
Isometry: A Path-Based Distributed Data Transfer System
Zhihao Jia

Stanford University
zhihao@cs.stanford.edu

Sean Treichler
NVIDIA

sean@nvidia.com

Galen Shipman
Los Alamos National Laboratory

gshipman@lanl.gov

Patrick McCormick
Los Alamos National Laboratory

pat@lanl.gov

Alex Aiken
Stanford University

aiken@cs.stanford.edu

ABSTRACT
Data transfers in parallel systems have a significant impact on the
performance of applications. Most existing systems generally sup-
port only data transfers between memories with a direct hardware
connection and have limited facilities for handling transforma-
tions to the data’s layout in memory. As a result, to move data
between memories that are not directly connected, higher levels of
the software stack must explicitly divide a multi-hop transfer into
a sequence of single-hop transfers and decide how and where to
perform data layout conversions if needed. This approach results in
inefficiencies, as the higher levels lack enough information to plan
transfers as a whole, while the lower level that does the transfer
sees only the individual single-hop requests.

We present Isometry, a path-based distributed data transfer sys-
tem. The Isometry path planner selects an efficient path for a trans-
fer and submits it to the Isometry runtime, which is optimized for
managing and coordinating the direct data transfers. The Isometry
runtime automatically pipelines sequential direct transfers within
a path and can incorporate flexible scheduling policies, such as
prioritizing one transfer over another. Our evaluation shows that
Isometry can speed up data transfers by up to 2.2× and reduce the
completion time of high priority transfers by up to 95% compared
to the baseline Realm data transfer system. We evaluate Isometry
on three benchmarks and show that Isometry reduces transfer time
by up to 80% and overall completion time by up to 60%.

ACM Reference Format:
Zhihao Jia, Sean Treichler, Galen Shipman, Patrick McCormick, and Alex
Aiken. 2018. Isometry: A Path-Based Distributed Data Transfer System.
In ICS ’18: International Conference on Supercomputing, June 12–15, 2018,
Beijing, China. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3205289.3205301

1 INTRODUCTION
Most existing parallel systems for high performance computing
(e.g., MPI [4], Legion [7], ParSEC [8], Sequoia [11], Spark [32], and
StarPU [6]) generally support only direct data transfers between
two memories that have a physical hardware connection between

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
ICS ’18, June 12–15, 2018, Beijing, China
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5783-8/18/06. . . $15.00
https://doi.org/10.1145/3205289.3205301

Source Node

GPU Memory

CPU Memory

Zero-Copy	
Memory	

RDMA-able	
Memory	

System	
Memory	

①

Destination Node
CPU Memory

Zero-Copy	
Memory	

RDMA-able	
Memory	

System	
Memory	

②

③

Framebuffer	

GPU Memory

Framebuffer	

Figure 1: Data transfer between GPU framebuffers on differ-
ent nodes.

them. Examples include data movement between a CPU memory
and a GPU framebuffer on the same node or between CPU mem-
ories on different nodes. In most cases, these systems place the
responsibility for managing multi-hop data transfers, which are not
directly supported by hardware, on higher-level runtimes or the
application.

For example, to move data between GPU memories on differ-
ent nodes in Legion, as shown in Figure 1, the Legion runtime
explicitly divides this transfer into three sequential direct transfers
(labelled 1, 2, 3) and launches them separately to the underlying
Realm low-level runtime [26]. In addition, applications typically use
multiple data layouts to achieve optimal performance (e.g. neural
networks [15], graph analytics [25], and simulations [10]). If the
data movement requires layout conversions, the parallel runtime
also decides which direct transfer performs a layout transformation.

We believe that managing only direct transfers is the wrong level
of abstraction for today’s parallel runtimes. We propose that the
interface between the application or a high-level runtime and the
low-level data movement engine, which we refer to as the DMA
engine to keep with standard terminology, should be to move data
from a source to a destination memory, with the DMA engine se-
lecting and optimizing the path of the potential multi-hop transfer.

When data movement can be expressed only as a series of direct
transfers to the DMA engine, two performance issues arise:

First, at the scheduling level, selecting an efficient path for a
multi-hop transfer requires making a number of decisions, such as
where to allocate intermediate buffers to hold temporary data, the
size of each intermediate buffer, and the choice of how and where to
perform data layout conversions if needed. These decisions should
be made together, not separately, as they are not independent. The

https://doi.org/10.1145/3205289.3205301
https://doi.org/10.1145/3205289.3205301
https://doi.org/10.1145/3205289.3205301

ICS ’18, June 12–15, 2018, Beijing, China Zhihao Jia, Sean Treichler, Galen Shipman, Patrick McCormick, and Alex Aiken

DMA engine is better positioned to make these decisions, as it has
more knowledge about the state of system resources than the appli-
cation; furthermore, putting the responsibility in the DMA engine
avoids baking machine-specific decisions into the application.

Second, at the application level, pipelining sequential direct trans-
fers within a path may be difficult to achieve when application
developers are forced to explicitly implement path-specific syn-
chronization and management. Moreover, to save system resources
and allow concurrent transfers, the intermediate buffer sizes must
generally be smaller than the entire data. This requires additional
effort by application developers to properly synchronize and reuse
the intermediate buffers to satisfy all dependencies. Finally, support-
ing scheduling policies such as prioritizing a transfer becomes more
difficult, since this requires additional coordination both within a
transfer and across transfers. All of these issues, however, can be
automated and optimized by a DMA engine that has control over
decision making for the entire transfer path.

We present Isometry, a path-based distributed data transfer sys-
tem for managing and optimizing direct and multi-hop data trans-
fers in distributed parallel systems. In Isometry, direct (one step)
transfers between connected memories are represented by trans-
fer descriptors (XDs). XDs are an intermediate level of abstraction.
Below the XD layer, each XD is decomposed into a number of re-
quests to move a portion of the data; requests are sent to a dedicated
channel, which performs the actual data movement. Breaking di-
rect transfers up into requests provides a natural way to support
scheduling policies at the transfer level, such as prioritizing one
transfer over another. Above the XD layer, Isometry includes a path
planner that selects an efficient path for a multi-hop transfer. The
path planner has a full planning algorithm that generates paths
with optimal expected performance for large transfers and a simple
planning algorithm that is faster and usually generates efficient
paths for small transfers. Compared to simply choosing the shortest
paths, both the full and simple path planning algorithms can gener-
ate paths that are much faster. The path planner also decides where
to allocate the intermediate buffers, the size of each intermediate
buffer, and where to perform layout conversions if needed. The
path planner decomposes a multi-hop data transfer into multiple
XDs and sends them to the runtime to perform the data movement.

We implement Isometry as an independent DMA engine and
integrate it into Realm, the low-level runtime used by Legion. Com-
pared to the original DMA engine in Realm, which is state-of-the-art
and highly optimized for only direct transfers, Isometry achieves
the same throughput for direct transfers and speeds up multi-hop
transfers by up to 2.2×. Compared to MVAPICH2-GPU, a multi-hop
DMA engine for GPU clusters, Isometry achieves up to 4× speedup
for transfers to/from GPUs. We also evaluate Isometry on three
benchmarks and show that Isometry reduces transfer time by up
to 80% and overall completion time by up to 60%.

The rest of this paper is organized as follows. Section 2 presents
the Isometry data model and interface. Section 3 presents the Isome-
try runtime. Section 4 describes the Isometry path planner. Section 5
describes the implementation of Isometry. We then evaluate Isome-
try in Section 6, survey related work in Section 7, and conclude in
Section 8.

(a) Array-of-Structs (AOS) layout for a 1-D space with two fields ⟨F , x ⟩.

(b) Struct-of-Arrays (SOA) layout for a 1-D space with two fields ⟨x, F ⟩.

(c) A hybrid layout batching 4 entries for each field ⟨xin = 4, F , xout ⟩.

01	 02	 03	

07	 08	 09	

13	 14	 15	

19	 20	 21	

25	 26	 27	

31	 32	 33	

04	 05	 06	

10	 11	 12	

16	 17	 18	

22	 23	 24	

28	 29	 30	

34	 35	 36	

(d) A row-major layout of a
2-D space ⟨x, y, F ⟩.

01	 02	 03	

04	 05	 06	

07	 08	 09	

19	 20	 21	

22	 23	 24	

25	 26	 27	

10	 11	 12	

13	 14	 15	

16	 17	 18	

28	 29	 30	

31	 32	 33	

34	 35	 36	

(e) A blockified layout of a 2-D space
⟨xin = 3, yin = 3, xout , yout , F ⟩.

