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Abstract
Modern high-performance computing systems have multiple

GPUs and network interface cards (NICs) per node. The re-

sulting network architectures have multilevel hierarchies of

subnetworks with different interconnect and software tech-

nologies. These systems offer multiple vendor-provided com-

munication capabilities and library implementations (IPC,

MPI, NCCL, RCCL, OneCCL) with APIs providing varying

levels of performance across the different levels. Understand-

ing this performance is currently difficult because of the wide

range of architectures and programmingmodels (CUDA, HIP,

OneAPI).

We present CommBench, a librarywith cross-system porta-

bility and a high-level API that enables developers to easily

build microbenchmarks relevant to their use cases and gain

insight into the performance (bandwidth & latency) of mul-

tiple implementation libraries on different networks. We

demonstrate CommBench with three sets of microbench-

marks that profile the performance of six systems. Our ex-

perimental results reveal the effect of multiple NICs on op-

timizing the bandwidth across nodes and also present the

performance characteristics of four available communication
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1 Introduction
Communication networks on high-performance computing

(HPC) systems are complex and diverse. The challenge for

application and library developers when targeting such ma-

chines is to understand a network’s characteristics and the

resulting performance implications to design or select tai-

lored communication strategies for their programs [16, 3].

In particular, HPC network architectures have become

more hierarchical in an effort to sustain high bandwidth, low

latency, and energy-efficient communication as aggregate

compute has grown. HPC systems today emphasize fat node
designs with large numbers of accelerators per node con-

nected by a fast internal network as well as the traditional

network across nodes [37, 9, 8, 5]. Applications that exploit

these hierarchical networks can achieve significantly higher

overall performance [23, 33].

Traditional HPC network benchmark suites perform point-

to-point (P2P) and collective, e.g., scatter—point-to-all and

all-to-all, communications. These tests assume no hierarchy—

all points are peers. In hierarchical systems, the performance

https://doi.org/10.1145/3650200.3656591
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of such tests depends on the locality of the endpoints in the

communication hierarchy. For example, point-to-point tests

give different results for endpoints within the same node vs

different nodes.

Our key insight is that in characterizing the performance

of a hierarchical network, we should use groups of processors

corresponding to the levels of that hierarchy. In particular,

in addition to using either individual processors or all pro-

cessors, we should also cover intermediate-sized groups of

processors, such as all processors in a node. We can then

develop cross-group communication patterns to evaluate

performance across groups of communicating processors

that accurately represent the underlying network hierar-

chy. To this end, we introduce CommBench, an extensible

framework for constructing benchmarks of nontrivial com-

munication patterns, stress-testing communication layers,

and identifying optimal communication configurations in

hierarchical machines.

A significant challenge is that each system has different

numbers of GPUs and network interface cards (NICs) per node,
and thus each system exhibits a different physical topology.

Figure 1 shows example systems such as Frontier and Aurora,

which consist of dual-die GPUs where each die is connected

to an intra-node network in a heterogeneous way, yielding

non-obvious performance behavior that can be exploredwith

CommBench. To accommodate such level of diversity in the

systems of interest, we provide a unified parameterization

of the group-to-group patterns and make them portable and

scalable across systems with various architectures.

Moreover, communication libraries often exhibit different

logical connectivity between processors than the underlying

physical hardware connectivity. As a result, we observe dif-

ferent performance behaviors across implementations of the

message-passing interface (MPI) [11, 20, 13, 29] and other col-

lective communication libraries [27], such as varying group-

to-group performance even with the same physical topology.

CommBench proposes several group-to-group patterns for

straightforward comparison and summary of the differences

in performance between different libraries. For additional

patterns that fall outside our proposed patterns, CommBench

provides an API so that the developers can build custom mi-

crobenchmarks for their own communication patterns.

To evaluate CommBench, we design portable micrbench-

marks and assess the communication performance of six

HPC systemswithmulti-GPU andmulti-NIC nodes—Delta [10],

Summit [37], Perlmutter [5], Frontier [9], Aurora [8] and

NVIDIA’s DGX-100—using MPI (multiple versions), NCCL,

RCCL, and IPC capabilities. Our key finding is that the per-

formance of libraries on hierarchical networks vary signifi-

cantly across systems. Therefore, portablemicro-benchmarking

across systems is crucial for porting libraries and applica-

tions in a performant way. To address the problem, this paper

makes the following main contributions:

Table 1. Number of CPUs, GPUs, and NICs per node on test

systems.

System CPUs GPUs NICs
Delta 1 AMD EPYC 4 Nvidia A100 1 Slingshot-10

Perlmutter 1 AMD EPYC 4 Nvidia A100 4 Slingshot-11

Summit 2 IBM POWER 6 Nvida V100 2 InfiniBand

Frontier 1 AMD EPYC 4 AMD MI250x* 4 Slingshot-11

DGX-A100 2 AMD EPYC 8 Nvidia A100 8 InfiniBand

Aurora 2 Intel Xeon 6 Intel PVC* 8 Slingshot-11

*Each AMD MI250x [30] and Intel PVC [26] involves two processor dies

referred to as “graphics compute dies” or “tiles”, which we count as separate

GPUs in the rest of the paper.

• We propose group communication benchmarks for

isolating performance characteristics at specific levels

of the networking hierarchy.

