
Rottnest: Indexing Data Lakes for Search
Ziheng Wang*+,

Sasha Krassovsky*
Stanford University,

Anthropic PBC

Conor Kennedy*
Stanford University

Rain Jiang*
Bytedance, Inc.

Weston Pace
LanceDB, Inc.

Huayi Zhang,
Chenyu Jiang, Wei Xu

Bytedance, Inc.

Alex Aiken
Stanford University

Abstract—Data lakes have become widely popular in managing
enterprise data. Their widespread integration with query engines
has allowed them to displace specialized data warehouses as the
single source of truth for enterprise data. While the columnar
storage format and block min-max indices allow query engines
to achieve competitive performance on relational data analytics
queries, they are not yet suitable for other search-oriented queries
like full text and vector nearest neighbor search. We present
Rottnest, a general system that builds additional lightweight
indices on top of data lakes. We show that our system is more
cost efficient compared to un-indexed data lakes or specialized
databases across several orders of magnitude of total query loads
and operating time horizons.

I. INTRODUCTION

Data lakes have become mainstream in analytical data
processing. They typically consist of Parquet files on object
storage such as AWS S3 organized by a table format like Delta
Lake, Iceberg or Hudi [1]–[5]. The Parquet files are queried
on-demand with engines such as Trino, Databricks, Snowflake,
or DuckDB [6]–[10]. For OLAP SQL workloads, the perfor-
mance of such query engines is often better than specialized
data warehouses [11], [12]. The widespread support of Parquet
among data science and machine learning tools have made data
lakes ideal for the analytical “single source of truth” in modern
enterprise data stacks.

However, data lakes are still unsuitable for emerging work-
loads that are search-oriented. These workloads, such as high-
cardinality time series, text, and embedding analytics typically
need to quickly drill down to a very small subset of the
data and perform complex aggregations on this subset. In
most cases, the minimal indexing available in current Parquet-
based data lakes do not allow efficient evaluation of the
filter conditions (e.g. UUID match, text regex, approximate
nearest neighbors), making these workloads inefficient for
query engines like SparkSQL or Trino [6], [13]. As a result,
the lakehouse paradigm breaks for these workloads – orga-
nizations have to duplicate their data to a specialized data
management system like Clickhouse, ElasticSearch or Qdrant
to perform efficient search analytics, as shown in Figure 1.

Modern data lakes store data primarily as immutable Parquet
files in object storage, optimized for large-scale analytics. Data
lakes like Delta Lake and Apache Iceberg added transactional
support to data lakes by maintaining lightweight metadata files
alongside the Parquet files [4], [5], [14]. These systems achieve
ACID properties efficiently through a combination of metadata

* Equal contribution. + Currently at Anthropic PBC.

logging and background compaction operations - transaction
logs track file-level changes while periodic compactions merge
small files to optimize read performance. Building on these
principles, we explore if we could support novel search
workloads through additional lightweight index files on top
of transactional data lakes. We build Rottnest, a system that
augments data lakes with external indices resident on object
storage for workloads such as high cardinality analytics, full
text search, and vector embedding search.

Although individual components of Rottnest’s novel archi-
tecture such as inverted indices and LSM-style compaction
are well studied, our key insight is that combining them
enables efficient search over data lakes with low query cost and
storage overhead. Rottnest’s architecture is enabled by a novel
consistent-on-demand indexing protocol that can be bolted on
to any data lake and object storage backend. We also propose
a novel evaluation methodology that demonstrates Rottnest’s
effectiveness across a wide range of operational scenarios.

Just as data lakes provide “good enough” transactional
semantics for offline big data workloads without replacing
OLTP databases, Rottnest provides “good enough” search
capabilities for offline workloads without aiming to replace
specialized search systems in latency-sensitive online serving.
We believe it can be the most compelling option for most
offline workloads such as historical log analytics and LLM
pretraining data exploration.

In summary, we make three contributions:
1) A novel bolt-on, consistent-on-demand protocol for con-

current index maintenance. Our protocol, with formal
correctness proofs, enables consistent indexing even as
the underlying data lake undergoes operations like com-
paction and deletion. Unlike existing alternatives, it only
relies on strong read-after-write consistency, making it
compatible with all major cloud providers.

2) A new system architecture to support search-oriented
workloads over data lakes using our lazy indexing proto-
col that combines in-situ querying of Parquet files directly
and object-store native indices to deliver low query cost
and low storage overhead.

3) A novel evaluation framework using physics-inspired
phase diagrams to analyze total cost of ownership (TCO)
across different query loads and time horizons. This
methodology reveals insights about system trade-offs that
would be difficult to obtain through traditional perfor-
mance evaluations, and can be applied to evaluate other
cloud data systems where TCO is the relevant metric.



Fig. 1. Typical enterprise data stack. For workloads where directly querying
the data lake with a query engine like Trino is too inefficient, a specialized
system like Clickhouse, ElasticSearch or Qdrant is used.

II. MOTIVATIONS

In this section, we describe the access characteristics of
Parquet-based data lakes to explain why search-based work-
loads can be challenging. We also describe existing approaches
commonly taken to address those challenges.

A. Parquet Data Lakes on Object Storage

Organizations have started using object-storage-based data
lakes based on Parquet files as the single source of truth
for enterprise data, due to their wide ecosystem integrations,
compelling cost characteristics and transactional semantics.
As depicted in Figure 1, operational data is first ETLed
into the data lake from OLTP databases, CRMs, and custom
connectors. Once the data lands in the data lake, a query engine
such as Trino or SparkSQL is used to query the data lake
directly for analytical workloads.

Parquet files are well optimized for OLAP workloads
against object storage. A Parquet file can consist of multiple
row groups, where each row group in turn consists of a
collection of column chunks. A column chunk in a row
group consists of all the values of a column in the row
range corresponding to the row group. Min-max statistics
on the column chunks assist query engines in performing
predicate pushdown, reading only column chunks necessary
for a particular query. These column chunks, which range from
several to hundreds of MB in size, can be downloaded in
parallel via byte-range requests against object storage. With
VM instance bandwidth reaching 100Gbps in major public
clouds, analytics on Parquet files residing in object storage
has reached interactive speeds.

B. Search Workloads

While data lakes are designed for SQL OLAP use cases,
they still fall short in emerging search-oriented workloads,
such as:

• High-cardinality filtering, such as filtering on a UUID
column. Examples include observability workloads (fil-
tering by Kubernetes pod name) and blockchain analytics
(filtering by transaction hash).

• Substring search, such as log search or text analytics.
For example, to detect if evaluation datasets are leaked

in the pretraining corpus, one could perform a substring
search against the training records, which might be stored
as a text column in a data lake.

• Vector embedding search, i.e. approximate nearest
neighbor search. Examples include retrieval-augmented-
generation (RAG) and recommendation systems.

While query engines can efficiently use Parquet-based data
lakes for OLAP workloads, they struggle to do so on these
new workloads. There are two main issues:

1) Useless indices. In search workloads, it is often infeasible
to keep the data sorted based on a high-cardinality column
and maintain insertion performance. For example, time
series data such as IT monitoring and blockchain logs
are naturally sorted by timestamp, and sorting them
based on UUID tags amount to an extremely expensive
transpose. Natural sort-orders do not exist for text or
vector embeddings. These two factors render min-max
indices on column chunks useless for search workloads.

2) Read granularity. Even if an appropriate index exists,
column chunks corresponding to text or binary data types
typically tend to be tens to hundreds of MBs in size due to
Parquet’s design (further explored in Section V-A). This
means for highly selective search queries, current query
engines have to retrieve many MBs of data from object
storage just to return a result that is tens of bytes.

“Lakehouse” query engines today like Spark, Trino, or
DuckDB today typically have to perform expensive full-
column scans which read GBs to TBs of data to perform search
queries, making them very expensive.

C. Existing Approaches

Today practitioners commonly employ two approaches to
tackle such search workloads, copy data (ETL) and brute force
scan. We also mention an emerging third approach, which is
new data formats.

1) Copy Data: Practitioners today commonly copy data
from the data lake back into specialized systems tailor-made
for their workload, such as Clickhouse [15], ElasticSearch
[16], vector databases like Qdrant [17] (Figure 1). While this
approach guarantees the best performance for those queries by
leveraging specialized systems, it largely negates the benefits
of the data lake for the data in question. These systems tend to
be compute-storage integrated and are expensive to manage.
In addition, the data pipelines duplicate data and reintroduce
data consistency and staleness issues that data lakes seek to
address in the first place.

While we believe that this is the best approach if the search
queries are frequent or require strict latency SLAs, e.g. a
search engine like Google, we observe that many important
workloads do not have such requirements. For example, an
LLM pretraining data exploration system might serve only up
to 100 internal users while query latencies up to a minute are
acceptable. Similarly, a log management system might serve
only a particular SRE team where query latencies up to a few
seconds are acceptable.