Figure 2: Layout examples

2 DATA MODEL AND INTERFACE
The Isometry data model describes the organization of data, includ-
ing in which memory the data is currently stored and the layout of
the data in that memory. This allows Isometry to support a wide
variety of layout conversions for data transfers (see Section 4).

An instance in Isometry names a collection of data in a specific
memory. An instance is defined by an index space I and a field space
F . The index space specifies the set of entries in an instance (e.g., a
set of Cartesian grid points of arbitrary dimensions), while the field
space describes the values stored for each entry in the index space.
Each field f ∈ F has a specific type Tf . A pair (i, f) where i ∈ I
and f ∈ F uniquely identifies an entry of type Tf in the instance.
For example, a matrix of complex numbers is represented as a
two dimensional index space with two fields, one for the complex
number’s real component and one for its imaginary component.

An instance exists in a specific memory (e.g., in DRAM, in a GPU
framebuffer, etc.) with a particular layout, which describes how
entries in that instance are linearized in that memory. A layout is a
vector describing the linearization order. The first element of the
vector is the one that is stored densely; i.e., varies the fastest. The
possible elements of a layout are:
• The name of the field space F ;
• An index dimension x;
• A blocked index dimension and block size xin = c;
• A blocked index dimension xout

The field space F appears exactly once, and for each dimension x ,
either x is in the layout or xin = c and xout are both in the layout.

Figure 2a shows an 1-D instance with two fields in array-of-
structs (AOS) layout. This layout is described as ⟨F ,x⟩, meaning we
first iterate over the field space F and then over the single dimension

Isometry: A Path-Based Distributed Data Transfer System ICS ’18, June 12–15, 2018, Beijing, China

x . Iterating over the x dimension first (i.e. ⟨x , F ⟩) results in a struct-
of-arrays (SOA) layout, as shown in Figure 2b. Figure 2c shows a
hybrid layout [17] that allows multiple entries for each field to be
stored compactly for use with vectorized SSE or AVX loads and
stores. The hybrid layout can be described as ⟨xin = 4, F ,xout ⟩,
meaning that every 4 entries for each field are compactly stored.

The layout vector can also specify the order of entries within the
index space for multi-dimensional instances. Figure 2d shows a row-
major ordering for a 2-D index space. Isometry can also describe
blockified layouts, as shown in Figure 2e, which are beneficial for
applications that use the outer dimensions to define partitions with
minimized boundaries. The blockified layout is ⟨xin = 3,yin =
3,xout ,yout , F ⟩. The ⟨xin = 3,yin = 3⟩ indicates that every block
containing 3 × 3 entries is compactly stored, with the x-dimension
innermost. The ⟨xout ,yout ⟩ defines the linearization order among
different blocks, with the x-dimension again varying fastest. Finally,
F at the end means that the field space varies slowest. Entries for
only one field are shown in Figures 2d and 2e.

Isometry provides the following API for launching a copy that
transfers data from src_mem to dst_mem and transforms the data
layout from src_lyt to dst_lyt. A multi-hop transfer is launched
by a single invocation to copy.

Event copy(Memory src_mem , Layout src_lyt ,

Memory dst_mem , Layout dst_lyt ,

int priority = 0 /* optional */);

Data transfers are asynchronous in Isometry. Every invocation to
copy returns an Event that triggers when the transfer completes.
An optional parameter priority can be provided to assign a trans-
fer high priority. Isometry starts high priority transfers immediately
and suspends all low priority transfers using the same channels.

3 ISOMETRY RUNTIME
Isometry is designed to be applicable to a variety of host runtimes. In
general, any parallel system that meets the following requirements
can use Isometry as its DMA engine:

• All data transfers are scheduled, managed and performed by
an individual DMA engine.
• The DMA engine has the ability to allocate intermediate
buffers in specific memories to perform potentially multi-
hop data transfers. For example, the DMA engine can allo-
cate buffers in CPU memory to transfer data between GPU
framebuffers and disk storage.
• The data collections and layouts can be described by the
Isometry data model in Section 2.

The Isometry runtime manages and optimizes direct data trans-
fers, whether they have been directly requested by the application
or as the result of the decomposition of a multi-hop request by the
path planner (Section 4). The Isometry runtime can automatically
coordinate and pipeline sequential direct data transfers within a
multi-hop data transfer. This is accomplished through a hierarchical
architecture, illustrated in Figure 3. This hierarchy is composed
of memories, channels, requests, transfer descriptors, and DMA
workers, which are described in detail below.

Table 1: Memories in the Isometry memory hierarchy.
Memory Description
ZCM Registered CPU memory with direct GPU access

REG Registered CPU memory that is directly accessible by
the network interface card (NIC)

SYS Generic unregistered CPU memory
FBM GPU device memory
DSK Persistent storage on disk

Memory	

Channel	

XDPool

XD	 XD	… ... Requests
DMA	Worker	

Memory	

Memory	

Channel	

XDPool

XD	 XD	… ... Requests
DMA	Worker	

Figure 3: Isometry architecture.

Table 2: Channels in the Isometry memory hierarchy.
Channel Source Memory Destination Memory

Intra-node channels
Memcpy SYS/ZCM/REG SYS/ZCM/REG
GPURead FBM SYS/ZCM/REG
GPUWrite SYS/ZCM/REG FBM
GPUCopy FBM FBM
DiskRead DSK SYS/ZCM/REG
DiskWrite SYS/ZCM/REG DSK

Inter-node channels
RemoteMemcpy SYS/ZCM/REG SYS/ZCM/REG on remote nodes

3.1 Memories
Distinct storage locations (e.g., CPU memory, GPU framebuffers,
and disk) have different performance characteristics (e.g., band-
width, access latency, capacity, etc.) and are modeled as separate
memories by Isometry. Moreover, today’s heterogeneous systems
typically have the ability to register a block of memory to facilitate
direct access by the hardware DMA engines for optimizing data
movement performance. Compared to normal system memories, a
registered memory usually has better affinity with the hardware,
such as higher bandwidth and lower access latency. Isometry cap-
tures this heterogeneity by further modeling each block of reg-
istered memory as a separate memory in the Isometry runtime.
Examples of different types of memories are shown in Table 1.

3.2 Channels
A channel manages data movement between a memory pair with a
hardware connection. Table 2 lists some channels in the Isometry
runtime. A channel optimizes the hardware performance by coor-
dinating invocations to the low-level data copy APIs. For example,
each channel controls the size of each copy request and the num-
ber of concurrent requests to the low-level interface to accomplish
optimized hardware throughput while maintaining low latency.

In addition to supporting bit-wise data copies, Isometry channels
also exploit hardware capabilities by enabling data transposition

ICS ’18, June 12–15, 2018, Beijing, China Zhihao Jia, Sean Treichler, Galen Shipman, Patrick McCormick, and Alex Aiken

and directly offloading the transposition requests to the hardware
DMA engines whenever possible. For example, the GPURead/G-
PUWrite channels support gathering and scattering data to and
from GPU memories by using the cudaMemcpy2D API [1].

3.3 Requests
A request is a unit of direct data transfer that is generated from a
transfer descriptor (see Section 3.4) and sent to the channel, which
performs the actual data movement. Multiple requests to the same
channel are performed by the channel in first-in-first-out order.

3.4 Transfer Descriptors
The Isometry runtime uses a transfer descriptor (XD) to represent a
direct data transfer. A XD is associatedwith a particular channel and
coordinates with other XDs to pipeline sequential direct transfers
within a multi-hop transfer.

An XD decouples the entire direct transfer into multiple requests
with smaller granularity and decides in which order the requests
are sent to the channel. This design enables channel-specific op-
timizations. For example, XDs for the DiskRead and DiskWrite
channels send requests that access the disk in sequential order
to optimize disk performance. As another example, XDs for the
GPURead, GPUWrite and GPUCopy channels opportunistically
batch multiple bit-wise copies into a matrix or a 3D copy (i.e.,
cudaMemcpy2D or cudaMemcpy3D) and send a single request to the
channels. This amortizes the overhead on the channel side for of-
floading requests to the hardware DMA engines.