• We present CommBench
1
, a portable network micro-

benchmarking framework with a flexible API for build-

ing nontrivial communication patterns and measuring

their performance with various libraries.

• We explore the hierarchical communication character-

istics of multi-NIC nodes and propose an analytical

model for logical GPU-to-NIC topologies based on

group-to-group patterns. We confirm our model with

CommBench on six state-of-the-art HPC systems.

Our evaluation reveals performance characteristics by

gradually increasing the load on GPU-to-NIC communica-

tions in a parameterized way. To compare the empirical re-

sults of our group-to-group communication patterns with

theoretical limits, we derive analytical models for hierarchi-

cal topologies. The proposed abstractions allowed us to port

i) multi-step, ii) group-to-group, and iii) application-specific

microbenchmarks in significantly different hierarchical net-

work designs.

2 Overview of Hierarchical Networks
This section dissects the hierarchical network architecture

of six current HPC systems that are summarized in Table 1.

2.1 Intra-Node Network Architecture
Modern systems involve heterogeneous node architectures

with intra-node networks that are composed of i) a high-

bandwidth interconnect for communication across GPUs

(see Figure 1) and ii) a GPU-to-NIC interconnect for enabling

communication across nodes (see Figure 2). We will first

dissect the former and then the latter to understand contem-

porary HPC networks.

2.1.1 High-Bandwidth Links. The systems of interest

(Table 1) involve various numbers of GPUs in each node.

These GPUs are connectedwith a high-bandwidth (sub)network

1https://github.com/merthidayetoglu/CommBench

https://github.com/merthidayetoglu/CommBench
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Figure 1. High-bandwidth intranode interconnects between

GPUs. Nodes form uniform (e.g., (a) and (e)) and nonuniform

(e.g., (b)–(d)) network interconnects with propriety links.

Unidirectional bandwidth per link; NVlink and Infinity Fab-

ric: 50 GB/s, Xe Link: 20 GB/s, X-Bus and MDFI: 64 GB/s.

with propriety links, as depicted in Figure 1. The commu-

nication bandwidth & latency across GPUs depends on the

link topology, which may differ significantly across systems.

Some systems have uniform topologies such as all-to-all

(Figure 1 (a) Delta and Perlmutter) or star (Figure 1 (e) DGX-

A100), which are easier to understand: In uniform networks,

there is no hierarchy among GPUs, i.e., they are connected to

each other with the same number and type of links and hence

with the same bandwidth and latency. The performance of

heterogeneous interconnects is less obvious. For example,

GPUs in Figure 1 (b) Summit, (c) Frontier, and (d) Aurora

nodes are non-uniformly connected with different numbers

and types of links. For reasoning about these networks, we

consider conceptual affinity groups, discusssed next.

In hierarchical networks, communication among GPUs

with a closer affinity has a lower cost than that of “distant”

GPUs. The levels of affinity corresponds to the levels of the

hierarchy. For example, Figure 1 (b) Summit, (c) Frontier, and

(d) Aurora form two-level hierarchies with different affinity

groups. In (b), the groups correspond to the half nodes, i.e.,

GPUs (0, 1, 2) and (3, 4, 5), where the bandwidth is higher

within groups than across groups. In (c) and (d), the groups

correspond to GPU pairs co-located in a single box, i.e., (0, 1),

(2, 3), (4, 5), and so on. However, the boxes in (c) are connected

in nonobvious ways: The number of communication links is

embedded in the vendor’s low-level software and not part

of the public interface.

2.1.2 GPU-to-NIC Associations. When GPUs communi-

cate across nodes, they do so through the NICs. Therefore,

understanding GPU-to-NIC associations is crucial for un-

derstanding inter-node communication. Figure 2 shows the

physical and logical topologies between GPUs and NICs in

each node of our systems. The physical topology refers to

f) DGX-A100 (200 GB/s)e) Frontier (100 GB/s)

0 1 2 3 5 64 7
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Figure 2. Interconnect between GPUs and NICs within

nodes. All devices are physically connected, but each GPU

uses a single NIC for P2P communicating across nodes. In

our experiments, we use the default bindings as shown in

(a)–(f). Machines peak bandwidth is based on the number

and bandwidth of NICs per node (12.5–200 GB/s).

the hardware connections between devices, often with PCIe

links and switches, while the logical topology refers to the

software bindings between GPUs and NICs for moving data

into or out of a node. For example, we have found that com-

munication libraries associate a single specific NIC with each

GPU, even when the GPU has the same physical connection

to multiple NICs.

The logical GPU-to-NIC bindings vary across systems de-

pending on the number of GPUs and NICs and their affinity

in the subnetwork. These bindings are determined by the

communication library implementation (e.g., MPI or NCCL)

and in our testing were found to be static
2
. In our experi-

ments, we use the default associations: (a), (c), and (e) are

packed, (d) is round-robin, and (b) and (f) are bijective, i.e.,

one-to-one.

