
Using the Run-Time Sizes of Data Structuresto Guide Parallel-Thread CreationLorenz HuelsbergenAT&T Bell Laboratorieslorenz@research.att.com James R. LarusUniversity of Wisconsin{Madisonlarus@cs.wisc.edu Alexander AikenUniversity of California{Berkeleyaiken@cs.berkeley.eduAbstractDynamic granularity estimation is a new technique forautomatically identifying expressions in functional lan-guages for parallel evaluation. Expressions with lit-tle computation relative to thread-creation costs shouldevaluate sequentially for maximum performance. Staticidenti�cation of such threads is however di�cult. There-fore, dynamic granularity estimation has compile-timeand run-time components: Abstract interpretation stat-ically identi�es functions whose complexity depends ondata structure sizes; the run-time system maintains ap-proximations to these sizes. Compiler-inserted checksconsult this size information to make thread creationdecisions dynamically.We describe dynamic granularity estimation for alist-based functional language. Extension to generalrecursive data structures and imperative operations ispossible. Performance measurements of dynamic gran-ularity estimation in a parallel ML implementation ona shared-memory machine demonstrate the possibilityof large reductions (> 20%) in execution time.1 IntroductionFunctional languages do not overly constrain a pro-gram's evaluation order with data dependences. Thissimpli�es automatic parallelization: multiple argumentsin a strict function application can evaluate in parallel,for example. Abundant parallelism, however, does notdirectly lead to e�ective parallel implementations. E�-cient implementation of a functional language on a par-allel architecture remains di�cult in part because thecreation of a parallel thread incurs considerable over-head costs [14, 21, 23, 20].For an implementation to be e�cient, it must de-cide which parallelism in a program is bene�cial; thatis, whether parallel evaluation of a given expression willspeed program execution. If an expression containsless computation than the cost of creating a thread forthe expression, parallel evaluation of the thread will

slow program execution. Figure 1 shows the e�ect thatscheduling overheads can have on overall execution times.In this paper, we present a new technique, dynamicgranularity estimation (dge), that uses the run-timesizes of data structures to create parallel threads onlywhen they are known to be bene�cial. This techniqueis based on the observation that a function's time com-plexity often depends on the size of the dynamic datawith which it computes. For simplicity, we describe dgefor lists|the general scheme can, however, be appliedto programs that manipulate other data structures (e.g.,trees, DAGs, and arrays).In a list-based language, dge conservatively deter-mines, for a program function f applied to a list param-eter l, the lengths of l for which the cost of computingthe application e � (f l) always exceeds the overheadof creating a thread for e's concurrent evaluation. Ini-tial empirical evidence, gathered in an implementationof dge in Standard ML of New Jersey (SML/NJ) [2] ona parallel shared-memory machine, suggests that therun-time costs of dge are small and that dge can sub-stantially reduce a program's parallel execution time.Dynamic granularity estimation is a hybrid; it iscomposed of dynamic and static components [17, 16].Hybrid techniques are necessary for language paralleliza-tion since purely-static analyses are fundamentally lim-ited. Static analysis for dge is in the form of an abstractinterpretation [5, 1] that identi�es functions whose timecomplexity is dependent on the sizes of the list datastructures passed to them as parameters. The com-piler statically identi�es program points at which thelength of a list always in
uences the cost of an ap-plication expression. When evaluation reaches such apoint, compiler-inserted code consults an approximationto the list's length (maintained dynamically) to deter-mine whether it is bene�cial to evaluate an applicationas a separate parallel thread. The dynamic componentof dge approximates list lengths at run time.The quicksort function (qs) of Figure 2 provides anexample. In qs, the arguments to append can evaluatein parallel. Parallel evaluation of these arguments isadvantageous if the costs of the recursive applicationsof qs exceed the cost of creating and scheduling them asparallel threads. However, when the length of a sublist(l or g) is small (e.g., zero), creating a parallel thread tosort the sublist is counterproductive. In this case, thearguments to append should evaluate sequentially. Thestatic analysis of dge identi�es list lengths for which

e1e2 �� @@e1 e2@@ �� �Ofork�Ojoin t0 ?Time e01e02 �� @@e01 e02@@ ������ �Ofork�OjoinFigure 1: The impact of overhead. Time starts at t0. The concurrent evaluation of e1 and e2 , with overhead (O = Ofork + Ojoin)taken into account, completes before their sequential evaluation and is therefore bene�cial. Concurrent evaluation of e01 and e02, however,slows the program's evaluation since e02 does not contain enough computation to o�set scheduling overheads.fun qs p [] = []| qs p (x::xs) =let fun split l =let fun split' [] less greater = (less,greater)| split' (y::ys) less greater =if (p y x) thensplit' ys (y::less) greaterelsesplit' ys less (y::greater)in split' l [] []endval (l,g) = split xsin if (l > cutoff) andalso (g > cutoff) thenappendjj (qs p l) (x::(qs p g))elseappend (qs p l) (x::(qs p g))endFigure 2: Functional quicksort automatically restructured by dynamic granularity estimation. Static analysis determines that theamounts of computation in the arguments to append depend on the lengths (denoted l and g) of the sublists produced by split. Thecompiler inserts a run-time check (the conditional in qs's body) to examine the lengths of l and r (stored with the list representation).Based on these dynamic lengths, the check decides whether to create parallel threads (appendjj evaluates its arguments in parallel).The compiler also deduces the cuto� value.