La
te

nc
y

Total Query Load

Offline 
Recommendation

Interactive 
Analytics

Log 
Search

Brute 
Force

Rottnest 
Index

Copy 
Data

Online Recommendation

Google 
Search

Fig. 2. The most economical approach given latency and throughput require-
ments of the application. Some example applications are shown.

2) Brute Force Scan: Another popular approach is to
simply pay the high IO and compute cost of these queries
by horizontally scaling the query engine, such as with Spark
SQL [13], [18]. Cloud vendors are especially incentivized
to take this approach as they typically charge based on the
amount of data scanned. For example, AWS Athena has been
heavily used by cybersecurity professionals to query logs, with
a pricing model that reflects the brute-force scanning approach.

This approach is the simplest and most economical if query-
ing is highly infrequent, since it incurs no upfront indexing or
storage costs. However, it simply defers those costs to query
time. While we believe this may be the best approach for
workloads that might not ever read most of the data (e.g. log
analytics), if most data will be read at least a couple of times
over its lifetime, this quickly becomes expensive. In addition,
this approaches incurs a minimum latency of typically a few
hundred milliseconds due to its need to spin up tasks on
demand and access object storage, making it unsuitable for
worklaods with strict latency SLAs.

3) New File Format: A third approach is to replace Parquet
files with new file formats, such as Lance and Nimble [19],
[20]. While these new file formats are purposefully designed
to excel at these new search-style workloads, they have not
yet achieved the widespread ecosystem integrations that made
Parquet appealing in the first place. For example, all three
major data lake formats only support Parquet today [2], [3],
[5]. As a result, it is impractical today for most organizations
to adopt them as the ground truth data store. This means
in practice organizations still have to keep data in Parquet,
making this no different than the copy-data approach.

Another similar approach is recent modifications to the
Parquet file itself, for example column indices and bloom
filters [21], [22]. While these approaches could be somewhat
effective in some search queries that involve high cardinality
tags, they do not help for text or vector searches. More
importantly, they assume a Parquet writer that generates these
additional indexing structures, which in practice is quite rare.

D. Motivation for a New Approach

The limitations of existing approaches suggest the need for
a new design that simultaneously satisfies:

• Lower indexing and storage cost compared to copying
data into dedicated indices that require expensive persis-
tent RAM/disk resources.

• Cheaper querying compared to the brute force approach.
Satisfying these two objectives would provide the most

economical solution for a large class of offline or human-
interactive workloads with medium total query load, some
examples of which are shown in Figure 2. Our objective of
easy integration with existing data lakes to reduce data silos
leads us to two more design goals:

• Non-interference guarantee with existing data lake op-
erations. As the data lake lives at the center of an
organization’s data architecture, the system must not
impact the performance or complexity of existing data
lake ingestion, maintenance, or read workloads.

• Broad compatibility with all major cloud providers,
which might offer varying consistency properties for their
object storage offerings.

III. ROTTNEST SEARCH INDICES

Rottnest addresses these four objectives by maintaining
lightweight index files on top of data lakes. Inspired by how
data lakes like Delta Lake or Iceberg achieve ACID properties
on top of Parquet files in object storage by maintaining log
files [3], [4], [23], we propose a novel lazy indexing protocol
that constructs secondary indices on data lakes which satisfies
the latter two design goals.

Instead of updating indices upon write, Rottnest maintains
consistency with the underlying data lake on-demand. Rottnest
index maintenance and querying can be performed completely
independently of other data lake operations. This approach
shares similarities with Postgres concurrent indices and back-
ground compactions in LSM-based databases like RocksDB
[24], [25]. Like RocksDB, this means the newest data often
remains unindexed and requires full scanning during queries.
While our protocol is conceptually similar to Azure Hyper-
space [26], a key difference lies in the consistency primitives
used. Hyperspace relies on atomic rename operations, which
are not universally supported across major cloud providers
like AWS S3. In contrast, Rottnest’s protocol requires only
strong read-after-write consistency, making it compatible with
all major cloud object stores.

Building on our novel lazy indexing protocol, Rottnest’s
overall search architecture satisfies our first two design goals:
minimizing both index construction/storage costs and query
costs. Optimizing along these two objectives allows Rottnest
to maximize the area of the purple-shaded area of Figure 2
where it wins over the brute force and copy data approaches. In
the red-shaded area, brute force scanning requires no indexing
cost but incurs high search costs - lower index costs help
Rottnest reach its break-even point with fewer queries. In the
blue-shaded area, dedicated systems like ElasticSearch require
high upfront costs to store indices in expensive persistent
SSDs/memory but offer cheap searches - lower query costs
allow Rottnest to remain competitive at higher query loads
while also meeting stricter latency requirements.



To satisfy these dual requirements, our search architecture
combines two key engineering innovations: in-situ querying
of Parquet files to minimize index storage costs, and object-
storage-native index structures optimized for low-latency ac-
cess to minimize query costs. These innovations are put
together in a novel way which enables, for the first time,
full-text and vector search on Parquet-based data lakes with
latencies of just a few seconds, without requiring persistent
memory or disk resources.

To reduce indexing and storage cost, Rottnest does not store
a copy of the raw data in the index, opting instead to query the
data in situ in the Parquet files, inspired by previous work such
as NoDB [27]. Assuming the index structure is smaller than
the compressed raw data (which is typically the case), this
drastically lowers the index storage overhead. While recent
work has suggested that Parquet files have efficiency issues
that limit their performance on highly selective search queries
[28], [29], we show that contrary to popular wisdom, most of
these issues can be circumvented with a custom Parquet reader
implementation described in Section V-A, leading to search
performance that rivals custom formats like Lance [19].

To eliminate the need for disk caching to further lower
storage cost, Rottnest stores and accesses index files directly
on object storage. While the indices are accessed randomly via
S3 byte range GET requests, we optimize latency through a
technique we call componentization, based on principles from
cache- and disk-efficient algorithms [30], [31].

To rigorously analyze the system’s performance characteris-
tics, we introduce a novel methodology using phase diagrams
that quantitatively maps the performance boundaries where
Rottnest outperforms both brute-force scanning and dedicated
search systems (shown qualitatively as the purple region in
Figure 2). While existing literature on cost comparisons of
cloud data systems typically focus on aspects like storage
cost and query cost separately, or the total cost of executing
a fixed benchmark set of queries over a fixed cluster configu-
ration [32]–[34], our TCO framework jointly considers index
construction cost, storage overhead, and per-query cost over
varying time horizons and query volumes to identify optimal
operating regions for different approaches. This analytical
framework could also be used to evaluate future data lake
indexing systems.

In the following three sections, we will explore our novel
contributions in turn: index protocol (IV), optimized access
architecture (V) and TCO evaluation (VI).

IV. INDEX PROTOCOL

Similar to delta-rs [35], the Rust-based client of Delta
Lake, Rottnest is designed as an embedded Rust library
with index management APIs in Python. The Rottnest client
library supports four APIs: index, search, compact and
vacuum. Of these, index, compact, and vacuum mutate
the Rottnest index, maintaining two invariants that together
guarantee correct search:

• Existence: all indexed files referenced in the metadata
table are present in the object storage bucket.

f4d1.index

a.parquet b.parquet

c.parquet

d.parquet

Index File Parquet Files 

09xf [a, b]

f4d1 c

e.parquet

1. Plan: need to index d.parquet, e.parquet

_delta
_log/

2. Index: compute, upload ac02.index

ac02.index

09xf.index

3. Commit: write to metadata table.

ac02 [d,e]

Rottnest Metadata Table Rottnest Index Bucket Underlying Delta Table

Rottnest Indexing Client

Rottnest Indexing 
Protocol

dv.bin

Fig. 3. Rottnest Indexing Protocol. Since the last index call b.parquet and
c.parquet has been compacted into d.parquet, and an update was written with
the update file e.parquet and deletion vector dv.bin.

• Consistency: an index file correctly indexes the associ-
ated Parquet files if they still exist.

A. Building a Rottnest Index

The index API can be called from any VM instance or
serverless function with access to the underlying data lake to
keep a Rottnest index at an object storage bucket index_dir
up to date with the current snapshot of the data lake table.1

The design would be simple for append-only data lakes where
Parquet files can only be added: when index is called, build
a new index file covering the new Parquet files. However,
data lakes support operations that may invalidate existing
Parquet files (e.g., compactions, vacuums, Z-order, and CRUD
operations) as well as produce custom files such as deletion
vectors which record individual rows of a table that have
been deleted [36], [37]. Because our indices point to physical
locations, index files may be invalidated by such operations.

