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alphabet �. Formally, a positive set constraint is of the form E � F and anegative set constraint is of the form E 6 � F , where E and F are expressionsbuilt from a set X = fx; y; : : :g of variables ranging over subsets of T�, theusual set-theoretic operators 0, 1, [, \, and �, and an n-ary set operator ffor each n-ary symbol f 2 � with semanticsf(A1; : : : ; An) = fft1 : : : tn j ti 2 Ai; 1 � i � ng :A system S of constraints is satis�able if there is an assignment of subsetsof T� to the variables satisfying all the constraints in S.Set constraints have numerous applications in program analysis and typeinference [3, 4, 7, 14, 15, 18, 19, 20, 22]. Most of these systems deal with pos-itive constraints only. Several algorithms for determining the satis�ability ofgeneral systems of positive constraints have appeared [1, 5, 6, 11, 13]. In [1],the satis�ability problem for a system S of positive constraints is shown to beequivalent to deciding whether a certain �nite hypergraph constructed fromS has an induced subhypergraph that is closed (see Section 4). This char-acterization is used to obtain an exhaustive hierarchy of complexity resultsdepending on the number of elements of � of each arity.In this paper we consider systems of mixed positive and negative con-straints. Negative constraints considerably increase the power of the con-straint language and have important applications in program analysis. Forexample, in [3, 4], opportunities for program optimization are identi�ed byan ad hoc technique for checking the satis�ability of systems of negative con-straints. Set constraints with only nullary symbols correspond to Booleanalgebras over a �nite set of atoms; in [17] general results on solving negativeconstraints in arbitrary Boolean algebras are given.In this paper we give a general decision procedure for determining whethera given system of mixed positive and negative set constraints over an arbi-trary signature is satis�able. The proof reduces the satis�ability problem toa reachability problem involving Diophantine inequalities which may be ofindependent interest. We reduce the satis�ability problem to the Diophan-tine problem and then show that the Diophantine problem is decidable. Theproof has a nonconstructive step involving Dickson's Lemma and does notgive any complexity bounds.The decidability result for systems of mixed positive and negative set con-straints was obtained independently by Gilleron, Tison, and Tommasi [12]2



using automata-theoretic techniques. Stef�ansson [21] has subsequently shownthat the Diophantine satis�ability problem is NP -complete and the satis�a-bility problem for systems of mixed positive and negative set constraints iscomplete for NEXPTIME . Charatonik and Pacholski [8] have given an al-ternative proof of this result based on the approach of [6] involving monadiclogic, and have extended the result to include projections [9]. Relationshipsbetween these various approaches have been drawn in [16].2 Set Expressions and Set ConstraintsThere is some variation in the literature regarding the de�nition of set ex-pressions and set constraints, depending on the operations allowed. Thefollowing de�nition is taken from [1].Let � be a �nite ranked alphabet consisting of symbols f , each with anassociated arity arity(f) 2 N. Symbols in � of arity 0, 1, 2, and n are callednullary, unary, binary, and n-ary, respectively. Nullary elements are oftencalled constants. The set of elements of � of arity n is denoted �n.The set of ground terms over � is denoted T�. This is the smallest set suchthat if t1; : : : ; tn 2 T� and f 2 �n, then ft1 : : : tn 2 T�. If X = fx; y; : : :gis a set of variables, then T�(X) denotes the set of terms over � and X,considering the elements of X as symbols of arity 0.Let B = ([; \; �; 0; 1) be the usual signature of Boolean algebra. OtherBoolean operators such as � (symmetric di�erence) are de�ned from theseas usual. Let � + B denote the signature consisting of the disjoint union of� and B. A set expression over X is any element of T�+B(X). The followingis a typical set expression:f(g(x [ y);�g(x \ y)) [ awhere f 2 �2, g 2 �1, a 2 �0, and x; y 2 X. We use E;F; : : : to denote setexpressions. A Boolean expression over X is any element of TB(X).A positive set constraint is a formal inclusion E � F , where E and Fare set expressions. We also allow equational constraints E = F , althoughinclusions and equations are interde�nable: E � F is equivalent to E [F =F , and E = F is equivalent to E � F � 0. A negative set constraint is thenegation of a positive set constraint: E 6 � F or E 6= F .3



We interpret set expressions over the powerset 2T� of T�. This forms analgebra of signature � + B where the Boolean operators have their usual set-theoretic interpretations and elements f 2 �n are interpreted as functionsf : (2T�)n ! 2T� such thatf(A1; : : : ; An) = fft1 : : : tn j ti 2 Ai; 1 � i � ng :A set assignment is a map � : X ! 2T�assigning a subset of T� to each variable in X. Any set assignment � extendsuniquely to a (� + B)-homomorphism� : T�+B(X) ! 2T�by induction on the structure of the set expression in the usual way. The setassignment � satis�es the positive constraint E � F if �(E) � �(F ), andsatis�es the negative constraint E 6 � F if �(E) 6 � �(F ). We write � j= ' ifthe set assignment � satis�es the constraint '. A system S of set constraintsis satis�able if there is a set assignment � that satis�es all the constraints inS; in this case we write � j= S. We write S j= ' if all set assignments thatsatisfy S also satisfy '. The satis�ability problem is to determine whether agiven �nite system S of set constraints over � is satis�able.A truth assignment is a map u : X ! 2 where 2 = f0; 1g is the two-element Boolean algebra. Any truth assignment u extends uniquely to a B-homomorphism u : TB(X)! 2 inductively according to the rules of Booleanalgebra. If X = fx1; : : : ; xmg, we use the notationB[xi := ai]to denote the truth value of the Boolean formula B under the truth assign-ment xi 7! ai, 1 � i � m.3 ExpressibilitySystems of mixed positive and negative constraints are strictly more expres-sive than systems of positive constraints alone. We will prove this as acorollary of a general compactness theorem for positive constraints.4



Theorem 1 (Compactness) A system S of positive set constraints is sat-is�able if and only if all �nite subsets of S are satis�able.Proof. The implication ()) is straightforward. For the other direction,suppose S is �nitely satis�able. We wish to construct a satisfying set as-signment for S. By Zorn's Lemma, there exists a maximal �nitely satis�ableset bS of positive constraints containing S. One can show that for all groundterms t and set expressions E, exactly one of the constraints t � E, t ��Eis in bS; if neither is in bS, then bS is not maximal, and if both are, then bS isnot �nitely satis�able. Now de�ne a map�(E) = ft j t � E 2 bSg :One can show by induction on the structure of set expressions that � is avalid set assignment and satis�es bS. For example, to show that�(fE1 : : :En) = fft1 : : : tn j ti 2 �(Ei); 1 � i � ng ;note t 2 �(fE1 : : :En) () t � fE1 : : : En 2 bS : (3.1)Then t must be of the form ft1 : : : tn, otherwise bS would not be �nitelysatis�able. Now we use the fact thatft1 : : : tn � fE1 : : : En j= ti � Ei ; 1 � i � nfti � Ei j 1 � i � ng j= ft1 : : : tn � fE1 : : :Ento argue that t � fE1 : : : En 2 bS i� ti � Ei 2 bS, 1 � i � n, otherwisebS would not be �nitely satis�able. Combining this with (3.1) and using theinduction hypothesis, we gett 2 �(fE1 : : : En) () ti 2 �(Ei) ; 1 � i � n :To show that � satis�es all constraints of bS, let E � F be any constraintin bS. For any term t, t 2 �(E) ) t � E 2 bS) t � F 2 bS (3.2)) t 2 �(F ) ;5



