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ABSTRACT

‘When something unexpected happens in a large production system,
administrators must first perform a search to isolate which compo-
nents and component interactions are likely to be involved. The
system may consist of thousands of interacting subsystems, the log-
ging instrumentation may be noisy or incomplete, and the problem
description may be vague, so this search is often the most difficult
part of understanding the system’s behavior. To facilitate the search
process, we present a query language and a method for computing
these queries that makes minimal assumptions about the available
data. We evaluate our method on nearly 1.22 billion lines of sys-
tem logs from four supercomputers, two autonomous vehicles, and
a server cluster.

Categories and Subject Descriptors

D.2.9 [Software Engineering]: Management; H.2.3 [Information
Systems]: Query Languages

General Terms
Management, Reliability, Languages, Algorithms

Keywords

Query language, logs, influence, correlation, production systems

1. INTRODUCTION

When something unexpected happens in a large production sys-
tem —a program crashes, a node’s performance flags, a power sup-
ply overheats—administrators face several problems at once. First,
they may be unable to describe the event any more accurately than
the approximate time it occurred. Second, they must diagnose the
problem using only the data that was recorded when the issue man-
ifested (primarily log files); this data may be noisy and may not de-
scribe all components and their interactions. Third, the system may
have many components (tens to thousands), and the administrators
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must identify which components and component interactions are
likely to have been involved.

Consider the following example. Users notice that their jobs are
failing more frequently. The typical process for a system adminis-
trator is to search the job logs to figure out what components were
used by these jobs, scour the system logs from those components
for any messages that might hint at a cause, and possibly expand the
search to other related components based on their expert knowledge
of the system. The key observation is that this is fundamentally a
search problem—one for which the state-of-practice is primarily
manual, tedious, and ad hoc—where the administrator asks, “What
components and interactions are likely to be involved with these
job failures?” The input to the search is the available measurements
from instrumentation and a simple description of the behavior we
wish to understand; the goal of the search is to identify the compo-
nents and interactions that are likely to be involved.

In this paper we present a method for using simple user speci-
fications of when and where a problem manifested, together with
existing instrumentation, to compute the components and interac-
tions that are likely to be involved with the problem. Our method
computes which system components statistically influence the be-
havior of other components and which components are statistically
linked with the problem. Influences are represented as a Structure-
of-Influence Graph (SIG), where the nodes are components and
the problem we are trying to understand, and influences are edges
between nodes. A discussion of computing SIGs is covered else-
where [20].

Continuing the example above, the administrator would specify
that surprising behavior was observed around the times the users’
jobs failed. Using that clue alone, our system QI (for Querying
Influence; pronounced “CHE”) determines what other components
deviated from normal behavior around those times and generates a
SIG to summarize the correlations (see Section 3). For example,
QI might generate the hypothetical SIG in Figure 1, which shows a
component called fan7 sharing a strong influence with disk32,
which in turn shares a strong influence with job failures (a
node representing the problem). The directed arrows imply a tem-
poral ordering, which in practice often indicates causality. Further-
more, fan7 also shares an influence with fané, possibly alerting
the administrator to investigate whether some common cause (per-
haps in another component that is not instrumented and produces
no logs) is making the fans misbehave, which in turn is related to
disk misbehavior, which in turn is likely related to the job failures.

QI does not require modifications or perturbations to the system,
access to source code, or even knowledge of all the components in
the system or their dependencies on one another. Our assumptions
are considerably weaker than most previous work and they reflect,
in our experience, the reality faced by administrators when they



Figure 1: An example SIG showing a chain of influence related
to the job failures.
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Figure 2: Anomaly signals for the hypothetical components
fan7 (A;) and disk32 (A;). By inspection, the signals look
similar; our method mathematically describes this similarity.

must diagnose a problem. The answers QI provides are limited by
these contraints: a passive, black-box technique can, at best, sug-
gest the components and interactions that seem statistically most
likely to be involved with a problem. The main advantage is that,
because of the weak assumptions, such a technique can leverage
all of the available information. This is precisely what our method
provides, and it does so in a way that is computationally efficient
and applicable to a wide variety of systems.

In this paper, we present QI's query language (see Section 2)
and our implementation of an infrastructure for efficiently comput-
ing these queries (see Section 3). In Section 4, we describe data sets
collected from seven different systems: four supercomputers, one
server cluster, and two embedded, distributed systems. Following
the lead of previous work in this area [16, 27], we primarily evalu-
ate our method with case studies on these data sets; Section 5 shows
how we can use QI to help isolate a variety of interesting problems,
including a non-deterministic timing bug and an operating system
kernel bug triggered by particular workloads.

2. THE QUERY LANGUAGE

A system is composed of a set of components; we assume we are
given some subset of all system components that produce logs with
time-stamped measurements. In QI, a component is represented by
a time-series vector describing its behavior; this is the component’s
anomaly signal. The choice of method for converting raw measure-
ments (logs) into anomaly signals is important but not the subject
of this paper. The field of anomaly detection has proposed many
options, and we have found that even simple algorithms give useful
results. For example, the nodeinfo algorithm [19], which we use for
unstructured textual logs (see Sections 4.1 and 4.2), raises the value
of the signal when the distribution of terms in a recent window of
log messages is unlike the historical distribution.

Consider the hypothetical components fan7 and disk32 from
Figure 1, whose anomaly signals are plotted in Figure 2. These two
signals have similar structure, especially around times 2000 and
6000. This similarity is what many system administrators search
for manually and is what our method extracts and summarizes au-
tomatically and at scale.

