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Abstract—We explore the use of asynchronous many-task
(AMT) programming models for the implementation of in situ
analysis towards the goal of maximizing programmer produc-
tivity and overall performance on next generation platforms.
We describe how a broad class of statistics algorithms can be
transformed from a traditional single-programm multiple-data
(SPMD) implementation to an AMT implementation, demon-
strating with a concrete example: a measurement of descriptive
statistics implemented in Legion. Our experiments to quantify the
benefit and possible drawbacks of this approach are in progress,
and we present some encouraging initial results on the (minimal)
impact of the AMT-based approach on code complexity, task
scheduling, and application scalability.

Index Terms—Programming Models, Asynchronous Many-
Task, Parallel Computing, Computational Statistics

I. INTRODUCTION

Science and engineering codes are currently facing the
daunting task of adapting to rapidly developing extreme-scale
computer architectures. Relative to current practice, both the
hardware and future algorithms will be characterized by dy-
namic behavior and lack of uniformity, with architectures that
support increased concurrency of a factor of 40,000-400,000
(cf. [1], [2])), with constraints on energy and input/output.

A number of data analysis and visualization (DAV) research
efforts are currently focused on mitigating these extreme-scale
challenges, e.g. by developing in situ (cf. [3]-[5]) and in
transit (cf. [6]-[8]) frameworks wherein raw simulation output
is processed as it is computed, decoupling the analysis from
I/O and storing only the analysis results (which are typically
several orders of magnitude smaller than raw data).

Other research efforts seek to mitigate the complexities
imposed by future architectures via novel programming mod-
els. Many high performance computing (HPC) applications
have assumed static, homogeneous system performance, with
dynamic parallelism requirements stemming solely from the
work load, and thus typically follow the communicating
sequential processes (CSP) programming model using MPI
and MPI+X [9] approaches. However, the procedural and
imperative nature of MPI requires application-level manage-
ment of system performance heterogeneity, fault tolerance,
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and increasingly complex workflows. Asynchronous many task
(AMT) models and runtime systems, cf. [10]-[16], a leading
alternative to the CSP approach, attempt to mitigate these
challenges by allowing the compiler and runtime system to
assist with management of these complexities. Furthermore,
AMT models facilitate the expression of all forms of paral-
lelism (pipeline, task, and data). In Section II we discuss these
expected benefits in more detail - experiments to quantify them
are a major part of our ongoing work.

In Section III, we demonstrate how a broad class of statistics
algorithms can be transformed from their CSP formulation
to AMT implementation, illustrating that a holistic solution
(leveraging both programming models and DAV research) can
jointly maximize programmer productivity and code perfor-
mance on next generation computing platforms. We use the
Legion programming model for this work — similar imple-
mentations are possible in other AMT models.

Finally, Section IV discusses some of the possible draw-
backs that might arise from coupling analysis code with
the simulation code in an AMT model. We present some
encouraging early results that suggest these costs are small
enough that the use of AMT models is viable.

II. BACKGROUND AND BENEFIT OF AMT MODELS
A. The Legion Data-centric AMT Model and Run-time

Legion (cf. [11]) is an AMT model that makes data and data-
centric operations first-class programming constructs. A Le-
gion application is decomposed into a task hierarchy, and tasks
declare which parts of the application data they will access or
update. The Legion runtime is able to reason about data usage
of tasks, detect dependencies between tasks, and issue data
movement operations as needed, removing these burdens from
the developer. Legion runtime calls are deferred, allowing the
application code to issue tasks with dependencies immediately.
The runtime detects pairs of tasks that have a data dependence
(i.e., they may access the same data and at least one is
making non-commutative modifications to it) and guarantees
that the second task in the pair does not execute until it is safe
to do so. This technique extracts (dynamic) task parallelism
from the application, while preserving programmer-friendly
“apparently-sequential” execution semantics.

The Legion model separates the functional description of
the code (i.e., tasks and the data upon which they operate)



from the way in which it is mapped to a given machine
(i.e., tasks and data placement). Application data is contained
in logical regions, which have neither an implied location
within the memory hierarchy of the machine nor a fixed
physical layout. This allows for the dynamic execution of
performance-related transformations (e.g., the replication of
read-only data to increase parallelism), perhaps differently on
different machines, without modifying the “machine-agnostic”
functional description.