the reason for the implication (3.2) is thatft � E; E � Fg j= t � F ;and if t � F were not in bS, then t ��F would be, and bS would not be�nitely satis�able. 2Corollary 2 Finite systems of mixed positive and negative constraints arestrictly more expressive than systems of positive constraints only.Proof. Consider the single negative constraint x 6= 0 over any rankedalphabet � with at least one constant and at least one symbol of higherarity. Solutions are � : fxg ! T� with �(x) nonempty. Let S be any set,�nite or in�nite, of positive constraints over any set of variables X containingx. We claim that it is not the case that the setf�(x) j � : X ! T�; � j= Sgis exactly the set of nonempty subsets of T�.Consider the in�nite set of positive constraintsS [ ft ��x j t 2 T�g :Either this is satis�able or not. If so, then there is a satisfying set assignment�. But t 2 �(�x) for all terms t, so �(x) = ; and � j= S, and the claim isveri�ed. If not, then by compactness there is a �nite subset F � T� suchthat S [ ft ��x j t 2 Fgis not satis�able. Therefore there is no solution � of S with �(x) = ftg,where t is any term not in F . 24 Set Constraints and Hypergraph ClosureIn [1] it is shown how to transform a given system of positive set constraintsinto an equivalent system in a special normal form. The transformationis linear for �xed �. Applying this transformation to a system containing6



negative constraints, we obtain the following normal form. Let X be a set ofvariables, and for each f 2 �, letZf = fzfix j 0 � i � arity(f); x 2 Xgbe a set of variables such that the sets X and Zf , f 2 � are pairwise disjoint.A system of set constraints in normal form (with respect to X and the Zf )consists of� a positive constraint B = 1, B 2 TB(X)� for each f 2 �, a positive constraint Cf = 1, Cf 2 TB(Zf )� positive constraints zf0x = f 1 : : : 1| {z }n \ xzfix = f 1 : : : 1| {z }i�1 x 1 : : : 1| {z }n�ifor each f 2 �n, 1 � i � n, and x 2 X� a �nite set of negative constraints D 6= 0, one for each element D of agiven �nite set D � TB(X).The last component is absent with positive constraints only.We outline here the translation of [1] along with the minor modi�cationsnecessary to handle negative constraints.1. For every occurrence of a subexpression fE1 : : : En in S, let y0; y1; : : : ; ynbe new variables. Replace fE1 : : :En by y0 and add new constraintsy0 = fy1 : : : yn and yi = Ei, 1 � i � n. Continue until all constraintsare either purely Boolean or of the form y0 = fy1 : : : yn. Let X be theset of all variables occurring in S at this point.2. For each f 2 �n, introduce a new set of variablesZf = fzfix j 0 � i � n; x 2 Xgand add the constraintszf0x = f 1 : : : 1| {z }n \x zfix = f 1 : : : 1| {z }i�1 x 1 : : : 1| {z }n�ifor all 1 � i � n and x 2 X. 7



3. Assume without loss of generality that there is a variable y 2 X andconstraint y = 1 in S. Each constraint x = fx1 : : : xn obtained in step1 is equivalent to the constraintx = fx1 1 : : : 1| {z }n�1 \f1x2 1 : : : 1| {z }n�2 \ � � � \ f 1 : : : 1| {z }n�1 xn \ f 1 : : : 1| {z }n :(The last term on the right hand side is redundant except in the casen = 0. This was erroneously omitted in the account of [1]). This inturn is equivalent to the conjunction of constraintsf 1 : : : 1| {z }n \x = fx1 1 : : : 1| {z }n�1 \f1x2 1 : : : 1| {z }n�2 \ � � � \ f 1 : : : 1| {z }n�1 xn \ f 1 : : : 1| {z }ng 1 : : : 1| {z }m \x = 0 ; g 6= f ; m = arity(g) :Replace the constraint x = fx1 : : : xn with the constraintszf0x = n\i=1 zfixi \ zf0y zg0x = 0 ; g 6= f :Because of the constraints introduced in step 2, the resulting system isequivalent.4. At this point we have� positive and negative Boolean constraints formed in step 1 involv-ing only the variables X� for each f 2 �, positive Boolean constraints formed in step 3involving only the variables Zf� mixed constraints formed in step 2.Replace each positive Boolean constraint E � F involving variablesin X by the equivalent constraint �E [ F = 1. Let B be the con-junction of all the left hand sides of such constraints, and replace allthese constraints in S with the single constraint B = 1. Do the samefor the purely Boolean constraints involving the variables Zf to get asingle constraint Cf = 1 for each f 2 �. Finally, replace each negativeBoolean constraint E 6 � F by the equivalent constraint E\ � F 6= 0,and let D be the set of all such negative constraints.8



As described in [1], a system of set constraints S in normal form deter-mines a hypergraph H = (U; Ef j f 2 �)as follows. The vertex set U is the set of all truth assignments u : X ! 2satisfying B. Each such truth assignment corresponds to a conjunction ofliterals (also denoted u) in which each variable in X occurs exactly once,either positively or negatively, such that u � B tautologically. The variablex occurs positively i� u(x) = 1. We often call the elements of U atomsbecause they represent atoms (minimal nonzero elements) of the free Booleanalgebra on generators X modulo B = 1, where \minimal" is in the sense ofthe natural order on the Boolean algebra. It follows from elementary Booleanalgebra that each Boolean expression over X is equivalent modulo B = 1 toa disjunction of atoms.For each f 2 �n, the hyperedge relation Ef of H is de�ned to be the setof all (n+ 1)-tuples (u0; : : : ; un) 2 Un+1 such thatCf [zfix := ui(x)] = 1 : (4.3)Intuitively, we think of the formula Cf as a Boolean-valued mapping on(n + 1)-tuples of truth assignments to X. To emphasize this intuition, weabbreviate the left hand side of (4.3) byCf [u0; : : : ; un] :Thus (u0; : : : ; un) 2 Ef i� Cf [u0; : : : ; un] = 1 :In general, the size of H can be exponential in the size of S.An (n+ 1)-ary hyperedge relation Ef of the hypergraph H is said to beclosed if for each n-tuple u1; : : : ; un 2 Un, there exists u0 2 U such that(u0; u1; : : : ; un) 2 Ef . In the case n = 0, this de�nition just says Ef \U 6= ;.Abusing notation, we can think of Ef as a functionEf : Un ! 2Uwhere Ef (u1; : : : ; un) = fu0 j (u0; u1; : : : ; un) 2 Efg :9



