
Efficient Fault Tolerance for Pipelined Query
Engines via Write-ahead Lineage

Ziheng Wang
Stanford University

Stanford, CA, U.S.A
zihengw@stanford.edu

Alex Aiken
Stanford University

Stanford, CA, U.S.A
aaiken@stanford.edu

Abstract—Modern distributed pipelined query engines either
do not support intra-query fault tolerance or employ high-
overhead approaches such as persisting intermediate outputs or
checkpointing state. In this work, we present write-ahead lineage,
a novel fault recovery technique that combines Spark’s lineage-
based replay and write-ahead logging. Unlike Spark, where
the lineage is determined before query execution, write-ahead
lineage persistently logs lineage at runtime to support dynamic
task dependencies in pipelined query engines. Since only KB-
sized lineages are persisted instead of MB-sized intermediate
outputs, the normal execution overhead is minimal compared
to spooling or checkpointing based approaches. To ensure fast
fault recovery times, tasks only consume intermediate outputs
with persisted lineage, preventing global rollbacks upon failure.
In addition, lost tasks from different stages can be recovered in
a pipelined parallel manner. We implement write-ahead lineage
in a distributed pipelined query engine called Quokka. We show
that Quokka is around 2x faster than SparkSQL on the TPC-H
benchmark with similar fault recovery performance.

I. INTRODUCTION

In the past decade, the “data lake” has emerged as a popular
paradigm for data management in the cloud. In a data lake,
data is stored directly in object storage on a cloud service such
as AWS S3, in open formats like CSV and Parquet. Distributed
query engines like SparkSQL and Trino read this data and
shuffle it across the network to execute SQL queries [1]–[3].

The first generation of distributed query engines, such as
MapReduce and SparkSQL, relied on a bulk synchronous ex-
ecution model similar to MPI [4], [5]. While these frameworks
offer flexibility and efficient lineage-based fault tolerance
[5], they were originally designed for iterative tasks such as
PageRank or machine learning training. When repurposed for
data analytics tasks such as join-heavy SQL queries, their
stagewise execution model leaves performance on the table
by foregoing parallelism across stages commonly exploited in
pipelined query engines [6].

The second generation of distributed query engines were
purpose-built for SQL, and often employ a pipelined architec-
ture where multiple stages can execute concurrently [3], [7].
In some of these systems, the dependencies between tasks in
different stages are statically determined [3]. In other more
recent systems, such dependencies are dynamically determined
to take advantage of work stealing and cache efficiencies
[8], [9]. While these engines typically drastically outperform

SparkSQL, they either do not support intra-query fault toler-
ance1 and re-execute failed queries from the beginning [7], [8],
or rely on high-overhead approaches such as durably persisting
shuffle partitions between stages [10].2

Fault-tolerant streaming systems, such as Kafka Streams,
Apache Flink or StreamScope [11]–[13], are also based on
a pipelined architecture and may feature an SQL interface
like FlinkSQL. However, their fault tolerance strategies are
typically optimized for continuous processing of small fresh
inputs, instead of bulk shuffles of large batches of data. As
a result, their checkpointing-based fault tolerance strategies
impose high overheads during normal execution for batch SQL
processing.

In this paper, we adapt lineage-based fault tolerance to
pipelined query engines with dynamic task dependencies.
Unlike Spark, where lineage is statically determined and fault
recovery is data parallel, we consistently log the lineage after it
has been dynamically determined at runtime and use pipelined
parallel fault recovery [5], [14]. We term this novel fault
tolerance strategy write-ahead lineage. We implement this
strategy in an open source distributed query engine called
Quokka.

Write-ahead lineage allows Quokka to only persist KB-sized
lineage information in normal operation instead of MB-sized
shuffle partitions or GB-sized state checkpoints. Restricting
tasks to consume only intermediate outputs whose lineage has
been persisted limits fault recovery to only tasks scheduled on
failed workers, avoiding the expensive globally coordinated
rollbacks in checkpointing-based systems. Pipelined parallel
recovery further speeds up the fault recovery process, allowing
Quokka to achieve similar recovery performance to Spark.

To the best of our knowledge, Quokka is the only distributed
query engine with a dynamic pipelined execution model that
supports low-overhead intra-query fault tolerance. We believe
write-ahead lineage can also be easily implemented in other
pipelined query engines. This paper makes two key contribu-
tions:

1While most cloud query engines are fault tolerant to data loss, this paper
focuses on intra-query fault tolerance, which means the query engine can
reuse intermediate results to recover faster than restarting the entire query
after a machine failure.

2It is important to distinguish this overhead, paid during normal operation
to support fault recovery, from recovery performance after an actual failure
has occurred.



S1 S2

A B C D

S0

0 1

Input Batches

State Variables

Task 
0

Task 
1

Output Batches

Channel

Initial State

Task 
2

Channel in 
Next StageT0 T1

Fig. 1. Pipelined Engine: An input stream of batches is processed by tasks to
create an output stream, producing intermediate state variables along the way.
The number and size of batches processed by each task can be dynamically
determined at runtime.

• We describe write-ahead lineage, a novel fault tolerance
strategy for pipelined query engines with dynamic task
dependencies based on consistent lineage logging and
parallel replay.

• We implement a distributed query engine, Quokka. We
demonstrate write-ahead lineage allows Quokka to sup-
port fault tolerance with low execution overhead and fast
fault recovery. On TPC-H, Quokka outperforms Spark-
SQL by around 2x on up to 32 nodes in normal execution,
with competitive fault recovery performance.

II. MOTIVATIONS FROM RELATED WORK

There are decades of related work on pipelined query
engines [2], [3], [9], [15]–[18] and fault tolerance in dataflow
systems [11]–[13], [19], [20]. First, let us define the scope of
our paper by defining what is dynamic pipelined execution in
the context of a distributed query engine.

A. Dynamic Pipelined Execution
Modern distributed SQL query engines such as Snowflake,

AWS RedShift and Trino all adopt a streaming architecture,
where data is “pushed” through a pipeline of multiple stages
[3], [7], [8]. Such pipelined execution typically results in
higher available parallelism, resource utilization and cache
efficiency than SparkSQL’s one-stage-at-a-time approach.

In a pipelined query execution engine, outputs produced by
tasks in one stage can be immediately consumed by tasks in
the next stage. Tasks associated with some operators, such as
joins and aggregations, might have an associated state variable
as illustrated in Figure 1. Subsequent tasks in a stage need to
account for the state variable generated by previous tasks. For
example, if the stage is building a hash table for a build-probe
join, A, B, C and D could be batches from the build side, while
the state variable corresponds to the hash table. S0 would be
empty while S2 would be the complete hash table.

In Figure 1, task 1 and task 2 can be scheduled concurrently,
exposing pipeline parallelism across different stages. Note
this execution model does not preclude data parallelism as

in SparkSQL. Each stage can still be executed by different
parallel channels, where each channel consists of a sequence
of tasks. Each channel operates on a different portion of the
data, e.g. separate hash partitions of the join key. Each channel
can be scheduled on a physical machine, and may have its own
associated state variable. Tasks in a channel could depend on
tasks from all the channels in the previous stage.

In a pipelined query engine, the task dependencies could
be static or dynamic. In a static pipelined query engine, the
number of input batches, the number of tasks and channels in
each stage and their dependencies are statically determined
before query execution [3]. More recent distributed query
engines such as the newest Amazon Redshift version typically
determine these task dependencies dynamically at runtime [8],
inspired by recent designs such as work-stealing and morsel-
driven parallelism [9].