An XD defines data movement from an input buffer to an output
buffer. These buffers may be the source or destination buffer of the
overall transfer, or they may be intermediate buffers managed by
Isometry.When reading from an intermediate buffer, the XD cannot
send requests to the channel until the previous XD writes the data
to its input buffer. Such copy dependencies exist between adjacent
XDs within a multi-hop data transfer. Each XD maintains which
subsets are written by the previous XD and which subsets are read
by the next XD and uses this information to generate requests that
satisfy copy dependencies. (Note that an XD’s incoming subsets of
the data and its outgoing subsets may be different; e.g., the XD may
perform layout conversions on its input data, it may batch several
incoming requests into one outgoing request, etc.)

An XD becomes idle if additional requests cannot be generated
because the previous XD hasn’t written additional data into its input
buffer, or the output buffer cannot be reused because the next XD
hasn’t read the data. Completion of requests from the previous or
the next XD can potentially resolve copy dependencies and activate
an idle XD, meaning the XD is able to generate additional requests.

3.5 DMAWorkers
Each Isometry channel has a dedicated DMA worker that coor-
dinates concurrent XDs. Each DMA worker manages a transfer
descriptor pool (XDPool) that stores all unfinished XDs for the chan-
nel. A DMA worker iteratively selects requests from XDs in the
XDPool using a certain policy and sends the requests to the channel.

Isometry allows DMA workers to implement channel-specific
scheduling policies to meet different criteria for optimizing channel
performance. By default, we use a priority mechanism for each

Node 1

FBM	 ZCM	

SYS	DSK	

Node 2

ZCM	 FBM	

DSK	SYS	

REG	 REG	

Figure 4: Transfer graph for two nodes. Each memory with
double circles has a self-loop.

DMA worker to allow prioritizing requests based on an application-
specified priority for each transfer. Priorities can be especially
beneficial for applications with critical tasks that may delay large
amounts of subsequent work from being executed. By assigning a
higher priority to the transfers for these tasks, the Isometry run-
time automatically suspends all lower priority transfers and lets
the high-priority transfers start immediately.

3.6 Intermediate Buffer Allocation
Isometry automatically allocates intermediate buffers for multi-hop
data transfers. Since a multi-hop transfer may require allocating
multiple intermediate buffers (see Figure 1), Isometry prevents
potential resource allocation deadlock by imposing a global order
on all Isometry memories. For each multi-hop transfer, Isometry
allocates its intermediate buffers respecting the global order.

4 PATH PLANNER
The increasingly deep and complex memory hierarchies in today’s
machines make selecting a path for multi-hop transfers non-trivial.
The problem exists even in a cluster with two compute nodes. For ex-
ample, to move data between GPU framebuffers on different nodes,
as shown in Figure 1, it is unclear whether the transfer should use
ZCM, REG, or SYS. Using ZCM improves the transfer performance
from the GPU framebuffer but reduces the inter-node transfer per-
formance. Conversely, using REG has the opposite effect. Using
both is better in some cases, despite the additional copy required.
In addition, for transfers with layout conversions, deciding how
and where to convert the layouts adds another level of complexity.

A key idea in Isometry is to dynamically select efficient paths
for data transfers based on the connectivity between memories,
the bandwidth for each connection, and the layout of the instance
being transferred. The data model introduced in Section 2 is used
to reason about layout transformations.

4.1 Transfer Graphs
A data transfer graph is a directed graph G = (V ,E) that describes
the physical connectivity between memories. Each nodem ∈ V is
an individual memory, while each directed edge ⟨ms ,md ⟩ ∈ E is a
channel supporting data movement fromms tomd .

Figure 4 shows the transfer graph for two compute nodes con-
nected by a network. Each node has a GPU and a local disk. We
assume each node has CPU memory fragments that are registered
with direct GPU/NIC access, as is common in HPC systems. For
simplicity, if a pair of memories have channels in both directions

Isometry: A Path-Based Distributed Data Transfer System ICS ’18, June 12–15, 2018, Beijing, China

1KB 8KB 64KB 1MB 8MB 64MB 1GB

Request Size

1000

2000

3000

4000

5000

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

(a) GPUWrite (SYS→ FBM).

1KB 8KB 64KB 1MB 8MB 64MB 1GB

Request Size

1000

2000

3000

4000

5000

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

(b) GPURead (FBM→ SYS).

0.5KB 2KB 8KB 32KB 128KB 512KB 2MB

Request Size

0

50

100

150

200

250

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

(c) DiskWrite (SYS→ DSK).

4B 16B 64B 512B2KB 16KB 128KB 1MB

Request Size

0

2000

4000

6000

8000

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

(d) Memcpy (SYS→ SYS).

Figure 5: Throughput function examples.

that is depicted by an undirected edge. Note that these comple-
mentary channels may have different performance characteristics.
The self-loops on FBM, ZCM, REG and SYS (the double circles in
Figure 4) are useful—see the discussion of layout conversions below.

For each directed edge ⟨ms ,md ⟩ in the transfer graph, there
is a throughput function that describes the estimated throughput
of the hardware connection transferring data fromms tomd . At
startup, the Isometry runtime measures the throughput of each
channel with respect to the request size and defines the edge’s
throughput function tp(ms ,md , r) where r is the size of the request.
Figure 5 illustrates some examples of throughput functions. Many
channels (e.g., GPURead and GPUWrite channels) have suboptimal
throughput for small requests, and some channels (e.g., Memcpy
channels) perform consistently regardless of the request sizes. The
latter channels play an important role for optimizing data transfers
with layout conversions, since transforming layout may result in
small requests being generated (see Section 4.2).

The other important property of a transfer graph is the space
threshold TH for intermediate buffers: no intermediate buffer may
be larger than TH. We currently use a global limit on buffer size
because we have not found anything more complex to be necessary,
though there is no difficulty in using a threshold per memory. Note
that the size constraint is the limit for a single stage of a transfer,
not a global constraint on the aggregate space used by all transfers.

4.2 Path Planning Algorithm
To initiate a transfer, the application provides (ms , ls) and (md , ld),
indicating the source memory and initial layout of the instance as
well as its destination memory and the layout in the destination
memory. The goal of the path planner is to generate a path

path = ⟨(ms , ls), (m1, l1), (m2, l2), ..., (mn , ln), (md , ld)⟩

where path describes a transfer route that moves data frommemory
ms to memory md and transforms the instance’s layout from ls
to ld . Each internal pair (mi , li) ∈ path (1 ≤ i ≤ n) indicates an
intermediate buffer in memorymi that is used to temporarily hold

part of the instance during the transfer. The partial instance in the
intermediate buffermi is linearized with layout li .

We define (m0, l0) = (ms , ls) and (mn+1, ln+1) = (md , ld). Each
pair (mi , li), (mi+1, li+1) ∈ path (0 ≤ i ≤ n) describes a direct
transfer and becomes an XD that moves the instance from memory
mi tomi+1 and transforms the instance from layout li to li+1.

Recall that layouts are vectors as illustrated in Figure 2. To ana-
lyze how to transfer data from layout li to li+1, we consider their
longest common prefix and longest common suffix. Intuitively, a long
common prefix indicates that two layouts have the same local lin-
earization order, which allows large requests sent to the channel.
On the other hand, a long common suffix means the two layouts
have similar high-level linearization order, which reduces the mini-
mum size of the intermediate buffers needed for holding temporary
data. We name the longest common prefix and suffix as follows:

li = ⟨l (0), l (1), ..., l (pf), ..., l (sf), ..., l (L)⟩
li+1 = ⟨l (0), l (1), ..., l (pf), ..., l (sf), ..., l (L)⟩

l (0)...l (pf) and l (sf)...l (L) are the longest common prefix and suffix
between layouts li and li+1, respectively.

First we define the size of each layout component |l (k) |:
|F | = the sum of the sizes of the fields in the field space F

|x | = the size of the × dimension
|xin = C | = C

|xout | = |x |/|xin |

We then define two functions PREFIX(li , li+1) and SUFFIX(li , li+1)
that are the products of the sizes of each layout component in the
longest common prefix and suffix, respectively, for layout li and li+1.
We use TOTAL(li) to count the total size of an instance with layout
li

1, and define SUFFIX(li , li+1) = TOTAL(li)/SUFFIX(li , li+1).

TOTAL(li) =
L∏
i=0
|l (i) |, PREFIX(li , li+1) =

pf∏
i=0
|l (i) |

SUFFIX(li , li+1) =
L∏

i=sf
|l (i) |, SUFFIX(li , li+1) =

sf−1∏
i=0
|l (i) |

To transfer an instance from layout li to li+1, every PREFIX(li , li+1)
entries can be merged into a single request and sent to the channel,
since these entries are in the same linearization order in li and li+1.
Sending large requests is a critical optimization for some channels.