In this view, Ef is closed i� Ef(u1; : : : ; un) 6= ; for each n-tuple u1; : : : ; un 2Un. The hypergraph H is said to be closed if all its hyperedge relations areclosed.The induced subhypergraph of H on vertices U 0 � U is the hypergraphH 0 = (U 0; E 0f j f 2 �)such that E 0f = Ef \ (U 0)n+1 for f 2 �n.The hypergraph closure problem is the problem of determining whether agiven hypergraph H has a closed induced subhypergraph.The following theorem was proved in [1].Theorem 3 The hypergraph H corresponding to a system S of positive setconstraints has a closed induced subhypergraph if and only if S is satis�able.In brief, the proof of [1] establishes a one-to-one correspondence betweenset assignments � satisfying S and maps � : T� ! U such that for all f 2 �and for all terms ft1 : : : tn,�(ft1 : : : tn) 2 Ef (�(t1); : : : ; �(tn)) : (4.4)The set assignment corresponding to � is�(x) = ft j �(t)(x) = 1g�(zfix) = �(f 1 : : : 1| {z }i�1 x 1 : : : 1| {z }n�i )�(zf0x) = �(f 1 : : : 1| {z }n \ x) :Thus deciding the satis�ability of S is tantamount to determining theexistence of a map � satisfying (4.4). In turn, this is equivalent to thehypergraph closure problem: if such a � exists, then the induced subhy-pergraph of H on the image of � is closed, and conversely, if there ex-ists a closed induced subhypergraph on vertices U 0 � U , then one caninductively de�ne �(ft1 : : : tn) to be the lexicographically �rst element ofU 0 \ Ef (�(t1); : : : ; �(tn)).In the presence of negative constraints D 6= 0, D 2 D, the map � must notonly satisfy (4.4), but must also take on some value u such that u(D) = 1 foreach D 2 D. Thus in the presence of negative constraints, the satis�abilityproblem becomes: 10



Problem 4 Given a �nite set D of Boolean formulas D 2 TB(X) and ahypergraph H = (U; Ef j f 2 �) speci�ed by B 2 TB(X) and Cf 2 TB(Zf ),f 2 �, determine whether there exists a map � : T� ! U satisfying (4.4)such thatfor each D 2 D there exists an atom u in �(T�) satisfying D, (4:5)where �(T�) denotes the image of T� under the map �.5 A Reachability ProblemOur decision procedure �rst reduces the satis�ability problem for mixed sys-tems of positive and negative set constraints to a certain reachability probleminvolving Diophantine inequalities. In this section we de�ne the reachabilityproblem and give the reduction.First we describe the reachability problem on an intuitive level. Let X bea set of variables ranging over N, the natural numbers. Suppose we are givena �nite system C of formal inequalities p � q, where p and q are polynomialsin the variables X with coe�cients in N, such that� each left hand side p is a sum of variables in X� each variable occurs in at most one left hand side.An assignment is a map u : X ! N. Each assignment u extends uniquely toan evaluation morphism u : N[X]! N which evaluates polynomials at u. Avariable x is said to be enabled under an assignment u if either� the variable x does not occur on the left hand side of any constraint inC; or� the unique constraint in C in which x appears on the left hand side isa strict inequality under the assignment u.Consider the following nondeterministic procedure. Starting with thezero assignment, repeatedly choose a variable that is enabled and \�re" it byincrementing it by 1. The reachability problem is to decide whether thereexists a sequence of legal �rings that allows a particular distinguished variableto be �red. 11



We give a more rigorous presentation of this problem below, then reducethe satis�ability problem to this problem. In Section 6 we show that thereachability problem is decidable.5.1 Polynomials and AssignmentsWe use the term ring to mean commutative ring with unit and semiring tomean commutative semiring with unit.Let Zdenote the ring of integers and N � Z the semiring of naturalnumbers with the usual addition and multiplication operations. For X a�nite set of variables, letZ[X] denote the ring of polynomials in the variablesX with integer coe�cients and N[X] � Z[X] the semiring of polynomialswith positive coe�cients. The ringZ[X] is the free ring on generators X andthe semiring N[X] is the free semiring on generators X.Any map u : X ! R to a ring R extends uniquely to a ring homomor-phism u : Z[X] ! R. If S is a semiring and S � R, and if u(x) 2 S forx 2 X, then the restriction of u : Z[X]! R to domain N[X] is a semiringhomomorphism N[X] ! S, and is the unique semiring homomorphism ex-tending u : X ! S. We will concentrate on the case S = N and R = Z; wecall such a map an assignment. However, functional composition of polyno-mials is e�ected by the same construction with S = N[X] and R =Z[X].Intuitively, an assignment u : X ! N should be regarded as an assignmentof values to the variables, and u(q) the result of evaluating the polynomial qon those values.The set of assignments, considered as functions of X, forms a commuta-tive monoid V under pointwise addition u + v : x 7! u(x) + v(x), x 2 X,with identity element the zero assignment 0 : x 7! 0, x 2 X. The monoid Vis isomorphic to the commutative monoid NjX j with ordinary addition underthe map v 7! (v(x) j x 2 X).Care must be taken here: it is not the case that (u+ v)(q) = u(q) + v(q)for q 2Z[X] in general. The value of (u+ v)(q) is governed by the de�nitionof the unique extension of assignments to homomorphisms. For example,(u+ v)(x+ 1) = (u+ v)(x) + (u+ v)(1) = u(x) + v(x) + 1 ;whereas u(x+ 1) + v(x+ 1) = u(x) + v(x) + 2 :12



However, we do have the following useful inequality:Lemma 5 For any q 2 N[X],(u+ v)(q) � u(q) + v(q)� 0(q)with equality holding if q is a�ne (i.e., linear plus a constant term).Proof. This can be proved by induction on the form of q. Note that 0(q)is the constant term of q. For x 2 X, we have (u+ v)(x) = u(x) + v(x), andfor constants a 2 N, (u+ v)(a) = a = u(a)+ v(a)�0(a). For polynomials ofthe form pq where neither p nor q has a constant term,(u+ v)(pq) = (u+ v)(p) � (u+ v)(q)� (u(p) + v(p)) � (u(q) + v(q))� u(p) � u(q) + v(p) � v(q)= u(pq) + v(pq) :Finally, for polynomials of the form p+ q,(u+ v)(p+ q) = (u+ v)(p) + (u+ v)(q)� u(p) + v(p)� 0(p) + u(q) + v(q)� 0(q)= u(p+ q) + v(p+ q)� 0(p+ q)with equality holding if p and q are a�ne, by the induction hypothesis. 2In particular, (u+ v)(q) = u(q) + v(q) if q is linear with constant coe�cient0. For v : X ! N an assignment, let incv :Z[X]!Z[X] be the unique ringhomomorphism such thatincv(x) = x+ v(x) ; x 2 X :Informally, incv(p) is the polynomial obtained from p by substituting x+v(x)for x. Intuitively, incv says, \Automatically increase the value of x 2 Xby v(x)." Restricted to domain N[X], incv is a semiring homomorphismN[X]! N[X], for which we use the same name.13