B. Data-centric AMT Approach Benefits

The data-centric AMT model supports composability of the
simulation and analysis code bases. Classical CSP simulations
and analysis code bases must be explicitly connected, requiring
manual data management and communication. Subsequent
changes in how analysis is done will require rewriting parts
of the simulation, and vice-versa. In contrast, a data-centric
AMT formulation reduces the entanglement of the application
and analysis code to simply what data is being shared, and
not when, where, or how this sharing occurs. Analysis tasks
should therefore be much easier to incorporate into simulation
code and can be more easily reused by other codes.

In addition, the AMT approach provides performance porta-
bility in the face of increasing I/O cost and variability.
Different pieces of code will likely have different spatio-
temporal characteristics in terms of compute intensity, degree
of parallelism, data access patterns, and task and data inter-
dependencies. The decoupling of the functional code from
computation and data placement allows an analysis code
to easily be tuned for different machines or to be easily
implemented as either in sifu or in transit.

Finally, the AMT approach provides an opportunity for
the runtime to make an efficient schedule of simulation and
analysis tasks. It may be possible to incorporate the analysis
workload into available gaps in the execution of the simulation,
whereas this scheduling requires significant programmer effort
(and is generally not performance-portable) in the MPI+X
models. Dynamic load balancing provided by AMT models
has potential to allow for more graceful handling of dynamic
variability in analysis tasks and simulation.

III. PARALLEL STATISTICS IN LEGION
A. Parallel Statistics Engines

In earlier work, we described a scalable, parallel statisti-
cal analysis library, using SPMD data parallelism with MPI
(cf. [17]-[19]). To date, this library comprises eight different
engines, covering a broad range of statistical analyses (e.g.,
descriptive statistics, multi-correlation, principal component
analysis, information-based statistics, cf. [20] for the most re-
cent list). It was designed to mimic the predominant statistical
analysis workflow, so that a data analyst would find it natural
and intuitive to use, and to be conducive to embarrassingly
parallel implementations when possible. In order to meet these
requirements, those parts of the analysis which by construction
are not embarrassingly parallel were isolated so that design
trade-offs be limited to operations explicitly requiring parallel

communication. The resulting analysis workflow comprises
four disjoint operations, and a given analysis may use all
or just a subset. Illustrated in Figure 1, the operations are
as follows (note that most of the existing engines implement
all four, but some do not implement the Test operation for
theoretical as well as practical reasons):

e Learn a model from observations,

« Derive statistics from a model,

o Assess observations with a model, and

« Test a hypothesis.
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Fig. 1: The four operations of statistical analysis and their interactions with
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input observations and models. When an operation is not requested, it is
eliminated by connecting input to output ports.

From the parallelism standpoint, the Learn operation is a
special case of the map-reduce pattern [21], while the
remaining operations are embarrassingly parallel. Specifically,
all local values associated with the same key are merged by
the reduce function to compute the global primary model.
In some of the statistical algorithms, namely moment-based,
it is not necessary to communicate the keys, so sending
values alone is unambiguous and the number of such keys
is typically very small. This allows for an implementation of
the reduce function as an Al1Gather MPI collective. In
contrast, for quanta-based algorithms, it is necessary to com-
municate keys , so the reduce function is implemented using
a Gather-Broadcast scheme, as illustrated in Figure 2.
This can cause problems as network size increases, thereby
justifying the need to investigate AMT strategies.

B. Legion Approach and Implementation

We now propose an AMT implementation of the parallel
descriptive statistics engine; should the proposed methology
prove to be effective, we could then extend it to all existing
SPMD engines. Again, we use the Legion programming model
for this work, but expect that our experience would translate
to other AMT models as well. The existing decomposition
into independent operations and isolation of parts that do not
require global communication from the others allows for a
natural transition to an AMT model.

In the Legion implementation, data movement is no longer
explicitly described (for instance with the dashed red arrow in
Figure 2). Instead, a logical region is created to contain the
primary and derived models, which we call the aggregation
region. Sub-tasks launched by a top-level task pick up work
on those data segments to which they are assigned, in a
similar way to what is done by parallel processes in the SPMD
context, at least for the Learn and Assess phases. The main
difference between the Legion and SPMD implementations is
that a broadcast of the global primary model is not necessary,
as data movement operations are handled by the run-time.
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Fig. 2: An MPI implementation of the par-
allel order statistics; dashed red arrows indi-
cate inter-process communication. In the map-
reduce pattern, keys are the raw observations
and values are the number of observations.