the cost of applying qs to a list of that length is alwaysgreater than the overhead incurred in creating a newthread for the application's concurrent evaluation. Atrun time, dge approximates the lengths of all lists; thelength information of the lists bound to the identi�ersl and g in the qs function is available for making the�nal parallelization decision.Dynamic techniques, like dge, that examine the sizesof data structures to conditionally select parallel evalua-tion are necessary since compile-time expression schedul-ing is fundamentally limited. This is evident from theqs example. When a statically-unknown list reaches qs,the sublist partition that qs's auxiliary split functioncreates is also unknown. Therefore, the costs of the re-cursive applications of qs that sort the sublists cannotbe known at compile time. In the absence of precisestatic information about qs's list parameter, it is notpossible to statically decide when concurrent evaluationof qs's recursive applications is advantageous.In languages with explicit constructs for thread cre-ation and synchronization, programmers typically usecuto� values to curb parallelism and to ensure that theprogram only creates large threads [11]. In the qs exam-ple, the programmer might explicitly check if the sublistbeing sorted contains > k elements for some small k be-fore creating parallel threads for append's arguments.Code remains portable with dge since the language'simplementation|not the programmer|matches a cut-o� to the underlying parallel architecture. The granu-larity of parallel threads is less of a programming issuewhen thread sizes are determined automatically.In the next section, we describe the language underconsideration for dynamic granularity estimation andintroduce terminology. We then describe dge's static(x3.1) and dynamic (x3.2) components, illustrate dge'soperation with examples (x4), present possible exten-sions to general data structures and mutable data (x5),and describe an initial implementation of this new tech-nique (x6) and discuss results (x7).2 PreliminariesThe language under consideration for dynamic granu-larity estimation is the �v-calculus, a functional1, call-by-value, higher-order language [24, 26]. The groundterms of �v are variables and constants:x 2 Varb 2 Const = fnil; true; falsegThe terms of �v are expressions (e 2 Exp) and values(v 2 Val � Exp):1Restriction to a functional language allows e�cient imple-mentation of dge's dynamic component that must approximatethe sizes of dynamic data at run time. In a functional language,a datum d's size can only monotonically increase whereas, in alanguage with assignment to reference values, d's size can de-crease and the e�cient propagation of d's new (reduced) sizeestimate to other data that share d is di�cult. Section 5 de-scribes possible methods for estimating data sizes in imperativedynamic languages.

e ::= vj e ej if e then e else ej cons e ej hd ej tl ej isnull e v ::= bj xj �x:eWe assume that �v terms are well-typed.For simplicity, we focus on the list as the dynamicstructure for dynamic granularity estimation. This isbecause a list's size is simply its length. The syntax of�v therefore contains cons, hd, tl, and isnull directly.Section 5 describes possible extension of dge to generalrecursive datatypes that give rise to trees, for example.Denote the time required to evaluate an expressione as jej, the cost of e. The cost of a parallel threadto evaluate e is jej plus the overhead, O, required tocreate and schedule a parallel thread.2 Let T � O bea machine-dependent cost threshold so that if jej > Tthen expression e is a candidate for parallel evaluation(cf. Figures 1 and 2). Costs are measured in integerevaluation units (e-units). An e-unit corresponds to|again for simplicity|the operational notion of functionapplication [7]. For a given implementation, normaliza-tion of e-units is necessary since all function applica-tions do not have identical costs (e.g., functions may becompiled in line).For �v, we assume that the evaluation of variables,constants and �-abstractions incurs no cost (zero e-units)and that the evaluation of the other language termscosts one e-unit. Under these simplifying assumptions,for example, the application (f (g l)), where f and gare functions and l is a list, incurs a cost of at leasttwo e-units (the applications of f and g each cost one),but complete evaluation of (f (g l))may require manymore e-units and may depend on the size (length) of l.The length of list l is written as l. When i is anatural number, i represents any list of length i.We further use the following notation. If A and Bare sets, then A[B is their union, A\B is their inter-section, and AnB is their di�erence. The empty set isdenoted by ;, and Fin(A) denotes the set of �nite sub-sets of A. If f is a map, then the domain and range of fare Dom(f) and Rng(f). A �nite map from A to B is apartial map with �nite domain. Denote the set of �nitemaps from A to B as A fin! B where any f 2 A fin! Bcan be written as fa1 7! b1; : : : ; an 7! bng. The emptymap is written fg. If f and g are maps, then f � gis the map with f modi�ed by g and has the domainDom(f) [Dom(g) and the values:(f � g)(a) = (g(a) if a 2 Dom(g)f(a) otherwiseA sequent of the form A ` phrase! B holds, with re-spect to A, if phrase ! B where ! is some ternaryrelation between A, phrase, and B. An inference rulehas the form P1 � � �PnC2It is assumed that the cost of creating and scheduling athread is bounded and can be (empirically) determined for agiven language implementation and machine architecture.