We propose a simple protocol to ensure consistency in
the face of these different data lake operations: index all
new Parquet files written to the data lake, regardless of
whether they result from insertions, compactions or updates.
While searching, search only index files that include physical
locations included in the snapshot. An index file might also
map a query term to physical locations not in the snapshot –
such locations are filtered out during the search.

To facilitate this process, Rottnest keeps track of the list of
Parquet files it has already indexed in the Rottnest metadata
table, which is implemented as a Delta Lake table itself
resident on object storage. In principle, any transactional data
store, e.g. Postgres, can be used for this purpose.

The indexing works as follows (example in Figure 3):
1) Plan: Look at the manifest list of the latest data lake

snapshot and find the Parquet files that are in the current
snapshot but not yet indexed. Rottnest only indexes new

1Data lakes support time travel; a snapshot is a point-in-time copy of the
data represented by a list of Parquet files in the snapshot.



data files (d, e.parquet in Figure 4) and not deletion files
(dv.bin).

2) Index: Rottnest proceeds to build an index file
(ac02.index) that covers all the new Parquet files, and
uploads it to index_dir.2 If, for some reason, a file is
no longer available to read during the indexing process,
e.g. due to garbage collection of the data lake, the index
API aborts and needs to be retried.

3) Commit: After the new index file has been uploaded
to object storage, the indexer inserts a record into the
Rottnest metadata table transactionally. Note that the
metadata table shown in Figure 3 is simplified, in practice
other metadata information such as total number of rows
indexed and index timestamp can be recorded as well.

4) Timeout: If the index operation is not completed within
a set timeout, it will abort and needs to be retried. The
timeout is critical for garbage collection, as described
later in vacuum.

We do not require all index files present in the Rottnest
index bucket to have an associated entry in the metadata table,
which might occur if the indexer fails during commit. These
index files will be garbage collected separately, described Sec-
tion IV-C. We also do not require all Parquet files referenced
by index files to still be active in the underlying data lake.
Indeed, it is expected that some index files might cover Parquet
files removed by compactions.

Although the indexing API is internally parallel, it should
not be called on the same table column across multiple pro-
cesses. While doing so will not violate any safety guarantees,
the same Parquet files would be needlessly re-indexed multiple
times.

One might argue that indexing every new Parquet file in
the data lake is inefficient, as new Parquet files written by
special processes such as Z-order or compaction could be more
efficiently indexed by simply remapping the existing posting
list values without recomputing the entire index. However,
this procedure is significantly more complex with dangerous
pitfalls: e.g. the original Parquet files that were compacted
might have been removed, making the remapping impossible.

B. Searching a Rottnest Index

Rottnest’s client library offers a search API, which can
be called on any process with access to the data lake and the
Rottnest index at index_dir, similar to index. Rottnest
search queries search a specified data lake snapshot to retrieve
top-K results.3 The search procedure follows these steps, with
an example illustrated in Figure 4:

1) Plan: Rottnest first queries the data lake for the manifest
list for the specified snapshot, which contains a list of Par-
quet files that make up the snapshot along with potential

2Some types of indexes (such as vector indexes) might have a minimum
size limit. If the total number of rows in the new files falls below this limit,
the indexing will be aborted in favor of brute force scan.

3Top-K could have different meaning for exact match queries like regex
(any K that satisfy predicate) and scoring queries like vector search (top K
ranked based on score).

a.parquet b.parquet

c.parquet

d.parquet

Index File Parquet Files 

09xf [a, b]

f4d1 c

ac02 [d,e]

1. Plan: 09xf, ac02 cover active Parquets

_delta
_log/

2. Query: query index files

09xf.index

3. Probe: read raw Parquets as required, 
reconcile updates and deletes.

Rottnest Metadata Table Rottnest Index Bucket Underlying Delta Table

Rottnest Search Client

Rottnest Searching 
Protocol

dv.bin

f4d1.index

ac02.index

f.parquet

e.parquet

Fig. 4. Rottnest Search Protocol based on the running example in Figure
3. Assume that after the index call, f.parquet is added to the table and is
un-indexed.

deletion vector files. Rottnest queries the metadata table
in index_dir to determine which index files cover
the Parquet files and which Parquet files have no index
and must be brute-force scanned. In Figure 4, 09xf and
ac02.index must be queried.

2) Query Index: Each Rottnest index file is queried inde-
pendently in parallel for physical locations in the under-
lying Parquet files. The index files are queried on object
storage directly, with optimization techniques described
in Section V-B. For example, 09xf.index might return
[(a.parquet, 10), (a.parquet, 20)], where 10 and 20 denote
locations in the Parquet file. Rottnest indices are allowed
to return false positives (e.g. bloom filter), so the top-K
filter is not applied at this stage. Instead, we just filter
out locations that correspond to Parquet files not in the
specified snapshot.

3) In-situ Probing: The physical locations in the Parquet
files are downloaded and scanned with the actual pred-
icate to filter out false positives. Rottnest efficiently
random accesses Parquet files, explained in more detail
in Section V-A. Deletion files, i.e. dv.bin, are applied if
they exist. The unindexed Parquet files are only scanned
if the filtered results are not sufficient to satisfy an exact-
match top K query or for a scoring query, which must
rank all data items.

The correctness of this procedure follows from the two
invariants. No row in the data lake will be “missed” since
it is either covered by an index file or a Parquet file that
is exhaustively scanned. Different from the index API, the
search API is read-only for the data lake and the Rottnest
index. It is meant to be called in parallel by independent
processes and concurrently with the index, compaction
and vacuum APIs described in the next section.

C. Index Maintenance

To avoid querying many small index files as the data grows,
Rottnest supports compacting indices similar to log-structured



merged tree (LSM) mechanisms employed in databases such
as RocksDB and Clickhouse [15], [24]. Multiple small index
files are compacted into larger files and older index files
can be garbage collected. In Rottnest, the indices are com-
pacted independently of the data maintenance process of the
underlying data lake, which might perform its own LSM-
style compactions. Similar to index, Rottnest’s client library
supports a compact API, which can be run from any server
that has access to the object storage bucket. It proceeds in
three steps:

1) Plan: determine which index files to merge. In general,
index files that cover small numbers of Parquet files or
rows can be merged into larger ones, while it maybe
less important (and more expensive) to merge indices
that already cover a large number of files. The default
behavior of Rottnest is to merge index files that is smaller
than a configurable threshold in a bin-packing strategy.

2) Merge: build the merged index files. This step could
be computationally intensive and might require reading
the raw Parquet files. After the new index files are built,
upload them to index_dir.

3) Commit: insert metadata about the merged index files
into the metadata table.

It is important to note that the compaction process does
not consult the log of the data lake at all, and is completely
decoupled from the compaction process of the data lake
itself. How exactly multiple index files are combined into one
depends on the index type, some examples of which will be
given in Section V-C.

Similar to how compaction works in data lakes, Rottnest
index compaction does not delete index files, which is the
responsibility of a separate garbage collection process, com-
monly referred to as vacuum. There are multiple reasons an
index file may be eligible for garbage collection:

• It was written by a failed indexer or compactor before a
successful commit to the metadata table.

• It has undergone compaction, i.e. a new index file covers
the Parquet files that this file covers.

• It points to Parquet files that are no longer part of a
supported snapshot of the underlying data lake.

To physically delete those files, the Rottnest client library
provides the vacuum API, which proceeds in three steps:

1) Plan: determine which index files in the metadata table
to keep based on snapshot_id. Rottnest currently
uses a simple heuristic: it first computes all Parquet files
included in all the snapshots past snapshot_id. Then
it greedily selects index files that cover the most number
of active Parquet files. The procedure stops when the
number of covered Parquet files cannot be increased. This
procedure maximizes the number of covered Parquet files
while heuristically minimizing the number of index files.

2) Commit: Delete the rows in the metadata table corre-
sponding to index files that are no longer necessary as
determined by the last step.

3) Remove: Physically remove the index files from object
storage that are no longer in the metadata table and
older than the index timeout. Removing these “invisi-
ble” files require an expensive LIST operation against
index_dir, which is acceptable because vacuum calls
are not expected to be frequent or real-time.

We remove after commit in vacuum instead of commit
after upload in index and compact. This ensures index
files included in the metadata table are physically present to
preserve the first invariant.

Vacuum is critical in reducing the storage overhead of the
Rottnest index after index compaction. In addition, vacuum
reduces index size also after operations on the underlying data
lake. For example, if a compaction occurred in the underlying
data lake, data in old Parquet files will be copied to new
Parquet files. While new index files will be built for the new
Parquet files, the old index files pointing to the old Parquet
files will be deleted upon vacuum.

It is critical that vacuum uses the timestamps associated with
objects to only remove objects older than the index timeout,
since from its perspective there is no difference between index
files written but not yet committed and index files that were
written but failed to commit. Since the index operation has a
timeout, vacuum knows files older than this timeout are in the
second category and can be removed. Note that this timeout is
against the object store’s clock, which is valid because modern
object stores provide strong consistency, and thus have a single
global clock [38].

