001.

[5] D. Chase, M. Wegman, and K. Zadeck. Analysis of pointers
and structures. In Proc. of the Conference on Programming
Language Design and Implementation, pages 296–310,
1990.

[6] R. Chatterjee, B. Ryder, and W. Landi. Relevant context
inference. In Proc. of the Symposium on Principles of
Programming Languages, pages 133–146, 1999.

[7] J. Choi, M. Burke, and P. Carini. Efficient flow-sensitive
interprocedural computation of pointer-induced aliases and
side effects. In Proc. of the Symposium on Principles of
Programming Languages, pages 232–245, 1993.

[8] D. Clarke, J. Potter, and J. Noble. Ownership types for
flexible alias protection. In Proc. of the Conference on
Object-Oriented Programming, Systems, Languages, and
Applications, pages 48–64, October 1998.

[9] M. Das. Unification-based pointer analysis with directional
assignments. In Proc. of the Conference on Programming
Language Design and Implementation, pages 35–46, 2000.

[10] M. Emami, R. Ghiya, and L. Hendren. Context-sensitive
interprocedural points-to analysis in the presence of
function pointers. In Proc. of the Conference on
Programming Language Design and Implementation, pages
242–256, 1994.

[11] M. Fähndrich and R. DeLine. Adoption and focus:
Practical linear types for imperative programming. In Proc.
of the Conference on Programming Language Design and
Implementation, pages 13–24, 2002.

[12] J. Foster, M. Fähndrich, and A. Aiken. Polymorphic versus
monomorphic flow-insensitive points-to analysis for C. In
Proc. of the International Symposium on Static Analysis,
pages 175–198, 2000.

[13] R. Ghiya and L. Hendren. Is it a tree, a DAG, or a cyclic
graph? A shape analysis for heap-directed pointers in C. In
Proc. of the Symposium on Principles of Programming
Languages, pages 1–15, 1996.

[14] M. Hind and A. Pioli. Which pointer analysis should I use?
In Proc. of the International Symposium on Software
Testing and Analysis, pages 113–123, 2000.

[15] J. Hogg. Islands: Aliasing protection in object-oriented
languages. In Proc. of the Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages
271–285, 1991.

[16] N. Jones and S. Muchnick. Flow analysis and optimization
of lisp-like structures. In Program Flow Analysis: Theory
and Applications, pages 102–131. Prentice Hall, 1979.

[17] N. Krishnaswami and J. Aldrich. Permission-based
ownership: Encapsulating state in higher-order typed
languages. In Proc. of the Conference on Programming
Language Design and Implementation, June 2005.

[18] W. Landi and B. Ryder. A safe approximate algorithm for
interprocedural aliasing. In Proc. of the Conference on
Programming Language Design and Implementation, pages
235–248, 1992.

[19] O. Lhotak and L. Hendren. Jedd: a BDD-based relational
extension of Java. In Proceedings of the Conference on
Programming Language Design and Implementation, pages
158–169, 2004.

[20] D. Liang and M. J. Harrold. Efficient computation of
parameterized pointer information for interprocedural
analyses. In Proc. of the International Symposium on
Static Analysis, pages 279–298, 2001.

[21] D. Liang, M. Pennings, and M. Harrold. Evaluating the
precision of static reference analysis using profiling. In
Proc. of the International Symposium on Software Testing
and Analysis, pages 22–32, 2002.

[22] V. B. Livshits and M. Lam. Tracking pointers with path
and context sensitivity for bug detection in C programs. In
Proc. of the Symposium on the Foundations of Software
Engineering, pages 317–326, 2003.

[23] A. Milanova, A. Rountev, and B. Ryder. Parameterized
object sensitivity for points-to and side-effect analyses for
Java. In Proc. of the International Symposium on Software
Testing and Analysis, pages 1–11, 2002.

[24] N. Minsky. Towards alias-free pointers. In Proc. of the
European Conference on Object-Oriented Programming,
pages 189–209, 1996.

[25] M. Mock, M. Das, C. Chambers, and S. Eggers. Dynamic
points-to sets: A comparison with static analyses and
potential applications in program understanding and
optimization. In Proc. of the Workshop on Program
Analysis for Software Tools and Engineering, pages 66–72,
2001.

[26] M. Naik and A. Aiken. Effective static race detection for
Java. In Proc. of the Conference on Programming Language
Design and Implementation, page to appear, 2006.

[27] E. Ruf. Context-insensitive alias analysis reconsidered. In
Proc. of the Conference on Programming Language Design
and Implementation, pages 13–22, 1995.

[28] P. Stocks, B. Ryder, W. Landi, and S. Zhang. Comparing
flow and context sensitivity on the modification-side-effects
problem. In Proc. of the International Symposium on
Software Testing and Analysis, pages 21–31, 1998.

[29] J. Whaley and M. Lam. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. In
Proc. of the Conference on Programming Language Design
and Implementation, pages 134–144, 2004.

[30] J. Whaley and M. Rinard. Compositional pointer and
escape analysis for Java programs. Proc. of the Conference
on Object Oriented Programming Systems, Languages, and
Applications, pages 187–206, 1999.

[31] R. Wilson and M. Lam. Efficient context-sensitive pointer
analysis for C programs. In Proc. of the Conference on
Programming Language Design and Implementation, pages
1–12, 1995.

[32] Y. Xie and A. Aiken. Scalable error detection using boolean
satisfiability. In Proc. of the Symposium on Principles of
Programming Languages, pages 351–363, January 2005.