To analyze the sizes of the intermediate buffers, Isometry focuses
on XDs whose input and output buffers are both intermediate
buffers, since other XDs always have at least one endpoint that will
hold the entire instance. For XDs that transfer between intermediate
buffers, SUFFIX(li , li+1) measures the data shuffle size and provides
a lower bound for the input and output buffer sizes.

The path planner automatically generates the following con-
straints for the overall throughput TPoverall of path.
• Connectivity constraints require that adjacent memories in
path must be connected by a channel (i.e., ⟨mi ,mi+1⟩ ∈ E).
• For adjacent pairs (mi , li), (mi+1, li+1) ∈ path, PREFIX(li , li+1)
provides an upper bound for the request size. A throughput

1Note that we always have TOTAL(li) = TOTAL(li+1) since no data is removed or
added during a transfer.

ICS ’18, June 12–15, 2018, Beijing, China Zhihao Jia, Sean Treichler, Galen Shipman, Patrick McCormick, and Alex Aiken

constraint requires that the overall throughput cannot ex-
ceed the throughput of this direct transfer: TPoverall ≤
tp(mi ,mi+1, PREFIX(li , li+1)).
• Space constraints require that an XD cannot allocate an in-
termediate buffer whose size is larger than a threshold TH.
For XDs whose input and output buffers are both intermedi-
ate buffers, SUFFIX(li , li+1) provides a lower bound for the
intermediate buffer sizes on both sides. Therefore, the space
constraints require that SUFFIX(li , li+1) ≤ TH for 0 < i < n.

With these definitions in hand, we can now describe the algo-
rithm used by the path planner to select a path with maximum
throughput. There are three components to the algorithm:

(1) The planner enumerates the set P of all possible paths be-
tween the source and destination memories. This step satis-
fies the connectivity constraints.

(2) For a given path p ∈ P and a desired throughput TP, the
planner solves the throughput and space constraints.

(3) For each pathp ∈ P , the planner finds the maximum through-
put by solving an optimization problem that uses part (2)
above as a subroutine. The final answer is the path with the
greatest maximum throughput over all paths.

For part (1), the planner considers all acyclic paths from the
source to the destination memory, excepting that self-loops may be
used at most once. Furthermore, note that the set of possible layouts
is also finite, as each dimension can appear either once or twice (e.g.,
as xin and xout) in a layout. The total number of possible paths is
therefore finite, but may be quite large. The following techniques
are used to further reduce the number of paths that are considered:

• Paths that convert the layout of the innermost dimension are
ignored for channels that behave poorly with small requests.
• Rather than enumerate all possible blocking factors for a lay-
out component xin , Isometry solves for the optimal blocking
factor as part of component (3) above, treating xin as another
variable in the optimization problem.
• We compute an initial conservative upper bound U on the
maximum throughput of all paths. If a path p is found that
approaches U , p is returned as the solution and no further
paths are considered.U is computed via a breadth-first search
from the source to the destination considering only the peak
bandwidth of each channel.

For part (2), given a pathp and a potential throughput TPpotential ,
we determine if there is a solution to the throughput constraints
where TPoverall ≥ TPpotential . For each throughput constraint

TPoverall ≤ tp(mi ,mi+1, PREFIX(li , li+1))

We first find r ′i such that

tp(mi ,mi+1, r
′
i) = TPpotential

We then replace the throughput constraint by

r ′i ≤ PREFIX(li , li+1)

This requires the reasonable assumption that the throughput func-
tion is monotonic2. Now we have a system of constraints

PREFIX(li , li+1) ≥ r ′i ∀0 ≤ i ≤ n

SUFFIX(li , li+1) ≤ TH ∀0 < i < n

where for each constraint one side is a constant and the other is a
product of variables and a coefficient (recall from above that we
solve for the blocking factors). Thus, by taking the logarithm of
both sides, this non-linear system can be transformed to a linear
system, which is easily checked for satisfiability.

For part (3), the planner simply performs a binary search on
possible throughputs for path p in the interval between 0 and the
conservative upper boundU and records the maximum throughput
found. This process is repeated for all paths and the path with the
optimal throughput is selected.

The path planner involves a caching mechanism to eliminate
the cost of planning for new transfers that closely match earlier
transfers. After generating a path, the path planner caches the
source/destination memory and layout, as well as the path selected.
Any future transfers between the same memories with the same
layouts will use the cached path, without rerunning the algorithm.
The caching mechanism is very effective for iterative applications.
Section 6.5 evaluates Isometry on three benchmarks and shows
that while the path planner generates many new paths early in our
benchmarks, it quickly converges to a state where very few or no
new paths are generated.

4.3 An Example
We use a data transfer between FBMs on different nodes to demon-
strate how the planning algorithm works. The transfer performs
matrix transposition bymoving data from a row-major 2-D instance
to a column-major 2-D instance in the two-node cluster in Figure 4.
For simplicity, we assume all fields for an entry are compactly stored
(i.e., F is in the inner-most dimension in the layout).

Table 3 shows the analysis of one potential path. We split every
dimension into an inner and an outer dimension to emphasize the
layout conversions. Figure 6 visualizes the linearization orders for
the layouts in Table 3. Each blue box represents all fields for an
entry in the 2-D instance. The path analysis proceeds as follows:
• (m0, l0) → (m1, l1): The data is moved from the initial FBM
to the ZCM with direct GPU access. The longest common
prefix between l0 and l1 is ⟨F ,xin⟩, which indicates that this
direct transfer can merge |F | × |xin | entries into a single
request, shown as the red boxes in Figures 6a and 6b. A large
xin helps optimize the throughput for the GPURead channel,
as shown in Figure 5b. Isometry omits the space constraint
for this data transfer sincem0 is not an intermediate buffer.
• (m1, l1) → (m2, l2): The data is then transferred to REG. For
the layout conversion, only the fields F for a single entry
can be batched into a request. However, MemcpyChannel
provides good performance with small requests, as shown
in Figure 5d. Since both the input and output buffers for this
direct transfer are intermediate buffers, the space constraint
applies |F | × |xin | × |yin | ≤ TH.

2When a throughput function is not monotonic, it can be made so by automatically
splitting slow large requests into faster smaller requests.

Isometry: A Path-Based Distributed Data Transfer System ICS ’18, June 12–15, 2018, Beijing, China

Table 3: Path analysis on a path between GPU framebuffers on different nodes. ∗ indicates memories on the destination node.

Memory Layout PREFIX(li , li+1) SUFFIX(li , li+1)
Connectivity Throughput Space
Constraints Constraints Constraints

m0 = FBM l0 = ⟨F ,xin ,xout ,yin ,yout ⟩ |F | × |xin | TOTAL(l)/|yout | ✓
TPoverall ≤

tp(m0,m1, |F | × |xin |)

m1 = ZCM l1 = ⟨F ,xin ,yin ,xout ,yout ⟩ |F | |F | × |xin | × |yin | ✓
TPoverall ≤ 32MB ≥
tp(m1,m2, |F |) |F | × |xin | × |yin |

m2 = REG l2 = ⟨F ,yin ,xin ,xout ,yout ⟩ TOTAL(l2) 1 ✓
TPoverall ≤ 32MB ≥

tp(m2,m3,TOTAL(l2)) 1

m3 = REG∗ l3 = ⟨F ,yin ,xin ,xout ,yout ⟩ |F | × |yin | TOTAL(l3) ✓
TPoverall ≤

tp(m3,m4, |F | × |yin |)
m4 = FBM∗ l4 = ⟨F ,yin ,yout ,xin ,xout ⟩

(a) l0 (b) l1 (c) l2 and l3 (d) l4

Figure 6: Linearization orders of the layouts in Table 3.

• (m2, l2) → (m3, l3): The data is moved through the network.
Because l2 = l3 it automatically satisfies the space constraint.
• (m3, l3) → (m4, l4): The data is moved to the destination
memory. Similar to the first direct transfer, the XD canmerge
|F | × |yin | entries into a single request, marked as the green
boxes in Figure 6c and 6d. Again, the space constraint is
eliminated becausem4 is not an intermediate buffer.

If we use the throughput functions in Figure 5 and assume |F | =
16, TH =32MB, and a 3GB/s network bandwidth (the environment
used in the evaluation), the planning algorithm finds that TPoverall
is 3GB/s with the blocking factors xin = 2K and yin = 1K.

