Titanium: A High-Performance Java Dialect*

Kathy Yelick, Luigi Semenzato, Geoff Pike, Carleton Miyamoto,
Ben Liblit, Arvind Krishnamurthy, Paul Hilfinger,
Susan Graham, David Gay, Phil Colella, and Alex Aiken

Computer Science Division
University of Californiaat Berkeley
and
Lawrence Berkeley National Laboratory

Abstract

Titanium is alanguage and system for high-performance parallel scientific computing. Titanium
uses Java as its base, thereby leveraging the advantages of that language and allowing us to focus
attention on parallel computing issues. The main additionsto Java are immutable classes, multi-
dimensiona arrays, an explicitly parale SPMD mode of computation with a global address
space, and zone-based memory management. We discuss these features and our design approach,
and report progress on the devel opment of Titanium, including our current driving application: a
three-dimensional adaptive mesh refinement parallel Poisson solver.

1 Overview

The Titanium language is designed to support high-performance scientific applications. Historically,
few languages that made such a claim have achieved a significant degree of serious use by scientific
programmers. Among the reasons are the high learning curve for such languages, the dependence on
“heroic” parallelizing compiler technology and the consequent absence of compilers and tools, and
the incompatibilities with languages used for libraries. Our goa isto provide alanguage that gives
its users access to modern program structuring through the use of object-oriented technology, that
enablesitsusersto writeexplicitly parallel codeto exploit their understanding of the computation, and

*This work was supported in part by the Defense Advanced Research Projects Agency of the Department of Defense
under contracts F30602-95-C-0136 and DABT63-96-C-0056, by the U.S. Department of Energy under contracts DE-FG03-
94ER25206, DE-AC03-76SF00098 (through the Director, Office of Computational and Technology Research, Division of
Mathematical, Information, and Computational Sciences), and W-7405-ENG-48 (through Lawrence Livermore National
Laboratory, subcontract No. B336568), by the National Science Foundation, under contracts CDA-9401156, by the Army
Research Office under contract DAAH04-96-1-0079, and by a Microsoft Graduate Fellowship. The information presented
here doesnot necessarily reflect the position or the policy of the Government and no official endorsement should beinferred.
To appear in: Concurrency—Practiceand Experience, Java Special | ssue, 1998

that has acompiler that uses optimizing compiler technology whereitisreliable and gives predictable
results. The starting design point for Titanium is Java. We have chosen Javafor several reasons.

1. Javaisareatively smal and clean object-oriented language (compared, for instance, to C++)
and therefore is easy to extend.

2. Javais popular and isitself based on popular languages (C/C++). Learning Titanium requires
little effort for those acquai nted with Javarlike languages.

3. Javais a safe language, and so is Titanium. Safety enables the user to write more robust
programs and the compiler to perform better optimization.

Titanium’s main goals are, in order of importance: performance, safety, and expressiveness.

e Performance isafundamental requirement for computationally demanding scientific applica-
tions. Many design choices reflect this goa. For instance, the execution model is explicitly
parallel, thus eiminating the need for a parallelizing compiler. Any distributed data structure
is fully defined by the programmer, who has complete control over its layout across process
boundaries. In addition, the programmer may use type modifiers in variable declarations to
convey locality information that the compiler may find hard toinfer reliably from static analysis.

e Safety hastwo meaningsin Titanium. Oneisthe ability to detect errors statically. For instance,
the Titanium compiler can ensure that all processes will execute the correct sequence of global
synchronizations. The other is the ability to detect and report run-time errors, such as out-of-
bound indices, accurately. Both forms of safety facilitate program development; but, not less
importantly, they enable more precise analysis and more effective optimizations.

e Expressiveness. Because of the priorities of our target customers, we sacrificed expressiveness
tothefirst two goal sasnecessary. However, with built-infeaturessuch astrue multi-dimensional
arrays and iterators, points and index sets (including irregular ones) as first-class values, and
references that span processor boundaries (similar to global pointersin Split-C), Titaniumisfar
more expressive than most languages with comparable performance.