In a dynamic pipelined query engine, assigning task depen-
dencies at runtime achieves similar work-stealing and cache-
efficiency benefits as in single-node multi-core query engines
that pioneered this design [9]. For example, allowing task 0
in Figure 1 to be launched as soon as any of input batches A,
B, C or D appear minimizes idle resources. Tasks can also
decide how many input batches to take as input based on
their own performance characteristics to improve execution
efficiency [8].

B. Efficient Fault Tolerance
The principal question we aim to answer in this paper is:

how to support fault tolerance for dynamic pipelined query
engines with low overhead and fast recovery? To motivate
our novel write-ahead lineage approach, we explore existing
approaches and describe their weaknesses.

Most distributed pipelined query engines do not support
intra-query fault tolerance, instead relying on query-retries
when a cloud worker instance fails [7], [8]. Only Trino recently
added support for intra-query fault tolerance based on HDFS
spooling of shuffle partitions [10].

While intra-query fault tolerance for pipelined query en-
gines is still relatively new, their implementations are similar to
stream processing systems based on the dataflow model [19],
differing mainly in the granularity of the data that is passed
between different tasks. Fault tolerance for such streaming
systems has been thoroughly studied in the past decade, with
strategies coalescing around three core techniques, similar to
the taxonomy proposed by Falkirk Wheel [21]:

• Lineage: Lineage refers to the dependencies between data
partitions. Lineage can be persisted to be consulted upon
failure to facilitate recovery.

• Spooling vs Upstream Backup: Shuffle data partitions,
like the colored boxes 0 and 1 in Figure 1, may be stored
reliably (spooling), unreliably, e.g. on local disk of the
producer (upstream backup), or not at all.

• Checkpointing: state variables, like S1 and S3 in Figure
1, can be persisted.

There are other distributed futures and workflow systems
like Ray and Exoflow which resemble pipelined query engines.



TABLE I
FAULT TOLERANCE DESIGN CHOICES IN DATA PROCESSING SYSTEMS.

Trino SparkSQL Kafka Streams Flink StreamScope Quokka
Description Pipelined SQL Stagewise SQL Dataflow Dataflow Dataflow Pipelined SQL
Spooling ✓ ✗ ✓ ✗ ✗ ✗
State Checkpoint ✗ ✗ ✓ ✓ ✓ ✗
Lineage ✓ ✓ ✓ ✗ ✓ ✓

However, their fault tolerance mechanisms typically focus on
handling tasks that might produce different outputs from the
same input [22], [23]. While they still rely on these three
core techniques, their design goals are different from pipelined
query engines, whose tasks are all deterministic. As a result,
we don’t cover these systems in detail here.

Table 1 summarizes the fault tolerant systems we compare
in this section, along with which of the three strategies they
employ. Trino and SparkSQL are distributed query engines,
while Kafka Streams, Flink and StreamScope are stream pro-
cessing engines. We explain how each of the three strategies
are applied in these five systems.

1) Lineage: Lineage, the dependencies between data parti-
tions, is a key tool in enabling fault tolerance. Lineage allows
a task to guarantee a fixed output by remembering what inputs
were used, assuming the task is deterministic.

Of all the systems, Flink is the only one which does not
track lineage [12]. Upon fault recovery, failed tasks that need
to be relaunched can use different inputs the second time
around [24]. Critically, this decision means tasks could emit
different outputs and workers who previously consumed the
outputs of the failed task also have to be rewound, which
typically results in expensive coordinated global rollbacks of
all the channels in the entire system.

All the other systems listed in Table 1 determine lineage
statically. Trino and Spark determine task dependencies before
the query graph is executed [5], [10], while real-time systems
such as Kafka Streams and StreamScope rely on the unique
event time associated with each record to impose a determin-
istic execution order among inputs [11], [13]. In either case,
this lineage is assumed to be available after a worker fails.

2) Upstream Backup / Spooling: If we decide to track
lineage, making use of it upon fault recovery requires some
way of replaying a task’s inputs using the lineage, which typi-
cally requires storing intermediate data partitions. MapReduce
pioneered this approach by persisting reducer outputs in GFS
to provide fault tolerance boundaries between different stages
[4]. Trino stores intermediate data partitions durably in HDFS
or an object storage like S3, while Kafka Streams persists them
in Kafka topics [10], [11].

However, persisting data partitions, a.k.a spooling, can
introduce severe overheads in normal operation, especially
in batch analytics. Persisting a data partition in a distributed
cluster where workers might fail means either replicating the
data partition across the cluster, e.g. Kafka topic or HDFS, or
writing the data partition to a blob storage, e.g. Amazon S3.
In either case, this operation consumes precious network I/O
resources that could be used for the task itself.

S1

A B C D

S0

0 1

Task 
0

Task 
1

Task 
2

T0 T1

Failure

Missing for 
Recovery

Fig. 2. Spooling: persisted data partitions are marked with green boxes. We
assume the channel with tasks 0 and 1 has failed. Since task 1 depends on
state variable S1, which was not persisted, the whole channel has to restart.

In contrast, Spark relies on unreliable upstream backup of
data partitions to local disk of the producer, which is assumed
to be lost upon worker failure. Instance-attached NVMe drives
have become ubiquitous on public cloud providers, making
writing to local disk very efficient compared to persistent
writes to HDFS or S3, though the contents of such drives are
lost upon worker failure. Avoiding spooling is a key reason
why Spark is faster than MapReduce [5].

A bigger problem for spooling in a pipelined engine is that
it might not save that much work upon failure. The core benefit
of spooling is the localization of task retries. In a system
relying on upstream backup, if the input to a task that must
be retried is also lost, then the task that generated that input
must also be retried. Spooling avoids this problem, but only
if all of the inputs for the failed task have been persisted.

Unfortunately, in pipelined query engines, as depicted in
Figure 1, tasks also depend on the channel’s state variable. In
Figure 2, we illustrate what data partitions are persisted in a
typical spooling strategy. If the channel experiences a failure
after executing task 1, it restarts execution from the beginning
state S0 and re-executes task 0, even though all of task 1’s
input data partitions have been persisted. This is because re-
executing task 1 also relies on the state variable S1, which
has not be persisted. Streaming engines that perform spooling
also commonly “checkpoint” these state variables.

3) Checkpointing: We could prevent restarting the failed
channel from scratch if we periodically persist the lost state
variables. Checkpointing executor state periodically is a popu-
lar fault tolerance strategy in real-time streaming systems such
as Apache Flink, Kafka Streams and StreamScope. Since jobs



in these systems could be continuously operating for days,
restarting a channel entirely might cause unacceptable fault
recovery performance. Checkpointing also allows the system
to garbage collect spooled data partitions, since a data partition
does not have to be replayed if its effect has been persisted
into a state checkpoint.

However, checkpointing can be even more expensive than
spooling for pipelined query engines optimized for SQL
queries on large batches of data. Streaming systems typically
go to great lengths to ensure that the state of an operator is
bounded in size. SQL query engines have no such require-
ments: consider an operator that builds a hash table for joins.
The size of the hash table grows linearly with the number of
unique keys it sees. Assuming new keys arrive at a constant
rate, naive periodic checkpointing will incur O(N2) storage
complexity where N is the number of unique keys, which can
be very large.

Incremental checkpointing could be employed to check-
point only differences between adjacent checkpoints. While
we can easily devise incremental checkpointing strategies
for individual stateful operators, efficient generic incremental
checkpointing strategies for arbitrary data structures is still an
open research problem. Current approaches include persisting
a “changelog” of the state as in Kafka Streams or leveraging
RocksDB’s compaction mechanism as in Apache Flink [11],
[12]. Both impose heavy constraints on the underlying data
structures of the state variable, which is not desirable for a
high performance query engine.