where n > 0. Successful inference of the premises, Pi,infers the conclusion C. The premises are either se-quents or mathematical side conditions.3 The New TechniqueDynamic granularity estimation deduces at compiletime for a program function f whether f's complex-ity depends on the sizes of f's list parameters. Thisinformation is then used by the compiler to restruc-ture an application e � (f l). The compiler insertsa check of l's length that selects parallel evaluation ofe only when e contains enough computation to warrantits parallel evaluation. The deduction of a function'sevaluation cost relative to its list parameters and sub-sequent program restructuring (check insertion) consti-tute dge's static component. The dynamic componentof dge maintains lengths with lists at run time. Thissection �rst describes dge's static component and thenits dynamic component.3.1 Static ComponentThe idea is to abstractly evaluate, at compile time,an application e � (f l) while counting the number ofe-units required. The static e-unit count thus obtainedis conservative; that is, static estimation of e-units doesnot overestimate the number of e-units that evaluationof an expression requires. For example, if static analysisof e indicates that jej = i, then actual evaluation of emust require � i e-units. Since the aim is to identifyfunctions whose list parameters control their complex-ity, an abstract semantics that interprets a list l as itslength, l, is used. E-units are (conservatively) countedunder this abstract semantics. We �rst give the stan-dard semantics for the language and then the abstractsemantics. To guarantee the termination of abstractevaluation, it is also necessary to bound the number ofabstract evaluation steps (x3.1.3). This bound is natu-rally the threshold T (x2) at which parallel evaluation ofa thread becomes bene�cial (i.e., overcomes schedulingoverheads).3.1.1 Standard Semantics SThe dynamic objects of the standard semantics S are inFigure 3. Since the list is the dynamic structure of inter-est for granularity estimation, it is directly representedwith dynamic objects rather than indirectly encoded in�v: The constant nil is the empty list and a cons pairhv; li contains an element v and the list's tail l.Figure 4 gives a standard semantics for the language.The operational style of the semantics is derived fromTofte's semantics [29]. The semantics given here, how-ever, also contains integer time annotations that indi-cate the number of e-units that an expression's eval-uation requires. The evaluation relation E ` e �!i v(where E 2 Env, e 2 Exp, v 2 DVal, and i 2 Z) in-dicates that the evaluation of expression e to value vwith respect to environment E requires i e-units. Forexample, the app rule states that if the evaluation ofe1 to v1 requires a e-units, the evaluation of e2 to v2requires b e-units, and the application of v1 to v2 re-quires c e-units, then the evaluation of the application

(e1 e2) requires 1 + a + b + c evaluation units. Simi-larly, conditional evaluation (if rule) counts e-units onlyin the evaluation of the branch expression selected bythe conditional's predicate. Note that the evaluation of�v's value terms (e.g., variables and �-abstractions) re-quires zero e-units under this relation; a speci�c imple-mentation would, however, use an e-unit measure andevaluation rules that re
ect their concrete costs.3.1.2 Abstract Semantics AA non-standard (abstract) semantics A that abstractslists as their lengths is used for counting e-units for dy-namic granularity estimation. This analysis determineswhether an application (f l) will always require at leasti (where i � 0) e-units of evaluation for a given lengthof l. The dynamic objects of the abstract semantics arein Figure 5. Every abstract object V denotes a set ofvalues of the standard semantics �(V):�(fv1; : : : ; vng) = n[i=1 �(fvig)�(ftrueg) = ftrueg�(ffalseg) = ffalseg�(Lk) = fl j l is a list of length � kg�(�EA) = �f j 8x 2 Dom(EA); f(x) 2 EA(x)	�(��x; e; EA�) = �[x; e;E] j E 2 �(EA)	�(>A) = fv j v 2 DValgA list of length k in the abstract semantics is repre-sented by Lk, the set of all lists with at least k elements.3An environment (EnvA) maps a program variable eitherto a concrete �nite subset of values or to any such subset(denoted >A).The upper bound operation t on dynamic objectsX and Y is de�ned:X t Y =8<: >A if X = >A or Y = >ALi if X = Li and Y = Lj and i � jX [Y otherwiseThe operator t is set union, except that >A absorbs allother values and that list abstractions combine conser-vatively.The relation for abstract evaluation, EA ` e A�!i V(where EA 2 EnvA, e 2 Exp, V 2 DValSetA, andi 2 Z), evaluates expression e with respect to (abstract)environment EA to a set of values V . This relation isde�ned such that when e A�!i V and e �!j v thenv 2 �(V) and i � j. That is, the set of values computedby the abstract relation always contains e's actual value(as produced by S). Furthermore, the e-unit count pro-duced by the abstract semantics is conservative; stan-dard evaluation of e under S always requires at least ie-units when abstract evaluation of e under A requiresi e-units.Figure 6 gives the operational rules for the abstractsemantics using the A�!i evaluation relation. Begin-ning with an unevaluated term, the abstract rules arerun backwards in a goal-directed fashion towards the3Note that L0 describes all lists and Li � Li+1 ; i � 0.

b 2 Bool = ftrue; false ghv; li 2 Cons = DVal� Listl 2 List = fnil g+ Cons[x; e; E] 2 Clos = Var� Exp�Envv 2 DVal = Bool+ List +ClosE 2 Env = Var fin�! DValFigure 3: Dynamic objects of the standard semantics S.x 7! v 2 EE ` x �!0 v (var)E ` (�x:e) �!0 [x; e;E] (abs)E ` e1 �!a [x; e;E0]E ` e2 �!b vE 0 � fx 7! vg ` e �!c v0E ` (e1 e2) �!1+a+b+c v0 (app)E ` e1 �!a true E ` e2 �!b vE ` (if e1 then e2 else e3) �!1+a+b v (if-true)E ` e1 �!a false E ` e3 �!b vE ` (if e1 then e2 else e3) �!1+a+b v (if-false)E ` nil �!0 nil (nil)E ` e1 �!a v E ` e2 �!b lE ` (cons e1 e2) �!1+a+b hv; li (cons)E ` e �!a hv; liE ` (hd e) �!1+a v (hd)E ` e �!a hv; liE ` (tl e) �!1+a l (tl)E ` e �!a nilE ` (isnull e) �!1+a true (isnull-true)E ` e �!a hv; liE ` (isnull e) �!1+a false (isnull-false)Figure 4: Standard semantics S with time annotations.