If the anomaly signal of one component is correlated with the
anomaly signal of another component, we say that these compo-
nents share an influence. A Structure-of-Influence Graph (SIG) is a
graph in which the nodes are components and the edges summarize
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Figure 3: Cross-correlation between the anomaly signals of
fan7 and disk32. The peak at delay d has height (correla-
tion) ¢, indicating that surprising behavior on fan7 tends to be
followed by surprising behavior on disk32 with a lag of d.

the strength and directionality of shared influence between com-
ponents [20]. The SIG in Figure 1 shows a directed arrow from
fan7 to disk32, which means that surprising behavior on fan7
tends to be followed a short time later by surprising behavior on
disk32—that is, the probability that disk32 will show surpris-
ing behavior increases in a short period after fan7 shows surpris-
ing behavior. Section 2.1 describes these computations. Further-
more, a query may specify new components that are built from ex-
isting components (e.g., a group of components) or additional in-
formation (e.g., a time range); Section 2.2 explains these synthetic
components using several examples.

The user may wish to view only a fragment of the complete SIG,
consisting of some subset of the components and edges; such com-
ponents are in focus. A query specifies what components are in
focus by naming them, and QI will compute all pair-wise relation-
ships between components in focus. However, the user can also
specity a set of components for which not all pairs should be com-
puted, called the periphery. QI will examine all pairs within the
focus and between each component in the focus and each in the
periphery, but will not examine the relationships between any two
components in the periphery. This is useful when, for example,
we want to know what focal components share the strongest in-
fluence with a set of peripheral components, but we don’t yet care
how those peripheral components, in turn, influence each other. We
provide a formal description of queries in Section 2.3.

2.1 Query Mathematics

QI computes cross-correlations between pairs of components and
stores characteristics of these results in a pair of matrices: one for
correlation magnitudes and one for associated delays. The result-
ing SIG summarizes these correlations and delays in the form of
edges between components [20]. We explain these computations
using the example from Section 1, by describing how QI infers the
directed edge from fan7 to disk32.

To determine whether unusual behavior on fan7 (represented
by the anomaly signal A;) correlates in time with unusual behav-
ior on disk32 (A;) we compute the normalized dot product; the
product will be larger if the anomaly signals tend to line up. This
alignment may occur with some delay, however, so we use cross-
correlation to check for correlation when the signals are delayed
relative to each other:

(Ai*A]’)(t) = /oo [Ai(T) — Ni“Aj(t""T) - MJ’]dT7

0,05

—oo

where p; and o; are the mean and standard deviation of A;, re-
spectively. Figure 3 shows this function for fan7 and disk32.
There is a peak at delay ¢ = d with correlation strength ¢; we now
describe how such salient features are summarized.



Let di_j and dj'j be the offsets closest to zero, on either side, where
the cross-correlation function is most extreme:

dy; max (argmax, o (|(A; x A;)(¢)])) and
dfj = min(argmax,.o(|(Ai x A;) (1)),
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where argmax, f(¢) is the set of ¢-values at which f(¢) is maximal.
Intuitively, d;; and d;';- capture the most common amount of time
that elapses between surprising behavior on fan7 and surprising
behavior on disk32. Referring again to Figure 3, the peak is at
d < 0,s0d;; = d. Next, letc;; and cj'j be the correlations observed
at those extrema:

c;; = (AixAj)(d;;)and
= (AixAj)(d).

ij ij
. . — + .
Intuitively, ¢;; and ¢;; represent how strongly the behaviors of

fan7 and disk32 are correlated. (From Figure 3, Cyy = c.)

We record these summary values of cross-correlations in the cor-
relation matrix C and delay matrix D. Let entry C;; be ¢;; and let
Cj; be cj; (Notice that cj'j = c;;.) Similarly, let entry D;; be d;;
and let D;; be d.

An edge appears between fan7 and disk32 in the SIG be-
cause their unusual behavior was sufficiently strongly correlated;
e.g., max(C;;,C;;) = ¢ > ¢, for some threshold & specified—
implicitly or explicitly—by the query. The edge is directed because
the corresponding delay d lies outside of some noise margin «.. For
instance, say ¢ > € > Cj;. Because |d| > «, the edge is directed
with the tail at fan7 and the head at disk32.

Clock skew between components could result in an incorrect de-
lay inference. If the skew is known, the solution is simply to time-
shift the data, accordingly; otherwise, the amount of skew may be
inferred by looking at the delay between two components thought
to behave in unison. This was not an issue on any of the systems
we studied (see Section 4).

In addition to specifying the components and edges to include
in the SIG, a query may also create new components by combin-
ing the anomaly signals for some existing components c1, . .., Cn
into a new anomaly signal f(ci,. .., cn) for some function f. For
example, the behavior of a collection of homogeneous components
(e.g., all the compute nodes or all the I/O nodes) can be represented
by the average of the anomaly signals of the group’s components.

2.2 Query Examples

In this section, we provide some example queries to build an
intuition for what computations QI performs.

2.2.1 Metacomponents

A set of components can be grouped and named by creating a
metacomponent. The anomaly signal for a metacomponent is the
average of the signals of its constituent components. For exam-
ple, we could create a metacomponent for all the nodes in a par-
ticular rack of a supercomputer (topological group) or all the sen-
sors of a particular type in an embedded system (functional group).
Our current implementation specifies metacomponents using regu-
lar expressions in a configuration file.