D. Invariants Proof of Correctness

Due to the loose synchronization between the index files,
the underlying data lake, and the processes that modify them,
Rottnest’s protocols are carefully designed to ensure that data
is either indexed correctly, or not at all, by maintaining the
existence and consistency invariants. If M is the set of files
referenced by the metadata table, and B is the set of files in
the bucket, the following holds:

Lemma 1. Existence: all indexed files referenced in the
metadata table are present in the object storage bucket (i.e.
∀f ∈ M : f ∈ B)

Proof. We prove the result by induction. Initially, M = ∅ and
the invariant trivially holds.

For the inductive step, assume the invariant holds before
launching some number of index-modifying processes (either
index, compact, or vacuum). There are three states these
processes can be in:
before_upload, before_commit, and
during_delete. First, notice that the indexing and
compaction processes follow the same pattern of plan,
upload, and commit. For both indexing and compaction
in the before_upload state, both M and B are
unmodified, so the invariant holds. In the before_commit
state, B can only have grown with the new file fnew,
and so ∀f ∈ M : f ∈ B ∪ {fnew} is true. Lastly,
the commit will update M to contain fnew, and so



∀f ∈ M ∪ {fnew} : f ∈ B ∪ {fnew}. Note that concurrent
updates do not change the nature of the proof, since updates
to M are transactional and files uploaded to B are owned
exclusively by the process.

For vacuum, suppose we decide to delete some files F .
First note that a concurrent indexing or compaction operation
may have introduced some files to B but not M . Since
these operations are guaranteed to take less time than the
global timeout (they abort otherwise), we know that it is
not safe to delete files younger than the timeout, and any
such files are skipped by the vacuum process. These files
therefore cannot be in F , and so will never be deleted
before they are written to M . By the induction hypothesis,
in the before_commit state, the invariant holds. After
transitioning to the during_delete state, M is updated to
M \F ; since M shrank, ∀f ∈ M \F : f ∈ B holds. Following
the during_delete state, B is updated to B \ F and we
have ∀f ∈ M \ F : f ∈ B \ F .

Lemma 2. Consistency: an index file correctly indexes the
associated Parquet files if they still exist. In other words, let
df be the associated data file for index file f . Then ∀f ∈ B :
¬exists(df ) ∨ indexes(f, df ).

Proof. Take an arbitrary Rottnest file f ∈ B. Once f is built, it
correctly indexes df . Since both Rottnest and underlying data
files are both immutable, the indexes(f, df ) will always be
true unless either f or df is deleted. If f is deleted, then f¬ ∈
B, so the invariant holds. If df is deleted, then ¬exists(df )
is true, and so the invariant also holds.

While the proof relies on reasoning about system states,
similar to the design of Hyperspace, our approach funda-
mentally differs in how these states are managed. While
Hyperspace uses atomic rename operations to switch between
state files representing transitioning and stable states [26],
Rottnest achieves the same guarantees through a combina-
tion of immutable files with append-only metadata updates,
transactional updates to the metadata table and careful use of
timestamps for failure detection. This design eliminates the
need for atomic rename operations, which are not universally
supported across cloud providers, while maintaining the same
strong consistency guarantees through primitives commonly
available in all major object stores.

V. INDEX IMPLEMENTATION

We have so far focused on maintaining consistency be-
tween indices and physical data locations in a data lake.
We now present Rottnest’s novel architecture that enables
efficient search directly over data lake formats through two
key components working in concert:

1) An in-situ querying mechanism that enables efficient
access to native formats like Parquet to avoid storing a
copy of the data in a different format.

2) A componentization strategy that optimizes index layouts
for fast cold-access on object storage to avoid persistent
disk/RAM caching for index data structures.

Metadata & Statistics

Row Group

Page

Page

Page

Column 
Chunk

Page

Page

Page

Column 
Chunk

Page

Page

Page

Column 
Chunk

Parquet File

Traditional 
Parquet 
Reader

Rottnest 
Parquet 
Reader

Fig. 5. Traditional Parquet readers read entire column chunks. Rottnest’s
reader reads individual pages, and notably bypasses the file metadata.

Combined, these techniques enable a fully object-storage-
based architecture while maintaining low query latencies,
satisfying both cheap search and storage as described in
Section III. We will demonstrate that this architecture enables
us to perform efficient search queries over data lakes on object
storage with latencies previously thought impractical.

A. In-situ Querying

It might seem surprising from our discussion in Section II-B
that keeping the original data in Parquet on object storage
could lead to efficient querying. A typical layout of a Parquet
file is shown in Figure 5. Since Parquet writers typically write
128MB row groups, and we are interested in indexing wide
columns (vectors and text), the row group’s space is dominated
by our column’s column chunk (typically 100 of 128 MB goes
to our column).4 For highly selective search queries, reading
and decompressing 100MB of data from object storage to
retrieve just a few rows is not efficient.

To mitigate this issue, we observe that the minimal access
granularity in a Parquet file is actually a data page, whose size
is independent of the row group size. Typically, the physical
size of a data page is equal to the compressed size of 1MB
of raw data, which is around a few hundreds KBs for text or
vector data types. We will show in Section VII-C that reading
at this granularity is as efficient as using custom data formats
like Lance [19].

Similar to NoDB which maintains position zone maps on
raw data [27], Rottnest maintains page tables that associate
a unique ID for each data page to the offsets and sizes of
the data page. Rottnest’s indices are built at the granularity of
these pages. In other words, the posting lists do not point to
individual rows but to data pages. While this adds additional
filtering work at query time and might complicate the design
of indices which rely on posting list intersections (e.g. BM25),
it significantly reduces the index storage footprint and speeds
up index construction.

4This is an inherent flaw in Parquet’s design, because all column chunks
in a row group must have the same number of rows.



Fig. 6. Breaking a BST into serializable components. Each query must
read the “root” component and one leaf component. The other three leaf
components are not read. The memory-mapped approach for each query would
have required four sequential requests, while this approach requires only two.

B. Optimizing for Object Storage Accesses

Object storage is a high-latency but high-throughput storage
medium that favors large sequential range requests issued
in parallel (access width) over sequences of small requests
(access depth) [4], [39], [40].

The straightforward approach is to take the in-memory data
structure, serialize and compress it, and then upload it to object
storage. To query the data structure, simply download and
decompress it in memory. Compression significantly reduces
both storage costs and read amplification, with IO savings
typically outweighing decompression overhead. While this ap-
proach leads to large sequential reads and adequate parallelism
assuming simultaneous querying of multiple index files, it can
be wasteful for random-access indices where most of the data
structure is not accessed.

An opposite approach could consist of “memory-mapping”
the data structure to object storage, where memory accesses
are directly translated to object store requests. This approach
has the benefit of reading only the bytes required, however it
could lead to long chains of dependent object-storage requests.
In addition, it foregoes the compression benefits offered by the
former approach.

An intermediate approach that we employ, which we term
componentization, builds on classical cache and disk blocking
techniques [30], [31]. We break up a data structure into
several components to optimize access patterns. However,
unlike traditional blocking which focused purely on locality,
componentization must additionally consider compression and
object store access patterns. Each component is compressed
and concatenated to form the index file, which also contains
an offset array of the location of each component. Each
data structure access only reads the components it needs,
reducing the total number of dependent requests because each
component could capture multiple requests. An example of this
approach applied to a binary search tree is shown in Figure 6.

The key observation that enables componentization is that
most data structures employed in indices have some degree
of “access locality”. This approach would not work if after
an access into the data structure, the next access address
is completely random or data dependent. In these cases,
alternative data structures might have to be considered.

C. Example Rottnest Indices

We now describe how to apply the componentization prin-
ciple to build Rottnest indices for the search workloads de-
scribed in Section II-B: UUID, substring and vector search,
where current data lake query engines struggle. In addition,
we explain how to support efficient merging of those indices,
required for compaction.

1) High-cardinality UUIDs: We design an index to facil-
itate fast exact matching of UUIDs via a binary trie, where
each UUID corresponds to a path in the trie. In accordance to
the design principles in Section V-B, we break the binary trie
into components similar to Figure 6. To save space, the binary
trie only indexes for each UUID as many bits as required to
uniquely identify it, which corresponds to its longest common
prefix (LCP). However, an index can be merged with others,
so we do not know the LCP of any UUID a priori. We thus
index up to 8 extra bits of the LCP for each UUID while
allowing leaf nodes to map to multiple UUIDs in case that
is not yet enough. We employ an additional optimization by
replacing the first 8 layers of the trie with a look up table to
reduce the number of sequential requests.

2) Exact Substring Matching: We employ the FM-index
based on the Burrows-Wheeler Transform [41], [42] with
a sampled suffix array. The data structures are adapted to
object storage with the componentization approach described
in Section V-B. To merge indices, we employ the technique
described in [43] with bounded interleave iterations.