2.2 Network Hierarchy Across Nodes
Communication across nodes takes place on an external

network interconnect, e.g., InfiniBand and Slingshot, where

each node is connected to the network through multiple

NICs [38, 7]. The external network switches deliver data

from the NIC associated with the sender GPU to the NIC

associated with the receiving GPU. The topology of the net-

work varies across systems, depending on their scale. For

2
Except a special case that is explained in Section 5.2.1
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Figure 3. Overview of the communication software stack.

example, Summit (4,608 nodes) has a fat tree topology, where

the bandwidth across nodes is uniform. To reduce the ca-

ble cost, newer systems such as Frontier (9,472 nodes) and

Aurora (10,872 nodes) have three-hop dragonfly networks

that introduce additional hierarchy [22]. In this work, we

focus on the immediate effects of GPU-to-NIC associations

in multi-node communication, and therefore we carried out

our experiments up to a small number of nodes which are

placed in the close vicinity by the scheduler.

3 Software
3.1 Overview
CommBench offers a system-agnostic API to build custom

microbenchmarks. For ease of portability, several standard

communication libraries are supported by CommBench.

3.2 Integrated Communication Libraries
CommBench is intended to measure performance as seen

from an end-user application. Therefore we have integrated

the most popular communication libraries (MPI, NCCL /

RCCL (XCCL), and IPC) used by many applications.

For building custommicrobenchmarks, CommBench relies

on P2P communication functions: e.g., MPI_Isend / MPI_Irecv
for MPI, and ncclSend / ncclRecv for NCCL. These func-

tions have different GPU-aware and non-blocking protocols,

and are implemented with different lower-level APIs for the

networks within and across nodes. The communication soft-

ware stack is deep and diverse as depicted in Figure 3, and

the implementation on a specific fabric is handled by lower-

level interfaces that are closer to the hardware, which are

tested indirectly by CommBench.

Within nodes, libraries often use vendor-provided IPC

mechanisms formessage passing through the high-bandwidth

links (Section 2.1.1). Nevertheless, we observe in our evalua-

tion that higher-level library implementations are sometimes

inefficient or have significant software overhead. For accu-

rate measurements of intra-node networks, we also expose

vendor-provided IPC mechanisms directly in CommBench.

3.3 Portability Across GPU Vendors
CommBench is portable across CPUs and GPUs from mul-

tiple vendors: there are OneAPI, CUDA, and HIP versions

for programming GPUs of Intel, Nvidia, and AMD, respec-

tively. The choice of port and whether CommBench uses

CPU or GPU communication are both made at compile-time.

Listing 1. API for registering each microbenchmark step.

1 // Data type is templatised as T

2 template typename <T>

3 class Comm {

4 // Create a benchmark step with a library of choice.

5 Comm(Library);

6 // Register a P2P communication into the step.

7 void add(T *sendbuf , T *recvbuf , size_t count , int

sendid , int recvid);

8 // Launch the registered communications and return.

9 void start();

10 // Block until the completion of communications.

11 void wait();

12 // Measure over many iterations and report statistics.

13 void measure(int warmup , int numiter);

14 }

According to the selection of library and port, CommBench

implements each P2P communication with one of the nine

capabilities listed in Table 2.

Table 2. Integrated libraries (columns) and ports (rows).

OneAPI CUDA HIP (default)

MPI GPU MPI GPU MPI GPU MPI CPU MPI

XCCL OneCCL
3

NCCL RCCL n/a

IPC ZE IPC CUDA IPC HIP IPC n/a

4 Microbenchmark Implementation
CommBench is designed around an API for composing com-

munication patterns succinctly. A microbencmark is com-

posed of P2P communications. There may be a single step

with concurrent communications, or multiple steps, where

each step depends on the previous one. Listing 1 outlines the

CommBench API for constructing a single step.

4.1 CommBench API
Each benchmarking step requires three things: 1) a persis-

tent communicator that memoizes and executes the desired

communication pattern, 2) creation of the communication

pattern using individual P2P communications, and 3) valida-

tion through isolated measurements.

The persistent communicator is realized with the Comm ob-
ject defined in Listing 1, Line 5. The communication registry

is made by the add function on Line 7. The intended use case

for CommBench is for the user to supply the desired commu-

nication pattern and then call start (Line 9), which kicks

off all registered communications at once, maximizing usage

of the machine’s bandwidth. The start call is nonblocking
and all buffers supplied to CommBench could be in use until

the corresponding wait (Line 11) call completes. After the

wait call, the buffers can be safely reused. For measuring the

time of a step, we provide an integrated measure API (Line

3
OneCCL currently does not support non-blocking P2P functions and there-

fore not applicable to the results in this paper.



CommBench: Micro-Benchmarking Hierarchical Networks with Multi-GPU, Multi-NIC Nodes ICS ’24, June 4–7, 2024, Kyoto, Japan

𝑑2

𝑑

𝑑1

𝑑2

𝑑0

(a) Split (b) Translate (c) Assemble

In
tr

a-
N

od
e

𝑑1
0

1

2

3

4

5
Node

GPU
𝑑

In
tr

a-
N

od
e

Figure 4. Striping of P2P data across GPUs for maximizing

the bandwidth across nodes. It takes three steps to a) split

the original data 𝑑 into three stripes—𝑑0, 𝑑1, 𝑑2, b) translate

the stripes across nodes using all GPUs, and c) assemble of

the original data at the receiving GPU.

Listing 2. Program for the striping microbenchmark.

1 // Create three steps and choose implementation libraries

2 Comm <T> split(IPC);

3 Comm <T> translate(NCCL);

4 Comm <T> assemble(IPC);

5 // Allocate temporary buffer for staging data.