4) Conclusion: Our discussion suggests that of the three
core fault tolerance techniques for dataflow systems, lineage
is the most beneficial for pipelined query engines. Spooling
incurs significant overheads in normal execution, but is not
particularly useful in reducing fault recovery times in the
absence of checkpointing. Checkpointing is even more expen-
sive than spooling in terms of overhead and might require
undesirable constraints on the state variables.

In the context of pipelined query execution, fault tolerance’s
first priority should be low overhead. If we cannot achieve
low overhead in normal pipelined execution, we are better off
running without fault tolerance and retrying queries that fail or
using blocking alternatives such as SparkSQL. This analysis
naturally leads us to use only lineage instead of spooling and
checkpointing.

III. WRITE-AHEAD LINEAGE

The core challenge we address is tracking lineage in a
pipelined system with dynamic task dependencies and facili-
tating efficient recovery. While deterministic or static lineage
information (as in Spark) can easily be recorded before query
execution, dynamically generated lineage is trickier to handle.
Unlike Spark, Quokka adopts the write-ahead logging common
in other database applications, similar to recent works targeting
distributed futures system [25], [26]. The lineage of an object
must be persisted before an object can be consumed by
downstream tasks. To facilitate efficient fault recovery from the
persisted lineage, we engage in upstream backup and parallel

recovery as in Spark. In contrast to Spark’s data parallel
recovery, we conduct pipeline parallel recovery. We call this
approach write-ahead lineage.

The core idea of write-ahead lineage, shown in Algorithm 1,
is simple: as tasks process data partitions, the dynamically
determined lineage is persisted to a transactional data
store, the GCS3, before the output can be consumed by
downstream tasks. When a task fails, this logged lineage
can be consulted to recover from the failure by replaying
data partitions and retrying tasks, similar to how Spark uses
its statically determined lineage for recovery and how ACID
databases recover data from the write-ahead log [14].

Algorithm 1 Write-ahead Lineage
Given task τ on worker ω, with GCS G, where G.L stores
committed lineages, G.T stores outstanding tasks
A ← all data partitions pushed to ω
B ← all possible inputs to τ
I ← {x ∈ A ∩ B | x ∈ G.L}
if I = ∅ then

return ▷ No inputs with committed lineage available
end if
Execute τ , push results downstream
Store results locally on disk (upstream backup)
if push results failed then

return ▷ Downstream worker failure, do not commit
end if
Set τ to I in G.L, remove τ from G.T in a single transaction.
return ▷ Success

Intuitively, write-ahead lineage upholds the core invariant
of lineage-based recovery: tasks consume only objects with
committed lineage. This ensures that a task’s output stays the
same after failure recovery, so channels that did not suffer
failures do not have to be rewound. There are two classes of
channels to consider here: those whose output is consumed by
the failed task and those who consume the output of the failed
task. For the first class, because all past outputs are backed
up to local disk, outputs can be replayed. Channels in the
second class simply ignore the recovered task’s re-transmitted
output until the failed channel has recovered to the state before
failure.4

There are two ways to enforce the core invariant: check
lineage before consuming inputs or commit lineage before
pushing outputs. Quokka adopts the former approach to min-
imize write transactions to the GCS, which lets the lineage
be written as the last step of the algorithm. Quokka can then
bundle this write with other writes to the GCS, like removing
τ from the task queue and adding the next task in the channel,
as a single transaction.

3Global Control Store, inspired by Ray
4In systems based on Chandy-Lamport without lineage tracking, a failed

worker can process inputs in different orders upon recovery, causing it to
retransmit different messages than before failure. In Falkirk Wheel, this is
called the “no messages are duplicated” constraint. This typically results in
expensive coordinated rollbacks of all channels to a globally consistent state
in these systems, which we avoid [12], [21].



Stage 1 Channel 1

Stage 2 Channel 1

Stage 1 Channel 3

Stage 2 Channel 3

1,2,1 1,2,2

2,2,1 2,2,2
1,2,1 1,2,2 2,2,1 2,2,2

Stage 1 Channel 2

Stage 2 Channel 2

Stage 1 
Executor 1

Stage 2 
Executor 1

Stage 1 
Executor 3

Stage 2 
Executor 3

1,2,1 1,2,2

2,2,1 2,2,2

1,2,1

2,2,1

1,2,2

2,2,2

Worker 1 Worker 2 Fails Worker 3

Worker 1 Worker 2 Fails Worker 3

Spark: Data Parallel Recovery

Quokka: Pipeline Parallel Recovery

Stage 2 Executor 2

Stage 1 Executor 2

Fig. 3. Spark employs data parallel recovery, where different tasks of the same
stage are assigned to different workers. Quokka conducts pipelined parallel
recovery, where different stages are assigned to different workers. We assume
worker 2 fails and the dashed lines indicate recovery tasks.

Only eventual consistency is required for the lineage. If a
task does not immediately see a required input’s lineage in the
GCS, it will simply exit without being executed. The task will
be tried again later and successfully execute when the lineage
becomes visible.

A. Lineage Naming Scheme
Recording lineage requires a naming scheme for tasks and

their outputs. In Quokka, we introduce a naming scheme
that allows a very succinct representation of the lineage to
minimize logging overhead. The name of a task is a tuple
of the form (stage, channel, sequence number). The sequence
number increases monotonically within each channel. A task’s
output has the same name as the task. Tasks must consume
their inputs in order. As an example, in a query with two stages
and two channels in each stage, a task in channel 1 in stage 2
could depend on outputs from tasks in either channel in stage
1. However, it must consume output from task (1,1,0) before
task (1,1,1). In Quokka, we further restrict tasks to consume
from one upstream channel at a time. A task decides at runtime
how many task outputs from that channel to consume.

Under this execution model, a task’s input requirement
B can be described as a vector of length C, where C is
the number of upstream channels it could depend on. The
ith element denotes the number of consumed outputs from
channel i similar to a watermark. A task’s lineage can be
described with just two numbers, i and K, the upstream
channel it consumed from and how many outputs it consumed.
This is much less information to log than a naive scheme
where we assign unique names to all outputs in the system
and track all input names for each task.

Our experiments indicate that write-ahead lineage’s over-
head in normal operation typically results from the disk writes
needed for upstream backup. Quokka’s upstream backup is
similar to Spark, with the key difference being that in Quokka,

multiple stages could be writing shuffle partitions at the same
time, exerting higher disk pressure than Spark. We believe this
design is reasonable as fast instance-attached NVMe SSDs
are becoming more popular on public clouds, and network
throughput used in shuffling data partitions will be saturated
before disk throughput used in backing them up. The total
amount of data stored for the entire job is the same between
Quokka and Spark, as Spark typically maintains shuffle parti-
tions of all stages.

B. Pipeline Parallel Recovery
When a worker fails, the channels scheduled on it will lose

their current active tasks, the associated state variables, and
some cached data partitions. Quokka attempts to recover these
channels to their previous state before failure by reconstructing
lost partitions and state based on the logged lineage.

Tasks in channels that do not contain state variables, typi-
cally input readers from object storage or stateless user defined
functions, can be recovered in parallel across the cluster
similar to Spark. However, within a failed channel with state
variables, tasks must be reconstructed in sequence.

Even though tasks must be reconstructed in sequence within
a stateful channel, Quokka can still accomplish parallel recov-
ery between channels, as illustrated in Figure 3. In Quokka,
if the query contains multiple stages (e.g. a multi-way join), a
failed worker contains many stateful channels that need to be
reconstructed. These stateful channels belonging to different
stages can be scheduled on different workers, in a pipelined
parallel fashion.