4.4 A Simple Path Planning Algorithm
The path planning algorithm described in Section 4.2 generates
efficient paths for data transfers. However, for small data transfers,
the planning algorithm takes a relatively long time compared to
the actual data transfer time. For example, the planning algorithm
takes up to 70µs for 1-D transfers and 0.2ms for 2-D transfers in
the experiments. Therefore, we also consider an alternative simple
planning algorithm that is faster and usually generates efficient
paths. The simple path planning algorithm selects the shortest
path between the source and destination memories, provided the
shortest path includes a Memcpy channel for layout conversions
(if layout conversion is required).

In the absence of layout conversions, the shortest path is returned
as the data transfer path. However, for data transfers involving
layout conversions, the shortest pathmay not include a channel that
is efficient for layout transformations. For the example in Section 4.3,
the shortest path is FBM→ REG→ REG∗ → FBM∗, in which none
of the GPURead, RemoteMemcpy, or GPUWrite channels have
good performance to transform layouts. For transfers with layout

conversions, the simple planning algorithm restricts the search
space by requiring all intermediate buffers to use the same layouts as
the source or destination, and only one channel on the path converts
the layouts. In addition, the simple planning algorithm always uses
the Memcpy channels for layout conversions. If the shortest path
does not include a Memcpy channel, one is added after the first CPU
memory on the path to improve layout conversion performance. For
the transfer example in Section 4.3, the simple planning algorithm
generates the path FBM → REG → REG → REG∗ → FBM∗ and
uses the Memcpy channel REG→ REG to transform the layout.

The simple algorithm runs faster because it reduces the set of
considered paths and the possible layouts on each path. However,
it may generate suboptimal paths both with and without layout
conversions. Section 6.3 performs a comparison between the two
path algorithms and shows that the simple path algorithm performs
reasonably well for most data transfers but generates suboptimal
paths in certain circumstances.

For large data transfers, generating efficient paths is critical to
data transfer performance, and Isometry uses the full planning
algorithm to find the best possible paths. For small data trans-
fers, reducing planning time is important to avoid the possibility
that planning time could dominate transfer time. Note that while
caching paths is another way to reduce (amortized) path planning
time, caching would still be less effective than reducing planning
cost for programs that either run for a short period of time or have
many small transfers along unique paths. We use a transfer size
threshold to decide where to switch between the two algorithms.
The threshold is set to 16MB in the experiments because trans-
ferring 16MB data takes around 2-5ms for all non-disk channels,
which is 10 times longer than worst-case full path planning time.

ICS ’18, June 12–15, 2018, Beijing, China Zhihao Jia, Sean Treichler, Galen Shipman, Patrick McCormick, and Alex Aiken

Table 4: System configurations used for the experiments.
Cluster Sapling XStream Moonlight
Nodes 4 16 308

CPUs/Node 2x Xeon 5680 2x E5-2680 2x E5-2670
GPUs/Node 2x Tesla C2070 2x Tesla K80 2x Tesla M2090
DRAM/Node 48 GB 256GB 32GB

Disk Samsung SSD 1.4PB SAS hard drive 1.8PB Panasas [29]
Network 2x QDR Infiniband FDR Infiniband QDR Infiniband

Experiments Sections 6.1 to 6.4 Section 6.5 Section 6.5

5 IMPLEMENTATION
Isometry is applicable to a variety of data parallel systems that
meet the requirements listed in Section 3. We now describe an
implementation of Isometry within Legion [7]. Legion is a parallel
programming system for distributed heterogeneous architectures.
Legion satisfies the three requirements: (1) Realm (Legion’s low-
level runtime component [26]) has a dedicated DMA subsystem; (2)
the DMA subsystem can allocate buffers in specific memories; and
(3) Legion’s physical instances (the basic building block for Legion’s
data collections) can be expressed by Isometry’s data model.

5.1 Realm DMA Subsystem
The Realm DMA subsystem supports moving data between memo-
ries with a direct hardware connection. For each transfer launched
by the application, the DMA subsystem analyzes the source and
the destination memory and generates a specialized copier that
describes how to perform and optimize the transfer. All copiers are
enqueued into a priority queue for execution.

The DMA subsystem initially launches a fixed number of DMA
threads for parallelizing data transfers. Each DMA thread iteratively
selects a copier with the highest priority from the priority queue
and performs the corresponding data transfers.

Copiers in the Realm DMA subsystem include optimizations for
each specific channel; however, coordination among concurrent
copiers is missing. Multiple DMA threads competing for the same
channel may slow down all transfers. Furthermore, some channels
may stay idle if their transfers are low priority and are not selected
by any DMA thread.

5.2 Integration into Realm
Our implementation of Isometry includes all memories and chan-
nels listed in Table 1 and 2 as well as all optimizations described
in this paper. In our implementation, Isometry replaces the orig-
inal DMA subsystem in Realm. No changes are required at the
application level. With Isometry integrated into Realm, the Legion
high-level runtime can launch transfers between any twomemories,
with the Isometry path planner automatically selecting efficient
paths and the Isometry runtime optimizing data transfers.

6 EVALUATION
We first study the performance of the Isometry runtime, focus-
ing on how effectively Isometry pipelines direct data movement
within a data transfer (Section 6.1) and the overhead for priori-
tizing a data transfer (Section 6.2). Second, we evaluate the two
planning algorithms (Section 6.3). Finally, we compare Isometry
with a state-of-the-art multi-hop DMA engine (Section 6.4) and

Table 5: Channel performance. Numbers in bold indicate the
best bandwidth for a channel type.

Source Destination Channel Bandwidth
Memory Memory Type (MB/s)

Intra-node channels
ZCM/REG/SYS ZCM/REG/SYS Memcpy 7740

ZCM FBM GPUWrite 5941
REG/SYS FBM GPUWrite 5139
FBM ZCM GPURead 6418
FBM REG/SYS GPURead 4502
FBM FBM GPUCopy 55366

ZCM/REG/SYS DSK DiskWrite 270
DSK ZCM/REG/SYS DiskRead 280

Inter-node channels
REG ZCM/REG/SYS RemoteMemcpy 3180

ZCM/SYS ZCM/REG/SYS RemoteMemcpy 2701

FBM->DSK SYS->FBM* FBM->SYS* FBM->FBM* SYS->DSK* FBM->DSK*
0

1000

2000

3000

4000

5000

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

261

1961
2108

1441

250 241270

3170 3169 3146

269 269

Realm

Isometry

Figure 7: Multi-hop data transfer throughput (higher is bet-
ter). ∗ indicates that the destination memory is on a remote
node. The blue and the red horizontal lines show the net-
work and the disk bandwidth, respectively.

evaluate Isometry on three benchmark applications (Section 6.5).
All experiments were run on three clusters (see Table 4).

Table 5 reports the bandwidth numbers for all Isometry channels
in the Sapling cluster. Note that different instances of the same
channel type can have different maximum bandwidths. For exam-
ple, the bandwidth of the GPURead channel is 4502 MB/s if the
destination memory is normal system memory and 6418 MB/s if the
destination memory is registered with GPU access. This bandwidth
heterogeneity greatly increases the number of potential paths for
some data transfers. We have compared the channel bandwidth
measured by Isometry with those measured by Realm [26]. Realm
and Isometry achieve the same bandwidth for all channels listed in
Table 5.

6.1 Pipelining Direct Transfers
To evaluate how effectively Isometry pipelines direct data transfers,
we use a microbenchmark that moves 8GB of data by concurrently
transferring 64 instances from the source memory to the destination
memory. Each instance has a 1-D index space with 4 million entries
and 8 fields. Figure 7 shows the throughput for various data transfer
scenarios. Because the original Realm runtime only handles single-
hop direct transfers, the Legion high-level runtime decomposes
any multi-hop transfer into a series of single-hop transfers with
no pipelining. As a result, Realm has suboptimal performance for
some data transfers. For example, to transfer data between FBMs
on different nodes, the Legion runtime creates two new instances

Isometry: A Path-Based Distributed Data Transfer System ICS ’18, June 12–15, 2018, Beijing, China

GPUWrite
(SYS->FBM)

Memcpy
(SYS->SYS)

RemoteMemcpy
(SYS->SYS*)

DiskWrite
(SYS->DSK)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

H
ig

h
 P

ri
o
ri

ty
 T

ra
n
sf

e
r

C
o
m

p
le

ti
o
n
 T

im
e

2.50

1.31

3.00

2.64

0.53
0.38

0.51 0.53

Realm w/ 4 DMA threads

Isometry

(a) Direct data transfers.
SYS->FBM* FBM->SYS* FBM->FBM* SYS->DSK*

0.0

0.5

1.0

1.5

2.0

H
ig

h
 P

ri
o
ri

ty
 T

ra
n
sf

e
r

C
o
m

p
le

ti
o
n
 T

im
e

1.28 1.25

1.01

1.19

0.10 0.11
0.05

0.10

Realm w/ 4 DMA threads

Isometry

(b) Multi-hop data transfers.