b 2 BoolA = ftrue; false gLk 2 ListA = fL0; L1; : : :g where Lk denotes all lists of length � k�x; e;EA� 2 ClosA = Var �Exp� EnvAv 2 DValA = BoolA + ListA +ClosAV 2 DValSetA = Fin(DValA) +>AEA 2 EnvA = Var fin�! DValSetAFigure 5: Dynamic objects of the abstract semantics A.axioms. When more than one rule may apply (e.g.,isnullA versus isnull-falseA), the more speci�c rule ischosen.Foremost, note that the anyA rule can always be ap-plied. Rule anyA evaluates an expression e to any valueand incurs no e-unit cost. Therefore, it is a conserva-tive estimate of values and e-units. Note that abstractevaluation can invoke the anyA when the premises ofno other rule hold. The rule anyA is also applied ifthe depth of the proof exceeds the parallelization cuto�value T (x2). This is further explained in x3.1.3 below.The varA rule retrieves the mapping of a variablefrom an environment at zero cost. The absA rule eval-uates a �-abstraction term to a singleton set containingits closure at zero cost. Again, in practice, costs must becalibrated to a particular machine and implementation.Abstract evaluation of an application (e e0) withthe appA rule �rst abstractly evaluates e and e0. Whene produces a set F of closures, each f 2 F is appliedto the value set V that e0 produces. The e-unit cost ofan application is one e-unit (for the application proper),the e-units required for (abstractly) evaluating e and e0,and the minimum of the e-unit costs incurred in apply-ing each f 2 F to V . This gives a conservative e-unitcount because the cost of the least expensive functionreaching the application is used. The set of values pro-duced by appA is the union of the value sets producedby the applications of the closures F . The app->A rulehandles the case where F is not known.The conditional rules (if-trueA, if-falseA, ifA) con-servatively approximate a conditional's behavior. If thepredicate abstractly evaluates to a singleton set contain-ing either true or false, the respective conditional branchis abstractly evaluated. However, when the predicate'sabstract value set is not precisely known (e.g., when itcontains both true and false), both conditional branchesare abstractly evaluated and the minimum e-unit cost ofthese evaluations is incorporated into the conditional'scost|the set of values produced by the conditional isthe union of the value sets produced by both conditionalbranches.The rules for list objects and the primitive list func-tions operate as follows. The nilA rule evaluates thesyntactic constant nil to the identi�er L0 denoting theset of all lists. Abstract evaluation of the constant nilincurs no e-unit cost under this cost model.A list's size (length) increases when an element isconsed onto it. List creation with the special cons form(consA rule)|when the tail of the new list is in the setLi; i.e., it is a list of at least length i)|produces the set

of lists of at least length i+1, Li+1. The abstract e-unitcost for this operation is one plus the cost of evaluatingthe arguments to cons. The cons->A rule handles thecase where all information about the list being consedonto has been lost.Selecting the head (hdA rule) of any object returnsany value (>A) since a list's contents (its elements) arenot maintained in the abstract semantics. Selecting thetail (tlA rule) of a list of at least length i returns Li�1,the set of lists of at least length i � 1, since the listreturned by the tail selector is always one less than thelength of its argument list. The tl->A rule handlesapplication of tl to an unknown list.Testing for the empty list with isnull produces theset ffalseg when isnull's argument is a list of at leastlength � 1 (isnull-falseA rule). Otherwise, this testconservatively returns ftrue; falseg under abstract eval-uation (isnullA rule).3.1.3 TerminationAbstract evaluation as described may not terminate.Conditional terms, for example, abstractly evaluate botharms. This termination problem is solved by boundingthe number of abstract evaluation steps. Evaluationof an execution path under A terminates (along thatpath) when the accumulated e-units exceed the over-head threshold T (x2). In other words, when viewed asa deductive proof, the proof tree of an expression's ab-stract evaluation never exceeds a depth of T unit-costdeductions; i.e., the anyA rule is applied upon reachingthis bound. Halting abstract evaluation in this manneravoids the non-termination issue since we only evaluatefor a bounded T e-units along any execution path andreturn the cost of the least-cost path.3.1.4 Program RestructuringA compiler can use dynamic granularity estimation torestructure the program as follows. The compiler wrapsa conditional around every application expression, (f l),that applies function f to a list l. The conditional'sbranches respectively contain code for the sequentialand parallel evaluation of the application expression (see,for example, Figure 2). The predicate of the compiler-supplied conditional examines the length of l (availableat run time) and compares it to a compiler-deduced cut-o� value (described below). When l's length is at leastequal to this cuto�, the conditional selects parallel eval-uation for (f l).

EA ` e A�!0 >A (anyA)x 7! V 2 EAEA ` x A�!0 V (varA)EA ` (�x:e) A�!0 ��x; e; EA�	 (absA)EA ` e A�!a ��x1; e1; EA1 � ; : : : ; �xn; en;EAn �	EA ` e0 A�!b VEAi � fxi 7! V g ` ei A�!ci Vi ; 1 � i � nEA ` (e e0) A�!(1+a+b+min(c1;:::;cn)) nGi=1Vi (appA)EA ` e A�!a >A EA ` e0 A�!b VEA ` (e e0) A�!1+a+b >A (app->A)EA ` e1 A�!a ftrueg EA ` e2 A�!b VEA ` (if e1 then e2 else e3) A�!1+a+b V (if-trueA)EA ` e1 A�!a ffalseg EA ` e3 A�!b VEA ` (if e1 then e2 else e3) A�!1+a+b V (if-falseA)EA ` e1 A�!a V1 EA ` e2 A�!b V2 EA ` e3 A�!c V3EA ` (if e1 then e2 else e3) A�!1+a+min (b;c) V2 t V3 (ifA)EA ` nil A�!0 L0 (nilA)EA ` e1 A�!a V EA ` e2 A�!b LiEA ` (cons e1 e2) A�!1+a+b Li+1 (consA)EA ` e1 A�!a V EA ` e2 A�!b >AEA ` (cons e1 e2) A�!1+a+b L1 (cons->A)EA ` e A�!a VEA ` (hd e) A�!1+a >A (hdA)EA ` e A�!a LiEA ` (tl e) A�!1+a Lmax(0;i�1) (tlA)EA ` e A�!a >AEA ` (tl e) A�!1+a L0 (tl->A)EA ` e A�!a L0EA ` (isnull e) A�!1+a ftrue; falseg (isnullA)EA ` e A�!a Li i > 0EA ` (isnull e) A�!1+a ffalseg (isnull-falseA)Figure 6: Abstract semantics A with time annotations.