Compared to Spark where the degree of parallelism is pro-
portional to the number of machines, the degree of parallelism
here is proportional to the number of pipelined stages in
the query. While Spark’s scaling clearly wins at hundreds of
machines, production queries are commonly run on clusters
of single digit sizes, on the same order of magnitude as the
number of query stages [27].

IV. IMPLEMENTATION

We now describe how write-ahead lineage fits with other
pieces of the query engine in Quokka. A simplified schematic
of Quokka’s architecture is shown in Figure 4.

A. Architecture
Quokka uses a cluster of worker machines, which might

fail at any time, e.g. due to spot instance pre-emptions or
Kubernetes pod evictions. Quokka also needs a head node,
which could be one of the worker machines, or a separate
instance. Like Spark, Quokka assumes the head node does not
fail [5], which can be achieved by using on-demand instances
that cannot be preempted, or Kubernetes scheduling policies.
In addition, we assume there is a client machine, which could
be the user’s laptop or another cloud instance, that submits
jobs to this cluster.

Quokka is implemented on top of Ray, a Python-based
actor framework [22]. Each physical worker is assigned
TaskManagers similar to Apache Flink [12]. A TaskManager,



implemented as a Ray actor, can be thought of as a thread pool
that can be assigned tasks. The number of TaskManagers on
a node configure inter-process parallelism, while the number
of threads inside a TaskManager control threaded parallelism.
Quokka also implements the coordinator as another Ray actor,
which resides on the head node.

A Quokka job consists of a sequence of stages. If the stage
admits data parallelism, e.g. a join, then it can consist of
multiple channels. A TaskManager is assigned one channel
from each stage. Data parallel stages are thus parallelized
across the entire cluster. For example, the TaskManager shown
in Figure 4 is assigned channel 1 from stages 1 and 2. Tasks
in a channel in stage 2 could depend on tasks in all channels
in stage 1.

Task dependencies in Quokka are determined dynamically
at runtime. While Quokka supports multiple scheduling strate-
gies, in this paper we focus on a simple strategy: each
task attempts to maximize the number of input batches it
consumes. While this strategy may not be optimal, it is simple
to understand and has strong performance. Quokka relies on
DuckDB and Polars for single-node kernels such as join or
filter, which generally perform better with larger batch sizes
[28], [29]. This strategy trades off maximizing single task
efficiency with minimizing pipeline latency.

Quokka is a push-based query engine, where producer tasks
push outputs to the workers hosting consumer tasks. We
assume the mapping of channels to physical workers is static
or maintained by a centralized lookup table. We believe write-
ahead lineage can be applied to pull-based query engines as
well, and do not make an argument for push or pull-based
execution here.

All the TaskManagers on the same machine share access
to an Apache Arrow Flight server, which manages zero-
serialization data communication between different machines
[30]. In Quokka a task pushes its outputs directly to the Arrow
Flight servers of all its downstream consumer channels. We
found the performance of this approach exceeds moving data
via Ray’s built-in object store and offers more flexibility in
terms of handling disk spilling and chunking shuffle batches.

All TaskManagers share access to the instance-attached disk
for upstream backup of task outputs. Since the naming scheme
described in Section III-A ensures that the task outputs from
different channels are named differently, there is no need for
synchronization among different TaskManagers for writes.

B. Coordination through Transactions
The write-ahead lineage algorithm requires a persistent

transactional data store, which we call the GCS. Quokka uses
a Redis server on the head node to implement the GCS. Since
we assume the head node does not fail during the job, anything
logged to the Redis server is considered “persisted”. If head
node failure is a concern, DynamoDB can be used instead.

The use of a GCS is inspired by the design of modern
distributed systems like Kubernetes and Ray that offload the
control plane to a data store such as etcd or Redis [22],
[31]. In addition to the lineage, the GCS holds the single

TaskManager 1

Data Partition Disk Spill

1,1,0

Worker Machine Coordinator Machine 

Fault 
Recovery 

Coordinator 

Redis GCS

Assigned Tasks

Replay 
(0,1,5)

(2,1,0)

TaskManager

(1,1,2)

Client Machine

Submit 
Tasks

Metrics and 
Results

Arrow Flight 
Server

0,2,0,2,0

0,2,0,2,1

0,1,1,2,0

1,1,1,2,0

State
1,1,2

1,1,1 1,2,0 1,2,1

Fig. 4. Quokka’s architecture. Note that instead of having components
communicate with each other through RPC calls, all coordination is done
through the GCS. The client also communicates with the cluster through the
GCS.

source of truth for the execution state of the entire system in
Quokka, such as the tasks assigned to each TaskManager and
what data partitions are present on which machines. Individual
TaskManagers are stateless and actively poll the GCS for tasks
assigned to them to execute the write-ahead lineage algorithm
in Algorithm 1.

The coordinator periodically polls TaskManagers to see if
any of them have failed. Once a failure is detected, the coordi-
nator sets a control flag in the GCS. TaskManagers periodically
poll this flag. If they see the flag is set, they abort their current
tasks and wait. This barrier effectively implements a GCS-level
lock to guarantee the coordinator exclusive read-write access
to the GCS without potential conflicts. The coordinator then
proceeds to schedule pipelined parallel recovery of tasks as
described in Section III-B.

The usage of a centralized GCS greatly simplifies the
implementation of the coordinator. The coordinator’s fault
recovery routine simply updates the GCS with the tasks that
need to be retried. In particular, it does not interact directly
with TaskManagers. This separation has the key advantage
that the coordinator does not have to assume the remaining
TaskManagers are all alive, simplifying the handling of nested
failures. We found this design to be much simpler and less
error-prone than a traditional approach where different com-
ponents of the system interact through RPC calls between the
coordinator and TaskManagers, and allows us to avoid some
SparkSQL fault recovery problems we encounter in practice
on AWS EMR described in Section V-D.

A potential trade-off of a centralized GCS is performance
and GCS memory footprint, especially when every task has to
write to the GCS. Ray now uses the concept of Ownership
to conduct distributed lineage tracking [26], where a task
commits its lineage to other tasks who have a claim to its
results. However, with the optimized task naming scheme
described in Section III-A, both the GCS logging overhead
and its memory footprint become negligible in Quokka.



C. Failure Recovery

Quokka’s approach to failure recovery is motivated by
Kubernetes’ philosophy of reconciliation. When a failure
occurs, the GCS now contains inconsistent information, such
as tasks assigned to failed workers. During fault recovery,
the coordinator updates it to a consistent state satisfying the
following constraints:

• lost tasks are rescheduled on live TaskManagers.
• all the input data partitions needed for any existing or

rescheduled task will be replayed or recomputed.

The algorithm used by the coordinator in Quokka is shown
in Algorithm 2 with simplifications5. It implements pipeline
parallel recovery described in Section III-B by assigning
different rewound stateful channels to different workers.

Algorithm 2 Failure Recovery Algorithm
Assume GCS G, where G.L stores committed lineages, G.T
stores outstanding tasks
A ← the set of all tasks assigned to the failed worker
R ← {(τ.stage, τ.channel) | τ ∈ A} (Set of rewind requests)
for each (stage, channel) in reverse topological order do

if (stage, channel) ∈ R then
Identify required inputs I for (stage, channel) from

lineages of channel outputs in G.L
for each data partition (stage, channel, seq) in I do

If exists, add replay task to the owner worker
Else if stage is input, add input task to any node
Else, add (stage, channel, 0) to R

end for
end if

end for
for each (stage, channel, 0) in R do

Remove (stage, channel, seq) from G.T
Assign (stage, channel, 0) to a random worker in G.T

end for

A concrete example is shown in Figure 5 for a Quokka
application with three stages. Stage 0 is stateless and stage 1
and stage 2 make use of state variables. After a TaskManager
fails, the coordinator will first reschedule all its tasks, (1,2,1)
and (2,2,1) in this example, to other live TaskManagers. These
tasks are restarted from the initial state, so the tasks that need
to be launched are (1,2,0) and (2,2,0), which can be relaunched
on different machines.