Instead, the annotation of data requirements for each task
provides the run-time with sufficient information to address
conflicts and to prevent incomplete or incorrect model updates.
This works well for statistical aggregation operations (set
unions, number additions and multiplications) as they are
commutative, and therefore the primary model is guaranteed to
be independent of the order in which tasks report their results.

The Derive operation is performed by the top-level task, and
its results, also stored in the aggregation region, are logically
available to any Assess sub-task launched from the top level.
This asynchronous many-task Learn/Derive/Assess scheme is
represented in Figure 3 in the case of order statistics. One of
the benefits of this new approach is that the approach is valid
for both quanta-based and moment-based statistics.

We now provide a high-level description of our Legion
implementation of the scheme outlined in Figure 3 for the de-
scriptive statistics use case, cf. [22] for a detailed description.
In the case of moment-based descriptive statistics, the primary
statistical model computes the following double-precision val-
ues: sample size, minimum, maximum, mean, and centered
My, M3 and M, aggregates, using the online versions of the
process-local update formulas for these quantities, whereas
the aggregation with the global model is computed by means
of the pairwise versions (cf. [23]). In turn, Learn tasks are
launched by the top-level task as sub-tasks for each member of
the input data partition. Learn tasks data dependencies include
reading their subset of the input data and reading and writing
the output region where results are to be aggregated.

The Derive task is launched only by the top-level task, for
it only needs to read the small set of primary statistics in
order to compute the derived statistics which, for descriptive
statistics, are the variance, standard deviation, skewness and
kurtosis estimators. This operation is typically negligible in

Fig. 3: An AMT implementation of the parallel order
statistics; solid blue arrows indicate task launches whereas
dashed red symbolize the logical aggregation region. Sub-
tasks are not obligated to terminate in this order, as both
union and addition operators are commutative.

Fig. 4: Task scheduling timeline of in situ
analysis in Legion: Each row shows color-coded
tasks running on a different CPU core. Learn
sub-tasks are displayed in light blue color; other
colors correspond to simulation tasks.

computational terms for most statistical analyses. Derive task
data dependencies include read-only access to the first field of
the logical region used to store the primary statistical model,
and write access to the second field for the derived model.

IV. ASSESSMENT

Experiments to quantify the expected benefts of the AMT
approach for this style of in sifu analysis are in progress,
but such a significant change in programming style is not
without potential risks either. As a “sanity check”, we have
performed some initial experiments focused on these risks. A
poor result in any one of these assessments would indicate
that the approach might not be viable.

Code complexity: Some additional complexity is necessary
when coupling simulation and analysis code in sifu, but should
be contained and minimized as much as possible.
Heterogeneous task scheduling: An AMT runtime must be
able to schedule both simulation and analysis tasks, ideally
reducing, but certainly not introducing idle CPU periods.
Impact on scalability: The use of an AMT runtime must not
introduce any new scalability bottlenecks into the application.

These initial experiments were conducted by inserting
our Legion prototype implementation into a Legion port of
MiniAero, a Mantevo mini application (cf. [24]-[26]), as a
surrogate for a full-scale scientific application.

A. Code Footprint

The operation of our analysis prototype in situ requires that
adaptor code (code to create and launch the Legion tasks)
be added to the MiniAero proxy application. The amount of
adaptor code should be kept as small possible.

The first part of MiniAero/Legion to be modified was its
internals that hard-code one index per type of task allowed



to be created at run-time: we thus had to create new entries
for the Learn, Derive, and Assess tasks, as well has a couple
of ancillary tasks. We also modified the user interface of
MiniAero/Legion in order to allow for the specification of
additional parameters in the command line arguments to be
passed to the in situ analysis.