Titanium isbased on aparalel SPMD (for Single Program, Multiple Data) model of computation. In
this model, the parallelism comes from running the same program asynchronously on »n processors,
each processor having its own data. Titanium processes can transparently read and write data that
resides on other processors. Titanium programs run on both distributed-memory and shared-memory
architectures. (Support for SMPs is not based on Java threads; see Section 4.) However, a Titanium
program written for an SMP isnot guaranteed to run efficiently on adistributed-memory architecture.
We only claim that the language supports both architectures equally well.

In summary, Titanium is a language that uses Java as its base, not a strict extension of Java.
The Titanium compiler trandlates Titanium into C, for portability and economy (our prototype is
temporarily generating C++). We are not addressing the problem of high performance in the Java
Virtual Machine.

In the remainder of the paper we outline the new language features and their relationship to Java,
the omissions of Javafeatures, the novel optimizationsthat are facilitated by the use of Java as abase
language, and the driving applications that motivate the initial version of the Titanium language and
compiler.

2 Related Work

There are in essence two competing approaches to parallel programming: language and library. We
list the most relevant efforts.

Libraries. Therdative simplicity and robustness of librariesfor parallelism makes them a popul ar
choice for scientific computing. In particular, SPMD programs written in C, C++, or Fortran with
MPI for communication and synchronization form the vast majority of large-scale, parallel scientific
applications. MPI, however, hasalower raw performance than aglobal address space. OnaCray T3E,
M PI achieves a bandwidth of about 120 M B/sec, while a global address space achieves abandwidth of
about 330 MB/sec [10]. Furthermore, with a global address space the compiler can optimize remote
accesses with the same techniques used for the local memory hierarchy.

FIDIL. Themultidimensional array support in Titaniumis strongly influenced by FIDIL maps and
domains[6, 11]. Titanium, however, sacrifices expressiveness for performance. Titanium arrays may
only be rectangular, where FIDIL maps have arbitrary shapes. Also, Titanium has two static domain
types, general domain and rectangular domain. FIDIL has only a general domain type, thus making
it harder to optimize code that uses the more common rectangular kind.

Java-AD. The HPJava project includes Java-AD, an extension of Java for SPMD-style program-
ming [4]. The main new feature of Java-AD is multidimensiona distributed arrays, similar to HPF
arrays. Java-AD aso offers an interface to MPI for explicit communication. The current plan isto
tranglate Java-AD into standard Java+ MPI calls, This approach prevents optimizationslike those we
are implementing in Titanium.

Split-C. The paradld execution model and global address space support in Titanium are closely
related to Split-C [5] and AC [3]. Titanium shares a common communication layer with Split-C
on distributed memory machines, which we have extended as part of the Titanium project to run on
shared memory machines. Split-C differsfrom Titanium in that the default pointer typeislocal rather
than global; alocal pointer default simplifies interfacing to existing sequential code, but a global
default makesit easier to port shared memory applications to distributed memory machines. Split-C
uses sequentia consistency as its default consistency model, but provides explicit operators to alow
non-blocking operationsto be used. 1n AC the compiler introduces non-blocking memory operations
automatically, using only dependence information, not parallel program analysis. Titanium is closer
to ACinthisregard.

3 Language Extensions

The main new features of Titanium are immutable classes, explicit support for paralelism, multi-
dimensiona arrays, and a mechanism for the programmer to control memory management.

3.1 Immutable classes

Java objects are accessed through references. This simplifies the language, but adds a constant
overhead (extralevel of indirection, object creation and destruction) that reduces the performance of
programs that make intensive use of small objects. The typical example is a user-defined complex-
number class. To remedy this problem, we introduced immutable classes. Immutable classes are not
extensions of any existing class (including Object), nor can they be extended. All non-static fields of
immutable classes are final.! These restrictions allow the compiler to pass such objects by value and
to allocate them on the stack or within other objects. In effect, they behave likeexisting Javaprimitive
types or C structs. Immutable classes are used for some of the special Titanium types such as Point
(see Section 3.4).