6 T *temp;

7 allocate(temp , d/g);

8 // Register the split step (g-1 intra -node P2P).

9 for (int i = 1; i < g; i++)

10 split.add(sendbuf+i*d/g, temp , d/g, 0, i);

11 // Register the translate step (g inter -node P2P).

12 translate.add(sendbuf+i*d/g, recvbuf , d/g, 0, g);

13 for (int i = 1; i < g; i++)

14 translate.add(temp , temp , d/g, i, g + i);

15 // Register the assemble step (g-1 intra -node P2P).

16 for (int i = 1; i < g; i++)

17 assemble.add(temp , recvbuf+i*d/g, d/g, g+i, g);

18 // Setup microbenchmark sequence with three steps.

19 vector <Bench <T>> stripe = {split , translate , assemble };

20 // Warmup over 10 rounds and measure over 20 rounds.

21 measure_async(stripe , 10, 20, d);

13) which executes the communications multiple times and

reports the minimum, maximum, average, and median times

over a specified number of iterations.

We use the CommBench API for implementing the follow-

ing microbenchmarks.

4.2 Striping Data Across Nodes
The point-to-point functions of libraries utilize only a single

NIC, although there are multiple NICs per node in current

systems. Therefore, conventional point-to-point benchmarks

do not measure the full potential bandwidth across nodes.

We propose a striping microbenchmark for measuring the

point-to-point bandwidth across multi-NIC nodes.

This microbenchmark consists of three consecutive steps

depicted in Figures 4 (a)–(c). To accommodate any node type,

the code is parameterized for any message size (𝑑) and num-

ber of GPUs per node (𝑔 = 3). The communication steps

are programmed separately in Listing 2. In Lines 2–4, the

implementation library for each step is selected (IPC within

nodes and NCCL across nodes). Lines 8–17 register the three

communication patterns. Line 19 creates a vector of commu-

nicators that represents the communication sequence, where

split assemble
translate

inter
intra

barrier()
Start Timer
split.start()

split.wait()
translate.start()

translate.wait()
assemble.start()

assemble.wait()
Stop Timer
Allreduce(total, MAX);

barrier()
Start Timer
intra.start()
inter.strart()

inter.wait()
Stop Timer
Allreduce(total, MAX)

(a) Asynchronous (Section 4.2)

IPC
NCCL

IPC
NCCL

(c) Concurrent (Section 4.4)

t = totalt = 0

(b) Simple (Section 4.3)

NCCL comm

barrier()
Start Timer
comm.start()

comm.wait()
Stop Timer
Allreduce(total, MAX)

t = totalt = 0

t = totalt = 0

intra.wait()

Figure 5. Synchronization schemes for scheduling steps of

the proposed microbenchmarks from a process’ perspec-

tive. The horizontal axis represents time and each box corre-

sponds to a communication step. The vertical dashed lines

show the earliest moment of return to the indicated func-

tions on each GPU. For accurate measurements, the start
and wait functions must be called from all processes in the

shown order. The end-to-end time is the maximum of total

time taken on all processes.

each step depends on the previous one. The measure_async
function in Line 21 executes the communication steps asyn-

chronously while preserving the data dependencies across

steps, which we explain next.

In multi-step microbenchmarks, we assume each step de-

pends on its predecessor. A naive way of preserving such

dependencies is a lock-step global execution with a barrier

(global synchronization) between each step. However, includ-

ing the barriers would not only cause idle time, and hence

inefficiency, but also yield inaccurate latency measurements,

especially on large numbers of nodes. CommBench does not

use global synchronization in its execution. Instead, it uses

finer-level synchronization functions (start and wait) that
are explained in Section 4.1. Figure 5 (a) depicts such a com-

munication sequence for the striping example. To preserve

data dependencies, a GPU must wait for completion of a

current step before starting the next step. In this case, a GPU

waits only if it has an outstanding dependency on another

GPU in the current step for preserving the data dependencies

across steps. If there is no dependency, the GPU moves on

to execute the subsequent step.

4.3 Group Communication Patterns
We propose group communication patterns to measure the

performance across groups of processors at a specific level

of the communication hierarchy in isolation.

Group communication patterns are useful for stressing the

network across a set of processors at a specific level of the

communication hierarchy, such as a node. We define three

families of built-in patterns for varying the communication
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Figure 6. The (a) rail, (b) asymmetric, and (c) symmetric

pattern families across two groups with (top) bipartite graph

and (bottom) sparse communication matrix representations.

The configuration parameters (𝑛,𝑔, 𝑘) are 𝑛 = 2, 𝑔 = 3 and 𝑘

is 1 (black), 2 (blue), or 3 (light blue).

workload gradually across two nodes rail, asymmetric, and

symmetric (Figure 6). Then, we design scaling patterns for

multiple nodes with various directions of data movement.

Group communication patterns reveal the effect of 1) static

and dynamic (if any) associations between GPUs and NICs,

2) hardware limits in isolation (e.g., switch, link, NIC), and

3) the software overhead of libraries (e.g., MPI, NCCL).

4.3.1 Pattern Parameterization. We propose the param-

eterized group-to-group patterns as shown in Figure 6 (a)—

(c). These are bipartite patterns between GPUs in different

groups. The configuration parameters are 𝑔 and 𝑛, where 𝑔

is the node size in terms of number of GPUs, and 𝑛 is the

number of nodes.