The coordinator now traverses the stages in reverse topo-
logical order and checks if the required data partitions for the
relaunched tasks are still present. If so, e.g. (0,0,0), (0,1,0) ...
, replay tasks are pushed to TaskManagers that hold them. If
not, the data partition must be regenerated by rewinding other
channels. This is typically due to tasks on the failed machine
depending on data partitions held by the same machine, i.e.
(0,2,0) and (0,2,1).

5In Algorithm 2, we assume there are no lost replay or input tasks, though
Quokka handles those as well.

(2,2,0)

(1,2,0)

(0,2,0) (0,2,1)

(1,1,0)

(0,1,0) (0,1,1)

(2,0,0)

(1,0,0)

(0,0,0)

Tasks Pre
Recovery

Tasks 
Post

Recovery

(1,0,1) (2,0,1)

(0,0,1)

(1,1,1) (2,1,0) (1,2,1) (2,2,1)

(1,0,1) (2,0,1)

(0,0,1) (0,2,0)

(1,2,0) replay

FAILED

(1,1,1) (2,1,0)

(0,2,1) (2,2,0)

replay

Backed 
Up Data 
Partitions

Fig. 5. An example fault recovery procedure when one out of three workers
fail. Pink shade represents data partitions that have been generated by past
tasks and stored on the TaskManager. Recovery tasks are shaded in light blue.

Importantly, when a rewound task such as (1,2,0) or (2,2,0)
is “retracing its footsteps”, it is no longer free to dynamically
choose its input data partitions. Instead, the GCS is consulted
to supply it with the exact lineage to regenerate each output
data partition, which ensures the rewound channel regenerates
the same outputs as before the failure.

As mentioned in Section III, Quokka can engage in
pipelined parallel recovery between channels, so (1,2,0) and
(2,2,0) can be rescheduled to be recovered on different
workers. (0,2,0) and (0,2,1) can be rescheduled on different
workers even though they belong to the same channel, since
there’s no state dependency between them. In total four data
partitions need to be reconstructed in this failure scenario,
which corresponds to the total number of data partitions stored
on the failed machine.

V. EVALUATION

We test Quokka’s performance, fault tolerance and scala-
bility on the full TPC-H benchmark (scale factor 100) with
input in Parquet format stored on AWS S3. We then select 8
representative queries in three different categories:

• I: simple aggregations (1, 6)
• II: simple pipelined joins (3, 10)
• III: queries with multiple join pipelines (5, 7, 8, 9)

We perform detailed ablation studies of different design
choices and measure fault recovery performance on these
representative queries. These queries are chosen because they
contain mostly just one join tree, reducing confounding vari-
ables on performance.

Quokka is run on a Ray cluster with Ray version 2.4
on AWS EC2 on-demand instances. We use two cluster
configurations. The first configuration uses four r6id.2xlarge
worker machines. The second uses 16 r6id.xlarge machines.
An r6id.2xlarge instance has 8 vCPUs, 64GB of RAM ad
474GB of instance attached NVMe SSD. An r6id.xlarge
instance has exactly half of those resources.



1 2 3 4 5 6 7 8 9 10111213141516171819202122
4 workers

1

2

3

4
Q

uo
kk

a 
Sp

ee
du

p
vs. SparkSQL
vs. Trino

1 2 3 4 5 6 7 8 9 10111213141516171819202122
16 workers

1

2

3

4
vs. SparkSQL
vs. Trino

Fig. 6. Comparing the performance of fault-tolerant data processing systems (Trino with FT, SparkSQL and Quokka) on the TPC-H queries on a) 4-worker
cluster and b) 16-worker cluster. Quokka outperforms Trino and SparkSQL in most cases.

For comparison, we benchmark SparkSQL 3.3 and Trino
398 on AWS EMR 6.9.0 on the same cluster configurations.
AWS EMR configures Spark to also use NVMe SSDs for
potential spilling. We further optimize the network and shuffle
retry configurations of SparkSQL to start fault recovery in two
seconds, instead of the default two minutes on AWS EMR, to
match the behavior of Quokka. Trino is benchmarked with
and without fault tolerance by HDFS spooling. SparkSQL is
fault tolerant by default. Before running the queries, ANALYZE
commands are run for both SparkSQL and Trino to ensure
cardinality-based optimizations are enabled.

Unless otherwise noted, all timing results are from the mean
of three independent measurements, with standard deviation
shown as error bars when applicable.

A. Quokka vs. Trino vs. SparkSQL

In Figure 6, we compare Quokka’s performance to Trino
with spooling-based fault tolerance and SparkSQL on the full
TPC-H benchmark. We see that for most queries across both
cluster configurations, Quokka is the most performant among
all three query engines. Compared to Trino, Quokka achieves
25% geometric mean speedup on the 4-worker cluster and 70%
on the 16-worker cluster. Compared to SparkSQL, Quokka
achieves 2.1x geometric mean speedup on the 4-worker cluster
and 1.9x on the 16-worker cluster.

It is important to note that a lot of factors could contribute
to these results. All three systems employ different kernels to
implement SQL operators such as join and filter, libraries for
networked communication and task scheduling systems. How-
ever, these results do indicate that Quokka’s implementation
is competitive with state-of-the-art data processing systems.
We attribute Quokka’s speedup over Spark mostly to blocking
vs pipelined execution and Quokka’s speedup over Trino to
Trino’s high spooling overhead.

We note that Quokka’s performance against SparkSQL and
Trino is worst for complicated queries that contain nested
subqueries and might require materialization of intermediate
results (e.g. 2, 4, 20, 21) and better for simpler queries like 8, 9
or 12 that contain one join tree. The reason for this discrepancy
is Quokka currently must perform expensive global synchro-
nization between pipelines, making complicated queries that
contain multiple pipelines slow. In addition, Quokka’s imple-
mentations of semi-joins and anti-joins, required to unnest
subqueries, are not yet very efficient.

Quokka’s advantage against SparkSQL and Trino is main-
tained on the 16-worker cluster compared to the 4-worker
cluster, suggesting that Quokka’s design is scalable to larger
cluster sizes.

B. Why Dynamic Pipelined Execution?

We now show that dynamic pipelined query execution leads
to significant performance gains compared to both stagewise
execution and pipelined query execution with static task de-
pendencies to motivate the need for a fault tolerance algorithm
specifically designed for dynamic pipelined query engines.

1) Pipelined vs Blocking Execution: We modify Quokka
to execute in a stage-wise fashion similar to SparkSQL and
examine its performance degradation. Results for both cluster
sizes are shown in Figure 7.

Across the eight selected queries across the two different
cluster setups pipelined execution consistently outperforms
stagewise execution. The speedups are especially significant
for queries in category III, which involve multiple joins that
can be pipelined. On queries 1 and 6 in category I where the
query consists of essentially just the read stage, the pipelined
execution does not improve runtime, as expected.

Overall, pipelined execution leads to 26% geometric mean
speedup on the queries in categories II and III on the 4-worker



TP
CH

-1

TP
CH

-6

TP
CH

-3

TP
CH

-1
0

TP
CH

-5

TP
CH

-7

TP
CH

-8

TP
CH

-9

4 workers

5

10

15

20

25

30

35
Ru

nt
im

e 
(s

)
A Pipelined Execution

Stagewise Execution

TP
CH

-1

TP
CH

-6

TP
CH

-3

TP
CH

-1
0

TP
CH

-5

TP
CH

-7

TP
CH

-8

TP
CH

-9

16 workers

5

10

15

20

25
B Pipelined Execution

Stagewise Execution

Fig. 7. Pipelined Quokka vs Stagewise (blocking) Quokka execution times on the TPC-H queries on the a) 4-worker cluster and b) 16-worker cluster. Pipelined
execution outperforms in all cases.