3.2 Parallelism

Global synchronization. Animportant kind of synchronization used in SPMD programsis global
synchronization in which all processes participate. For instance, a barrier causes a process to wait
until al other processes reach a barrier. Figure 1 shows a typica SPMD skeleton. A group of
processes simultaneously execute the code shown in the figure, synchronizing at the barriers.

The program in Figure 1 is correct as long as all processes have the same vaue for »: in that
case the barriers ensure that no process executes workl while another executes work2. If different
processes have different values for n, then they execute a different sequence of barrier statements,
whichisan error. Titanium performs a global-synchronization analysisthat ensures, at compiletime,
that such bugs cannot occur. This global-synchronization analysis is based on recognizing single-
valued variables: replicated variables (each process owns oneinstance) that have the samevaueindl
processes. In the examplein Figure 1, 7+ and » must be single-valued. In Titanium, the programmer
declares the single-val ued variables, and the compiler verifies that the program is structurally correct:

A program is structurally correct if all its subexpressions e satisfy the following: Let V/
be the set of single-valued variables at e. If processes begin execution of ¢ with identical
valuesfor each variablein V', and al processes terminate, then al processes execute the
same sequence of global synchronization operations and end with identical values for
each variablein V.

More details are given by Aiken and Gay [1].

L nitialization of such classesrelies on the Java 1.1 rule that final fields can beinitialized in constructors.

cl ass Example {
public static void main (String [])
{
/1 1 and n are "replicated variables": they take on
/1 the sanme values in all processes.

single int n = nunberOlterations();
for (singleint i =0; i <n; i +=1)
{
wor k1() ;
Proc. barrier();
}
wor k2() ;
Proc. barrier();
wor k3() ;

Figure 1. A simple example of synchronization.

Local and global references. The storage associated with a Titanium process is called a region.
Each object is contained within a single region. Loca variables and objects created by new are
contained in the region of the process that allocates them. References to objectsin other regions may
be abtained through communication primitives.

By default, all references in Titanium are assumed to be global, i.e. they may point to objects
in any region. The programmer can declare that a variable v aways points to objects of type T’
in the same region as the current process by declaring that variable with 7' local v. Similarly, the
local qualifier can be used to declare that an object’s field points to an object in the same region.
On distributed-memory machines, local pointers are significantly more efficient than global pointers:
they takeless space, and access to objectsisfaster. On SMPs globa and local pointers are equivalent.

Communication. Processes communicate with each other via reads and writes of object fields,
by cloning whole objects, or copying parts of arrays. One-to-all communication is supported by
the broadcast method, all-to-all communication by the exchange method. These two methods also
imply a globa synchronization of al processes, as al processes must call broadcast or exchange
before the operation can complete. There is also a barrier method as defined above. The compiler
verifies that uses of these global synchronization operations maintain the structural correctness of the
program. Process-to-process synchronization is handled as in Java with synchronized methods and
the synchronized statement.

Consistency model. The programmer may use the synchronization constructsto prevent concurrent
reads and writes on shared objects, but there is nothing in the language that rules out race conditions.
In some languages that use globa address spaces, programmers may use simple shared variables to
build synchronization structures such as spinlocks, which appear to the system as shared variables
with race conditions. The most intuitive semantics of such shared accesses is sequential consistency,
which states that memory operations appear to take effect in some tota order that is consistent with
each processor’s program order [8].