3) Vector ANN Index: Vector indices are typically graph
based (e.g. Vamana, HNSW) or clustering based (IVF-PQ)
[44]–[46]. While graph-based approaches like HNSW have
been gaining in popularity, they typically require fewer dis-
tance computations but more sequential data accesses (due
to the random traversal of the graph) to achieve the same
recall target compared to centroid-based approaches like IVF-
PQ [44], [46]. This is very beneficial for disk/RAM scenarios
where the distance computations can dominate search cost, but
can be harmful when IO access costs dominate, as is the case
with object storage. As a result, popular object-storage based
vector databases typically rely on centroid-based indices like
IVF-PQ or SPFresh [47]–[49]. We choose to use IVF-PQ index
in Rottnest, and tune the nprobe and refine parameters to hit
different recall targets: nprobe controls how many centroids to
query and refine controls how many full precision vectors to
download for reranking.

VI. EVALUATING ROTTNEST

In Figure 2, we presented intuition for how Rottnest com-
pares to two other approaches: copy data into a dedicated
system or brute force scan the data lake. We now follow
up with a much more quantitative evaluation framework that
seeks to answer under what exact conditions is one approach
better than another to ground our evaluation results.

All three approaches have drastically different storage and
query cost characteristics. While prior comparison frameworks
have focused on comparing indexing cost, storage footprint
and query cost separately [32], [34], or the total cost of running



10 2 10 1 100 101

Months

102

103

104

105

106

107
To

ta
l N

or
m

al
iz

ed
 Q

ue
ri

es Copy data

Rottnest

Brute force

a

10 2 10 1 100 101

Months

102

103

104

105

106

107

To
ta

l N
or

m
al

iz
ed

 Q
ue

ri
es Copy data

Rottnest

Brute force

b

Fig. 7. Phase change diagrams for a) Substring search and b) UUID search.
Note log-log axes. Explained in Section VII-B1.

a fixed benchmark of queries [33], we believe practitioners
need a more intuitive way to choose between approaches based
on their expected workload. Our phase diagram framework
provides this by visually showing which approach minimizes
total cost of ownership under different operating conditions.

We assume we are operating in a regime where we are not
latency constrained in Figure 2. While the minimum latency
threshold of an approach is an important metric, a better
way to evaluate these three approaches beyond the threshold
is using cost: the total cost of ownership (TCO) of the
system under a fixed query load and operating duration. In
this situation, comparing query latency is less appropriate since
the brute force approach can trivially reduce query latency by
scaling search horizontally.5

Since all three approaches can be more efficient if the query
only has to search part of the data lake, e.g. due to a filter on
a structured attribute like timestamp, we consider the cost per
normalized query, where the brute force approach must scan
the entire dataset. Note that Rottnest can leverage structured
filters by building indices on different partitions of the data
clustered by the structured attribute [50], [51].

To compare the TCO of these three approaches, we can
plot a quadrant with the total number of normalized queries
on the y-axis and the number of months we are operating the
system on the x-axis. For a particular point (months, queries)
on this quadrant, we can estimate the TCO of each of the three
approaches as index cost + cost per month × months +
cost per query × queries:

• Copying data into an dedicated system typically incurs
a high cost per month for a cluster of always-on servers.
On the other hand, the indexing and query cost can be
folded into this constant monthly operating cost. TCO =
cpm i×months , where cpm i is the cost per month.

• Brute force incurs no indexing cost and a very low cost
per month (S3 storage of compressed data). However
it has very high cost per query : TCO = cpm bf ×
months + cpq bf × queries , where cpm bf and cpq bf
represent the cost per month and per query respectively.

5In practice, the scaling is not perfect and the cost can still increase. We
will examine this later in Section VII-A.

• Rottnest indices incur a one-time index cost, relatively
higher cost per month (to store and maintain the index
structures) but a much lower cost per query compared
to brute force. TCO = ic r+cpm r×months+cpq r×
queries , where ic r denotes the index cost.

Using this model we can plot a phase change6 diagram
that indicates the most economical solution for each point
in the quadrant, a couple examples of which are shown
in Figure 7. The lines indicate boundaries between regions
where a different approach is optimal in terms of TCO. This
phase change graph allows a practitioner to easily figure out
the most economical approach based on the estimated usage
characteristics of the search workload. For example, at 10
months and 104 total normalized queries, Rottnest is the most
cost efficient approach for substring search.

Rottnest typically becomes most economical when:
1) The dataset needs to be queried more than some minimum

number of times to amortize the index cost.
2) The number of queries is large enough that brute force

is too expensive but not large enough to justify copying
the data into an always-on index.

The parameters cpm i , cpm bf , cpq bf , ic r , cpm r
and cpq r , which directly determine the shape of the graph,
are generally dependent on the search workload and data
distribution. We will discuss how changing them affects the
phase change diagram in Section VII-D.

VII. RESULTS

We now apply this evaluation framework to the Rottnest
indices we constructed for three example applications: UUID,
substring and vector search. For substring search, we use
the C4 dataset from FineWeb [52], containing 0.8 trillion
characters (304GB compressed) of web crawl data that reflects
real-world text search patterns. Substring search is commonly
used in LLM data curation to retrieve data related to a partic-
ular domain or detect copyright violation. For UUID search,
we generated 2 billion 128-byte hashes to mirror enterprise
workloads involving unique identifier lookups common in
observability queries. Vector search evaluation uses the SIFT
dataset [53] of 1 billion 128-dimensional vectors, a commonly-
used industry-standard benchmark.

For the copy data approach, we use AWS OpenSearch
for substring and UUID search (cluster of 3 r6g.large.search
instances with data in EBS), and LanceDB [19] for vector
search (3 r6g.xlarge instances with data in S3 with index
cached in memory). Our brute force baseline uses PySpark on
AWS EMR on a cluster of r6i.4xlarge instances. Substring and
UUID search are implemented in SQL whereas vector search
is implemented with a UDF using the mapInArrow API for
optimal performance.

For cpm i , we include the EBS cost required to replicate
the primary index three times for OpenSearch or LanceDB
as well as three r6g.large instances. cpm r and cpm bf are

6Phase change diagrams in physics plot the region of temperature and
pressure where a molecule forms a solid, liquid, or gas.



8 16 32 64

20

40

60
La

te
nc

y 
(s

)
a Brute Force

1 2 41
2
3
4
5
6
7

La
te

nc
y 

(s
)

c Rottnest
Substring
UUID
Vector ANN

8 16 32 64
Worker Instances

0.05

0.10

0.15

0.20

0.25

Co
st

 (
$)

b

1 2 4
Worker Instances

0.01

0.02

0.03

Co
st

 (
$)

d

Fig. 8. Brute force approach latency (a) and cost (b) scaling with cluster size.
Rottnest latency (c) and cost (d) scaling with cluster size. Worker instance
used is r6i.4xlarge with 16 vCPUs.

computed based on the cost of storing the raw data and the raw
data plus the Rottnest index on S3 respectively. cpq bf and
cpq r are computed from query latency times the hourly cost
of the EC2 instances on which the queries are executed. The
indexing cost ic r , includes both the EC2 instance cost for
Rottnest to compute initial indices and adequate compaction.7

Technically, ic r , cpq bf and cpq r should include the cost
of S3 requests. In practice, we find them eclipsed by compute
resource costs so focus on the latter for the evaluation.

A. Minimum Latency Thresholds

Before we address TCO, we seek to determine the minimum
latency threshold of Rottnest and the brute force approach for
the three applications. We examine how horizontally scaling
the number of machines impact the latency and the query cost,
as described in the last section, in Figure 8.

From Figure 8a and 8b, we see that Spark is fairly horizon-
tally scalable up to 32 worker instances across the three query
types. Scaling to 64 workers leads to a marked decrease in
latency improvement and therefore a large increase in cost per
query. The latency at 64 workers can be taken as an estimate
of the minimum latency threshold where brute force becomes
a viable approach.

Rottnest is not easily horizontally scalable, since it is often
latency bound instead of throughput bound: as discussed in
Section V-B, we find ourselves bottlenecked by the depth of
our object storage reads instead of the width. As a result,
Figure 8c and 8d show the latency barely improving with more
searchers, while the cost almost linearly increases. Indeed,
Rottnest is designed to be operated in practice with a shared-
nothing architecture.

We note that for all three query types, Rottnest’s latency on
one worker still outperforms brute force latency on 64 workers
by a large margin: 4.3x for substring and UUID search, and
5.4x for vector search. This means Rottnest has a much lower

7Compaction could also be counted in cpm r . For the append-heavy
datasets here, data no longer needs to be compacted once they are in
adequately sized indices, making it more appropriate to include compaction
cost in the upfront indexing cost.