Say that our system contains metacomponents for each rack of
nodes (named rackl, rack2, etc.) and we are trying to un-
derstand strange behavior observed on component r58node7. It
may be expensive to compute the pair-wise relationships between
r58node7 and all other nodes. Instead, we can start with the
metacomponents:
graph temp top=5 periph=meta r58node7
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Figure 4: Applying the binary component (top) as a mask on
fan7 yields the masked component (bottom), whose masked
values are replaced by the average of the unmasked values.

This query will construct a SIG and write it to a file called “temp.dot”
in the DOT language. (In subsequent examples, we omit graph
and the filename.) In this query, only r58node?7 is in focus; the
keyword meta after the periph parameter indicates that the set
of metacomponents are in the periphery. QI will compute all pairs
(r58node7, n), where n is a metacomponent. QI supports a va-
riety of parameters for specifying how the resulting SIG should be
visualized. In this query, the top parameter dictates that only the
strongest 5 edges will be included in the graph.

Say that nodes in rack3 are named with the prefix r3 and that
rack3 exhibits the strongest shared influence with r58node7.
We can refine the search to examine all the components in rack3:
r58node7 "r3
The problem node and all components matching the regular expres-
sion are in focus. This query inherits the value of the t op param-
eter from the previous query, so we omit it. The resulting graph
directs the search for a problem cause toward a small set of nodes;
in Section 5.1, we use QI in a similar way to understand job failures
on a supercomputer.

2.2.2  Binary Components

A query can create a new component whose anomaly signal is
high exclusively during a particular time interval a:b. An inter-
val may consist of several sub-intervals: a:b,c:d, . ... We use
range binary components in Section 5.1 to identify a data corrup-
tion problem and in Section 5.6 to isolate an implicit timing depen-
dency bug in an autonomous vehicle.

Consider the following example query:
arrow=10s edge=0.25 47:50 all
The range portion of the query, 47:50, will create a component
whose anomaly signal is non-zero only between time 47 and time
50, inclusive, and add it to the system. The keyword a1l is short-
hand for every component currently in the system. The edge pa-
rameter sets the ¢ threshold (see Section 2.1) so that only corre-
lations stronger than 0.25 appear as edges in the SIG; the arrow
parameter sets the o threshold for making a graph edge directed,
so if the absolute delay associated with some correlation is greater
than 10 seconds, the edge will be directed.

A binary component can also be constructed using some pred-
icate that QI can evaluate. For several supercomputer examples
in Section 5, we construct binary components whose anomaly sig-
nals are high exclusively in intervals where the corresponding logs
match a regular expression.

2.2.3 Masked Components

A binary component, like a range, can be applied to another com-
ponent as a mask. Anomaly signal values within the specified sub-
intervals are left alone; values outside the sub-intervals are set to
be the average value of the signal within the sub-intervals. For ex-



ample, if the (very short) anomaly signal is A; = (0,1,0,1,0,1),
then the query term j’=73{1:2, 5: 6} results in the following sig-
nal for the new component 3 : A = (0,1,0.5,0.5,0, 1).

Masks are useful for removing the influence from anomalous
behavior that is already understood (e.g., one might choose to ig-
nore daily reboots) and for attribution (determining what parts of
the anomaly signal are contributing to an observed correlation; see
Section 5.3). For example, say that we understand the anomalies on
fan7 and wish to mask them. We can construct the binary com-
ponent on the top in Figure 4, apply it to fan7 (Figure 2, top), and
get the masked component on the bottom in Figure 4.

2.3 Query Syntax

A QI query specifies what components to synthesize, the pairs
of components for which to compute shared influence, and how
to visualize the resulting relationships (via the optional parameters
arrow, edge, and top). The syntax for specifying the focus,
periphery, and synthetic components is a context-free grammar:

<query> = ["periph="<regex>] <term> (" " <term>)x*
<term> = [<target> "<-"]<match>[<mask>]

<mask> = "{" [!] <match> ("," <match>)»* "}"
<target> = <string> ("," <string>)=*

<match> = <regex> | <keyword> | <range>

<keyword> ::= "all" | "last" | <ctype>

<range> = <time> ":" <time>

In this definition, <regex> represents a valid regular expression
using standard syntax, <t ime> represents a numerical time value
within the range spanned by the log, and <ctype> represents the
name of some type of component within the system (e.g., meta,
alert, or normal; see Section 2.2.1). The set of component
types may be extended. An interval (e.g., a:b) can be used as a
<range> (see Section 2.2.2) or a <mask> (the optional ! inverts
the mask; see Section 2.2.3). The all keyword represents every
component in the system and last stands for every component
that appeared in the previously plotted SIG.

3. QI IMPLEMENTATION

We have implemented the query language in Section 2 as a tool
called QI, written in Python.

QI spends the majority of the time computing cross-correlations
and finding local extrema (see Section 2.1). There are algorithms
for computing cross-correlation more quickly than the brute-force
method: O(n log n) versus O(n?). These efficient algorithms com-
pute the full cross-correlation function; in practice, however, delays
above some maximum value are unlikely to be considered interest-
ing. For example, anomalies in one component followed weeks
later by anomalies in another component are unlikely to be consid-
ered related, regardless of the strength of the correlation. In such
cases, where the ratio of the length of the anomaly signals to the
maximum delay is sufficiently large, the brute force algorithm is
actually faster. QI uses this ratio to decide which algorithm to use.