Onmachineswith hundredsto thousands of cyclesof memory latency for alocal or remotememory
access, sequential consistency is expensive, and most machine designers have opted for one of the
weaker consistency models, such as processor consistency or rel ease consistency. Krishnamurthy and
Yelick have shown that languages can provide the stronger model of sequential consistency through
static analysis, even when the languages execute on hardware with weaker semantics [7]. We are
exploring the use of this anaysis, which requires good aiasing and synchronization information, in
the context of Titanium, but our current consistency model does not rely on such analysis. Instead, we
adopt the Java consistency model, which isweakly consistent at the program level, and roughly says
that programmers may see unexpected program behavior unless they protect al conflicting variable
accesses with barriers, locks, or other language-specified synchronization primitives.

3.3 Memory management

Titanium incorporates zone-based memory management as an extension to Java. Each alocation can
be placed in a specific zone. Whole zones are freed at once with an explicit delete-zone operation.
The run-time system mai ntains reference countsto ensure that zones are not del eted while outstanding
references remain. This approach has two advantages: it alows explicit programming for locality,
by placing objects that are accessed together in the same zone; and it should perform better than
garbage collection on distributed-memory machines. Keeping a reference count on zones rather than
individual objects mitigates the problems of cyclical data structures: cyclical data structures can still
be reclaimed as long as they are contained in a single zone.

A preliminary study of this style of memory management on sequential C programs found that
zones were faster than malloc/free and conservative garbage collection in most cases [2]. This study
used aC compiler modified to perform reference counting on all pointersinto zones. Inarelated study,
Stoutamire obtained a 13% speedup in an AMR code by using zones to improve data locality [12].

3.4 Arrays, points, and domains

Titanium arrays, which are distinct from Java arrays, are multi-dimensional. They are constructed
using domains, which specify their index sets, and are indexed by points, instead of explicit lists of
integers as in Fortran. Points are tuples of integers and domains are sets of points. The following
code fragment shows how a multi-dimensional array can be constructed.

Poi nt <2> |
Poi nt <2> u

[1, 1];
[10, 20];

Rect Domai n<2> r = [|I : u];
double [2d] A = new double[r];

The (two-dimensiona) points| and u are declared and initialized. Then therectangular domainr is
initialized to be the set of all pointsin the rectangle with corners| and u. Finally the variable A is
initialized to atwo-dimensional array that maps each point of r into adouble.

A multi-dimensiona iterator called foreach alows one to operate on the elements of A. The
following foreach statement executes its body with p bound to successive points of the domain of A.

foreach (p in A domain()) {
Alp] = 42
}

This style of iterator simplifiesthe removal of array bound checks from the loop body. The iteration
order is not specified, which alows the compiler to reorder iterations without the sophisticated
and often fragile analysis used by Fortran or C compilers to perform tiling or other optimizations.
Titanium’s foreach isintended to enable these uniprocessor optimizations, not generate parallelism.

Titanium has no array elementwise operators, which would allow writing statements such as
A = B + C. While more expressive than Titanium’s foreach, complex array-level expressions are
considerably more difficult to optimize.

The Rect Domai n</N> type represents conventional rectangular index rangesin N dimensions.
There is aso amore general Domai n</N> type, which represents arbitrary index sets. The domain
of arrays may only be rectangular, but foreach aso accepts general domains. Thisis an important
feature for modern partial differential equation solvers, and one that would be hard to implement
efficiently with available abstraction mechanisms.

3.5 Other extensions

The preceding extensions were principaly motivated by considerations of performance, especially
parallel performance. We have placed a lower priority on extensions to enhance expressiveness, but
have introduced two. First, Titanium alows programmers to provide additional overloadings of the
standard operators and of the array indexing syntax by defining member functionswith special names.
The motivation here is that we expect such notations to be of interest to our particular audience—
scientific programmers. Second, we plan to introduce some form of parameterized types. Here, we
are following the on-going debate over the possibility of adding such afacility to Java. If thereisa
timely resolution, we intend to conform as closely as possible to the selected specification.