TP
CH

-1

TP
CH

-6

TP
CH

-3

TP
CH

-1
0

TP
CH

-5

TP
CH

-7

TP
CH

-8

TP
CH

-9

4 workers

5

10

15

20

25

30

Ru
nt

im
e 

(s
)

A Dynamic Task Dependencies
Static Lineage 1
Static Lineage 2

TP
CH

-1

TP
CH

-6

TP
CH

-3

TP
CH

-1
0

TP
CH

-5

TP
CH

-7

TP
CH

-8

TP
CH

-9

16 workers

5

10

15

20

25

30

35

40 B Dynamic Task Dependencies
Static Lineage 1
Static Lineage 2

Fig. 8. Performance of Quokka with dynamic task dependencies vs. two different static lineage strategies on the a) 4-worker cluster and b) 16-worker cluster.
Strategy 1 (batch size 8) outperforms strategy 2 (batch size 128) on the 4-worker cluster but greatly underperforms on the 16-worker cluster. Enabling dynamic
task dependencies allows Quokka to match the better performing static strategy in most cases.

cluster and 22% speedup on the 16-worker cluster. On queries
with deep join trees like query 8, the speedup is as large as
28%.

2) Dynamic vs Static Lineage: If we could achieve good
performance with static task dependencies determined before
query execution, we would not need to log the lineage during
query execution.

In a static lineage strategy, a task consumes a fixed number
of input data partitions at a time. If this number is too small,
a high volume of smaller partitions will be transmitted across
the network, diminishing network efficiency. However, if this
number is too big, effective pipelining cannot occur, and the
system effectively executes in a stage-wise fashion similar to
SparkSQL. It is very difficult to statically choose this number
correctly in practice, since the sizes of data partitions can

depend on the size of the cluster, data distributions and join
and filter selectivity.

To demonstrate this difficulty, we show the performance
of two static lineage strategies across the selected queries
on the 4-worker and 16-worker clusters in Figure 8. In the
first strategy, stateful operators batch together 8 input data
partitions for each execution. In the second strategy, they batch
together 128.

Similar to the previous experiment, performance differences
between these strategies are not apparent for the simple queries
in category I. However, differences become more significant
with join queries in category II and more so with more
complex joins in category III. We see that on the 4-worker
cluster, a batch size of 8 is clearly superior to a batch size of
128, while the reverse is true on the 16-worker cluster.



TP
CH

-1

TP
CH

-6

TP
CH

-3

TP
CH

-1
0

TP
CH

-5

TP
CH

-7

TP
CH

-8

TP
CH

-9

4 workers

1.0

1.5

2.0

2.5

3.0
O

ve
rh

ea
d

A Trino
Quokka Spool
Write-ahead Lineage

TP
CH

-1

TP
CH

-6

TP
CH

-3

TP
CH

-1
0

TP
CH

-5

TP
CH

-7

TP
CH

-8

TP
CH

-9

16 workers

1

2

3

4

5 B Trino
Quokka Spool
Write-ahead Lineage

Fig. 9. Trino’s HDFS spooling fault tolerance overhead, Quokka S3 spooling overhead and write-ahead lineage overhead on the a) 4-worker cluster and b)
16-worker cluster. Overhead of 1 means no overhead.

On the 16-worker cluster, a batch size of 8 causes very
small partitions to flow through the system, causing a marked
decrease in CPU utilization and network I/O efficiency during
shuffles. On the 4-worker cluster, the partition slices shuffled
were larger due to the reduced parallelism, causing batch size
8 to instead outperform batch size 128.

Using dynamic task dependencies allows Quokka to achieve
similar or better performance than the better of the two static
lineage strategies in both cluster settings for most queries.

C. Write-ahead Lineage Overhead
In this section, we benchmark the overhead imposed by

Quokka’s write-ahead lineage algorithm during normal execu-
tion and compare it to spooling based options. We turn Trino’s
fault tolerance off to measure the overhead added by its HDFS
spooling in Figure 9.6

Across the selected queries, Trino’s spooling adds a geo-
metric mean 1.5x overhead on the 4-worker cluster and 2.7x
overhead on the 16-worker cluster, reaching up to 4.8x in the
case of query 9. The overhead is considerably worse on the
16-machine cluster compared to the four-machine cluster. We
believe that as the data partitions that need to be spooled to
HDFS become smaller, HDFS efficiency markedly decreases.
We also experimented with S3-based spooling for Trino, which
led to much worse results.

We also implemented S3-based spooling in Quokka and
observed similar overhead to Trino, as shown in Figure 9. Note
Quokka’s spooling overhead is minimal for the two queries
in category I since Quokka’s aggregation pushdown makes
the spooled data size insignificant. It appears Trino does not
perform this optimization. Quokka’s spooling overheads are
similar for simple joins in category II and complex joins in
category III since most of the spooled data comes from the
lineitems table, referenced by all the queries.

6The overhead is defined by the ratio of ratio of runtimes with and without
fault tolerance. A value of 1 means there is no overhead.

In comparison, the overhead of Quokka’s write-ahead lin-
eage strategy is an order of magnitude better than the spooling
options, only 15% on the 4-worker cluster and 6% on the
16-worker cluster. Like Spark, Quokka backs up partitions
unreliably in the worker’s local disk instead of RAM to save
memory. However these local disk writes are a lot more
efficient than networked HDFS or S3 writes, and can typically
be hidden by computation and network IO.

Compared to Spark, Quokka also needs to consistently log
the lineage of each spilled partition, which currently happens
via the Redis GCS on the head node. We find this cost to
be negligible in our benchmark as optimizations described in
Section III-A greatly simplified the lineage. Virtually all the
overhead results from the disk writes.

In addition to spooling, we also benchmarked Quokka with
custom checkpointing strategies to S3. Even with incremental
checkpointing, we observe severe overhead in normal op-
eration. The biggest overheads come from operators whose
state increases over time, like building the hash table for a
shuffle hash join. While the exact overhead depends on the
checkpointing interval, any reasonable interval that is useful
for recovery performs much worse than spooling to S3.

D. Fault Recovery Performance
We now compare Quokka’s fault recovery performance

compared to SparkSQL. Instead of SparkSQL’s data parallel
recovery, Quokka engages in pipelined parallel recovery as
described in Section III-B.

The first fault recovery experiment consists of running each
of our representative queries on the 16-worker cluster. A
worker machine is killed halfway through the query based
on its normal execution runtime. The fault recovery overhead,
defined by total runtime with failure divided by normal runtime
without failure, is shown in Figure 10a for both systems.

We observe that Quokka and SparkSQL have similar recov-
ery overhead, with Quokka’s overhead better by a geometric



TP
CH

-1

TP
CH

-6

TP
CH

-3

TP
CH

-1
0

TP
CH

-5

TP
CH

-7

TP
CH

-8

TP
CH

-9

Worker Fails at 50%

1.00

1.05

1.10

1.15

1.20
O

ve
rh

ea
d

A

Spark Overhead
Quokka Overhead

16.6% 33.3% 50% 66.7% 83.3%

TPC-H 9 Case Study

1.0

1.2

1.4

1.6

1.8 B Spark Overhead
Quokka Overhead
Restart Baseline
Quokka Speedup

Fig. 10. Quokka vs SparkSQL’s fault recovery behavior. a) Quokka vs Spark fault recovery performance on the 16-worker cluster where a random worker
is killed at 50% query completion during each query. b) A case study for TPC-H 9 where worker dies at varying points during the execution. We also show
Quokka’s end-to-end speedup over Spark on the same y-axis scale.

mean of 1%. We see that for both SparkSQL and Quokka,
simpler queries in Category I tend to have lower recovery
overhead compared to more complicated joins in Categories
II and III. While Quokka is faster than SparkSQL at fault
recovery in Category I, it is slightly slower than SparkSQL
in Category III. Note that in every case, we significantly
outperform the baseline of just restarting the query from
scratch on the remaining workers, which corresponds to an
overhead of 1.5x.