E ` l A�!0 L1 varAE ` (isnull l) A�!1 ffalseg isnull-falseA E ` x A�!0 >A anyA E ` l A�!0 L1 varAE ` (tl l) A�!1 L0 tlAE ` (cons x (tl l)) A�!2 L1 consAE ` (if (isnull l) then nil else (cons x (tl l))) A�!4 L1 ifAFigure 7: Example operation of dge's static component. E maps identi�er l to all lists of length � 1; i.e., E � fl 7! L1g.The compiler deduces the cuto� value using abstractevaluation in the following manner. Suppose that dge'sdynamic component (x3.2) precisely keeps the lengthsof all lists of length < n, and that all lists with lengths� n are approximated as such. The compiler abstractlyevaluates (f Li) for 0 � i < n. When (f Li) A�!x V ,it notes the least i such that the cost x of this appli-cation is always greater than the overhead threshold T .This least i, if it exists, represents a length cuto� for lat which the creation of a parallel thread for (f l) isalways bene�cial. The value of this least i is the cuto�value in the conditional guarding the application.In general, the compiler can use the abstract eval-uation semantics to determine a cost threshold for anyexpression e, not just for the application of functionsto lists. To do so, it must �rst identify all lists in e; itthen abstractly evaluates e for all list-length combina-tions and notes the lengths at which parallel evaluationof e is viable. This list-length information is then usedto construct a predicate to select sequential or parallelevaluation for e.Section 4 provides a concrete example of the ab-stract evaluation a compiler must perform to use dy-namic granularity estimation.3.2 Dynamic ComponentAt run-time, dge's dynamic component maintains anapproximation to the length of a list l along with l'sphysical representation. We assume an implementationthat represents lists with cons cells in a heap. A �xed�eld of b bits encodes length information. This giveslists of length < 2b � 1 an exact length (in the length�eld) at run time. Longer lists of length � 2b � 1 haveapproximate lengths denoted by 1. When a new list isformed with the list constructor, as in l � (cons x l0),the length �eld on l is set to l0 + 1 if l0 is not 1. Oth-erwise, it is set to 1.An implementation of dge's dynamic component canstore the b bits of length information either:1. in a cons cell, or2. in the pointers to a cons cellStoring the approximation within the cell requires anadditional memory access when forming a new cell sincethe length �eld pointed to by the new cell's tail pointermust be fetched. If the cons-cell representation doesnot contain b unused bits, additional storage must alsobe allocated in the cell under the �rst scheme. Thesecond approach requires the pointer representation tocontain b unused bits, but avoids an additional mem-ory fetch since construction of a new cons cell always

requires the pointer to the list that becomes the newcell's tail �eld. The �rst approach is signi�cantly sim-pler to implement because it only requires modi�cationto the portion of the compiler that generates the code forcons-cell creation (x7). The second approach requiresmodi�cations to the implementation's run-time system(e.g., the garbage collector), the generation of specialpointer dereferencing code, and (potentially) a revisionof the memory layout.The �nal concern in the design of the dynamic com-ponent is, how many bits, b, to allocate for the length�eld. A value for b is best selected by consulting theempirical results of applying dge's static analysis (x3.1)to actual programs because, for a typical application(f l), where j(f l)j depends on the length of l, it islikely that a threshold value for l exists at which par-allel evaluation of (f l) is fruitful. The number of bitsb should be large enough to delineate this threshold formost cases.4 ExamplesHere we illustrate the operation of dynamic granularityestimation's static component (abstract evaluation) andshow how the compiler can use the information thus ob-tained, along with run-time list lengths, to dynamicallyschedule concurrent expressions only when bene�cial.Figure 7 depicts the static deductions that dge per-forms for the expression:e � if (isnull l) then nilelse (cons x (tl l))The compiler, upon encountering e in a program, canuse dge to determine e's cost given the length of thelist bound to identi�er l. The �gure abstractly evalu-ates e in the environment fl 7! L1g (i.e., in an environ-ment where l is bound to the set of lists of length � 1).Abstract evaluation of e in this environment indicatesthat e's evaluation produces a list in L1 and requiresat least four e-units (i.e., fl 7! L1g ` e A�!4 L1). Ab-stract evaluation of e in the environment fl 7! L0g pro-duces a list in L0 and requires two e-units (using theifA, isnullA, and nilA rules).As an example of how a compiler combines informa-tion from dge's static and dynamic components, con-sider the function f:fun f l = if (isnull l) then nilelse f (tl l)Abstract evaluation at compile time determines that(f L0) requires three e-units, (f L1) requires sevene-units, and (f L2) requires eleven e-units. In general,abstract (and standard) evaluation of (f Ln) requires3+4n e-units. However, a compiler need only abstractly