4 Incompatibilities

Idedlly, Titanium should be (and largely is) asuperset of Javafor simplicity and for compatibility with
existing code. However, there are are two areas of incompatibility: threads and numerics.

e Threads. The current version of the Titanium language, and its current implementation, do
not support threads. However, we are considering adding threads to the current SPMD model,
not for the purpose of parallel execution on multiple processors, but to overlap long-latency
operations, such as disk or user I/0. This would aso make it possible to use Java modules
written with threads (such as the AWT) in Titanium programs. The addition of threads would
complicate global synchronization such as barriers, but we believe that the associated analysis
can be extended for alimited thread model.

e Numerics. Titanium does not adhere to the Java standard for numerics (neither do, we believe,
several existing Javaimplementations). We would like to include support for finer control over
|EEE-Floating Point features, such as exceptions and rounding modes, but we have not yet
given adequate attention to these issues.

5 Optimizations

Our prototype compiler performs standard analyses and optimizations, such as finding “defs’ and
“uses’ of variables, computing al possible control flow paths, finding and moving loop invariant
expressions, finding induction variabl es, and performing strength reduction of array index expressions.
It al so omitsthe construction of the control variable of af or each if, after optimizations, that variable
is not necessary. Although we are generating C code and rely on the C compiler to perform certain
optimizations, our analysis is done with special knowledge of the Titanium language and libraries.
Furthermore, our analyses are able to take advantage of the safe and clean semantics of Java and
Titanium. Thus we perform optimizations that we cannot reasonably expect C compilersto perform
on the code we produce. Indeed, our experiments have shown that we must perform many additional
relatively straightforward optimizationsin our compiler if we want them to happen at all.

51 Loops

A naiveimplementation of theloop in Figure 2ayields poor results. Depending on the statictype of R,
theiteration isover either aRect Domai n or aDomai n (whose internal representation is currently a
union of Rect Dorrai ns). For simplicity, then, consider iteration over asingle Rect Dornrai n. The
address calculation for A[p] requires a single pointer increment per iteration of the innermost loop.
However, even in this trivial example, most C compilers will not perform strength reduction on the
address calculations required by Titanium arrays, which can have arbitrary stride. When we do our
own strength reduction we generate the code shown in Figure 2b. Thisis an example of what we do
to allow Titanium programs to achieve performance competitive with C or Fortran.

6 Applications

Properly eval uating aprogramming languagerequiresusing it toimplement representative applications
initsintended domain. We are devel oping the Titanium compiler and run-time systemin parallel with

foreach (p in R {
\ Alp] = 42

@

for (i 0 =is 0; ; SRO += dSR0) {
GP_jdouble SR 1 = SRO;
for (i _1 =is_1; ; SR1 += dSR 1) {
GP_jdouble SR 2 = SR 1;
for (i_2 =is 2; ; SR2 += dSR2) {
ASSI G\(SR 2, 42.0);
if ((i_2 +=id.2) >=ie 2) break;
}
if ((i_1+=id.1) >=ie_ 1) break;
}
if ((i_ 0 +=id.0) >=ie 0) break;
}

(b)

Figure 2: (a) Titanium code, (b) Excerpt of generated C code for 3D case

non-trivial applications, some ported and some written from scratch. This section describes two of
these applications, AMR3D and EM3D.

6.1 AMRS3D

AMR3D is a full 3-dimensional adaptive mesh refinement Poisson solver. The complete program
consists of about two thousand lines of Titanium code. Almost half of the code belongs to a routine
called the grid generator.

AMRisan extension of themultigrid algorithmfor linear solvers. Multigridisarel axation method
that uses grids at different resolutions covering the entire problem domain. AMR alowsgridsat high
levels of resolution to cover only a subset of the problem domain. The area of interest at each level is
covered by aset of rectangular patches. Similarly to most parallel AMR solvers, we distribute patches
across processors, and relax on them in lockstep. If the patches are large enough, communication and
synchronization overheads are small.