The cross-correlations are all mutually independent and can there-
fore be done efficiently in parallel (see Section 5.7). QI can be
used offline by precomputing cross-correlations for so-called post-
mortem analysis. The full correlation and delay matrices may be
huge (billions of entries) but only have a subset of valid (already
calculated) entries, so our implementation uses sparse matrices to
store C and D.

4. SYSTEMS

We evaluate QI using data from seven production systems: four
supercomputers, one cluster, and two autonomous vehicles. Ta-

[ System [[ Components | Lines | Real Time Span |
Blue Gene/LL 131,072 4,747,963 215:00:00:00
Thunderbird 9024 | 211,212,192 244:00:00:00
Spirit 1028 | 272,298,969 558:00:00:00
Liberty 445 | 265,569,231 315:00:00:00
Mail Cluster 33 | 423,895,499 10:00:05:00
Junior 25 14,892,275 05:37:26
Stanley 16 23,465,677 09:06:11

Table 1: The seven unmodified and unperturbed production
systems used in our case studies. The ‘Components’ column
indicates the number of logical components with instrumen-
tation; some did not produce logs. Real time is given in
days:hours:minutes:seconds.

ble 1 gives a summary of these systems and logs, described in Sec-
tions 4.1-4.4 and elsewhere [18, 19, 20, 21, 28, 29]. For this wide
variety of systems, we use QI queries to build influence models
and to isolate a number of different problems. These systems were
neither instrumented nor perturbed in any way for our experiments.

4.1 Supercomputers

We use four publicly available logs from supercomputers that
were in production use at national laboratories [28]. These four sys-
tems, named Liberty, Spirit, Thunderbird, and Blue Gene/L (BG/L),
vary in size by several orders of magnitude, ranging from 512 pro-
cessors in Liberty to 131,072 processors in BG/L. The logs were
recorded during production use of these systems and we make no
modifications to them, whatsoever. An extensive study of these
logs can be found elsewhere [21]. We use the so-called nodeinfo
algorithm, which is based on the frequency of terms appearing in
log messages [19], to generate anomaly signals from the raw data.

4.2 Mail-Routing Cluster

We also obtained logs from 17 machines of a Stanford University
campus email routing server cluster. Of these servers, 16 recorded
two types of logs: a typical mail server log (denoted mail) and a
Pure Message log (a spam and virus filtering application, denoted
pmx_1og). One system recorded only the mail log. The nodeinfo
algorithm works on unstructured textual data, so, as in Section 4.1,
we apply it to generate anomaly signals for these logs.

4.3 Autonomous Vehicles

Stanley is the autonomous diesel-powered Volkswagen Touareg
RS developed at Stanford University that won the DARPA Grand
Challenge in 2003 [29]. A modified 2006 Volkswagen Passat wagon
named Junior placed second in the subsequent Urban Challenge
[18]. These distributed, embedded systems consist of many sensor
components (e.g., lasers, radar, and GPS), a series of software com-
ponents that process and make decisions based on these data, and
interfaces with the cars, themselves (e.g., steering and braking). In
order to permit subsequent replay of driving scenarios, some of the
components were instrumented to record inter-process communica-
tion (IPC). These log messages indicate their source, but not their
destination (there are sometimes multiple consumers). We use the
actual, raw logs from the Grand Challenge and Urban Challenge,
respectively, and compute anomaly signals from these data using
an existing method [20].

4.4 Log Contents

Table 2 provides some concrete example messages from differ-
ent types of components in the systems we study. Logs include
messages like the Spirit admin example, which indicates correct
operation; the BG/L compute example, which indicates that a rou-



System [[ Component Type | Example Message

Blue Gene/L Compute RAS KERNEL INFO total of 12 ddr error(s) detected and corrected
admin NULL DISCOVERY WARNING Node card is not fully functional
Thunderbird Compute kernel: scsi0 (0:0): rejecting I/0O to offline device
admin kernel: Losing some ticks... <checking if CPU frequency changed.
Spirit compute kernel: 00 000 00 1 0 0O 0 0 O O 0O
admin sshd[11178]: Password authentication for user [username] accepted.
Liberty compute kernel: GM: LANAI[O]: PANIC: mcp/gm_parity.c:115:parity__int () :firmware
admin src@ladmin2 apm: BIOS not found.
Mail Cluster mail postfix/smtpd[3423]: lost connection after DATA (0 bytes) from unknown[[IP]]
pmx [3999,milter] 4AB9C565_3999_1743011_1: discard: [IP]: 100%
Junior sensor RADAR1 25258 6 6 1 1 10.562500 [...]0 0 51 1194100038.298347 kalman 0.166294
Stanley sensor IMU -0.003300 -0.051810 [...]0.109846 -0.030222 1128780826.436368 rrl 52.536104

Table 2: Example messages from different types of components in the systems we studied. There are no representative messages, but
these are not outliers. Bracketed text indicates omitted information; the component names and message timestamps are removed.

tine problem was successfully masked; the Thunderbird compute
example, which indicates a real problem that requires administra-
tor attention; and the BG/L admin example, which ambiguously
suggests that something might be wrong. Some messages, like the
Liberty compute example, provide specific information about the
location of a problem; others, like the Liberty admin example, state
a symptom in (mostly) English; finally, some messages, like the
Spirit compute example, appear incomprehensible without the (un-
available) source code.