In addition, the main file and the top-level task of Mini-
Aero/Legion were modified to create, register, launch, and
delete the statistics tasks (e.g., it takes twelve lines to specify
the aggregation region for primary statistics). Note that another
aggregation region is created similarly for the derived statis-
tics. The scheme, illustrated in Figure 3, is actually invoked
from inside the time-loop and takes seven lines to initialize
statistics, launch Learn and Derive tasks and optionally launch
a Dump task. We conclude this brief overview of the adaptor
code that is currently needed by indicating that it was only
necessary to add a total of ca. eighty lines of C++ code in six
different files of MiniAero/Legion. See [22] for details.

B. Heterogeneous Task Scheduling

The in situ analysis tasks (computing cardinality, extrema,
mean, variance, skweness, and kurtosis) must be scheduled
onto the same execution resources as the simulation tasks,
ideally fitting into idle CPU periods but possibly causing
inefficiencies. As a precursor to experiments measuring these
effects, we examined the execution timeline of our modified
version of MiniAero using the Legion profiling tools.

Figure 4 shows a portion of this timeline containing the
Learn tasks for a single timestep (light blue), fitting very
nicely in between simulation tasks (orange, green, dark blue).
Each row in the timeline represents a different core. Especially
encouraging are the “ragged edges” between these phases,
suggesting that the AMT approach’s lack of synchronization
between phases will yield measurable performance benefit for
our in situ analysis. The top row shows the execution of
the dependence checking and mapping tasks, an additional
source of heterogeneity in any dynamic runtime. The ability
of the runtime to execute these tasks asynchronously to the
application tasks allows it to “run ahead” of the application,
eliminating much of the overhead of this dynamic runtime
work. The large amounts of empty space in this top row pro-
vide confidence that the additional runtime overhead from the
inclusion of the in situ analysis will not become a bottleneck.

C. On-Node Parallel Scalability

As an early check of scalability impacts, we measured the
scaling behavior of just the Learn task in an on-node setting,
performing an in situ analyses of the initial mass values of the
3D Sod problem, cf. [27], which comes with the MiniAero
distribution. Although what ultimately matters is the scala-
bility of the overall combination of simulation and analysis
workloads, the combination can scale no better than any of its
individual components. The test platform was a single Linux
server, containing two 8-core Xeon E5-2670 2.6GHz CPUs.
Scalability was measured by running test cases on different
numbers of cores (the MiniAero simulation code constrains

these choices to powers of 2), either using the same input size
(i.e. strong scaling) or with an input size proportional to the
core count (i.e. weak scaling). Each test was run 20 times in
order to capture any performance variability. Three separate
series of timings were retained, corresponding to the the
shortest (“best”), average, (“mean”) and longest (“worst”) in-
situ analysis execution speeds. Figure 5 presents weak (R(p))
and strong (Sny(p)) scaling numbers for each of these series,
normalized with respect to its own timing at p = 1, obtained
with a 128 x 256 x 8 reference grid, scaled up along the z-axis
for the weak scaling analysis.
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Fig. 5: Scaling of Learn tasks on a single node: left, weak
scaling with a 128 x 256 x 8 grid; right, strong scaling with
a 1283 grid per task.

These results reveal optimal on-node scaling, both weak and
strong, except when the node is fully subscribed: in this case,
with 16 Learn tasks. This is not surprising, as the top-level task
is still running as all Learn tasks are launched; therefore, when
16 sub-tasks are executed, at least one core must handle two
tasks concurrently. Moreover, background OS perturbations
are to be expected and their relative impact increases when all
cores of the CPUs are utilized. These results however demon-
strate that our approach of using aggregation regions instead
of bulk-synchronous inter-thread communication performs as
well as possible when running on a single node, and therefore
should not impact scalability of the overall application.

V. CONCLUSION

We see great promise in an approach to in situ data analysis
and visualization based on the use of AMT programming
models. Our case study implementing established statistics al-
gorithms in this model is a work in progress, but initial results
are very encouraging. Porting the analysis code from an MPI
implementation into a Legion one was straightforward (thanks
in part to an initial design that has separated computation
from communication for other reasons). The additional code
required to connect the analysis code to the main simulation
code is well contained, and early performance tests raise no
concerns related to task scheduling or impact on scalability.
Further experiments will attempt to quantify the benefits of
the AMT approach to in sifu analytics, measuring overall
(i.e. simulation and analysis) application performance and
scalability in comparison to an MPI-based implementation.
We expect these benefits to become increasingly important
as scientific simulations and their associated analyses run at
extreme scale.
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