evaluate (f Li) for 0 � i < 2b�1, where b is the numberof bits of list-length information maintained by dge'sdynamic component (x3.2), since this encompasses thesize information available at run time. The compilerthen selects the least i such that |(f Li)| > T whereT is the implementation-speci�c e-unit threshold (x2).Assuming the concrete values b = 2 and T = 10 in thisexample, a compiler using dge can statically deducethat a concurrent thread for (f l) is bene�cial whenl's length equals or exceeds two.As a �nal example, dynamic granularity estimationstatically determines that the time complexity of qs(Figure 2) depends on its list parameter. In particu-lar, it detects that split always traverses the entiretail of this parameter. Therefore, the qs function's re-cursive applications|as well as external applications ofqs in other parts of the program|warrant concurrentthreads when qs's list parameter is su�ciently4 large.5 ExtensionsThis section describes possible extensions to dynamicgranularity estimation that admit general dynamic datastructures and mutable data.5.1 Other Data StructuresIn addition to lists, dge can handle general recursivestructures (e.g., trees) by de�ning the size of such astructure to be the sum of the sizes of its substructures.Physical representation of a structure's node then con-tains the sum of the sizes of the structures pointed toby the node. A node for a binary tree, for example,would carry the sum of the sizes of its left and rightsubtrees. A static analysis, similar to the analysis pre-sented here for lists, can determine the data sizes forwhich an expression e's concurrent evaluation is bene�-cial. However, upon deconstruction of a dynamic nodeof size n, the analysis must now consider all possiblecombinations for the substructure's sizes. For exam-ple, deconstructing a binary tree of size n with subtreesleft and right requires abstract evaluation with all (n)size assignments such that jleftj+ jrightj = n � 1. Enu-merating and abstractly evaluating these combinationsincreases the static analysis' complexity. It is, however,plausible that static examination of all small structuresis practical and su�ces to delineate a viable size thresh-old for making thread-creation decisions.Run-time examination of the size of an array canbe used to dynamically determine the granularities ofexpressions in array-based languages (e.g., Fortran andC). An array descriptor (see, for example, [9]) can beused to dynamically convey an array's size and bounds.Static analysis can then determine, for a programexpression e manipulating array a, the sizes of a forwhich concurrent evaluation of e is bene�cial.5.2 Mutable Dynamic DataIn languages with imperative assignment to mutable dy-namic data (e.g., ML), it is potentially expensive to dy-4The length of qs's parameter, at which parallel evaluationof an application of qs is bene�cial, depends on the machine-dependent threshold T .

namically maintain conservative size approximations forthese data. This is because a mutable datum's size maydecrease and, as with immutable data, mutable data areoften shared. To maintain conservative approximations,it may therefore be necessary to propagate|upon as-signment into a dynamic structure|a new size to manystructures. Identi�cation of structures that share a da-tum d is, however, di�cult because d has no informationabout the pointers to it. A possible approach to extend-ing dge to mutable data is to not propagate reductionsin a mutable datum's size. Instead, its size estimatecan be reconstituted periodically. Such size reconstitu-tion can occur in the language implementation's garbagecollector.5 Since this approach permits approximationsthat may overestimate a datum's size, it may|in somecases|select expressions for concurrent evaluation thatdo not contain enough computation to compensate forscheduling overheads. However, if a large percentage ofthe dynamic scheduling decisions are correct, dynamicgranularity estimation in the presence of modi�cationsto dynamic structures may be viable.6 ImplementationThe dynamic component of dynamic granularity estima-tion has been implemented in the Standard ML of NewJersey 0.73 optimizing compiler [2]. The MP queue-based multiprocessing platform [22, 4] provides threadcreation, synchronization, and management primitives.The sml2c code generator [28] outputs C code for exe-cution on a 20-processor shared-memory Sequent Sym-metry.The compiler and run-time system were modi�ed toincorporate one machine word (32 bits) of length infor-mation into the standard (three-word) representation ofevery cons cell (cf. x3.2). The compiler's front end wasmodi�ed to distinguish cons cells from all other types ofdynamic objects. This modi�cation identi�es cons cellsas such for the compiler's back end. The code generatorwas modi�ed to produce code that computes list lengthsupon cons-cell formation. Since a list's length is repre-sented by a full machine word, code for approximatinglist lengths is unnecessary and is not generated. We in-troduced high-level functions to provide access to a list'slength information. This allows integer lengths to bemanipulated as ML values and to be compared againstthe overhead-threshold values (determined empirically,x2). Low-level primitives, i.e. abstract machine instruc-tions, would provide even better performance.The static component for dge has not been imple-mented. Abstract evaluation was performed manually.7 ResultsFigure 8 gives the results of dynamic granularity estima-tion applied to a quicksort (qs, Figure 2) sorting a listof 10000 random integers. The recursive applications ofqs for sorting sublists were performed in parallel on 8processors.6 The graph plots list-length cuto�s versus5A copying garbage collector (e.g., [3, 8]) traverses a datastructure in its entirety|it is a simple matter for such a collectorto recompute structure sizes.6The graph's standard parallel execution time is a speedup of3:8 (on 8 processors) over standard sequential execution.