In Figure 10b, we show a case study on TPC-H query
9 where we show SparkSQL and Quokka’s fault recovery
performance when the query experiences a failure at different
points throughout the query. As expected, Quokka incurs
higher fault recovery overhead if the failure occurs late in
the query, as there is more work to be redone. SparkSQL
exhibits the same behavior. However in all cases, Quokka
and SparkSQL’s fault recovery performances significantly beat
the simple baseline of restarting the query from scratch after
failure. Even though Quokka has more recovery overhead, it
still outperforms Spark end-to-end with the failure in all cases
since it is much faster in normal execution.

We notice that despite SparkSQL’s usual good fault recovery
performance, it occasionally fails to recover by continuing to
make RPC requests to the dead worker, which is a known
problem for open-source Spark on AWS EMR [32]. Our results
only included trials where this problem is not encountered,
which strictly improved SparkSQL’s fault recovery results.
Quokka’s choice to communicate only through the GCS to
avoid all direct RPCs between different components preclude
it from this class of problems.

E. Scalability

1) Performance: We test the scalability of Quokka and
write-ahead lineage with 32 rd6id.xlarge workers on the TPC-
H benchmark queries with the same dataset. Figure 11a shows

the speedup Quokka achieves vs. Spark and Trino in this
setting. The speedup profile across the queries is largely sim-
ilar to the 4-worker and 16-worker settings. Quokka achieves
geomean 1.92x speedup over Spark and 1.86x over Trino.
Quokka’s speedup over SparkSQL is stable while its speedup
over Trino improves with the number of machines, confirming
our observations in Section VIC that Trino’s spooling overhead
gets worse with the number of machines.

2) Fault Recovery: Figure 11b repeats the experiment
shown in Figure 10a, where a worker machine is killed 50%
of the way through a representative query, for the 32-worker
setting. We see that compared to the 16-worker setting, the
recovery performance of Quokka deteriorates compared to
Spark. On average, Quokka has 12% worse geomean recovery
overhead in this case, vs. 1% better in the 16-worker setting.
However, even though Quokka has more recovery overhead,
it both outperforms the restart baseline (1.5x overhead) in all
cases and outperforms Spark end-to-end with the failure in all
cases due to its faster normal execution performance.

Quokka’s degraded fault recovery performance at 32 nodes
can be understood from the discussion in Section III-B. Unlike
Spark’s data parallel recovery, pipelined parallel recovery only
leverages parallelism up to the number of stages in the query,
not the number of workers in the cluster. As a result, increasing
the worker count from 16 to 32 improves Spark’s recovery
performance but not Quokka’s. Our design point exploits the
fact that it is rare to see more than 16 nodes in practice, even
for very large workloads [27].

VI. DISCUSSION AND CONCLUSION

In this paper, we present write-ahead lineage, a novel
fault tolerance mechanism for pipelined query engines with
low overhead and fast recovery times. We showcase its
implementation in a real query engine, Quokka, achieving
1.9x speedup against SparkSQL and 1.7x against Trino in



1 2 3 4 5 6 7 8 9 10111213141516171819202122
32 workers

1

2

3

4

Q
uo

kk
a 

Sp
ee

du
p A vs. SparkSQL

vs. Trino

TP
CH

-1
TP

CH
-6

TP
CH

-3
TP

CH
-1

0
TP

CH
-5

TP
CH

-7
TP

CH
-8

TP
CH

-9

1.0

1.2

1.4

1.6

1.8

2.0

O
ve

rh
ea

d

B Spark Overhead
Quokka Overhead
Quokka Speedup

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fig. 11. Experiments on 32 workers in terms of a) normal execution performance without failures compared to Spark and Trino with FT and b) fault recovery
overheads where a random worker is killed at 50% completion. Quokka is still faster end-to-end on each query compared to SparkSQL (right y-axis).

normal operation on a 16-machine cluster on TPC-H, while
matching SparkSQL in fault recovery performance. On 32
machines, Quokka maintains its strong performance while
degrading slightly in fault recovery performance due to the
reasons explained in Section V-E2. Ablation studies shown
in Figure 7, 8 and 9 confirm Quokka’s dynamic pipelined
execution brings concrete performance benefits while write-
ahead lineage incurs an order of magnitude less overhead
compared to spooling-based alternatives.

A. Data vs Compute Fault Tolerance

Pipelined query engines were originally designed to be part
of a database server. When a machine failed, the first concern
was preventing data loss and minimizing system downtime,
not recovering a transient user query [33]. Intra-query fault
tolerance became relevant in the era of decoupled compute and
storage. Cloud storage now typically guarantees many nines of
data durability, resolving concerns of data loss. On the other
hand, computation is increasingly conducted by ephemeral
resources that might fail or be pre-empted at any time.

In this setting, it makes sense to study how to recover
from computation failures while assuming the input data is
persistent and replayable, leading to popular fault-tolerant
systems such as MapReduce and Spark [4], [5]. However, their
stagewise design leads to inefficiencies in query execution.
Pipelined query engines such as Trino have attempted to add
fault tolerance, though its spooling based approach has high
overhead [10]. Hosted query engines such as Snowflake are
also fault tolerant to the user, but they simply restart failed
queries under the hood [34].

In this paper, we adapt well-known write-ahead logging
techniques used for data recovery to tackle the new problem
of computation failure recovery for pipelined query engines.

B. Design Motivations and Novelty
Fault tolerance is a well-studied field with multiple estab-

lished techniques such as lineage, spooling and checkpointing.
While pipelined systems like Trino or StreamScope typically
adopt a combination of spooling and checkpointing to achieve
fault tolerance, we find these techniques cause high overheads
in normal execution, as shown in Figure 9 [10], [11], [13].

Quokka’s write-ahead lineage combines persistent lineage
logging with upstream backup, similar to Spark. However,
important differences exist due to Quokka’s novel setting of
pipelined query execution with dynamic task dependencies. In
contrast to Spark’s static lineage, write-ahead lineage logs the
lineage as it is determined during query execution. We show
this imposes negligible overhead in normal execution in Figure
9. Instead of Spark’s data parallel recovery, Quokka adopts
pipeline parallel recovery, whose degree of parallelism scales
with the number of stages in the pipeline instead of the number
of workers. We show that Quokka has comparable fault
recovery overhead to Spark on the most common workloads
with up to 16 workers, only tailing off at 32 nodes while still
maintaining an end-to-end performance improvement because
of the benefits of pipelined execution.

C. Implementation
We have open sourced Quokka on Github7 to facilitate

data systems research and applications. Quokka supports a
DataFrame API similar to Spark and Polars, and has already
been used to support emerging data engineering applications
like vector search on data lakes [35]. Even though this paper
focuses on Quokka, we believe write-ahead lineage can easily
be added to any distributed pipelined query engine, where a
distributed key-value store like DynamoDB or FoundationDB
can be used to track metadata [7], [36], [37].

7https://github.com/marsupialtail/quokka



REFERENCES

[1] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi et al., “Spark sql:
Relational data processing in spark,” in Proceedings of the 2015 ACM
SIGMOD international conference on management of data, 2015, pp.
1383–1394.