The logs do not contain information about message paths (senders
or recipients), function call or request paths, or other topological
hints. These are production systems, so none were configured to
perform aggressive (so-called ‘DEBUG-level’) logging or to record
detailed performance metrics (e.g., minute-to-minute resource uti-
lization). Some messages are corrupted or truncated.

A system may have dozens of different types of components, and
even individual components may generate hundreds of different
types of messages. The content of these logs sometimes changes
when software or hardware is updated or when workloads vary, and
such changes may not be explicitly recorded in the log.

These logs exemplify the noisy and incomplete data available to
system administrators working with real production systems.

S. RESULTS

We present results in this section as a series of use cases. These
examples both exhibit interesting features of QI and demonstrate
that our method can isolate the sources of non-trivial bugs in a va-
riety of real systems. Most of these queries take only a few sec-
onds to execute; the runtime of each query is listed to the right of
the query and collected at the end of the section in Table 3. (For
each system, we start with no computations performed and execute
exactly those queries in the order shown, on an 84-core cluster.)
Section 5.7 explains why QI scales well under realistic usage.

QI outputs graphs in the DOT language that use layout features
to communicate information about the SIG: edge thickness propor-
tional to the strength of the correlation, node shapes and colors ac-
cording to the type of component (e.g., binary component or meta-
component), grayed component names to indicate whether they are
in the focus or periphery, and so on.

In this paper, however, we convert these graphs to a manual lay-
out for conciseness and readability, while retaining some of the vi-
sual cues. In our plots, edges touching grey rectangles denote a
similar edge touching each contained vertex. We denote cliques
(fully connected subgraphs) of four or more nodes as a small box:
all nodes connected to it are in the clique. Disconnected compo-
nents are omitted. Shaded nodes are in focus; unshaded nodes are

in the periphery. Rectangular vertices represent synthetic compo-
nents; vertices are elliptical, otherwise.

We discussed the following results with the administrators of the
respective systems. Universally, the administrators felt the SIGs
were interesting and useful; in some cases, the results were sur-
prising and led the administrator to ask follow-up questions or take
direct action (such as deciding to add or remove instrumentation).
Administrators often have a mental model of how system compo-
nents are interacting, which a given SIG will either reinforce or
contradict. For example, one cluster administrator using the output
of QI to debug a recurring but elusive database problem said the
following:

Yes, that [SIG] *is* intriguing. In general, I really
liked this graph. .. [because] it provides an interest-
ing picture of the related components of a system. ..
The link between slow queries and threads, established
connections, and open files used confirms for me a
suspicion that the root of MySQL performance prob-
lems for us are slow queries, and that we get spikes
in utilization when we have slow queries. That’s use-
ful information. .. [The SIGs seem to] rule out, or at
least make less likely, the theory that a sudden surge
in www activity was what set off the MySQL prob-
lem. That was one of our working theories, so know-
ing that’s less likely is valuable.

There were no instances of QI inferring a shared influence where
there certainly was none (no false positives), nor any known in-
stances of QI failing to detect shared influence where there cer-
tainly was some (no known false negatives).

5.1 Alert Discovery on Blue Gene/L

When a system is too large to consider components individually,
one can use metacomponents: synthetic components that represent
the aggregate behavior of sets of components (see Section 2.2.1). A
metacomponent is specified by the set of components it represents,
which may be in the form of regular expressions (i.e., all compo-
nents matching that regex). On Blue Gene/L (BG/L), we defined
one metacomponent for each rack of the system; the components
are named according to their topological location, so rack 47, for
example, can be made into metacomponent M_R4 7 using the regex
R47.

Consider the (real) scenario when a full-system job running on
BG/L crashes and the administrator knows approximately when.
Initially, every component of the system is a possible cause of the
failure. Using QI in conjunction with metacomponents, we show
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Figure 5: The anomaly signal of the synthetic CRASH compo-
nent, which encodes when a job on BG/L crashed.
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Figure 6: Components most strongly correlated with the crash.
On the left, the metacomponent; on the right, the components
within that metacomponent.

how to iteratively isolate the components that are likely to be in-
volved. The administrator can execute the following query, which
constructs a binary component using the time of the crash as the
focus and using the metacomponents, collectively, as the periph-
ery. This is asking, at a coarse granularity, what large subsystem’s
aggregate anomaly signal is most strongly correlated with the ob-
served crashing behavior:

top=1 periph=meta CRASH<-174:175 (1.65 sec)
This query creates a synthetic component from the interval begin-
ning 174 hours into the log and ending one hour later and names
it CRASH. Figure 5 shows the anomaly signal for this synthetic
component. The result of the query is on the left in Figure 6. QI
implicates rack 3 (M_R03), so we then ask for a short list of the
components in rack 3 that share an influence with the crash:
top=5 periph=R03 CRASH (4.81 sec)
Recall that QI does not compute the relationships between pairs
of components in the periphery. The result, plotted on the right
in Figure 6, shows the five components with the strongest corre-
lation, plotted from top to bottom in order of decreasing strength.
In other words, node 6, in midplane 1 of rack 3, seems to be most
strongly related with the problem; its neighbor, node 7, also seems
suspicious. (Running the first query with periph=normal, i.e.,
all non-synthetic components, instead of periph=meta, leads
to the same conclusion but takes more than 1000 times as long.)
Once QI has implicated a particular component around a partic-
ular time, the user can simply inspect the corresponding section
of the log; in the case of BG/L’s textual logs this was a simple
grep for the component name and time. During the time sur-
rounding the crash, 90 other components generated hundreds of
messages, but the suspect node only generated two. The following
one of those messages is considered an “actionable alert,” meaning
it is a problem the administrator wants to know about and can do
something to fix [19, 21]: ddr: Unable to steer [...]
consider replacing the card. None of the other mes-
sages generated by any of the other components were alerts: node
6 was likely the responsible component.