At various points of the computation, the grid generator recomputes the patch hierarchy based on
the need for accuracy. It also load-balances the computation, by assigning a similar anount of work
to each processor.

Aside from the grid generator, a large fraction of the code is dedicated to computing boundary
values at the interfaces between coarse and fine boundaries. This computation, although not onerous,
iscomplex, and our linguistic support is an effective aid.

AMR3D isthefirst large Titanium program, and it is interesting to note that the global synchro-
nization analysis (Section 3.2) helped uncover a few bugs during its devel opment.

6.2 EM3D

EM 3D isthe computational kernel from an application that model sthe propagation of € ectro-magnetic
waves through objects in three dimensions[9]. A preprocessing step casts the problem into asimple
computation on anirregular bipartite graph contai ning nodesthat represent electric and magnetic field
values. The computation consists of a series of “leapfrog” integration steps: on aternate half time
steps, changesin the electric field are cal culated as alinear function of the neighboring magnetic field
values and vice versa.

7 Preliminary Results

At this time we can run the programs listed above and severa others, but the implementation of our
planned set of optimizationsis still incompl ete.

7.1 Sequential Performance

Thefirst set of benchmarks show the sequentia performance of Titanium code. For these experiments,
weusea?D and 3D multigrid Poisson sol ver, the EM 3D computati on described above, and the standard

10

| H SPARC H Pentium |

Titanium | gcc | cc | f77 || Titanium | gcc cc | f77
DAXPY 16| 14|19 16 23| 18| 18] 19
EM3D 17089 |10 16| 095 | 0.86
2D Multigrid 5.0 53 55 7.3
3D Multigrid 22 12 20 23

Figure 3: Performance of sequential Titanium compared to other languages. All numbersare seconds,
rounded to 2 significant figures. All compilerswere given the -O4 flag. Output of the Titanium com-
piler was compiled with GNU’s g++. Bounds checking was turned off for all of these measurements.

DAXPY operation on vectors. The multigrid examples are compared to code written by othersin
combined C++ and Fortran, whilethe EM 3D and DAXPY examples are compared to C and/or Fortran.
We were unable to obtain afull 3D AMR code written in another language that performed the same
computation, so this benchmark isnot used for sequential comparisons. For the multigrid problems,
the 2D grid has 1024x 1024 points, and the 3D grid has 64x64x64. The EM3D graph is synthetic
with 500 nodes, fixed degree 20, and random connectivity. The DAXPY used a 100K e ement vector.
Data were taken on a 166Mhz UltraSPARC processor and a 200M hz Pentium Pro running Solaris.
The cc and f77 compilers are from Sun. The output of the Titanium compiler isfed to the GNU C++
compiler.

The most unexpected result is that 3D multigridin Titanium does poorly on the SPARC, but does
well—faster than Fortran—on the Pentium. We believe thisis partly due to variationsin the quality
of the code generated by the GNU C++ and Sun Fortran compilers. In addition, examination of the
Titanium-compiler generated C++ code and the resulting assembly code in each case indicates that
on the SPARC the GNU C++ compiler did a poor job of compiling the most important inner loop,
whereas on the Pentium it did well. Often the large basic blocks, large functions, and large number of
temporaries in machine-generated C++ code put unusua stresses on the back-end compiler. We are
taking thisinto account as we further tune the Titanium compiler.

Unlike multigrid, EM3D has loops whose average number of iterations is relatively small. The
observed performance degradation is due mostly to loop startup overhead. Thisisanother areawhere
we expect to improve.

7.2 Paralld Performance

Titanium runs on top of a standard Posix thread library on SMPs and on Active Message layer [13]
on distributed memory multiprocessors and networks of workstations. Figure 4 shows the speedup of
EM3D and AMR3D on an 8-way SUN Enterprise SMP for afixed problem size. The performance
shows that the overhead for our parallel runtime library are minima. AMR3D is still under devel op-
ment, and wearerunning it on ashallow grid hierarchy (2 levels). Itsspeedupislimited mainly by the
seria multigrid computation on the coarse grid and by memory bus contention. EM 3D attains almost
linear speedups as the runtime overheads are offset by improved cache behavior on smaller data sets.