10 2 10 1 100 101

Months

102

103

104

105

106

107

To
ta

l N
or

m
al

iz
ed

 Q
ue

ri
es

Copy data

Rottnest

Brute force

Copy data

Rottnest

Brute force

Copy data

Rottnest

Brute force

Recall = 0.87
Recall = 0.92
Recall = 0.97

Fig. 9. Phase change diagrams for vector search at different recall targets.
Note log-log axes.

minimum latency threshold: 4.6s for substring search, 1.7s for
UUID search and 2.3s for vector search.

B. Total Cost of Ownership

We now apply our TCO evaluation framework described
in Section VI. We use 8 worker instances for brute force
and a single instance for Rottnest. Note they are the most
cost efficient configurations explored in the last section for
both approaches. We separate the three applications into exact
queries (substring and UUID) and scoring queries (vector),
where the evaluation is complicated slightly by recall tradeoffs.

1) Exact Queries: We first evaluate the exact match queries,
i.e. UUID and substring search. The phase diagrams are
plotted on Figure 7. We see that the point at which Rottnest
becomes a competitive option starts very early for both ap-
plications (2 days for substring search and ¡1 day for UUID
search). As the number of months increase, the range of total
query numbers in which Rottnest is most economical grow to
span more than 4 orders of magnitude: from around 8 × 102

to 4× 106 total queries at 10 months for substring search and
from 3× 102 to 107 for UUID search.

We see a curvature up in the boundary between Rottnest and
brute force for substring search since the Rottnest indices are
almost as large as the compressed Parquets in this case. This
makes brute force increasingly economical as the operating
duration increases. For the UUID search, the indices are much
smaller, so the boundary stays flat. This behavior will be
discussed in detail in Section VII-D.

2) Scoring Queries: The evaluation approach for vector
search needs to be modified since query cost can be traded
off with recall for Rottnest. We assume that changing the
recall target has negligible effect on the TCO of the other two
approaches. This is definitely the case for brute force, where
the recall is always perfect. This is less true for copy data
approach, where the recall target could degrade the throughput
of the vector database which might require more servers to hit
a QPS target. We ignore this consideration here, which makes
the copy data baseline stronger in the evaluation presented.

The Rottnest vector index is based on IVF-PQ [47], [54].
We tune the nprobe and refine parameters to hit different
recall@10 targets: 0.87, 0.92 and 0.97. The former controls



103 105 107

Access Granualarity (Bytes)

102

103

104

Ti
m

e 
(M

ill
is

ec
on

ds
)

a
1 reads
4 reads
32 reads
128 reads
512 reads
Page Size
Row Group Size

1 4 32 128 512
Number of Reads

50

100

150

Ti
m

e 
(M

ill
is

ec
on

ds
)

b
Parquet page
Byte-range

Fig. 10. Parquet reading benchmarks showing how a) read latency increases
with read granularity at different number of concurrent reads and b) the latency
of reading 300KB byte ranges compares to reading real Parquet pages.

how many centroids to probe and PQ vectors to rank, whereas
the latter controls how many full precision vectors to download
and rerank. Increasing these parameters improves recall but
also increases search latency and cpq r.

We show the phase diagrams corresponding to the different
recall targets in Figure 9. In our experiments, a recall target
of 0.97 leads to a higher search latency, and thus cpm r, 35%
worse compared to a recall of 0.87. However this difference
barely changes the area Rottnest wins in the log-log plot,
which covers around 4 orders of magnitude at 10 months. In-
deed, given the large orders of magnitude differences between
cpm i and cpm r, the small changes in cpq r does not move
the boundary significantly. Concretely, this means building a
Rottnest index is most likely still a good decision if recall
target changes due to business requirements or if different
queries have different recall requirements.

C. In-situ Querying

A key decision point for Rottnest is to read raw data from
the underlying Parquet files, instead of copying the raw data
into a custom storage format. This decreases both ic r and
cpm r as it reduces storage requirements. The Rottnest index
is typically much smaller than the compressed data itself, so
storing a copy of the data would multiply the storage overhead
several fold. In Figure 11, we show the effect including a
copy of the data would have on the phase diagram of the
UUID search. On longer time horizons at around 10 months,
it reduces the range of total queries where Rottnest is more
cost-effective than brute force by a few times and the cost
benefit compared to brute force in general.

The catch is that keeping the data in Parquet makes querying
more challenging, as open source Parquet reader implementa-
tions cannot efficiently perform random access on this data,
increasing cpq r . In Figure 11 we show that without a custom
reader, Rottnest becomes less efficient than the copy data
approach over several orders of magnitude. Rottnest resolves
this by designing its own optimized Parquet reader that reads
only the required column pages (∼300KB) vs entire row
groups (∼128MB).

Compared to an ideal custom format that allows the reader
to fetch only the bytes necessary for a data item (typically
0.1-4KB) without decompression, our Parquet reader has a
read granularity of 300KB and must decompress the whole
read to fetch any item. We experimentally validate that our

10 2 10 1 100 101

Months

102

103

104

105

106

To
ta

l N
or

m
al

iz
ed

 Q
ue

ri
es

a Substring

10 2 10 1 100 101

Months

b UUID

10 2 10 1 100 101

Months

c Vector
In Situ
Store Copy
No Custom Reader

Fig. 11. Changes to the phase diagram if Rottnest keeps a copy of the data
in custom format or if it did not use an optimized custom Parquet reader.

Parquet reader makes our in-situ querying likely as efficient
as using this ideal custom format. We first show in Figure
10a that byte-range read request latency to S3 is stable in
terms of read granularity until around 1MB, at which point it
increases linearly with the read size. This observation holds
for different numbers of concurrent reads from 1 to 512. While
the size of Parquet row groups puts it in the throughput bound
regime, the size of Parquet pages puts it squarely in the latency
bound regime. Concretely, this means using a custom storage
format to perform more granular reads is unlikely to result
in improved performance. In addition, we show in Figure
10b that there is little difference in terms of performance
between reading 300KB byte ranges and reading and decoding
actual Parquet pages in our Parquet reader, showing that
decompression overhead is not a concern.

To further evaluate this key design choice, we directly
compare Rottnest’s query performance to LanceDB cold cache
mode which uses its own custom Lance format. In contrast
to the LanceDB configuration used to benchmark the copy-
data approach above where the index is kept in memory, we
keep the index on S3 and query it directly similar to Rottnest,
using optimized configurations tuned by a core LanceDB
maintainer. Rottnest achieves comparable search latency at all
recall targets: 2.09s (Rottnest) vs 1.90s (Lance) at 0.87, 2.30s
vs 1.94s at 0.92 and 2.81s vs 2.72s at 0.97. This experimentally
validates that using a custom format is unlikely to significantly
improve query performance compared to in-situ querying with
Rottnest’s custom Parquet reader.

D. Sensitivity Analysis

1) Parameter Robustness: The last section has demon-
strated that changing cpq r and cpm r have dramatic effects
on the phase diagram. In this section, we systematically
examine the impact of changing cpq r, ic r and cpm r on
the phase diagram to understand the effects of optimizing
each. Figure 12 demonstrates how the phase diagrams shift
for vector search (0.92 recall) when each of these parameters
are multiplied by the shown factor. For cpm r, we show the
result of scaling cpm r − cpm bf , or just the storage cost
associated with the Rottnest index files. Two observations:

1) Decreasing Rottnest search latency (cpq r) makes it more
competitive against copy data, with virtually no benefit



10 2 10 1 100 101

Months

102

103

104

105

106

107
To

ta
l N

or
m

al
iz

ed
 Q

ue
ri

es
aaaaa cpq_r sensitivity

0.01
0.1
1
10
100

10 2 10 1 100 101

Months

bbbbb cpm_r sensitivity
0.01
0.1
1
10
100

10 2 10 1 100 101

Months

ccccc ic_r sensitivity
0.01
0.1
1
10
100

Fig. 12. Sensitivity analysis of cpq r, ic r and cpm r for vector search
application at recall 0.92. Contours indicate phase diagrams if each of the
parameter is multiplied by the denoted factor. The actual diagram is in red.

100 200 300
Number of Index Files

48
16
32

64

La
te

nc
y 

(s
)

a

100 200
Number of Index Files

1
2
3
4
5

b
Uncompacted
Compacted

Fig. 13. Search latency on uncompacted vs. compacted index files for a)
substring (100x compaction factor) and b) UUID search (25x compaction
factor). Compaction greatly reduces search latency when there is a large
number of index files.

against brute force. Decreasing the Rottnest index size
(cpm r) does exactly the opposite.

2) Reducing the indexing cost reduces the minimum operat-
ing time at which Rottnest becomes worthwhile compared
to the other approaches. On the other hand, it does little to
the asymptotic boundary between Rottnest and the other
two approaches at longer operating time horizons.