Figures 6 (a)–(c) show the communications across groups

with parameters 𝑔 = 3 and 𝑛 = 2 for the (a) rail, (b) asymmet-
ric, and (c) symmetric group-to-group patterns.

4
To provide

more diversity of patterns, we define an additional parameter

𝑘 ≤ 𝑔 that represents a subgroup within a group. Figure 6

shows the family of patterns for varying 𝑘 .

The rail pattern generalizes the P2P pattern between GPUs

in corresponding positions of two or more nodes. Selecting

𝑘 = 1 for the rail pattern recovers exactly an internode

P2P pattern. By choosing 𝑘 = 1, 2, 3 in this example, the

rail pattern tests the capacity of one-to-one communication

between two nodes with different numbers of simultaneously

participating pairs of GPUs.

The asymmetric pattern maps 𝑘 GPUs in the first group to

all 𝑔 GPUs in the other group. For example, when 𝑘 = 1 the

pattern is equivalent to a one-to-𝑔 pattern, where the sender

and receiver GPUs are in different nodes. By increasing 𝑘 , we

activate GPUs incrementally to increase the workload. When

4
Note that for 𝑔 = 3 the groups are selected to be the GPUs on a single node

in this example. In general, groups are selected so that the GPUs within a

group have the closest possible affinity.
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Figure 7. (a) Unidirectional, (b) bidirectional, and (c) omni-

directional data movement across multiple groups with rail

(3, 2, 2) and symmetric (3, 2, 2) patterns.

𝑘 = 𝑔, the asymmetric pattern converges to the symmetric

pattern shown in Figure 6 (b)–(c).

In the asymmetric pattern, the parameter 𝑘 is only used

to limit the number of GPUs in the first group participating

in the communication. However, for the rail family and the

symmetric family, 𝑘 is used to limit the number of GPUs in

both nodes participating in the communication.

The bottom of Figure 6 shows the communication matrix

corresponding to the group communication pattern above,

where each entry corresponds to a P2P communication orig-

inating from the sending process to the receiving process.

The off-diagonal blocks show the inter-node communication

pattern. These patterns are registered into a single commu-

nicator and executed as depicted in Figure 5 (b).

4.3.2 Direction of Data Movement. A further refine-

ment is to consider the direction of data movement. We

consider (a) unidirectional, (b) bidirectional, and (c) omnidi-
rectional communication patterns across multiple groups as

seen in Figure 7 with our rail and symmetric patterns. The

unidirectional patterns assume that there is a primary group

that sends data to all the rest of the groups. The bidirectional

pattern is the same as the unidirectional pattern except that

the communications are in both directions. Omnidirectional

communication captures patterns patterns where all groups

communicate with all other groups, rather than having one

group that communicates either unidirectionally or bidirec-

tionally with the other groups. Since the asymmetric pattern

is defined only on two groups, there is no sensible definition

of the omnidirectional asymmetric pattern. For the rest of

the paper, a group communication pattern is described by

the three parameters (𝑛,𝑔, 𝑘) and a direction.

4.4 Application Case Study
Many applications involve irregular communications, where

each GPU communicates with a sparse subset of GPUs and
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Figure 8. Application-specific (MemXCT) communication

patterns for (a) 16 GPUs and (b) 48 GPUs. The individual

message sizes shrink whereas (c) the total data movement

grows with the number of GPUs. We replicated this pattern

for microbenchmarking on four nodes of each system.

the message lengths vary. Our final custom microbench-

mark replicates irregular communication patterns from an

application, MemXCT [17], as a complement to the regular

communication patterns discussed above.

This microbenchmark is composed of concurrent P2P com-

munications across GPUs as a result of a distributed sparse

matrix multiplication. The communication pattern across

GPUs depend on the sparsity pattern of the matrix and it’s

partitioning. For microbenchmarking, we chose the ADS4

dataset given in the application repository
5
. We extracted

communication patterns for four nodes of each systemwhich

corresponds to 16, 24, 32, and 48 GPUs. The resulting pat-

terns across 16 and 48 GPUs are shown in Figure 8 (a) and

(b), respectively.

Internally, CommBench stores a distributed sparse matrix

that tracks the communication pattern as it is being created.

Invocation of each add function corresponds to adding an

entry to the sparse communication matrix. This matrix does

not store any communication beyond metadata needed to

track the data dependencies across GPUs.

For separate measurements within and across nodes, we

register the P2P communications into separate communi-

cators. Nevertheless, these steps are independent of each

other, and therefore can be run concurrently to hide one

behind another. Concurrent execution is expressed using the

synchronization functions as depicted in Figure 5 (c). The

concurrent execution waits for completion of whichever step

takes the most time—inter-node communication in this case

as seen in Figure 8 (c).