The homomorphism incv is the unique map such that the diagramZ[X]Z[X]? ZHHHHj����*u+ vuincv (5:6)commutes, i.e. such that u � incv = u+ v: for x 2 X,(u+ v)(x) = u(x) + v(x)= u(x+ v(x)) (5.7)= u(incv(x)) :Equation (5.7) holds since v(x) is a constant. Since the homomorphisms u+vand u � incv agree on X, they agree everywhere. The homomorphism incvis unique, since it is determined by its values on x 2 X, and the polynomialincv(x) is determined by its set of values u(incv(x)) = u(x) + v(x).By composing two copies of (5.6), one observes that the setI = fincv j v an assignmentgforms a monoid under functional composition � with identity inc0. Moreover,I is isomorphic to the monoid of assignments V under the map v 7! incv;i.e., incu+v = incu � incv :The map v 7! incv is bijective, since v can be recovered uniquely from incvby taking u = 0 in (5.7).It follows immediately that incu and incv commute under composition,i.e. incu � incv = incv � incu.One application of particular importance will be incrementing the valueof a variable x under an assignment u by 1. The new assignment is u + �x,where �x(x) = 1 and �x(y) = 0 for y 6= x. The e�ect of applying inc�x to apolynomial q is the same as substituting x+ 1 for x in q.Let X� denote the monoid of �nite-length strings over X. This is thefree monoid on generators X. Elements of X� will be denoted �; �; �; : : :There is a unique monoid homomorphism [[ ]] : X� ! V extending themap x ! �x, x 2 X. The image of � = x1 � � �xn under this map is [[�]] =14



Pni=1 �xi. Applied to x, the function [[�]] gives the number of occurrences of xin the string �. This is known in formal language theory as the Parikh map.By a slight abuse of notation, we omit the braces [[ ]] when using [[�]] as afunction; thus �(x) denotes the number of occurrences of x in �, and �(q) isthe value of the polynomial q under the assignment [[�]].5.2 Systems of Diophantine InequalitiesWe consider �nite systems C of Diophantine inequalities of the form p � qwhere p; q 2 N[X] such that� each left hand side p is a sum of distinct variables; and� each variable in X occurs in at most one left hand side.There is no restriction on the form of the right hand sides q except that theybe in N[X]. The inequalities in C are called (Diophantine) constraints. Avariable x 2 X is said to be constrained in C if x occurs on the left hand sideof some constraint in C. In this case we denote the unique such constraintby con (x;C). If x does not occur on the left hand side of any constraint inC, then x is said to be unconstrained in C, and we write con (x;C) = �.We say that the assignment u satis�es the constraint p � q if u(p) � u(q).We say that u satis�es C if u satis�es all the constraints in C. We say that� 2 X� satis�es a constraint or set of constraints if [[�]] does.5.3 The Nonlinear Reachability ProblemLet C be a system of Diophantine constraints as described above and letx0 2 X be a �xed distinguished variable.De�nition 6 Let � 2 X�. The constraint p � q 2 C is said to be �-enabledif �(p) < �(q); i.e., the inequality is strict under the assignment [[�]]. Thevariable x 2 X is said to be (�;C)-enabled if either� x is unconstrained in C, or� x is constrained in C and con (x;C) is �-enabled. 215



A tree, for our purposes, is a nonempty pre�x-closed subset T of X�. Theroot of T is �. The parent of � 6= � is the longest proper pre�x of �. A leafof T is an element of T that is not a parent. A path of T is a maximal subsetof T linearly ordered by the pre�x relation.The system C gives rise to a treeTC = f� 2 X� j for all pre�xes �x of �, x is (�; C)-enabled.gThe tree TC describes the possible legal sequences of �rings that can takeplace according to the informal description of the nonlinear reachability prob-lem given in Section 5.De�nition 7 The Nonlinear Reachability Problem (NRP) is to determine,given C, whether TC contains an element � such that �(x0) > 0. Such a � iscalled a solution of the given instance C of the NRP. 2In other words, determine whether there exists a legal �ring sequence suchthat the distinguished variable x0 is �red.Note that � satis�es C since [[�]] = 0, and if � satis�es C and x is (�;C)-enabled, then �x satis�es C, since [[�x]] = [[�]] + �x. It follows by inductionthat � satis�es C for every � 2 TC. In other words, if � satis�es C and x is(�;C)-enabled, then we can �re x and the resulting assignment still satis�esC. The converse is false in general; i.e., it is possible that both � and �xsatisfy C but x is not (�;C)-enabled: consider the constraint x � x.5.4 Reduction of Set Constraint Satis�ability to Non-linear ReachabilityTheorem 8 The satis�ability problem for systems of mixed positive and neg-ative set constraints reduces e�ectively to a �nite disjunction of instances ofthe Nonlinear Reachability Problem.Proof. As argued in Section 4, the satis�ability problem for systems ofmixed positive and negative constraints is equivalent to Problem 4. Usingthe notation of Problem 4, let U be the set of all subsets V � U such thatfor all D 2 D there exists a v 2 V with v(D) = 1. Consider a modi�edversion of Problem 4 in which condition (4.5) is replaced by the conditionV � �(T�) : (5:8)16



Then Problem 4 is equivalent to the disjunction over all V 2 U of instancesof the modi�ed version. Furthermore, we will only need to construct a �nitepartial approximation �0 to � satisfying (4.4) and (5.8), provided� the domain of �0 is closed downward under the subterm relation� there is a closed induced subhypergraph of H containing the image of�0.The second property will allow �0 to be completed to a total function �, asdescribed below.Thus the problem now becomes:Problem 9 Given a hypergraph H = (U; Ef j f 2 �) speci�ed by B andCf , f 2 �, and a subset V � U , determine whether there exist U 0 � U anda partial map � : T� ! U 0 with �nite domain such that� the induced subhypergraph on U 0 is closed� the domain of � is closed downward under the subterm relation� � satis�es (4.4) on all terms in its domain� V � �(T�) � U 0.Consider the following nondeterministic procedure for constructing �. We�rst guess the subset U 0 containing the target set V and check that it isclosed. We start with � totally unde�ned. At any point, say we have apartial � with �nite domain closed downward under the subterm relation.We nondeterministically pick some term ft1 : : : tn such that the �(ti) arede�ned but �(ft1 : : : tn) is not yet de�ned, nondeterministically choose someu in Ef (�(t1); : : : ; �(tn)) \ U 0, and assign �(ft1 : : : tn) := u. We are alwaysable to continue, since U 0 is closed. We halt successfully when and if allelements of V have been chosen as �(t) for some t.During this process, we use an integer variable xu;f;u1;:::;un , n = arity(f),to count the number of terms of the form ft1 : : : tn such that� �(ti) exists and equals ui, 1 � i � n, and� �(ft1 : : : tn) exists and equals u.17