These observations inform how optimizations in Rottnest
directly benefit different classes of use cases: making the
search faster benefits high query load applications; making
the index smaller benefits low load applications and making
the index construction cheaper benefits applications with short
operational lifetimes.

2) Dataset Size Robustness: So far, all the parameters
are computed based on fixed dataset sizes. While the key
parameters cpm i , cpm bf , cpq bf , ic r , cpm r and cpq r
are evidently dependent on the data distribution in complex
nonlinear ways8, most are almost perfectly linearly correlated
with dataset size assuming the same data distribution, which
would imply no change in the phase diagram.

While cpq r generally scales with the number of index
files queried, which generally increases linearly with dataset
size, Rottnest compactions could greatly reduce this number
to dramatic effect as seen in Figure 13. For the case of UUID
search, we also see nonlinear scaling due to AWS list request
throttling issues. Post compaction, the Rottnest search latency

8For example, entropy influences compression efficacy for text datasets.

is effectively constant irrespective of the dataset size, which
means that as data volume increases, cpq r stays relatively
constant while all other parameters increase linearly, making
Rottnest more attractive against the copy data approach as
shown in Figure 12a.

3) Throughput Limitations: While our evaluation frame-
work covers concerns such as search latency, total operating
cost and operating duration, we did not discuss the maximum
throughput supported by the three approaches. While the copy
data approach is typically bottlenecked by the disk IOPs and
CPUs of the dedicated servers, Rottnest and the brute force
approach are bottlenecked by S3’s limit of 5500 GET RPS
per prefix. While the number of requests Rottnest makes
is heavily dependent on the query, this limit typically caps
Rottnest’s QPS at 10-100. However, from Figure 7 and Figure
9, Rottnest already underperforms copy-data approach at these
QPS levels (10QPS = 2.52× 107 total queries at 10 months).
As a result, these throughput limits do not significantly change
the conclusions drawn in this paper.

VIII. RELATED WORK AND DISCUSSION

In this paper, we present Rottnest, a bolt-on indexing system
for data lakes that supports general-purpose search workloads.
While database systems have long used indices for various
workloads from OLTP to full-text and vector search [55]–[59],
data lakes are just beginning to adopt similar capabilities. Ex-
isting solutions like Microsoft’s Hyperspace [26] and Apache
Hudi [60] focus primarily on OLAP workloads and have key
limitations: Hyperspace requires atomic rename operations
not available in all cloud providers, while Hudi requires
tight integration with the data lake’s metadata. In contrast,
Rottnest supports a broader range of search workloads while
maintaining compatibility with any data lake.

We show Rottnest is the most cost-effective solution across
several orders of magnitude of total query load across a wide
range of operating durations for our exemplar applications.
While Rottnest incurs a couple seconds minimum latency,
this is acceptable for human-interactive applications or those
(e.g. retrieval-augmented generation) where search latency is
dominated by other factors like LLM generation.

Besides the TCO considerations presented, there are practi-
cal benefits to deploying Rottnest in the aforementioned, typ-
ically spiky workloads. Dedicated clusters like ElasticSearch
take minutes to scale up and down. Brute force approaches
requiring distributed compute is hard to deploy in practice:
either a shared cluster is used or each query spins up its
own cluster. The former leads to poor performance isolation
between different user queries and the latter incurs significant
spinup overheads. Since Rottnest provides acceptable search
latencies from one search instance with object storage as the
only shared state, it easily supports scalable shared-nothing
deployment architectures with serverless functions like AWS
Lambda, greatly reducing infrastructure complexity and cost.

We have open sourced Rottnest9 to facilitate further research
in data lake indexing systems.

9https://github.com/marsupialtail/rottnest



REFERENCES

[1] Apache Software Foundation, “Apache parquet,” https://parquet.apache
.org, 2024, accessed: 2024-08-31.

[2] M. Armbrust, T. Das, L. Sun, B. Yavuz, S. Zhu, M. Murthy, J. Torres,
H. van Hovell, A. Ionescu, A. Łuszczak et al., “Delta lake: high-
performance acid table storage over cloud object stores,” Proceedings
of the VLDB Endowment, vol. 13, no. 12, pp. 3411–3424, 2020.

[3] Apache Software Foundation, “Apache iceberg,” https://iceberg.apache
.org, 2024, accessed: 2024-08-31.

[4] M. Armbrust, T. Das, L. Sun, B. Yavuz, S. Zhu, M. Murthy, J. Torres,
H. van Hovell, A. Ionescu, A. Łuszczak et al., “Delta lake: high-
performance acid table storage over cloud object stores,” Proceedings
of the VLDB Endowment, vol. 13, no. 12, pp. 3411–3424, 2020.

[5] Apache Software Foundation, “Apache hudi,” https://hudi.apache.org,
2024, accessed: 2024-08-31.

[6] Trino Software Foundation, “Trino,” https://trino.io, 2024, accessed:
2024-08-31.

[7] M. Armbrust et al., “Lakehouse: a new generation of open platforms
that unify data warehousing and advanced analytics,” in Proceedings of
CIDR, vol. 8, 2021.

[8] B. Dageville, T. Cruanes, M. Zukowski, V. Antonov, A. Avanes,
J. Bock, J. Claybaugh, D. Engovatov, M. Hentschel, J. Huang, A. W.
Lee, A. Motivala, A. Q. Munir, S. Pelley, P. Povinec, G. Rahn,
S. Triantafyllis, and P. Unterbrunner, “The snowflake elastic data
warehouse,” in Proceedings of the 2016 International Conference on
Management of Data, ser. SIGMOD ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 215–226. [Online].
Available: https://doi.org/10.1145/2882903.2903741

[9] “What is delta lake?” https://docs.databricks.com/en/delta/index.html,
2024.

[10] R. Ortloff and S. Herbert, “Unifying iceberg tables on snowflake,” https:
//www.snowflake.com/blog/unifying-iceberg-tables/, Aug 2023.

[11] R. Xin and M. Mokhtar, “Databricks sets official data warehousing
performance record,” https://www.databricks.com/blog/2021/11/02
/databricks-sets-official-data-warehousing-performance-record.html,
Nov 2021, accessed: 2024-04-08.

[12] Starburst, “Snowflake alternative: Open source alternative trino,” https:
//www.starburst.io/blog/snowflake-alternatives/, Mar 2024, accessed:
2024-04-08.

[13] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi et al., “Spark sql:
Relational data processing in spark,” in Proceedings of the 2015 ACM
SIGMOD international conference on management of data, 2015, pp.
1383–1394.

[14] A. S. Foundation, “Apache iceberg,” https://github.com/apache/iceberg,
2024, accessed: 2024-05-04.

[15] ClickHouse, Inc., “Clickhouse,” https://github.com/ClickHouse/ClickH
ouse, 2024, accessed: 2024-08-31.

[16] ElasticSearch NV, “Elasticsearch,” https://github.com/elastic/elasticsear
ch, 2024, accessed: 2024-08-31.

[17] Qdrant, Inc., “Qdrant,” https://github.com/qdrant/qdrant, 2024, accessed:
2024-08-31.

[18] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin et al., “Apache
spark: a unified engine for big data processing,” Communications of the
ACM, vol. 59, no. 11, pp. 56–65, 2016.

[19] LanceDB, “Introducing lance v2,” https://blog.lancedb.com/lance-v2/,
2024, accessed on [Insert access date here]. [Online]. Available:
https://blog.lancedb.com/lance-v2/

[20] Facebook, Inc., “Nimble,” https://github.com/facebookincubator/nimble,
2024, accessed: 2024-08-28.

[21] D. at CERN, “Enhancing apache spark and parquet efficiency:
A deep dive into column indexes and bloom filters,” CERN
Database Blog, 2024, accessed: 2024-08-31. [Online]. Available:
https://db-blog.web.cern.ch/node/194

[22] InfluxData, “Using parquet’s bloom filters for efficient query
performance,” InfluxData Blog, 2024, accessed: 2024-08-31. [Online].
Available: https://www.influxdata.com/blog/using-parquets-bloom-filte
rs/

[23] S. Xu and S. Narayanan. (2023) Record level index: Hudi’s blazing fast
indexing for large-scale datasets. Apache Hudi. Accessed: 2024-04-08.
[Online]. Available: https://hudi.apache.org/blog/2023/11/01/record-lev
el-index/

[24] S. Dong, A. Kryczka, Y. Jin, and M. Stumm, “Rocksdb: Evolution of
development priorities in a key-value store serving large-scale applica-
tions,” ACM Transactions on Storage (TOS), vol. 17, no. 4, pp. 1–32,
2021.