5 Evaluation
To cover a wide variety of contemporary communication

architectures, we perform experiments on the six systems

discussed in Section 2. Our experiments use the default soft-

ware versions installed on each system; the specific version

will be listd in the artifact description appendix. For MPI,

Summit uses Spectrum, Delta and DGX-A100 use OpenMPI,

5
Application code: https://github.com/merthidayetoglu/MemXCT-GPU
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Figure 9. Time for moving one GB from GPU to GPU across

two nodes of six systems. Striping utilizes multiple NICs with

three steps: split (intra-node), translate (across nodes), and

assemble (intra-node). We obtain the optimal performance

with a mix of libraries across steps, e.g., I+N+I means that we

use IPC within nodes and NCCL across nodes. As a baseline,

we also report the direct (unstriped) P2P functions of MPI,

NCCL, and RCCL across nodes.

and rest of the systems use vendor-modified MPICH imple-

mentations. To place an MPI rank 𝑟 on a GPU, we place it on

node ⌊𝑟/𝑔⌋ and on GPU with index (𝑟 mod 𝑔) as shown in

Figure 1, where solid black circles are GPUs and the numbers

are (𝑟 mod 𝑔). We worked with facility staff and administra-

tors of these systems to ensure we used the best available

configurations for our benchmarks.

5.1 Striping Data Movement Across Nodes
We first run the striping (Section 4.2) microbenchmark on

all systems for testing available libraries within and across

nodes. Our results are summarized in Figure 9. We observe

four common behaviors across systems:

1. Mixed-library implementations improve over uniform im-

plementations in all cases of striped data movement. The

uniform implementations with MPI (M+M+M), NCCL

(N+N+N), and RCCL (R+R+R) are not efficient on at least

one level of the network hierarchy. The optimal mixture

of libraries uses the most efficient protocol for each level

and achieves a (geometric) average 2.17× speedup.
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2. Asynchronous communication improves the performance

of striping. The stacked bars represent the minimum time

for each communication step in isolation, and the hol-

low black frames represent the end-to-end time of mul-

tiple steps. CommBench executes the steps back-to-back

asynchronously, i.e., without any barrier, while respecting

point-to-point data dependencies across steps. As a result,

asynchronous is up to 20% faster and does not yield a

slowdown in any case.

3. The P2P implementations of NCCL are anamolously slow

within nodes when multiple nodes are involved in a com-

munication. This problem does not arise with MPI, IPC,

or on a single-node NCCL execution. Therefore, on aver-

age, MPI and IPC implementations are 4.78× faster than

NCCL within nodes. We also found that the RCCL im-

plementation is not performant. We have confirmed that

RCCL implements a TCP protocol with Slingshot-11 NICs

that underutilizes the high-bandwidth fabrics that connect

GPUs and nodes (see Section 5.2.2).

4. MPICH uses get protocol in one-sided IPC communica-

tions within nodes. Subscribing them to a single stream

or copy engine on the receiving GPU causes serialization

in the assembly step. CommBench’s IPC implementation

uses put protocol by default, initiating the assembly step

from multiple GPUs and obtains substantial speedup (e.g.,

11× on Aurora). We also incorporated get protocol to over-

come serialization on the split step on Aurora.

The striping microbenchmark exposes other inefficien-

cies, or at least surprising asymmetries, in communication

software. For example, the split and assemble steps have

symmetric-opposite patterns as seen in Figure 4: split moves

data from one GPU to other GPUs, while assemble moves

data from other GPUs to one GPU within a node. Despite

using the same communication links, they obtain different

bandwidths, most significantly on Perlmutter, Frontier, and

Aurora, with up to a 11× difference.

We have verified all findings independent of CommBench

to assure that our tool does not introduce any significant

artifacts. We cannot speculate as to causes or solutions as

we do not have full access to the library implementations.

The main point of our microbenchmarks is to expose the

performance characteristics so that system administrators

and application developers will be aware of them.

5.2 Group Communications Across Nodes
We characterize the multi-NIC performance with our group-

to-group patterns—specifically using the rail and asymmetric

families as shown in Figure 6 (a)–(b), respectively—across

two physical nodes. We characterize the multi-NIC utiliza-

tion by varying the subgroup size 𝑘 (see Section 4.3.1) and

model the bandwidth in terms of the number of NICs in-

volved in the communication across nodes.
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Figure 10. Bisection bandwidth profiles across two nodes

were measured with blue (CPU-Only MPI), orange (GPU-

Aware MPI), yellow (NCCL), and purple (RCCL) bars. Hollow

bars show the proposed model in Equations (1)–(2). Group-

to-group patterns gradually change the workload across

nodes to expose hardware differences across systems, testing

libraries’ performance portability and helping developers

make choices for moving their applications across systems.

Our evaluation, Figure 10–11, shows the bandwidth and

latency across nodes when we set the following values for

(𝑛,𝑔, 𝑘): (2, 4, 𝑘) for Delta and Perlmutter, (2, 6, 𝑘) for Sum-

mit, (2, 8, 𝑘) for Frontier, and DGX-A100, and (2, 12, 𝑘) for

Aurora. Since we do not have direct control over NICs with

the high-level communication libraries that we test, we vary
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the number 𝑘 of GPUs to empirically determine their logical

bindings. We first present the bandwidth results with large

messages (larger than 16 MB) in Figure 10 and then latency

results with small messages (4 bytes) in Figure 11.