There is one such variable for each choice of f in �, u1; : : : ; un 2 U 0 wheren = arity(f), and u 2 U 0 \ Ef (u1; : : : ; un).Now for each f 2 �n and u1; : : : ; un 2 U 0, consider the formal inequalityXu2U 0\Ef(u1;:::;un)xu;f;u1 ;:::;un � nYi=1 MXm=0 Xv1; : : : ; vm 2 U 0g 2 �m xui ;g;v1;:::;vm (5.9)where M is the maximum arity of symbols in �. This inequality has thefollowing signi�cance. Given a partial map �, letBu = ft j �(t) exists and equals ugAf;u1;:::;un = fft1 : : : tn j ti 2 Bui; 1 � i � ng :The value of the right hand side of (5.9) is the size of Af;u1;:::;un, which is thethe size of the direct product Bu1 � � � � � Bun . The value of the left handside of (5.9) is the size of the subset of Af;u1;:::;un consisting of all elements tfor which �(t) is de�ned. The inequality expresses the fact that � is de�nedon the subterms of t before being de�ned on t.Consider the collection C of all such inequalities (5.9). To say that avariable xu;f;u1;:::;un is enabled says that there exists a term t with head sym-bol f such that � is de�ned on the n immediate subterms and takes valuesu1; : : : ; un on those subterms respectively, but �(t) is not yet de�ned. To �rexu;f;u1;:::;un says that we choose one such t and de�ne �(t) := u.The process of de�ning � from the bottom up as described above corre-sponds to a sequence of legal �rings. Conversely, any legal sequence of �ringsgives a corresponding sequence of de�nitions of � starting with the totallyunde�ned map.We have thus reduced the satis�ability problem for systems of mixedpositive and negative set constraints to a disjunction of instances of theproblem of determining, given C and V , whether there is a �nite sequenceof legal �rings after which for all v 2 V there are f and u1; : : : ; un such thatthe value of xv;f;u1;:::;un is nonzero.We reduce this problem to a �nite disjunction of instances of the NRPas follows. For each v 2 V , choose f and u1; : : : ; un and let yv = xv;f;u1;:::;un.Add the constraint x0 � Yv2V yv18



where x0 is a new variable, and make x0 the distinguished variable of theNRP so obtained. The variable x0 can be �red only after all the yv havebeen �red. The problem above is equivalent to the disjunction of all suchinstances of the NRP over all possible choices of the yv. 26 Decidability of the Nonlinear ReachabilityProblemIn this section we prove the decidability of the NRP.We will start by de�ningseveral technical concepts on which our proof is based and deriving theirbasic properties. The most important of these concepts are the notions ofexposed and inhibited variables and admissible strings. Intuitively, a variableis exposed in a polynomial q if incrementing it causes the value of q to increase.The intuition behind the de�nition inhibited variable is that it does no goodto increment such a variable under the current state of a�airs. A string � isadmissible if it never increments any inhibited variable. We show that if thereexists a solution, then there exists an admissible one. The �nal argumentshows that if we construct the tree TC breadth-�rst, ignoring nonadmissiblestrings, then along any path we will eventually encounter either a solution, aleaf with no admissible extensions, or a con�guration that allows us to reducethe size of the system.6.1 ResetWe �rst describe a useful technical device called a reset. Intuitively, afterexecuting a �ring sequence � that is legal with respect to a set of constraintsC, we can construct a new instance of the problem inc�(C) (de�ned below)which allows us to proceed as if we were starting afresh.De�nition 10 Let C be a system of Diophantine constraints as de�ned inSection 5.2. If � 2 TC , we de�ne T �C to be the subtree of TC rooted at �:T �C = f� 2 X� j �� 2 TCg :This set is nonempty and pre�x-closed, therefore a tree. 219



Note that [[�]] alone determines whether a variable is �-enabled. It followsinductively that if �; � 2 TC and [[�]] = [[� ]], then T �C = T �C.Let v be any assignment satisfying C, and let incv be as in Section 5.1.Let incv(C) denote the system of constraintsincv(C) = fp � incv(q)� v(p) j p � q 2 Cg :The right hand sides incv(q)�v(p) are in N[X], since the constant coe�cientof incv(q) is at least v(p). This is a consequence of the fact that v satis�esC: v(p) � v(q) = 0(incv(q)) :Moreover, x is constrained in C i� it is constrained in incv(C), since all theleft hand sides are the same.Note also that the constraint p � incv(q)� v(p) 2 incv(C) is equivalentto incv(p) � incv(q), since incv(p) = p + v(p) for p a sum of variables.Lemma 11 Let C be a set of constraints and � 2 TC. ThenT �C = Tinc�(C) :Proof. Certainly � is a member of both trees. Moreover, for any constraintp � q 2 C, we have from (5.6) that� (inc�(q � p)) = ��(q � p) ;and con (x;C) = con (x; inc�(C)), thus x is (�; inc�(C))-enabled i� x is(��;C)-enabled. Thus the trees are identical. 26.2 OrderOur algorithm will construct part of the tree TC . During this construction,we will want to keep track of the values of q � p for p � q 2 C, since thisinformation will help us determine when we have reached a situation in whichprogress has been made. We de�ne the order �C for this purpose. We alsode�ne the order �X, which is just the natural order on the set of assignments.De�nition 12 For C a system of constraints and �; � 2 X�, de�ne20



� � �X � if �(x) � � (x) for all x 2 X� � �C � if �(q � p) � � (q � p) for all p � q 2 C� � �X;C � if both � �X � and � �C �� � �C � if both � �C � and � �C �. 2It follows from Lemma 5 and the observation that 0(q) is the constantcoe�cient of q that for q 2 N[X], if � �X � then �(q) � � (q).Note that the relations �X and �C depend only on the assignments [[�]]and not on the strings � themselves. Note also that if �� 2 TC then � �X �� .The same statement is not true in general for �C; for example, take � = �,� = x, and C = fx � y + 1g.Lemma 13 Let x 2 X, �; � 2 X� such that � �X � , and p � q 2 C. Then�x(q � p) � �(q � p) � �x(q � p) � � (q � p) :Proof. Using Lemma 5 and the facts that [[�x]] = [[�]]+ �x and p is linear,it follows that the inequality in the statement of the Lemma is equivalent to�x(q)� �(q) � �x(q)� � (q) :By (5.6), this is equivalent to�(incx(q)� q) � � (incx(q)� q) :But this inequality follows from the assumptions of the Lemma, since � �X �and incx(q)� q 2 N[X]. 2Lemma 14 Let �; � 2 TC and x 2 X.(i) If x is (�;C)-enabled and � �C � , then x is (�; C)-enabled.(ii) If � �X � then �x �X �x.(iii) If � �X;C � , then �x �X;C �x.Proof. The assertions (i) and (ii) are straightforward consequences of thede�nitions. The assertion (iii) follows from (ii) and Lemma 13. 221



6.3 Well Partial Orders and Dickson's LemmaA well partial order is a partially ordered set in which every in�nite se-quence has an in�nite monotone nondecreasing subsequence. That is, forevery in�nite sequence d0; d1; : : :, there exist indices i0 < i1 < � � � such thatdi0 � di1 � � � �.Lemma 15 (Dickson's Lemma) The set Nk of k-tuples of natural num-bers under the componentwise order is a well partial order.For a proof of Dickson's Lemma, see [10].We will use Dickson's Lemma in the argument below to conclude thatalong any in�nite path in TC , we must eventually have � �C �� . Here weare taking k = jCj and comparing the k-tuples (�(q � p) j p � q 2 C).6.4 Exposed VariablesIntuitively, a variable x is �-exposed in a polynomial q i�, after executing�, �ring x would cause the value of q to increase strictly. The followingde�nition and lemma make this intuition precise.De�nition 16 Let x 2 X and � 2 TC . We say that x is �-exposed in amonomial qxi, where x does not appear in q, if i � 1 and �(q) 6= 0. Forq 2 N[X], we say that x is �-exposed in q if x is �-exposed in some monomialof q. We say that x is (�;C)-exposed if x is �-exposed in q for some p � q 2 C.2Lemma 17 Let x 2 X, q 2 N[X], and � 2 TC. Then x is �-exposed in q i��(q) < �x(q).Proof. Since � and �x are homomorphisms and all values are nonnegative,it su�ces to show the result for monomials axi, a 2 N[X � fxg]. Since�x(a) = �(a),�x(axi)� �(axi) = �(a)((�(x) + 1)i � �(x)i) � 0 ;with equality holding i� i = 0 or �(a) = 0. 2The following lemma establishes some basic properties of the notion ofexposure and its relation to enabling and the relation �C.22