Once the administrator is aware of specific messages, such as
this DDR error, they can look for them, explicitly. Discovering
these messages in the first place, however, is often a key part of
the administrator’s job. This BG/L example shows how QI can
facilitate that discovery process.

[R_EXT_FS_10 - R_EXT_INODEI | R_EXT_CCISS

Figure 7: Some alert types on Liberty are correlated; Q1 helps
search for the reasons why.
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Figure 8: Synthetic components can show the relationships
among both when certain alert types are generated and when
they are generated on individual components.

5.2 Correlated Alerts on Liberty

Given an alert message, such as the one in Section 5.1, we can
make synthetic components with anomaly signals that represent the
presence or absence of that type of message. Specifically, given a
regex that identifies whether or not a message is an instance of each
type of alert, QI can automatically generate a synthetic component
indicating whether the alert was generated anywhere in the system
(identified by the name of the alert type) or by a particular compo-
nent (identified by the alert type concatenated by a forward slash
onto the component name). So, a synthetic component named, by
convention, node5/ERR has an anomaly signal that is high ex-
clusively when component node5 generated an alert of type ERR;
telling QI to generate such a component is simply a matter of writ-
ing a regular expression that describes ERR alerts.

Using the alerts identified for the Liberty data set [21], we show
how QI can elucidate relationships among these synthetic alert com-
ponents (identified by the keyword alert). The command
edge=0.1 alert (1.12 sec)
generates Figure 7, revealing the relationships among alert types.
Most alert types are not correlated with each other (thus, omitted
from the graph); however, there are also clusters of related alerts.

We might then ask, say, whether the clique of alerts containing
the EXT string (on the left in Figure 7) are truly redundant. To
look at when individual components generated these EXT strings,
we can use the string as a regular expression:
periph=EXT last (1.00 sec)
This generates Figure 8, which shows that the CCISS alert is some-
times seen without the other two EXT alerts, meaning it is likely
generated under a wider variety of conditions, and that node176
tends to generate CCISS alerts at times when it is also generating
GM alerts. Both are checksum- or parity-related errors, so a com-
mon source of data corruption would be a good place to continue
the search.

5.3 Obscured Influences on Spirit

Large systems often experience multiple simultaneous problems.
For instance, a supercomputer node may generate strange messages
both because of a disk malfunction and because of an unrelated
software glitch. Using masked components, QI can elucidate which
shared influences result from which problem. For example, if we
mask the portions of the anomaly signal that correspond with disk
errors, we may see more clearly what shared influences result from
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Figure 9: Masking the contribution of one anomaly source can
make other shared influences more apparent.
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the software bug.

Say that we want to investigate the behavior of node sn138
on the Spirit supercomputer, which generated both disk errors and
batch scheduler errors. We might first execute the following:
edge=0.25 top=5 periph=normal snl38 (2.19 sec)
The graph in the top left of Figure 9 shows the result: there is ex-
actly one other node that seems correlated with sn138. Based on
previous work on this log [21], we are aware of many of the kinds
of alerts that occur on this system. One, called PBS_CHK, is a
batch scheduler alert; the other, EXT_CCISS, is a file system alert.

Do either of these alerts account for the shared influence between
sn138 and sn4877? One way to pose this question to QI is by
masking the contribution of one alert and repeating the question:
periph=normal snl38{!snl138/PBS_CHK} (2.05 sec)
The other parameters inherit their values from the previous query.
Because the mask portion of the query begins with the ‘!’ char-
acter, it means we retain the sections of sn138’s anomaly signal
only where that node did not generate the PBS_CHK alert. The
result is shown in the bottom left of Figure 9. As expected, the
masked version of sn138 correlates perfectly with the original;
the masked portions of the anomaly signal do not contribute to the
cross-correlation while the rest matches perfectly. Meanwhile, the
shared influence with sn487 remains strong: the PBS_CHK alert
is not driving the correlation.

We ask the analogous question about the disk errors:
periph=normal snl38{!snl38/EXT_CCISS} (2.03 sec)
As seen in the graph on the right in Figure 9, a new set of nodes ex-
hibits a shared influence with sn138; node sn487 doesn’t make
the top-5. This means both that the disk errors account for some of
the shared influence between sn138 and sn487 and that these er-
rors were obscuring additional shared influences—revealed by our
query—between sn138 and other components.

5.4 Thunderbird’s “CPU” Bug

When a problem is systemic or involves multiple components,
the text of log messages may be misleading because they reflect
only locally observable state. Nevertheless, these superficially mis-
leading messages may still be useful for understanding a problem,
as we demonstrate with the following example from the Thunder-
bird supercomputer.

Thunderbird occasionally generated the following alert message:
kernel: Losing some ticks...
frequency changed. Although ostensibly a processor-related
issue, the underlying cause of the message was actually a bug in
the Linux SMP kernel that would cause the OS to miss interrupts
during heavy network activity [21]. The key insight for isolating
this bug was that these “CPU messages” were spatially correlated;
when one node generated the message, it was more likely that other,
topologically nearby nodes would also generate it. These groups
of nodes corresponded to job scheduling groups, which implicated

checking if CPU

an236/CPU J— an1010/CPU |

an550/CPU
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Figure 10: Binary components representing the ‘CPU’ alert
tend to share a strong influence with sets of such components
that are topologically close, such as those in the same job
scheduling group.

particular workloads as a possible trigger of the alert.