Figure 8: Performance of prioritizing a transfer. They-axis is
normalized (lower is better), with 1 indicating the run time
of a high priority transfer in Realm w/ 1 DMA thread.

in the CPU memories on the two nodes. The new instances are the
same size as the initial instance. Three sequential data transfers
are launched to Realm, with the start of each transfer dependent
on the completion of the previous data transfer before it can start.
This disables the opportunities to potentially overlap data transfers
in the GPU channels and the network channels; in addition, the
large allocations for holding the temporary instances waste system
resources and may prevent concurrent transfers.

With Isometry, the Legion runtime simply specifies the source
and destination of the transfer. The path planner in Isometry au-
tomatically selects a path from the source to the destination and
decomposes the path into XDs that are issued to the Isometry run-
time for parallel execution. For all transfer scenarios in Figure 7,
Isometry is able to pipeline sequential transfers and achieves near-
optimal throughput.

6.2 Priority Scheduling
We evaluate the completion time of a high priority data transfer
while a number of low priority transfers are being performed con-
currently.Wemeasure the time fromwhen the high priority transfer
is launched to when the runtime acknowledges the completion.

The original RealmDMA subsystem supports prioritizing a trans-
fer as described in Section 5.1; however, a high priority transfer
cannot be performed until a DMA thread has completed its current
transfer (regardless of the priority) and selects the high priority
transfer from the priority queue. This delays the start time of a high
priority transfer. Moreover, Realm does not support coordination
among different DMA threads; as a result, multiple DMA threads
share the hardware resources if they are performing the same type
of transfer, regardless of the priorities of the transfers, which can
further prolong the completion time of a high priority transfer.

Isometry allows priority scheduling for each channel. Since each
XD results in a series of requests with small granularity, the channel
quickly finishes the current requests and lets the DMAworker select
new requests from its XDPool. As a result, when a high-priority
XD is enqueued, the DMA worker quickly stops selecting requests
from low-priority XDs and allows the high-priority XD to start
immediately and monopolize the channel bandwidth.

Figure 8a and 8b show the completion time for a high priority
transfer with the presence of low priority transfers in the Realm
DMA subsystem and Isometry. Compared to the performance of
Realm with 1 DMA thread (the blue line), starting multiple DMA
threads in Realm prolongs the completion time for high priority

FBM->
DSK

SYS->
DSK

SYS->
SYS*

SYS->
FBM*

FBM->
SYS*

FBM->
FBM*

0

500

1000

1500

2000

2500

3000

3500

4000

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

268 273

2701 2665

3150 3130

269 271

3152 3110 3134 3136

Isometry Simple

Isometry Full

(a) Transfers w/o layout conversions.
FBM->

DSK

SYS->
DSK

SYS->
SYS*

SYS->
FBM*

FBM->
SYS*

FBM->
FBM*

0

500

1000

1500

2000

2500

3000

3500

4000

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

4 6

572

37

572

3813 6

572 523

14 9

268 270

2640 2620

3073 3040

273 268

3098 3065 3079 3046

SPSL

SPDL

Isometry Simple

Isometry Full

(b) Transfers w/ layout conversions.

Figure 9: Performance with different path algorithms.

transfers because multiple DMA threads share the channel band-
width. Isometry is able to reduce the completion time for direct and
multi-hop high priority transfers by up to 62% and 95%, respectively.

6.3 Path Planning Algorithms
We evaluate the two path planning algorithms by comparing the
transfer throughput of the generated paths, both with and without
layout conversions. We use the terms full and simple to refer to the
algorithms described in Section 4.2 and Section 4.4, respectively.

For each transfer scenario, the microbenchmark transfers 8GB
of data by concurrently moving 64 instances from the source to the
destination memory. Each instance has an index space with 4M en-
tries and a field space with 8 integers. To measure the performance
with layout conversions, the instance has the AOS layout in the
source memory and the SOA layout in the destination memory.

Figure 9a shows the performance of the full and simple algo-
rithms in the absence of layout conversions. Both algorithms select
the same paths for some transfers (e.g., FBM→DSK); however, the
simple algorithm may generate suboptimal paths in certain circum-
stances. For example, to transfer data between the systemmemories
on different nodes, the simple algorithm chooses the shortest path
that directly links the source and the destination memories (shown
as the red path in Figure 10). The full algorithm selects the blue
path in Figure 10 that uses the REG on the source node to exploit
direct access by NICs and achieves a 17% speedup.

For transfers with layout conversions, we also use two intu-
itive algorithms shortest-path-source-layout (SPSL) and shortest-
path-destination-layout (SPDL) as baselines. Both algorithms use
the shortest path algorithm to select a path. To select layouts for
intermediate buffer, SPSL requires all intermediate buffers to use the
same layout as the source instance (i.e., the layout transformation is
done in the last hop), while SPDL requires all intermediate buffers to
use the destination layout (i.e., the first hop transforms the layout).
Both algorithms are reasonable for maintaining small intermediate
buffers, since all but one hop perform no layout conversion.

In our experiments, the SPSL, SPDL, and simple algorithms take
2-9µs to generate a path that transforms the layout from AOS to
SOA, while the full algorithm takes up to 100µs.

Figure 9b shows the performance with layout conversions in dif-
ferent cases. The paths generated by SPSL and SPDL may have very
different throughput, since the layout conversions are performed on
different channels. Note that for some common data transfers (e.g.,
moving data from system memory to disk), SPSL and SPDL have
poor throughput because both of them transform the layouts in the
DiskWrite channel. Both the simple and full algorithms generate

ICS ’18, June 12–15, 2018, Beijing, China Zhihao Jia, Sean Treichler, Galen Shipman, Patrick McCormick, and Alex Aiken

Node 1

FBM	 ZCM	

SYS	DSK	

Node 2

ZCM	 FBM	

DSK	SYS	

REG	 REG	

Isometry simple

Isometry full

Figure 10: Different paths for data movement between sys-
tem memories on different nodes.

SYS->
SYS*

SYS->
FBM*

FBM->
SYS*

FBM->
FBM*

0

500

1000

1500

2000

2500

3000

3500

4000

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

3152 3110 3134 31363183 3159 3170 3130

MVAPICH2-GPU Isometry

(a) Transfers w/o layout conversions.
SYS->

SYS*

SYS->
FBM*

FBM->
SYS*

FBM->
FBM*

0

500

1000

1500

2000

2500

3000

3500

4000

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

3098 3065 3079 3046

746 680 666 655

MVAPICH2-GPU Isometry

(b) Transfers w/ layout conversions.

Figure 11: Comparison with MVAPICH2-GPU.

paths that use an in-memory intermediate buffer to transpose the
layouts and submit large requests to the DiskWrite channel. This is
a common, but tedious, optimization performed manually in many
applications, and one that happens automatically in Isometry with
both path planning algorithms.

In summary, both the simple and full planning algorithms are
better thanmore straightforward baseline path selection algorithms.
The simple algorithm provides relatively efficient paths by selecting
(possibly modified) shortest paths and restricting layout conver-
sions to Memcpy channels. However, the simple algorithm can also
generate suboptimal paths. Therefore, for large transfers, using the
full algorithm to generate more efficient paths is worthwhile, espe-
cially given that the results are cached for use in future transfers.

6.4 Comparison with Multi-hop DMA Engine
We compare the performance of IsometrywithMVAPICH2-GPU [27],
a state-of-the-art MPI implementation optimized for data transfers
from/to GPU framebuffers across multiple nodes. We use the same
benchmarks as Section 6.3 for this experiment. To obtain the best
performance for MVAPICH2-GPU, we explicitly aggregated strided
copies into a single MPI_ISend call to minimize runtime overhead.

Figure 11 shows the comparison results. For transfers without lay-
out conversions, MVAPICH2-GPU and Isometry achieve the same
transfer throughput (approaching network bandwidth). For trans-
fers with layout conversions, Isometry achieves around 4× speedup
compared to MVAPICH2-GPU. Note that Isometry supports trans-
fers between all memory pairs, not just GPU framebuffers.