[25] CREATE INDEX - PostgreSQL Documentation, PostgreSQL Global
Development Group, 2024, accessed: 2024-02-03. [Online]. Available:
https://www.postgresql.org/docs/current/sql-createindex.html#SQL-C
REATEINDEX-CONCURRENTLY

[26] R. Potharaju, T. Kim, E. Song, W. Wu, L. Novik, A. Dave, A. Fogarty,
P. Pirzadeh, V. Acharya, G. Dhody, J. Li, S. Ramanujam, N. Bruno, C. A.
Galindo-Legaria, V. Narasayya, S. Chaudhuri, A. K. Nori, T. Talius,
and R. Ramakrishnan, “Hyperspace: the indexing subsystem of azure
synapse,” Proc. VLDB Endow., vol. 14, no. 12, p. 3043–3055, Jul.
2021. [Online]. Available: https://doi.org/10.14778/3476311.3476382

[27] I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and A. Ailamaki,
“Nodb: efficient query execution on raw data files,” in Proceedings of
the 2012 ACM SIGMOD International Conference on Management of
Data, 2012, pp. 241–252.

[28] M. Kuschewski, D. Sauerwein, A. Alhomssi, and V. Leis, “Btrblocks:
efficient columnar compression for data lakes,” Proceedings of the ACM
on Management of Data, vol. 1, no. 2, pp. 1–26, 2023.

[29] X. Zeng, Y. Hui, J. Shen, A. Pavlo, W. McKinney, and H. Zhang,
“An empirical evaluation of columnar storage formats,” arXiv preprint
arXiv:2304.05028, 2023.

[30] M. A. Bender, E. D. Demaine, and M. Farach-Colton, “Cache-oblivious
b-trees,” in Proceedings 41st Annual Symposium on Foundations of
Computer Science. IEEE, 2000, pp. 399–409.

[31] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, “Cache-
oblivious algorithms,” ACM Transactions on Algorithms (TALG), vol. 8,
no. 1, pp. 1–22, 2012.

[32] J. Tan, T. Ghanem, M. Perron, X. Yu, M. Stonebraker, D. DeWitt,
M. Serafini, A. Aboulnaga, and T. Kraska, “Choosing a cloud dbms:
architectures and tradeoffs,” Proceedings of the VLDB Endowment,
vol. 12, no. 12, pp. 2170–2182, 2019.

[33] Databricks, “Databricks sets official data warehousing performance
record,” 11 2021, databricks Engineering Blog. [Online]. Available:
https://www.databricks.com/blog/2021/11/02/databricks-sets-official-dat
a-warehousing-performance-record.html

[34] A. Van Renen and V. Leis, “Cloud analytics benchmark,” Proceedings
of the VLDB Endowment, vol. 16, no. 6, pp. 1413–1425, 2023.

[35] D. rs Contributors, “delta-rs: Native rust bindings for delta lake,” https:
//github.com/delta-io/delta-rs, 2024, accessed: 2024-05-27.

[36] D. L. Team, “Introducing deletion vectors in delta lake: Streamlined data
deletion for faster queries,” Delta.io Blog, 2023, accessed: 2024-08-31.
[Online]. Available: https://delta.io/blog/2023-07-05-deletion-vectors/

[37] A. Merced, “Understanding apache iceberg delete files,” Medium, 2022,
accessed: 2024-08-31. [Online]. Available: https://alexmercedcoder.me
dium.com/understanding-apache-iceberg-delete-files-0b445df5872f

[38] J. Barr, “Amazon s3 update – strong read-after-write consistency,”
AWS News Blog, 2020, accessed: 2024-08-31. [Online]. Available:
https://aws.amazon.com/blogs/aws/amazon-s3-update-strong-read-after
-write-consistency/

[39] Amazon Web Services. (Latest) Amazon Simple Storage Service
(S3) Documentation. Amazon Web Services. [Online]. Available:
https://docs.aws.amazon.com/AmazonS3/latest/userguide/optimizing-p
erformance-guidelines.html

[40] D. Durner, V. Leis, and T. Neumann, “Exploiting cloud object storage
for high-performance analytics,” Proceedings of the VLDB Endowment,
vol. 16, no. 11, pp. 2769–2782, 2023.

[41] M. Burrows, “A block-sorting lossless data compression algorithm,” SRS
Research Report, vol. 124, 1994.

[42] P. Ferragina and G. Manzini, “Opportunistic data structures with ap-
plications,” in Proceedings 41st annual symposium on foundations of
computer science. IEEE, 2000, pp. 390–398.

[43] J. Holt and L. McMillan, “Merging of multi-string bwts with applica-
tions,” Bioinformatics, vol. 30, no. 24, pp. 3524–3531, 2014.

[44] Y. A. Malkov and D. A. Yashunin, “Efficient and robust approxi-
mate nearest neighbor search using hierarchical navigable small world
graphs,” IEEE transactions on pattern analysis and machine intelligence,
vol. 42, no. 4, pp. 824–836, 2018.

[45] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search
with gpus,” IEEE Transactions on Big Data, vol. 7, no. 3, pp. 535–547,
2019.



[46] S. Jayaram Subramanya, F. Devvrit, H. V. Simhadri, R. Krishnawamy,
and R. Kadekodi, “Diskann: Fast accurate billion-point nearest neighbor
search on a single node,” Advances in Neural Information Processing
Systems, vol. 32, 2019.

[47] “Index ivfpq - lancedb documentation,” 2024, accessed: 2024-08-26.
[Online]. Available: https://lancedb.github.io/lancedb/concepts/index i
vfpq/

[48] Y. Xu, H. Liang, J. Li, S. Xu, Q. Chen, Q. Zhang, C. Li, Z. Yang,
F. Yang, Y. Yang et al., “Spfresh: Incremental in-place update for billion-
scale vector search,” in Proceedings of the 29th Symposium on Operating
Systems Principles, 2023, pp. 545–561.

[49] Turbopuffer, “Turbopuffer system architecture,” 2024, turbopuffer
Documentation. [Online]. Available: https://turbopuffer.com/architecture

[50] L. Patel, P. Kraft, C. Guestrin, and M. Zaharia, “Acorn: Performant and
predicate-agnostic search over vector embeddings and structured data,”
Proceedings of the ACM on Management of Data, vol. 2, no. 3, pp.
1–27, 2024.

[51] M. Wang, L. Lv, X. Xu, Y. Wang, Q. Yue, and J. Ni, “An efficient and
robust framework for approximate nearest neighbor search with attribute
constraint,” Advances in Neural Information Processing Systems, vol. 36,
2024.

[52] G. Penedo, H. Kydlı́ček, A. Lozhkov, M. Mitchell, C. Raffel,
L. Von Werra, T. Wolf et al., “The fineweb datasets: Decanting the
web for the finest text data at scale,” arXiv preprint arXiv:2406.17557,
2024.

[53] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International journal of computer vision, vol. 60, pp. 91–110, 2004.

[54] M. Douze, A. Guzhva, C. Deng, J. Johnson, G. Szilvasy, P.-E. Mazaré,
M. Lomeli, L. Hosseini, and H. Jégou, “The faiss library,” arXiv preprint
arXiv:2401.08281, 2024.

[55] J. J. Levandoski, D. B. Lomet, and S. Sengupta, “The bw-tree: A b-
tree for new hardware platforms,” in 2013 IEEE 29th International
Conference on Data Engineering (ICDE), 2013, pp. 302–313.

[56] J. Arulraj, J. Levandoski, U. F. Minhas, and P.-A. Larson, “Bztree:
a high-performance latch-free range index for non-volatile memory,”
Proc. VLDB Endow., vol. 11, no. 5, p. 553–565, Oct. 2018. [Online].
Available: https://doi.org/10.1145/3164135.3164147

[57] A. Prout, “The story behind singlestore’s skiplist indexes,” 2019.
[Online]. Available: https://www.singlestore.com/blog/what-is-skiplis
t-why-skiplist-index-for-memsql/

[58] C. Chen, C. Jin, Y. Zhang, S. Podolsky, C. Wu, S.-P. Wang,
E. Hanson, Z. Sun, R. Walzer, and J. Wang, “Singlestore-
v: An integrated vector database system in singlestore,” Proc.
VLDB Endow., vol. 17, pp. 3772–3785, 2024. [Online]. Available:
https://api.semanticscholar.org/CorpusID:272727885

[59] A. Prout, S.-P. Wang, J. Victor, Z. Sun, Y. Li, J. Chen, E. Bergeron,
E. Hanson, R. Walzer, R. Gomes, and N. Shamgunov, “Cloud-native
transactions and analytics in singlestore,” in Proceedings of the 2022
International Conference on Management of Data, ser. SIGMOD ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
2340–2352. [Online]. Available: https://doi.org/10.1145/3514221.3526
055

[60] S. Sumit, “Asynchronous indexing using hudi.” [Online]. Available:
https://www.onehouse.ai/blog/asynchronous-indexing-using-hudi