Lemma 18 Let x 2 X, p � q 2 C, and �; � 2 TC .(i) If x is �-exposed in q and � �X � , then x is � -exposed in q (onceexposed, always exposed).(ii) If x is �-exposed in q, then �x(q � p) � �(q � p); moreover, if x doesnot occur in p, then the inequality is strict.(iii) If x is not (�;C)-exposed, then �x �C �.(iv) The property of exposure in the right hand side of a constraint p � q 2C is preserved under a reset. Formally, x is �� -exposed in q i� x is� -exposed in inc�(q)� �(p).(v) If �(x) > 0, x is not �-exposed in q, and x is �y-exposed in q, then yis �-exposed in q.Proof. Except for (iv) and (v), all statements are direct consequences ofDe�nition 16 and Lemma 17.To prove (iv), we use (5.6) and Lemma 17:��x(q)� �� (q) = �x(inc�(q))� � (inc�(q))= �x(inc�(q)� �(p))� � (inc�(q)� �(p)) ;since �(p) is a constant.For (v), there must be a monomial axi of q, i � 1, a 2 N[X � fxg],such that �(a) = 0 and �y(a) > 0. Since �y(x) � �(x) > 0, we have�y(axi) > 0 = �(axi), thus �y(q) > �(q). By Lemma 17, y is �-exposed inq. 26.5 Inhibited Variables and Admissible StringsThe technical notion of an inhibited variable captures the idea that, underthe current state of a�airs, �ring the variable makes no progress toward asolution. Intuitively, �ring a variable makes progress only if the variable isexposed, so that �ring it might enable another variable, or has value 0, sothat �ring it might contribute to the exposure of another variable.We will formalize and prove a result that says intuitively that any string� can be simulated by another string � in which no inhibited variable is ever�red. Such a string � is called admissible.23



De�nition 19 Let C be a system of Diophantine constraints and � 2 TC.We say x 2 X is (�;C)-inhibited if� x is unconstrained in C,� x is not (�;C)-exposed, and� �(x) > 0.We say that � 2 X� is C-admissible if � 2 TC, and for all pre�xes �y of �,y is not (�; C)-inhibited. 2Lemma 20 (i) If y is (�;C)-inhibited, then �(p) = �y(p) and �(q) =�y(q) for all constraints p � q 2 C. In particular, �y �C �.(ii) If y; z are (�;C)-inhibited, then z is (�y;C)-inhibited. (This also ap-plies to the case y = z.)Proof.(i) Since y is unconstrained, it does not appear in p, therefore �(p) =�y(p). Since y is not �-exposed in q, we have �(q) = �y(q) by Lemma17.(ii) Surely �y(z) � �(z) > 0 and z is still unconstrained in C. Since y andz are not (�;C)-exposed, they are not exposed in q for any p � q 2 C.Since �(z) > 0, it follows from Lemma 18(v) that z is not �y-exposedin q. Thus z is not (�y;C)-exposed. 2The following two lemmas imply that we can restrict our attention toadmissible strings when looking for solutions.Lemma 21 For every � 2 TC, there exists a C-admissible string � 2 TCsuch that � �C � . 24



Proof. Let us call a pre�x �1y of � bad if y is (�1; C)-inhibited. Theproof is by lexicographical induction on the length of �; among strings ofthe same length, the number of bad pre�xes; and among strings of the samelength and same number of bad pre�xes, the length of the longest bad pre�x(\longer" is \smaller" in the induction). If � is null or has no bad pre�x,there is nothing to prove. If the longest bad pre�x �1y is � itself, then sincey is not (�1; C)-exposed, we have by Lemma 18(iii) that �1y �C �1, and weare done by the induction hypothesis. Otherwise, there exists a z and �2such that � = �1yz�2. Now z is not (�1y;C)-inhibited, by the maximality of�1y. Neither is it (�1; C)-inhibited, by Lemma 20(ii). Moreover, z is (�1; C)-enabled, by Lemma 20(i) and the fact that it is (�1y;C)-enabled, and y is(�1z;C)-enabled since it is unconstrained. Therefore �1zy�2 2 TC is of thesame length as �, but with either strictly fewer bad pre�xes (if �1zy is not abad pre�x) or the same number of bad pre�xes and a strictly longer maximalone (if it is). The result follows from the induction hypothesis. 2Lemma 22 If a given instance of the NRP with constraints C has a solution,then it has an admissible solution.Proof. Let � be a solution of minimal length. Then � is of the form�x0 and � (x0) = 0. By Lemma 21, there exists an admissible � such that� �C �. If �(x0) > 0, then � is the desired admissible solution. Otherwise,x0 is (�;C)-enabled (since � �C � and x0 is (�; C)-enabled) and not (�;C)-inhibited (since �(x0) = 0), therefore �x0 is the desired admissible solution.26.6 The Graphs H(�;C)We now describe a family of graphs H(�;C) de�ned in terms of a givensystem C of constraints and � 2 TC. The purpose of these graphs is tokeep track of the exposed variables and how �ring them can enable otherconstraints, so that we can monitor the progress of a �ring sequence.Formally,H(�;C) is a �nite labeled directed graph with vertices C [f�g.For each p � q 2 C and x 2 X such that x is �-exposed in q, there is anedge labeled x from con (x;C) to p � q. (Recall that con (x;C) is � if x isunconstrained in C, otherwise con (x;C) is some constraint p � q 2 C.) Self-loops are allowed in this de�nition: if x is constrained in C by the constraint25