6.5 Benchmark Evaluation
We evaluate Isometry on three benchmarks. PageRank and Circuit
are distributed implementations of PageRank [13, 16] and an elec-
trical circuit simulation. VGG-16 performs distributed training of
a deep convolutional neural network using data parallelism [23].

Table 6: Benchmark statistics.
Benchmark Circuit PageRank VGG-16

Data transfer pattern varying sizes large transfers varying sizes
Layout conversions No No Yes
Full path generated 96 (master) / 5 (slaves) 16 (per node) 16 (per node)

Simple path generated 50 (master) / 2 (slaves) 0 4 (per node)
Total planning time (ms) 5.5 (master) / 0.3 (slaves) 0.8 (per node) 0.9 (per node)

(The above numbers are for executions on 16 nodes)

Table 6 summaries the data transfer patterns. The three bench-
marks are written in Legion, and we use Isometry to replace the
original DMA subsystem in Realm. All benchmarks involve both
direct transfers (e.g., ZCM→ local FBM) and multi-hop transfers
(e.g., FBM→ remote FBM). To achieve optimal performance, the
VGG-16 benchmark uses NHWC layout for CPU tasks and NCHW
layout for GPU tasks as suggested in [5]. As a result, it requires
layout conversions for data transfers between SYS and local FBM.

We ran PageRank and VGG-16 on the XStream cluster and Cir-
cuit on the Moonlight cluster. The configurations for XStream and
Moonlight are listed in Table 4. We used all compute nodes for the
experiments on XStream and limited the runs to 64 nodes on Moon-
light to get sufficient cluster time. In the experiments, the full and
simple planning algorithms take 12-102µs and 2-9µs to generate a
new path, respectively. The planning time for a previously cached
path is negligible. Table 6 shows the number of full and simple
paths that are generated by the path planner on each node due to
cache misses. (Circuit has a master node that communicates with all
other nodes. Therefore, the master node performs more transfers.)
In all benchmarks, no new path is generated after the first iteration
because of the cache mechanism, and so overall planning time is
an insignificant fraction of wall clock execution time.

Figure 12 shows the weak-scaling performance of the three
benchmarks. The computation time is the average elapsed time
to compute a single partition of the application on one node, where
the problem size of each partition is held constant (i.e., weak scal-
ing). We compute the communication overhead by subtracting the
computation time from the benchmark’s overall execution time. For
PageRank and VGG-16, Isometry reduces the communication over-
head by 40-80% and the overall execution time by up to 60%. It is
worth noting that for the VGG-16 execution on a single node, which
includes only direct transfers, the layout conversion optimization
reduces the communication overhead by 44%.

For Circuit, communication takes a relatively small proportion
of overall execution time. However, communication overhead in-
creases as we scale the number of nodes and reaches 36% on 64
nodes. For executions on 64 nodes, Isometry reduces the communi-
cation time by 43% and the overall execution time by 16%.

We found that two main optimizations in Isometry achieve most
of the performance benefit over Realm: Isometry’s path planner
and Isometry’s automatic pipelining of the direct transfers in a
multi-hop transfer. Because Realm only supports direct transfers,
Legion decomposes any multi-hop transfer into a series of direct
transfers, which disables any pipelining opportunities. Moreover,
Realm needs to allocate large intermediate buffers to hold the entire
instance for a multi-hop transfer, which may preclude using smaller
registered memories with better transfer performance. Figure 13
shows the transfer performance degradation for PageRank by cu-
mulatively disabling the path and pipeline optimizations. To disable

Isometry: A Path-Based Distributed Data Transfer System ICS ’18, June 12–15, 2018, Beijing, China

1 2 4 8 16

Number of Nodes

0

2

4

6

8

10

12

14
T
im

e
(s

)

Realm: Communication

Realm: Computation

Isometry: Communication

Isometry: Computation

(a) PageRank (10 iterations).
1 2 4 8 16

Number of Nodes

0

2

4

6

8

10

12

14

16

18

T
im

e
(s

)

Realm: Communication

Realm: Computation

Isometry: Communication

Isometry: Computation

(b) VGG-16 (10 iterations).
1 2 4 8 16 32 64

Number of Nodes

0

2

4

6

8

10

T
im

e
(s

)

Realm: Communication

Realm: Computation

Isometry: Communication

Isometry: Computation

(c) Circuit (10 iterations).

Figure 12: Benchmark weak scaling for Isometry and Realm.

2 4 8 16

Number of Nodes

0

2

4

6

8

10

12

C
o
m

m
u
n
ic

a
ti

o
n
 T

im
e
 (

s)

Isometry

Isometry w/o path

Isometry w/o path and pipeline

Realm

Figure 13: Transfer Performance for PageRank.

the path optimization, we force Isometry to use the same path as
Realm. The results show that the path and pipeline optimizations
speedup the transfers by 1.6× and 2.2×, respectively. The remainder
of the speedup of Isometry over Realm for PageRank is most likely
due to one other optimization we have not discussed: when possi-
ble Isometry actively manages the number of in-flight requests to
guarantee high utilization of each channel, which Realm does not.

7 RELATEDWORK
Direct data transfers. There has been considerable research on
optimizing direct data movement, such as disk I/O [14, 24, 28],
network traffic [21, 30], and communications between CPUmemory
and GPU framebuffers [12, 31]. Isometry builds on such work by
incorporating methods for direct transfers into a framework for
planning and executing multi-hop transfers.

Multi-hop data transfers. There are many approaches taken
by prior work to support multi-hop data transfers. For example,
distributed file systems (e.g., [3, 9]) allow accesses to disk on remote
nodes. As another example, GPUfs [22] supports GPU and disk
communication by providing a POSIX-like API to GPU programs for
making the host’s file system directly accessible to GPU programs.

MVAPICH2-GPU [27] is a MPI implementation optimized for
data transfers from/to GPU framebuffers across multiple nodes.
GPUDirect [20] provides a new interface between the GPU and
the InfiniBand that allows both devices to directly access the same
pinned system memory. Although GPUDirect eliminates the host
CPU involvement by exploiting direct memory access, it requires
software modifications in both the operating system and the device
drivers. GPUDirect RDMA [2] supports direct communication be-
tween GPU framebuffers on different nodes, but it is only available
in specific system configurations. Although offering low latency,

GPUDirect RDMA has suboptimal bandwidth [18] and does not
support layout transformation.

The difference between Isometry and other approaches is that
Isometry seeks not to optimize specific multi-hop transfers for
particular hardware configurations, but to provide a framework
in which any multi-hop transfer in any complex machine can be
optimized. Thus, Isometry both relieves upper levels of the software
stack of reasoning about how to optimize data transfers while at the
same time having a sufficiently global view to carry out significant
data movement optimizations.

Parallel systems for heterogeneous architectures. Legion [7]
is a parallel programming system for distributed heterogeneous
architectures. The state-of-the-art DMA bsystem in Realm, Legion’s
low-level runtime, only supports direct transfers as described in
Section 5.1. Isometry is a replacement for Realm’s DMA subsys-
tem that supports efficient multi-hop transfers. Dandelion [19] is a
compiler and runtime for heterogeneous systems. Communication
between DRAM and GPU framebuffers is performed in the Dande-
lion tasks, and the Dandelion DMA subsystem only supports data
movement betweenDRAMand disks on different nodes. This design
results in limited performance for multi-hop data transfers since
optimizations such as pipelining direct transfers are not possible.

8 CONCLUSION
We have presented Isometry, a path-based distributed data transfer
system for optimizing both direct and multi-hop data transfers with
layout conversions in parallel systems. Key to our approach is a
path planner that can select near-optimal paths for data transfers
in complex systems. Our evaluation shows that Isometry is able to
achieve high throughput, often approaching the hardware limits,
while also minimizing the space used for intermediate buffers.

ACKNOWLEDGMENTS
This material is based upon work supported by the Department
of Energy National Nuclear Security Administration under Award
NumberDE-NA0002373-1 aswell as the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of the U.S. Department of En-
ergy Office of Science and the National Nuclear Security Admin-
istration. This work used the XStream computational resource,
supported by the National Science Foundation Major Research In-
strumentation program (ACI-1429830), as well as the Moonlight
cluster at Los Alamos National Laboratory through the ASC (Ad-
vanced Simulation and Computing) program.