[2] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton,
and T. Vassilakis, “Dremel: interactive analysis of web-scale datasets,”
Proceedings of the VLDB Endowment, vol. 3, no. 1-2, pp. 330–339,
2010.

[3] R. Sethi, M. Traverso, D. Sundstrom, D. Phillips, W. Xie, Y. Sun,
N. Yegitbasi, H. Jin, E. Hwang, N. Shingte et al., “Presto: Sql on
everything,” in 2019 IEEE 35th International Conference on Data
Engineering. IEEE, 2019, pp. 1802–1813.

[4] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[5] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin et al., “Apache
spark: a unified engine for big data processing,” Communications of the
ACM, vol. 59, no. 11, pp. 56–65, 2016.

[6] M. Shen, Y. Zhou, and C. Singh, “Magnet: push-based shuffle service
for large-scale data processing,” Proceedings of the VLDB Endowment,
vol. 13, no. 12, pp. 3382–3395, 2020.

[7] B. Dageville, T. Cruanes, M. Zukowski, V. Antonov, A. Avanes,
J. Bock, J. Claybaugh, D. Engovatov, M. Hentschel, J. Huang et al.,
“The snowflake elastic data warehouse,” in Proceedings of the 2016
International Conference on Management of Data, 2016, pp. 215–226.

[8] N. Armenatzoglou, S. Basu, N. Bhanoori, M. Cai, N. Chainani,
K. Chinta, V. Govindaraju, T. J. Green, M. Gupta, S. Hillig et al.,
“Amazon redshift re-invented,” in Proceedings of the 2022 International
Conference on Management of Data, 2022, pp. 2205–2217.

[9] V. Leis, P. Boncz, A. Kemper, and T. Neumann, “Morsel-driven par-
allelism: a numa-aware query evaluation framework for the many-
core age,” in Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, 2014, pp. 743–754.

[10] “Trino fault tolerance,” https://github.com/trinodb/trino/wiki/Fault-Tole
rant-Execution.

[11] J. Kreps, N. Narkhede, J. Rao et al., “Kafka: A distributed messaging
system for log processing,” in Proceedings of the NetDB, vol. 11, 2011,
pp. 1–7.

[12] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink: Stream and batch processing in a single
engine,” Bulletin of the IEEE Computer Society Technical Committee
on Data Engineering, vol. 36, no. 4, 2015.

[13] W. Lin, Z. Qian, J. Xu, S. Yang, J. Zhou, and L. Zhou, “Streamscope:
Continuous reliable distributed processing of big data streams,” in 13th
USENIX Symposium on Networked Systems Design and Implementation,
2016, pp. 439–453.

[14] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A
fault-tolerant abstraction for {In-Memory} cluster computing,” in 9th
USENIX Symposium on Networked Systems Design and Implementation,
2012, pp. 15–28.

[15] A. Shaikhha, M. Dashti, and C. Koch, “Push versus pull-based loop
fusion in query engines,” Journal of Functional Programming, vol. 28,
p. e10, 2018.

[16] T. Neumann, “Efficiently compiling efficient query plans for modern
hardware,” Proceedings of the VLDB Endowment, vol. 4, no. 9, pp.
539–550, 2011.

[17] S. Harizopoulos, V. Shkapenyuk, and A. Ailamaki, “Qpipe: A simulta-
neously pipelined relational query engine,” in Proceedings of the 2005
ACM SIGMOD international conference on Management of data, 2005,
pp. 383–394.

[18] P. A. Boncz, M. Zukowski, and N. Nes, “Monetdb/x100: Hyper-
pipelining query execution.” in Conference on Innovative Data Systems
Research, vol. 5, 2005, pp. 225–237.

[19] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and
M. Abadi, “Naiad: a timely dataflow system,” in Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles, 2013,
pp. 439–455.

[20] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haberman, R. Lax,
S. McVeety, D. Mills, P. Nordstrom, and S. Whittle, “Millwheel: Fault-
tolerant stream processing at internet scale,” Proceedings of the VLDB
Endowment, vol. 6, no. 11, pp. 1033–1044, 2013.

[21] I. Gog, M. Isard, and M. Abadi, “Falkirk wheel: Rollback recovery for
dataflow systems,” in Proceedings of the ACM Symposium on Cloud
Computing, 2021, pp. 373–387.

[22] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. I. Jordan et al., “Ray: A distributed
framework for emerging ai applications,” in 13th USENIX Symposium
on Operating Systems Design and Implementation, 2018, pp. 561–577.

[23] S. Zhuang, S. Wang, E. Liang, Y. Cheng, and I. Stoica, “Exoflow:
A universal workflow system for exactly-once dags,” in 17th USENIX
Symposium on Operating Systems Design and Implementation, 2023,
pp. 269–286.

[24] “An overview of end-to-end exactly-once processing in apache flink,”
https://flink.apache.org/features/2018/03/01/end-to-end-exactly-once-ap
ache-flink.html.

[25] S. Wang, J. Liagouris, R. Nishihara, P. Moritz, U. Misra, A. Tumanov,
and I. Stoica, “Lineage stash: fault tolerance off the critical path,”
in Proceedings of the 27th ACM Symposium on Operating Systems
Principles, 2019, pp. 338–352.

[26] S. Wang, E. Liang, E. Oakes, B. Hindman, F. S. Luan, A. Cheng, and
I. Stoica, “Ownership: A distributed futures system for {Fine-Grained}
tasks,” in 18th USENIX Symposium on Networked Systems Design and
Implementation, 2021, pp. 671–686.

[27] M. Vuppalapati, J. Miron, R. Agarwal, D. Truong, A. Motivala, and
T. Cruanes, “Building an elastic query engine on disaggregated stor-
age,” in 17th USENIX Symposium on Networked Systems Design and
Implementation, 2020, pp. 449–462.

[28] M. Raasveldt and H. Mühleisen, “Duckdb: an embeddable analytical
database,” in Proceedings of the 2019 International Conference on
Management of Data, 2019, pp. 1981–1984.

[29] “Polars,” https://github.com/pola-rs/polars.
[30] “Arrow flight,” https://arrow.apache.org/blog/2019/10/13/introducing-a

rrow-flight/.
[31] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,

omega, and kubernetes,” Communications of the ACM, vol. 59, no. 5,
pp. 50–57, 2016.

[32] “Spark enhancements for elasticity and resiliency on amazon emr,” https:
//aws.amazon.com/blogs/big-data/spark-enhancements-for-elasticity-an
d-resiliency-on-amazon-emr/.

[33] A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandier, L. Doshi, and
C. Bear, “The vertica analytic database: C-store 7 years later,” arXiv
preprint arXiv:1208.4173, 2012.

[34] “Mythbusting snowflake pricing! all the cool stuff you get with 1 credit,”
https://medium.com/snowflake/mythbusting-snowflake-pricing-all-the
-cool-stuff-you-get-with-1-credit-f3daad217a98.

[35] “Vector data lakes,” Data + AI Summit by Databricks, 2023, [Accessed:
29-November-2023]. [Online]. Available: https://www.databricks.com/d
ataaisummit/session/vector-data-lakes/

[36] J. Zhou, M. Xu, A. Shraer, B. Namasivayam, A. Miller, E. Tschannen,
S. Atherton, A. J. Beamon, R. Sears, J. Leach et al., “Foundationdb: A
distributed unbundled transactional key value store,” in Proceedings of
the 2021 International Conference on Management of Data, 2021, pp.
2653–2666.

[37] S. Sivasubramanian, “Amazon dynamodb: a seamlessly scalable non-
relational database service,” in Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, 2012, pp. 729–730.