p � q and x is �-exposed in q, H(�;C) has a self-loop labeled x on the vertexp � q.It follows from Lemma 18(i) that if � �X � then H(�;C) is a subgraphof H(�; C). In particular, H(�;C) is a subgraph of H(�x;C). Moreover, itfollows from Lemma 18(ii) that if � 2 TC, x is (�;C)-enabled, and H(�;C)contains an edge labeled x into p � q, then p � q is �x-enabled.We can think of H(�;C) as a net in which tokens are passed around asvariables are �red. Firing a variable x causes at least one token to be passedfrom con (x;C) along all edges labeled x to other constraints in which x isexposed, enabling those constraints. The number of tokens that are passeddepends on the values of �(q � p) for p � q 2 C, but by Lemma 18(ii), it isalways at least one.Lemma 23 Let �� 2 TC such that � �C �� . Assume further that � containsat least one variable constrained in C. Then H(��;C) contains either a cycleall of whose labels are in � or an edge out of � whose label is in � .Proof. Let x be constrained in C by the constraint p � q, and supposethat x occurs in � at least once. Then �(p) < �� (p). Also, �(q�p) � �� (q�p), since � �C �� . Combining these inequalities, we obtain �(q) < �� (q).By Lemma 17, there must be a y 2 X and a pre�x �y of � such that y is��-exposed in q. Then H(��;C) contains an edge labeled y from con (y;C)to con (x;C). Since H(��;C) is a subgraph of H(��;C), this edge also existsin H(��;C).Now either y is unconstrained in C, in which case con (y;C) = � and weare done, or we can continue in the same fashion with y. Following theseedges backwards, we must eventually either arrive at � or cycle. 26.7 Equivalence of Problem InstancesIn our decidability proof, we will show that as a computation � unfolds, thegraph H(�;C) develops in certain ways that occasionally allow us to simplifyC, for instance by discarding a constraint or a variable. In such cases we willconstruct a new system D that is structurally simpler than C but equivalentin the sense that D has a solution i� C does. The following de�nition givesthe formal notion of equivalence of systems that we have in mind.26



De�nition 24 Let C;D be systems of constraints. We write C � D if forevery � 2 TC there is a � 2 TD such that � �X � . We write C � D and saythat C and D are equivalent if both C � D and D � C. 2It follows immediately from this de�nition that if C � D, then C has asolution if and only if D does.6.8 Proof of DecidabilityLet C be a system of Diophantine constraints. The following three lemmas,Lemmas 25, 26, and 27, identify three situations that will allow a structuralsimpli�cation of the system C. We suggest that the reader skip the proofsof these lemmas on �rst reading and go directly to Theorem 28.Lemma 25 Let p � q 2 C. If C has an unconstrained variable 0-exposed inq, then C � C � fp � qg :Proof. Let C 0 = C � fp � qg. The easier direction is C � C 0. If yis (�;C)-enabled then y is also (�;C 0)-enabled, since y is either constrainedby the same constraint in C and C 0 or unconstrained in C 0. It follows thatTC � TC0.For the other direction, suppose � 2 TC0. Let x be a C-unconstrainedvariable 0-exposed in q. Let n = j�j and let� = xx � � �x| {z }n � = xn� :Then � �X � . We show that � 2 TC. Certainly xn 2 TC, since x isunconstrained. It remains to show that � 2 T xnC . Resetting and using Lemma11, it su�ces to show � 2 Tincxn (C). Thus we need to show that for anypre�x �y of �, y is (�; incxn(C))-enabled. This follows from the fact that yis (�;C 0)-enabled: for any f � g 2 C 0,�(incxn(g � f)) = �xn(g)� �(f) since x does not occur in f� �(g � f) ; 27



and for the constraint p � q,�(incxn(q � p)) = �xn(q)� �(p) since x does not occur in p� �(q) + n � �(p) by Lemmas 17 and 18(i)� �(q) + n � j�j since p is linear> 0 since j�j < n. 2Lemmas 26 and 27 deal with two di�erent kinds of cycles that can arisein H(�;C). The �rst is used when the cycle is a self-loop on a single vertex,and the latter is used when the cycle has at least two vertices.Lemma 26 If H(�; C) has a self-loop labeled x on vertex p � q, and if x is(0; C)-enabled, letC 0 = ( (C � fp � qg) [ fp� x � q � xg ; if q � x 2 N[X]C � fp � qg ; otherwise.Then C � C 0.Proof. Since x is 0-exposed in q, by De�nition 16 that q has a term ofthe form axk where a; k 2 N and a; k � 1; i.e., q can be written q0 + xkwith q0 2 N[X]. If the �rst alternative in the de�nition of C 0 holds, i.e. ifq has a linear term ax, then we can take k = 1. If the second alternativeholds, we can take k > 1. Let us call these two cases (i) and (ii), respectively.Either way, since con (x;C) is p � q, x also occurs in p, and since p is linear,p = p0 + x for some p0 2 N[X].First we show C � C 0. This is immediate for case (ii) as in Lemma25. For case (i), note that q � p = q0 � p0. Thus for any � 2 X�, anyvariable y 2 X � fxg is (�;C)-enabled i� it is (�;C 0)-enabled, and since x isunconstrained in C 0, x is always (�;C 0)-enabled. It follows that TC � TC0,thus C � C 0.Now we show C 0 � C for both cases. Let � 2 TC0 , and let n = maxf2; j�jg.Let �0 be obtained by deleting all occurrences of x from �, and let � = xn�0.Then � �X � . We claim that � 2 TC. Since x is 0-exposed in q and (0; C)-enabled, by Lemmas 17 and 18(i), xn 2 TC, so we need only prove that28



�0 2 T xnC . Resetting by Lemma 11, it su�ces to prove that �0 2 Tincxn(C).We need to show that for any pre�x �0y of �0, y is (�0; incxn(C))-enabled.This will follow from the fact that y is (�;C 0)-enabled, where �y is the uniquepre�x of � such that �0y is �y with all occurrences of x removed (note y 6= x,since it occurs in �0).Suppose � has m occurrences of x. For any f � g 2 C � fp � qg,�0(incxn(g � f)) = �0xn(g)� �(f) since x does not occur in f= �xn�m(g)� �(f)� �(g)� �(f)= �(g � f) :For the argument involving constraint p � q, we split on cases. In case (i),�0(incxn(q � p)) = �0xn(q0 � p0)= �0xn(q0)� �(p0) since x does not occur in p0= �xn�m(q0)� �(p0)� �(q0)� �(p0)= �(q0 � p0) :In case (ii),�0(incxn(q � p)) = �0xn(q � p)= �0xn(q0) + �0xn(xk)� �0xn(p0)� �0xn(x)� �nx(xk)� �0(p0)� �nx(x)� nk � (n� 1)� n� (n� 1)2> 0 : 2Lemma 27 If there is a cycle in H(�; C) on verticesD = fp0 � q0; : : : ; pn�1 � qn�1g ;29