ICS ’18, June 12–15, 2018, Beijing, China Zhihao Jia, Sean Treichler, Galen Shipman, Patrick McCormick, and Alex Aiken

REFERENCES
[1] [n. d.]. CUDA Programming Guide Version 5.5. http://docs.nvidia.com/cuda/

cuda-c-programming-guide/index.html. ([n. d.]).
[2] [n. d.]. Developing a Linux Kernel Module using GPUDirect RDMA. http:

//docs.nvidia.com/cuda/pdf/GPUDirect_RDMA.pdf. ([n. d.]).
[3] [n. d.]. Lustre File System. http://www.lustre.org. ([n. d.]).
[4] [n. d.]. The Message-Passing Interface. http://www.mpi-forum.org/docs/mpi-3.

0/mpi30-report.pdf. ([n. d.]).
[5] [n. d.]. TensorFlow Performance Guide. https://www.tensorflow.org/

performance/performance_guide. ([n. d.]).
[6] Cedric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-Andre; Wacre-

nier. 2011. StarPU: A Unified Platform for Task Scheduling on Heterogeneous
Multicore Architectures. Concurr. Comput. : Pract. Exper. (2011).

[7] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. 2012. Legion:
Expressing Locality and Independence with Logical Regions. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC ’12).

[8] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Thomas
Hérault, and Jack J Dongarra. 2013. Parsec: Exploiting heterogeneity to enhance
scalability. Computing in Science & Engineering 15, 6 (2013), 36–45.

[9] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The Google File
System. In Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles (SOSP ’03).

[10] Tom Henretty, Kevin Stock, Louis-Noël Pouchet, Franz Franchetti, J. Ramanujam,
and P. Sadayappan. 2011. Data Layout Transformation for Stencil Computations
on Short-vector SIMD Architectures (CC’11/ETAPS’11).

[11] Mike Houston, Ji-Young Park, Manman Ren, Timothy Knight, Kayvon Fatahalian,
Alex Aiken, William Dally, and Pat Hanrahan. 2008. A Portable Runtime Interface
for Multi-level Memory Hierarchies. In Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP’08).

[12] Thomas B. Jablin, Prakash Prabhu, James A. Jablin, Nick P. Johnson, Stephen R.
Beard, and David I. August. 2011. Automatic CPU-GPU Communication Man-
agement and Optimization. In Proceedings of the 32Nd ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’11).

[13] Zhihao Jia, Yongkee Kwon, Galen Shipman, Pat McCormick, Mattan Erez, and
Alex Aiken. 2017. A Distributed multi-GPU System for Fast Graph Processing.
Proc. VLDB Endow. 11, 3 (Nov. 2017), 297–310.

[14] Zhihao Jia, Sean Treichler, Galen Shipman, Mike Bauer, Noah Watkins, Carlos
Maltzahn, Pat McCormick, and Alex Aiken. 2017. Integrating External Resources
with a Task-Based Programming Model. In IEEE 24th International Conference on
High Performance Computing (HiPC’17).

[15] Chao Li, Yi Yang, Min Feng, Srimat Chakradhar, and Huiyang Zhou. 2016. Opti-
mizing Memory Efficiency for Deep Convolutional Neural Networks on GPUs
(SC ’16).

[16] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank Citation Ranking: Bringing Order to the Web. Technical Report.

[17] Matt Pharr and William R Mark. 2012. ISPC: A SPMD compiler for high-
performance CPU programming. In Innovative Parallel Computing (InPar ’12).

[18] Sreeram Potluri, Khaled Hamidouche, Akshay Venkatesh, Devendar Bureddy,
and Dhabaleswar K. Panda. 2013. Efficient Inter-node MPI Communication Using
GPUDirect RDMA for InfiniBand Clusters with NVIDIA GPUs. In Proceedings of

the 2013 42Nd International Conference on Parallel Processing (ICPP ’13).
[19] Christopher J. Rossbach, Yuan Yu, Jon Currey, Jean-Philippe Martin, and Dennis

Fetterly. 2013. Dandelion: ACompiler and Runtime for Heterogeneous Systems. In
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles
(SOSP ’13).

[20] Gilad Shainer, Ali Ayoub, Pak Lui, Tong Liu, Michael Kagan, Christian R. Trott,
Greg Scantlen, and Paul S. Crozier. 2011. The Development of Mellanox/NVIDIA
GPUDirect over InfiniBand–a New Model for GPU to GPU Communications.
Comput. Sci. 26, 3-4 (2011).

[21] Galen M. Shipman, Stephen Poole, Pavel Shamis, and Ishai Rabinovitz. 2008. X-
SRQ - Improving Scalability and Performance of Multi-core InfiniBand Clusters.
In Proceedings of the 15th European PVM/MPI Users’ Group Meeting on Recent
Advances in Parallel Virtual Machine and Message Passing Interface (EuroPVM/MPI
’08).

[22] Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett Witchel. 2013. GPUfs:
Integrating a File Systemwith GPUs. In Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’13).

[23] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. CoRR abs/1409.1556 (2014).

[24] Rajeev Thakur, William Gropp, and Ewing Lusk. 1999. Data sieving and collec-
tive I/O in ROMIO. In Proceedings of the The 7th Symposium on the Frontiers of
Massively Parallel Computation (FRONTIERS ’99).

[25] Manuel Then, Timo Kersten, Stephan Günnemann, Alfons Kemper, and Thomas
Neumann. 2017. Automatic Algorithm Transformation for Efficient Multi-
snapshot Analytics on Temporal Graphs. Proc. VLDB Endow. (2017).

[26] Sean Treichler, Michael Bauer, and Alex Aiken. 2014. Realm: An Event-based
Low-level Runtime for Distributed Memory Architectures. In Proceedings of the
23rd International Conference on Parallel Architectures and Compilation (PACT
’14).

[27] Hao Wang, Sreeram Potluri, Miao Luo, Ashish Kumar Singh, Sayantan Sur, and
Dhabaleswar K. Panda. 2011. MVAPICH2-GPU: Optimized GPU to GPU Commu-
nication for InfiniBand Clusters. Comput. Sci. 26, 3-4 (2011).

[28] Noah Watkins, Zhihao Jia, Galen Shipman, Carlos Maltzahn, Alex Aiken, and Pat
McCormick. 2015. Automatic and Transparent I/O Optimization with Storage
Integrated Application Runtime Support. In Proceedings of the 10th Parallel Data
Storage Workshop (PDSW ’15).

[29] Brent Welch, Marc Unangst, Zainul Abbasi, Garth A Gibson, Brain Mueller, Jason
Samll, Jim Zelenka, and Bin Zhou. 2008. Scalable Performance of the Panasas
Parallel File System. In Proceedings of the 6th USENIX Conference on File and
Storage Technologies (FAST’08).

[30] Tim S. Woodall, Galen M. Shipman, George Bosilca, Richard L. Graham, and
Arthur B. Maccabe. 2006. High Performance RDMA Protocols in HPC. In Proceed-
ings of the 13th European PVM/MPI User’s Group Conference on Recent Advances
in Parallel Virtual Machine and Message Passing Interface (EuroPVM/MPI ’06).

[31] S. Xiao and W. c. Feng. 2010. Inter-block GPU communication via fast barrier
synchronization. In Proceedings of the 30th IEEE International Parallel &Distributed
Processing Symposium (IPDPS ’10).

[32] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2008. Re-
silient Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster
Computing. In NSDI’12. San Jose, CA.

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/pdf/GPUDirect_RDMA.pdf
http://docs.nvidia.com/cuda/pdf/GPUDirect_RDMA.pdf
http://www.lustre.org
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
https://www.tensorflow.org/performance/performance_guide
https://www.tensorflow.org/performance/performance_guide

	Abstract
	1 Introduction
	2 Data Model and Interface
	3 Isometry Runtime
	3.1 Memories
	3.2 Channels
	3.3 Requests
	3.4 Transfer Descriptors
	3.5 DMA Workers
	3.6 Intermediate Buffer Allocation

	4 Path Planner
	4.1 Transfer Graphs
	4.2 Path Planning Algorithm
	4.3 An Example
	4.4 A Simple Path Planning Algorithm

	5 Implementation
	5.1 Realm DMA Subsystem
	5.2 Integration into Realm

	6 Evaluation
	6.1 Pipelining Direct Transfers
	6.2 Priority Scheduling
	6.3 Path Planning Algorithms
	6.4 Comparison with Multi-hop DMA Engine
	6.5 Benchmark Evaluation

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