3

4

5

6

7

8

9

10

11

12

13

14

0 2 4 6 8 10

T
i
m
e

(
s
)

List-Length Cutoff

std(exec)
std(gc)

std(total)
dge(exec)
dge(gc)

dge(total)

Figure 8: E�ect of varying the list-length cuto� threshold in parallel evaluation with 8 processors of quicksort (Figure 2).execution time. Here, we examine the e�ect of varyingqs's list-length cuto� value on the program's executiontime. Parameters of a speci�c language implementa-tion and machine architecture would enable dge's staticcomponent to automatically select a concrete cuto�.Execution, garbage collection, and total times aregiven for qs with and without dge. The graph's toptwo curves are the total time required with dynamicgranularity estimation (dge) and with standard parallelevaluation (std) respectively. The x-axis is the cuto�values at which threads are retained for sequential eval-uation. For the dge times, a length cuto� i indicatesthat the arguments to append in qs evaluate in parallelonly when the lengths of the sublists bound to l and gboth equal or exceed i. The (std) times are for an MLimplementation without the modi�cations and associ-ated overhead for maintaining list-lengths at run time.The graph's lower curves break the total time into ex-ecution (exec) and garbage collection (gc) times. Timespent in the operating system are included in the totaltimes.Dynamic granularity estimation improves qs's per-formance at all cuto� values i, 0 � i � 10. If threadcreation is throttled when sublists are of length < 3,dge reduces the total time to execute the program by� 23%. Figure 8 also reveals that garbage collectiontimes slightly decrease as the cuto� length increases|fewer threads require fewer memory resources.Two peculiarities in the timings of Figure 8 requirefurther explanation. First, the non-monotonicity of theexecution times arises because of a secondary e�ect: Asthe machine �lls with threads, it becomes advantageousnot to create new threads|even if these threads con-tain large amounts of computation relative to schedul-ing costs|since the machine is fully utilized. The in-

put data to qs and the length cuto� (indirectly) in
u-ence the machine's load and cause this behavior. Thesecond peculiarity is that the performance of dge at acuto� of zero is better than that of the standard imple-mentation. This is so even though both versions createthe same threads and the run-time system for dge in-curs overhead; it allocates more data and performs morecomputation in maintaining list lengths than standardparallel evaluation. This occurs because the larger conscells (four machine words versus three) of the dge runtime improve processor data-cache performance.78 Related WorkMost similar to our work is that of Debray, Lin, andHermenegildo [6] in the context of parallel logic lan-guages. They solve recurrence equations at compiletime to obtain upper bounds on execution times. Forrecursive functions dependent on input sizes, their tech-nique traverses function inputs at run time to computesizes|parallelization dynamically hinges on these sizes.Our dge technique uses lower-bound cost estimates; welose parallelism in return for parallelism guaranteed tobe bene�cial whereas the technique of Debray et al. maysometimes create small inexpensive threads (with rela-tively large scheduling overheads) in return for moreparallelism. A system that computes both upper andlower bounds may provide even better information fordynamic expression scheduling.Other related work addresses granularity estimationperformed entirely at compile time. Aside from sim-7This was veri�ed by experiment. Setting cons-cell sizes tofour machine words, improves the performance of some pro-grams. Note that this phenomenon is, however, highly machineand implementation dependent.

ple heuristics [12], work on static granularity estimationfalls into one of two categories: load-balancing strategiesthat continually monitor the number of active threadsin the machine to determine when it saturates, and sys-tems that statically derive an algorithm's time complex-ity, if possible.In Halstead's Multilisp [13, 14], the program ceasesto create new parallel threads when the machine satu-rates with threads. When this occurs, processors evalu-ate the available threads to completion. Idle processorssteal threads from busy processors in this load-based in-lining scheme. Load-based inlining, in the presence ofMultilisp's futures, poses deadlock problems, but thesecan be avoided by Mohr et al.'s lazy task creation tech-nique [21, 20]. Lazy task creation e�ciently extractscomputation from inlined threads when no runnablethreads exist. Although lazy task creation increases thegranularity of programs by coalescing threads, unlikedge, it does not prevent the production of �ne-grainthreads that are detrimental to the program's quickevaluation. WorkCrews [30] is a thread managementpackage that performs lazy task creation, but requiresprogrammer knowledge of the mechanism. Qlisp [10]provides primitives for performing load-based threadcreation as well as automatic load-based inlining [23].Dynamic granularity estimation is a load-insensitivetechnique that only creates parallel threads that areguaranteed to meet or exceed some granularity criterion.Therefore, dge is orthogonal to|and complements|existing load-based inlining and task creation methods.Harrison's parallel Lisp system, PARCEL [15], em-ploys a non-standard list representation that dynami-cally maintains information about a list's length. PAR-CEL uses length information to implement lists contigu-ously in memory, but not for making parallelization orload-balancing decisions.Static time-complexity analysis has been studied ex-tensively; static algorithm and program analyzers havebeen built. Since the general problem of deducing a pro-gram's complexity is undecidable, these systems cannotalways deduce a program's complexity. In many cases,however, the analyzers do correctly deduce the com-plexity of a program. METRIC [32] transforms Lispprograms into a set of mutually recursive equations andthen seeks their solution to yield the program's com-plexity. Le M�etayer's ACE complexity evaluator [19]matches list-based functional programs against a prede-�ned library of function de�nitions to map programs totheir time complexities. Sands extended this approachto higher-order lazy languages [27].Dornic, Jouvelot, and Gi�ord [7] describe a practicaltime system that statically infers a function's complex-ity from its local de�nition; i.e., their analysis does notrequire interprocedural information. Reistad and Gif-ford [25] recently extended this system to admit staticprogrammer annotation of upper bounds on data struc-ture sizes. Statically, their time system propagates suchupper bounds from a datum's point of creation to itssubsequent uses. Static time systems are, however, overlyimprecise since they determine the costs of recursivefunctions using only a programmer-supplied upper boundof data structure sizes, or they err conservatively and al-ways assume that application of a recursive function isexpensive. In contrast to dynamic granularity estima-