5.2.1 Modeling Bandwidth Across Nodes. We use our

group-to-group patterns to characterize the GPU-to-NIC

behavior. On our test systems, we observe that GPUs are

assigned to NICs with packed and round-robin schemes. We

can model the bandwidth across nodes with packed scheme

as:

𝑓packed = 𝑓NIC

(
1 + ReLU(𝑘 − 𝑝)

𝑝

)
, (1)

where 𝑘 is the active GPUs, 𝑝 is the number of GPU assigned

to each NIC, 𝑓NIC is the theoretical NIC bandwidth, and ReLU

is the rectified linear unit activation function, i.e., ReLU(𝑥) =
max{0, 𝑥}. We confirm the proposed model empirical results

in Figure 10 (a)–(e). On the other hand, (f) Aurora employs a

round-robin scheme that can be modeled as

𝑓round-robin = 𝑓NIC
𝑘

⌈𝑘/𝑟⌉ , (2)

where 𝑟 in this case is the number of active NICs in each

node. We activate all (eight) NICs per node, resulting in the

bandwidth profile in Figure 10 (f).

The models given in (1) and (2) assume the static GPU-

to-NIC associations in Figure 2 (a)–(f). The static models

break down if the associations are determined dynamically,

as in (f) DGX-A100 when we enable dynamic behaviour

with NCCL’s hardware-specific plugin, where the logical

topology changes depending on the workload. The speedup

is provided byMellanox propriety software (SHARP [12]); we

were able to expose this behaviour using the unidirectional

asymmetric group-to-group patterns.

5.2.2 Underperforming Cases. The measurements in

Figure 10 quantify the performance of the libraries relative

to our models of peak performance. The figure also exposes

some severely underperforming cases that we suggest devel-

opers avoid.

The first case (Figure 10 (d), purple bars that are barely

seen) is the RCCL library, which is a port of NCCL for AMD

GPUs on Frontier. As mentioned earlier, we confirmed that

the RCCL does not have native implementation for Slingshot-

11 NICs and therefore it falls back to the TCP protocol. Hence,

RCCL gives the correct result but with peak bandwidth of

no more than a few GB/s and high latency.

The other underperforming case is GPU-aware MPI on

DGX-A100 (Figure 10 (e), orange bars). We confirmed with

the system admin of this particular machine that it was con-

figured for machine learning frameworks such as PyTorch,

which relies on NCCL and hence the GPU-aware MPI is not

tuned for multiple NICs. CommBench makes it possible to

reliably detect and isolate such configuration issues.
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Figure 11. Group-to-group latency across two nodes with

the rail and asymmetric patterns. The horizontal index rep-

resents the variable 𝑘 . The comparisons with corresponding

MPI collective functions are marked with diamonds.

5.2.3 CPU vs. GPU Performance. In Figures 10–11, we

observe a general trend that CPU-to-CPU communication

across nodes with MPI has higher bandwidth and lower

latency (shown in blue) than those of GPU-Aware MPI com-

munication (shown in orange) on machines where the CPUs

are directly connected to NICs. The exceptions are Frontier

and DGX-A100, where GPUs are directly connected to NICs,

as seen in Figure 2 (e)–(f). As a result GPUs on these systems

obtain a higher communication bandwidth than that of CPUs

as seen in Figure 10 (d)–(e), respectively.

5.2.4 MPI vs. NCCLPerformance. When available, NCCL

usually obtains higher bandwidth than MPI on GPUs, never-

theless, we observe a higher latency with NCCL, compared to

withMPI. The latency of NCCL is more than 40microseconds

across systems as shown with the yellow marks in Figure 11,

which is significantly higher than MPI, which is approxi-

mately 6 microseconds on Frontier and 8 microseconds on

Aurora. On the other hand, RCCL’s TCP implementation has

about 12 ms latency on Frontier (not plotted in the figure).

These observations matches with the existing literature [35].

5.2.5 Group-to-Group vs. MPI Collectives. Group-to-
group collective patterns in Figure 11 measure the lower

bound for theMPI collectives, because the group benchmarks

measure the portion of time across nodes only, whereas MPI

benchmarks measure the end-to-end collective functions, i.e.,

both within nodes and across nodes.

To validate the lower-bound property of our benchmark,

we compare our group-to-group benchmarks with tradi-

tional MPI collective functions. We compare MPI_Scatter
and MPI_Alltoall (represented with diamond marks) with

our asymmetric family patterns with unidirectional (𝑘 = 1)

and bidirectional (𝑘 = 𝑔) patterns, respectively. The group-

to-group benchmarks characterize the network performance

more accurately than MPI collective functions, because the

former only measure the communication across the targeted
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Table 3. Utilization of rated GPU memory bandwidth for

self-communication of 1 GB.

Del. Sum. Perl. Front. DGX Aur.

MPI 85% 11% 0.5% 0.3% 0.2% 0.2%

XCCL* 4.3% 15% 28% 1.7% 4.3% n/a

IPC 85% 88% 66% 77% 85% 66%

*RCCL for Frontier, n/a for Aurora (see footnote 3), NCCL otherwise.

interconnect (across nodes) whereas the latter performs ad-

ditional (intra-node) communications.

5.3 Self Communication
The P2P bandwidth for self communication (i.e., from one

buffer to another within the same GPU’s memory) is sup-

posed to be comparable with the processor’s memory band-

width
6
. However, we occasionally observe significantly lower

bandwidth than expected. Table 3 shows the utilization of

the rated GPU memory bandwidth with different libraries.