We now show how, using the alert message as an initial clue, QI
helps elucidate these spatial correlations. First, construct binary
components for each component that generated the ‘CPU’ alert
and one for the ‘CPU” alert for the whole system, as described in
Section 5.2. Second, take one of these binary components—say,
an236/CPU, the synthetic component for node an2 36 represent-
ing when it generated the ‘CPU’ alert—and compute how it relates
to the other binary components:
edge=0.25 top=5 periph=CPU an236/CPU (2.93 sec)
As shown on the top in Figure 10, an236/CPU shares a strong
influence with an1010/CPU but not with the others. To convince
ourselves that this is not a coincidence, we take another component
and repeat:
periph=CPU an550/CPU (2.66 sec)
This yields the SIG on the bottom in Figure 10, where an550/CPU
shows shared influences with other binary components. Notably,
however, these correlated alerts often seem to occur on the same
rack. Indeed, if we examine large groups of these ‘CPU’ binary
components (omitted for space reasons), we learn that they tend to
form cliques that are related to their topology; as explained above,
this is sufficient to rule out a local CPU malfunction and to suggest
a common cause.

5.5 Mail-Routing Cluster

Even in the absence of some known bad behavior, QI can be used
to model the flow of influence in the system. We examine the influ-
ence among all components in the mail-routing cluster described in
Section 4.2 by executing the following:
arrow=1l top=47 all (2.36 sec)
This command considers all components in the system, plots the
strongest 47 edges (this choice is not significant; we picked what
fit in the figure), and assigns directionality to any influence with
a delay of one minute or more. The result, shown in Figure 11,
gives an overview of the influences in this cluster. Note that we
determined these shared influences and temporal orderings even
without knowledge of system topology, message paths, or request
sequences.

When we showed this graph to the cluster administrator, his ini-
tial response included the following:

Similarly, having all the smtp mail servers linked makes
sense. But I'm surprised that devnull is linked in with
them. I assume that must be due to mail from one Stan-
ford user going to the vacation or autoresponder sys-
tem on devnull, but I’'m surprised that the same rela-
tionship isn’t there for the mx servers. I think that may
say something interesting about where most of the hits
on the vacation and autoresponder services come from.

Such questions and suspicions led to follow-up queries, the results
of which he described as illuminating and valuable.
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Figure 12: A complete SIG for Stanley, including a synthetic
component, SWERVE, that represents an unexpected behavior.
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Figure 13: Cross-correlation between LASER1 and LASER2.

5.6 Stanley’s Swerve Bug

Temporal ordering is sometimes crucial to understanding a prob-
lem, as we demonstrate with an example from an autonomous ve-
hicle. On several occasions during the Grand Challenge race, Stan-
ley appeared to swerve around a non-existent obstacle. This bug,
described in detail elsewhere [20, 29], was caused by a buffer com-
ponent shared by the laser sensors, which passed stale data to the
downstream software. Although this shared component was not in-
strumented to generate log messages, previous work explained how
to use SIGs in an ad hoc way to isolate a shared component of the
lasers as a likely cause [20].

We now show how to use QI to isolate the bug more systemati-
cally, given only the clue that most manifestations of the SWERVE
bug occurred between mile-markers 22 (around 60 minutes in) and
35 (around 100 minutes in). In QI syntax, we could generate the
plot from the original paper (including the same edge and arrow
thresholds), shown in Figure 12, using the following command:
arrow=90 edge=0.15 all SWERVE<-60:100.

Figure 13 shows the cross-correlation of LASER1 with LASER2:
a strong correlation at zero delay, resulting in an undirected edge
in the SIG. Using the data from Stanley’s successor vehicle, Ju-
nior, we were able to verify that the lasers no longer shared an
influence—the buffer component was no longer shared among all
the lasers (we omit these results for space reasons).

Although Figure 12 contains the information that helped isolate
the bug on Stanley, it also contains irrelevant information: com-
ponents not on any influence pathway with SWERVE. QI can gen-
erate graphs that omit such noise. What the user really intends to

PLANNER_TRAJ

Figure 14: The components most strongly correlated with the
swerving behavior.

Figure 15: This automatically generated graph implies that a
shared component of the lasers is likely to be causally related
to the swerving.

ask is, “What components seem to be most strongly related to this
swerving behavior?” This is expressed in QI as the following query,
which generates the SIG shown in Figure 14:
periph=all SWERVE (20.37 sec)
QI queries for Stanley and Junior tend to take longer than the other
systems because their anomaly signals have a finer time granularity.

A natural follow-up question, given the components that seem to
share a strong influence with the swerving behavior, is what influ-
ences are shared among those components. This is a simple query
that instructs QI to compute a graph in which all the components
from the previous SIG are in focus:
last (35.60 sec)
The result, shown in Figure 15, contains exclusively the compo-
nents and interactions relevant to the swerving bug, with the excep-
tion of TEMP (see below). The clique of laser sensors implies an
(uninstrumented) shared component, and the directionality of the
arrows from the lasers to the planners and then the planners to the
swerving implies causality. The Stanford Racing Team tells us that
QI would likely have saved them two months of debugging time
for this problem, alone [20].