then C � C 0, where p0 = n�1Xi=0 piq0 = n�1Xi=0 qiC 0 = (C �D) [ fp0 � q0g :Proof. First we show C � C 0. As above, it su�ces to show that for anyassignment � 2 TC and variable y, if y is (�;C)-enabled then y is (�;C 0)-enabled. If con (y;C) 62 D, then con (y;C 0) = con (y;C), thus y is (�;C)-enabled i� it is (�;C 0)-enabled. Otherwise, if con (y;C) 2 D, say pk � qkfor some 0 � k � n � 1, then con (y;C 0) is p0 � q0. Since � 2 TC , we have�(pi) � �(qi), 0 � i � n � 1. Moreover, since y is (�;C)-enabled, we have�(pk) < �(qk). Thus �(p0) < �(q0), so y is (�;C 0)-enabled.Now we show C 0 � C. Assume without loss of generality that the verticesin D occur on the cycle of H(�; C) in the order p0 � q0, : : :, pn�1 � qn�1 andthat yi is the label on the edge from pi � qi to pi+1 � qi+1, 0 � i � n � 1(arithmetic on subscripts is modulo n).The intuitive idea behind the following argument is that if some yi isenabled, then �ring yi enables yi+1, and so on; thus we can imagine a tokenbeing passed around the cycle D, enabling whichever pj � qj 2 D is needed.Let � 2 TC0 . We construct by induction on the length of � a string�0 2 TC such that � �X;C0 �0. De�ne �0 = �. Now suppose �y 2 TC0 and �0has been de�ned. By the induction hypothesis,(i) � �X;C0 �0(ii) �0 2 TC.Since y is (�;C 0)-enabled, by (i) we have that y is (�0; C 0)-enabled.If con (y;C) is in C �D or con (y;C) = �, let (�y)0 = �0y. Then �y �X(�y)0, and since con (y;C) = con (y;C 0), y is (�0; C)-enabled. Moreover,�y �C0 �0y by Lemma 14(iii).If con (y;C) is in D, say pk � qk, then con (y;C 0) is p0 � q0. By (i) and(ii), �0(p0) < �0(q0) ;�0(pi) � �0(qi) ; 0 � i � n� 1 :30



It follows that there must exist an i, 0 � i � n� 1, such that�0(pi) < �0(qi) : (6.10)De�ne (�y)0 = �0yiyi+1yi+2 � � � yk�1y(the sequence i; i+ 1; : : : ; k � 1 wraps modulo n if necessary). Then �y �X(�y)0. By (6.10), yi is (�0; C)-enabled. Since each yj is 0-exposed in qj+1,0 � j � n � 1, it follows inductively that each yj is (�0yiyi+1 � � � yj�1; C)-enabled, and y is (�0yiyi+1 � � � yk�1; C)-enabled. Thus �0yiyi+1 � � � yk�1y 2 TC.It remains to show that �y �C0 (�y)0. For p � q in C �D,(�y)0(q � p) = (�y)0(q)� (�y)0(p)� �y(q)� (�y)0(p)= �y(q)� �y(p) since the yi do not appear in p= �y(q � p) :For p0 � q0, since each yj is 0-exposed in qj+1 and hence also in q0, by Lemma18(ii) we have (�y)0(q0 � p0) = �0yiyi+1yi+2 � � � yk�1y(q0 � p0)� �0yi+1yi+2 � � � yk�1y(q0 � p0)� �0yi+2 � � � yk�1y(q0 � p0)� � � �� �0y(q0 � p0) (6.11)By Lemma 14(iii) and the induction hypothesis, (6.11) is bounded below by�y(q0 � p0). 2Theorem 28 It is decidable whether a given instance C of the NRP has asolution.Proof. We proceed by induction on the complexity of C. If C = ;, thenall variables are unconstrained and therefore enabled, thus we can incrementx0 immediately. Otherwise assume C is nonempty.We identify a number of cases below, each of which allows us to reducethe size of C in some respect (either fewer constraints or fewer constrainedvariables). In each case, the induction hypothesis gives a procedure for de-ciding whether the smaller system has a solution, and this will determinewhether C has a solution. 31



Case 1 C contains an unconstrained (0; C)-exposed variable. By Lemma25, C is equivalent to a system with fewer constraints.Case 2 H(�; C) has a self-loop labeled x, and x is (0; C)-enabled. ByLemma 26, C is equivalent to a system with either fewer constrained variablesor fewer constraints.Case 3 H(�; C) has a cycle on a set of at least two vertices. By Lemma27, C is equivalent to a system with fewer constraints.Case 4 None of Cases 1, 2, or 3 apply. In this case, consider the set T admCconsisting of all admissible strings in TC. The set T admC contains the emptystring � and is closed under the pre�x relation, so it is a tree. For any� 2 T admC , �x 2 T admC i� x is (�;C)-enabled but not (�;C)-inhibited. ByLemma 22, C has a solution if and only if it has one in T admC .Now let T 0C be the subtree of T admC obtained by deleting all strings con-taining a proper pre�x of the form �� , where j� j > jXj and � �C �� . Thetree T 0C has no in�nite paths, since Dickson's Lemma (Lemma 15) says thatany in�nite path must contain �0; �1; �2; : : : such that each �i is a properpre�x of �i+1 and each �i �C �i+1; thus �0 �C �jX j+1 and the di�erence intheir lengths is at least jXj + 1, so this in�nite path would be pruned inthe construction of T 0C. By K�onig's Lemma, T 0C is �nite, since it is �nitelybranching. The tree T 0C can be constructed e�ectively since the conditionsfor extending a branch and for pruning are e�ective.Since any extension in TC of a solution is a solution, C has a solution i�it has a solution of the form �� 2 T admC for some leaf � of T 0C. The leaves �are of two types, not necessarily mutually exclusive:(i) All (�;C)-enabled variables are (�;C)-inhibited. Leaves of this formare leaves of T admC , since they have no C-admissible extensions.(ii) The leaf � is of the form ��, where � �C �� and j�j > jXj. Leavesof this form are not necessarily leaves of T admC , but are obtained bypruning T admC in the construction of T 0C.If �(x0) > 0 or x0 is (�;C)-enabled for some leaf �, we are done: in theformer case, � is a solution, and in the latter, �x0 is a solution. Otherwise,32



there is no admissible solution extending a leaf of the form (i). Thus we areleft with leaves of the form (ii). For each such leaf ��, where � �C �� andj�j > jXj, since �� is C-admissible, for every pre�x �x of �, either� x is constrained in C,� x is (��;C)-exposed, or� ��(x) = 0.Suppose � contains a variable constrained in C. By Lemma 23, H(��;C)contains either an edge out of � or a cycle whose labels are in �. If theformer, we revert to Case 1 after resetting. If the latter and the cycle isof length at least two, we revert to Case 3 after resetting. Otherwise thereis a self-loop in H(��;C) with label x, where �x is a pre�x of �. If thatself-loop already exists in H(��;C), then since x is ��-enabled, we revert toCase 2 after resetting. Otherwise, let �y be the shortest pre�x of � such thatH(��y;C) contains that self-loop. By Lemma 18(v), x is ��y-enabled, andwe revert to Case 2 after resetting.If all variables occurring in � are unconstrained in C and at least one is(��;C)-exposed for some pre�x � of �, then H(��;C) has an edge out of �,and we revert to Case 1 after resetting.Finally, if all variables occurring in � are unconstrained in C and not(��;C)-exposed, we must have ��(x) = 0 for every pre�x �x of �, otherwisethe string would not be admissible. But since j�j > jXj, at least one variablemust be �red twice, so this situation cannot occur. 2AcknowledgementsWe are indebted to Moshe Vardi for many valuable ideas and the anonymousreferees for a thorough reading and excellent suggestions that substantiallyimproved the presentation.We gratefully acknowledge the support of the National Science Founda-tion under grant CCR-9317320, BRICS (Basic Research in Computer Sci-ence), a Centre of the Danish National Research Foundation, the John Si-mon Guggenheim Foundation, and the U.S. Army Research O�ce throughthe ACSyAM branch of the Mathematical Sciences Institute of Cornell Uni-versity under contract DAAL03-91-C-0027.33
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