5.4 Scaling of Group Communications
We use CommBench on Frontier and Aurora using the rail

and symmetric patterns on multiple nodes. We use configu-

rations (𝑛, 8, 8) for (a) Frontier and (𝑛, 12, 12) for (b) Aurora

and stress the external network by increasing 𝑛 up to eight

nodes, employing 64 and 96 GPUs, respectively, as shown in

Figure 12. We employ MPI for measuring the bandwidth on

both CPUs and GPUs.

On both systems, the bidirectional rail pattern achieves

the highest bandwidth, approximately 175 GB/s/node on

Frontier’s GPUs (orange) and 275 GB/s/node on Aurora’s

6
Theoretical GPU memory bandwidths are; Summit: 900 GB/s, Delta, Perl-

mutter, and DGX-A100: 1.55 TB/s, Frontier & Aurora: 1.64 TB/s.
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Figure 13. Time spent for application-specific microbench-

mark on four nodes of each system (lower is better). Comm-

Bench executes different libraries within and across nodes

concurrently, detects underperformed cases, and exposes

performance portability across systems.

CPUs (blue) in Figure 12. As a result, both systems utilize 90%

of the theoretical bandwidth, although Frontier with GPU

and Aurora with CPU due to their direct connections to NICs.

The symmetric pattern obtains greater bandwidth when a

higher number of nodes participate in communication due

to a better saturation of the overall network. On the other

hand, omnidirectional bandwidth shows the opposite due to

the contention on switches that connect the nodes.

5.5 Application-Specific Microbenchmark
We introduce a case study in Section 4.4. In this application-

specific microbenchmark, the communication pattern is ir-

regular and intra- and inter-node portions are first measured

in isolation and then the intra- and inter-node communica-

tions are run concurrently. The results are shown in Fig-

ure 13. In concurrent execution, the intra-node cost is hidden

behind the communication across nodes in all cases except

Aurora: Communications within and across nodes slow each

other down, although they occur on separate networks.

We use an MPI collective function (MPI_Alltoallv) as a
sanity check for this microbenchmark. The collective func-

tion expresses a nonuniform all-to-all communications such

as this application-specific communication graph. NCCL has

no equivalent collective function, which means users must

implement such nonuniform patterns themselves if they

wish to use NCCL. CommBench makes it much easier to

write such application-specific patterns, particularly if one

wants to exploit combinations of different libraries for the

best performance.

6 Related Work
There are multiple previous efforts on benchmarking HPC

networks [34, 2, 21, 6, 25]. To the best of our knowledge, none

consider group communication patterns that characterize

multi-GPU, multi-NIC behavior with multiple libraries.

Prior research has explored bandwidth saturation with re-

spect to the number of processors in CPU-based systems [15,
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14, 18]. We follow a similar approach, focusing on hierar-

chical systems with multiple GPUs and NICs to saturate the

bandwidth within and across nodes. We also explore the

logical topology between GPUs and NICs.

Previous work has investigated understanding and model-

ing inter-GPU communication in large-scale HPC systems,

examining datamovement variations betweenmultiple GPUs

[4] and irregular P2P communications [24]. However, these

studies primarily focused on MPI as the sole communica-

tion layer and relied heavily on CPU involvement. Further-

more, characterizing interconnect heterogeneity [30] has

mostly targeted single systems, and microbenchmarks [31]

exploring transfer behavior across data placements have

been limited to CUDA primitives. CommBench introduces

group-to-group patterns and empirically tests them on a va-

riety of HPC systems while offering the flexibility to employ

different communication libraries.

coNCePTual [28] is a DSL for designing benchmarks that

stress communication layers, focusing on fine-grain control

over application properties such as buffer lifetimes. coNCeP-

Tual does not focus on support for collective, hierarchical

communications, nor does it attempt to elucidate the perfor-

mance characteristics of hierarchical networks.

The current practice of system administrators and users is

to run standard benchmarks provided by the MPI and NCCL

distributions, such as MVAPICH benchmark (OSU Bench-

marks [1]) and NCCL tests. These tests report the perfor-

mance of P2P and collective communications that are offered

by optimized collectives within communication layers [36,

32, 19], but lack an API for user-defined, application-specific

communication patterns. We address this limitation by pro-

viding the CommBench API, enabling users to easily express

and benchmark desired communication patterns across vari-

ous communication layers.

7 Conclusion
Contemporary HPC systems comprise fat nodes with multi-

ple GPUs and NICs that form complex network hierarchies

that traditional collective benchmarks do not adequately

characterize. To understand the performance of multilevel

networks, we propose extended group-to-group benchmark-

ing patterns to target specific levels of the network hier-

archy. We implement these patterns with CommBench, a

framework for composing and benchmarking user-defined

communication patterns with multiple GPU communication

libraries. We evaluate CommBench on six state-of-the-art

systems. Our benchmarks reveal the performance charac-

teristics of these systems; for example, we identified three

multi-NIC scaling behaviors in packed, round-robin, and dy-

namic schemes, exposing the logical binding of GPUs to NICs

that is not normally visible to the user. Depending on the sys-

tem, library choice, and underlying group-to-group pattern,

we saturate between 50%–90% of the theoretical bandwidth

available in each configuration. Since we can stress specific

communication channels in our approach, we consistently

measure higher bandwidth (up to 30%) and lower latency (up

to 3×) with group-to-group patterns compared to traditional

collective patterns. CommBench’s portability and flexibility

make benchmarking of modern communication networks

more comprehensive, more detailed, and easier.
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