The temperature sensor is actually anti-correlated with SWERVE.
A more precise definition of SWERVE that included all swerving
incidents would have eliminated this spurious correlation, which
occurs because the SWERVE anomaly signal is non-zero only near
the beginning of the race while the TEMP anomaly signal increases
over the course of the race (TEMP corresponds to a temperature
sensor, and the desert day grew hotter as the race went on).

5.7 Performance and Scaling

We have used QI with systems containing as many as 69,087
log-generating components (see Section 5.1). It is impractical to
compute all pair-wise correlations among these components; one
important contribution of QI is the ability to ask queries that will
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Figure 16: Speedups for components on Liberty and Spirit,
normalized according to the runtime on a single local CPU.
Those baselines were 117.31 sec, 276.18 sec, 1208.64 sec, and
4611.76 sec, respectively.

only compute a relevant subset of those pairs. Furthermore, each
pair (i.e., each cross-correlation) can be computed independently
of every other; the task is embarrassingly parallel. QI exploits this
parallelism to achieve nearly linear speed-ups (see Figure 16). Even
for queries with more than a thousand components in focus, if we
have access to forty cores then QI can complete the query in a cou-
ple of minutes. For realistic queries, like those of Sections 5.1-5.6,
the summary of runtimes in Table 3 shows that QT can be used in-
teractively.

6. RELATED WORK

There is an extensive body of work on system modeling, espe-
cially on inferring the causal or dependency structure of distributed
systems. Our method distinguishes itself from previous work in
various ways, but primarily in that we look for influences [20]
rather than dependencies [2, 10, 26, 31]. Influence is an orthogonal
property from dependencies that quantifies correlated deviations
from normal behavior; influence is statistically robust to noisy or
missing data and captures implicit interactions like resource con-
tention. These low-level properties have been shown using con-
trolled experiments on idealized systems [20]; the focus of this pa-
per is on providing a high-level and systematic method for applying
these techniques to real systems.

Previous work on dependency graphs typically assumes that the
system can be perturbed (by adding instrumentation or active prob-
ing), that the user can specify the desired properties of a healthy
system, that the user has access to the source code, or some com-
bination of these (e.g., [16, 27]). In our experience, it is often the
case that none of these assumptions hold in practice. In contrast,
our method requires no modifications to the system nor access to
source code, does not require a specification of correct behavior nor
predicates to check, and robustly handles the common case where
not all components and their interactions are known.

One common thread in dependency modeling work is that the
system must be actively perturbed by instrumentation or by prob-
ing [4, 5, 8, 9, 25]. Pinpoint [6, 7] and Magpie [3] track com-
munication dependencies with the aim of isolating the root cause
of misbehavior; they require instrumentation of the application to
tag client requests. In order to determine the causal relationships
among messages, Project5 [1] and WAPS [24] use message traces
and compute dependency paths (none of the systems we studied
recorded such information). D3S [15] uses binary instrumentation
to perform online predicate checks. Others leverage tight integra-
tion of the system with custom instrumentation to improve diag-
nosability (e.g., the P2 system [27]) or restrict the tool to particular
kinds of systems (e.g., MapReduce [22] or wide area networks [13,
14]). Deterministic replay is another common approach [11, 16]
but requires supporting instrumentation. For all seven of the pro-

duction systems we study, we could not apply any of these existing
methods, and it was neither possible nor practical for us to add in-
strumentation. Indeed, the goal was sometimes to diagnose a bug
that had already occurred; adding instrumentation would only help
with future bugs. More generally, it may not be possible to modify
existing instrumentation for reasons of system performance or cost.

Some approaches also require the user to write predicates that
indicate what properties should be checked [15, 16, 27]. Pip [23]
identifies when communication patterns differ from expectations
and requires an explicit specification of those expectations. We
have no such predicates, models, or specifications for any of the
systems we study. Furthermore, for several of the bugs our method
isolates, it would not have been possible to write a sufficient spec-
ification of correct behavior before diagnosing the bugs—in other
words, knowing what property to check (e.g., creating a model suit-
able for model checking) was equivalent to understanding the root
cause of the bug (see Sections 5.4 and 5.6).

Recent work shows how access to source code can facilitate tasks
like log analysis [30] and distributed diagnosis [12]. Although our
system could be extended to take advantage of such access, many
systems involve proprietary, third-party, or classified software for
which source code is unavailable.

Many interesting problems in complex systems arise when com-
ponents are connected or composed in ways not anticipated by their
designers [17]. As systems grow in scale, the sparsity of instrumen-
tation and complexity of interactions only increases. Our method
infers a broad class of interactions using the existing instrumenta-
tion data and problem clues.

7. CONTRIBUTIONS

We have presented a query language and implementation (QT)
for understanding component behaviors and interactions in large,
complex systems where instrumentation may be noisy and incom-
plete. Unlike previous work, QI requires no modifications to ex-
isting instrumentation and does not assume fine-grained or precise
measurements (such as message paths). Using raw data from seven
unmodified production systems, we demonstrated the use of QI for
such tasks as alert discovery (see Section 5.1), problem isolation
(see Sections 5.3, 5.4, and 5.6), and general system and interac-
tion modeling (see Sections 5.2 and 5.5). As we demonstrated, our
method scales linearly with system size and is fast enough to be
used interactively for typical use cases (see Section 5.7). As sys-
tems trend toward more components and more sparse instrumenta-
tion, methods like ours—with only weak requirements on measure-
ment data and good scaling properties—will become increasingly
necessary for understanding system behavior.
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