11

Performance on an 8-way Sun Enterprise SMP

10
EM3D ——
AMR3D -

Speedup

0 2 4 6 8 10
Processors

Figure 4: Speedups on an Sun Ultrasparc SMP

8 Conclusions

Our experience thus far is that Java is a good choice as a base language: it is easy to extend, and
its safety features greatly simplify the compiler writer's task. We aso believe that extending Javais
easier than obtaining high performance within Java's strict language specs (assuming that the latter
isat all feasible). Many of the features of Titanium would be hard or impossible to achieve as Java
libraries, and the compiler would not be able to perform static analysis and optimizations on them.

We have severa goals for the project. We wish to make the system robust and available for use
in the scientific computing community. We aso wish to useit as a basisfor research on optimization
of explicitly parallel programs, optimizations for memory hierarchy, and domain-specific language
extensions.

Acknowledgements. We thank Ben Greenwald and Joe Darcy for their earlier contributions to
Titanium. We also thank Intel for various hardware donations, including the Millennium grant, and
Sun Microsystems for donating the NOW and Clumps multiprocessor hardware.

References

[1] A. Aiken and D. Gay. Barrier Inference. In Proceedings of the Twenty-Fifth Annual ACM
S GPLAN Symposiumon Principlesof Programming Languages, pages 342—-354, January 1998.

[2] A.AikenandD. Gay. Memory Management with Explicit Regions. In Proceedings of the ACM
S GPLAN Conference on Programming Language Design and Implementation, June 1998. to

[3] W.W. Carlson and J.M. Draper. Distributed Data Accessin AC. In Proceedings of the 5th ACM
S GPLAN Symposium on Principles and Practice of Parallel Programming (PPOPP), Santa
Barbara, CA, July 1995.

12

[4]

(5]

(6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

Bryan Carpenter, Guansong Zhan, Geoffrey Fox, Yuhong Wen, and Xinying Li. HPJava: Data
Parallel Extensionsto Java. /http://www.npac.syr.edu/projects/perc/July97/doc.html, December
1997.

D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken,
and K. Yelick. Paralel Programming in Split-C. In Supercomputing '93, Portland, Oregon,
November 1993.

Paul N. Hilfinger and Phillip Colella. FIDIL: A Language for Scientific Programming. In
Robert Grossman, editor, Symbolic Computing: Applicationsto Scientific Computing, Frontiers
in Applied Mathematics, chapter 5, pages 97-138. SIAM, 1989.

A. Krishnamurthy and K. Yelick. Anayses and Optimizations for Shared Address Space Pro-
grams. Journal of Parallel and Distributed Computation, 1996.

Leslie Lamport. How to Make a Multiprocessor Computer that Correctly Executes Multiprocess
Programs. |EEE Transactions on Computers, C-28(9):690-691, September 1979.

N. K. Madsen. Divergence Preserving Discrete Surface Integral Methods for Maxwell’s Curl
EquationsUsing Non-Orthogonal Unstructured Grids. Technical Report 92.04, RIACS, February
1992.

Steven L. Scott. Synchronization and Communication in the T3E Multiprocessor. In Architec-
tural Support for Programming Languages and Operating Systems, 1996.

Luigi Semenzato. A Virtual Machine for Partial Differential Equations. PhD thesis, University
of Cdliforniaat Berkeley, 1994.

D. Stoutamire. Portable, Modular Expression of Locality. PhD thesis, University of California
a Berkeley, 1997.

Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik Schauser. Active
Messages: a Mechanism for Integrated Communication and Computation. In Proc. of the 19th
Int’l Symposium on Computer Architecture, Gold Coast, Austraia, May 1992.

13