tion, static time-complexity analyses cannot accuratelypredict an expression's cost when dynamic data sizesare not known at compile time.Dynamic granularity estimation's static analysis is aform of abstract interpretation [5, 1, 18]. It di�ers fromconventional abstract interpretation in two respects: itassumes the availability of dynamic information, and itdoes not abstract to �nite domains|instead, the thresh-old that governs thread creation is used to terminatedge's analysis. Wadler addresses the di�culties ofstatic time analysis in (lazy) functional languages [31].We have previously used run-time information todynamically discover parallelism in imperative higher-order programs that build and modify dynamic datastructures [17, 16].9 ConclusionDynamic granularity estimation (dge) is a hybrid static-dynamic technique that assists the automatic paralleliza-tion of functional programs|it examines the run-timesizes of data structures and only creates parallel threadsthat always contain enough computation to o�set theirscheduling overheads. Hybrid (compile/run time) tech-niques like dge are necessary for e�ective parallelizationsince static analyses performed entirely at compile timeare inherently conservative. An implementation of dgefor lists suggests that run-time techniques are a power-ful means for selecting threads suitable for parallel eval-uation. We view the application of dge to languageswith general dynamic data structures and arrays as apromising line for further investigation.AcknowledgementThis work was supported in part by the National Sci-ence Foundation under grant CCR-9101035 and by theWisconsin Alumni Research Foundation. L. Huelsber-gen was supported by an ARPA fellowship in parallelprocessing; thanks to John Williams and IBM Almadenfor hosting the internship associated with this fellow-ship.References[1] S. Abramsky and C. L. Hankin, editors. Ab-stract Interpretation of Declarative Languages. El-lis Horwood Ltd., Chichester, West Sussex, Eng-land, 1987.[2] A. W. Appel and D. B. MacQueen. A StandardML compiler. Functional Programming Languagesand Computer Architecture, 274:301{324, 1987.[3] C. J. Cheney. A nonrecursive list compacting algo-rithm. Communications of the ACM, 13(11):677{678, November 1970.[4] E. C. Cooper and J. G. Morrisett. Adding threadsto Standard ML. Technical Report CMU-CS-90-186, School of Computer Science, Carnegie MellonUniversity, December 1990.[5] P. Cousot and R. Cousot. Abstract interpreta-tion: A uni�ed lattice model for static analysis of

programs by construction or approximation of �x-points. In Symposium on Principles of Program-ming Languages, pages 238{252. Association forComputing Machinery, 1977.[6] S. K. Debray, N-W. Lin, and M. Hermenegildo.Task granularity analysis in logic programs. InConference on Programming Language Design andImplementation, pages 174{188, June 1990.[7] V. Dornic, P. Jouvelot, and D. K. Gi�ord. Poly-morphic time systems for estimating program com-plexity. ACM Letters on Programming Languagesand Systems, 1(1):33{45, March 1992.[8] R. R. Fenichel and J. C. Yochelson. A Lispgarbage-collector for virtual memory computer sys-tems. Communications of the ACM, 12(11):611{612, November 1969.[9] C. N. Fischer. Crafting a Compiler. Benjamin-Cummings, 1988.[10] R. P. Gabriel and J. McCarthy. Queue-based multi-processing Lisp. In Lisp and Functional Program-ming, pages 25{44. Association for Computing Ma-chinery, August 1984.[11] R. Goldman and R. P. Gabriel. Qlisp: Ex-perience and new directions. In Proceedingsof ACM/SIGPLAN PPEALS 1988 (Parallel Pro-gramming: Experience with Applications, Lan-guages and Systems), pages 111{123, July 1988.[12] S. L. Gray. Using futures to exploit parallelism inLisp. Master's thesis, MIT, February 1986.[13] R. H. Halstead, Jr. Multilisp: A language for con-current symbolic computation. ACM Transactionson Programming Languages and Systems, 7(4):501{538, 1985.[14] R. H. Halstead, Jr. An assessment of Multilisp:Lessons from experience. International Journal ofParallel Programming, 15(6):459{501, 1986.[15] W. L. Harrison and D. A. Padua. PARCEL:Project for the automatic restructuring and concur-rent evaluation of lisp. In International Conferenceon Supercomputing, pages 527{538, July 1988.[16] L. Huelsbergen. Dynamic Language Parallelization.PhD thesis, University of Wisconsin{Madison, Au-gust 1993.[17] L. Huelsbergen and J. R. Larus. Dynamic programparallelization. In Lisp and Functional Program-ming, pages 311{323. Association for ComputingMachinery, June 1992.[18] L. S. Hunt. Abstract Interpretation of FunctionalLanguages: From Theory to Practice. PhD thesis,Department of Computing, Imperial College of Sci-ence, Technology and Medicine, University of Lon-don, 1991.[19] D. Le M�etayer. ACE: An automatic complex-ity evaluator. ACM Transactions on ProgrammingLanguages and Systems, 10(2):248{266, April 1988.

[20] E. Mohr. Dynamic Partitioning of Parallel LispPrograms. PhD thesis, Yale University, August1991.[21] E. Mohr, D. Kranz, and R. H. Halstead, Jr. Lazytask creation: A technique for increasing the gran-ularity of parallel programs. In Lisp and FunctionalProgramming, pages 185{197. Association for Com-puting Machinery, June 1990.[22] J. G. Morrisett and A. Tolmach. Procs and locks:A portable multiprocessing platform for StandardML of New Jersey. In Principles and Practice ofParallel Programming, pages 198{207. Associationfor Computing Machinery, May 1993.[23] J. D. Pehoushek and J. S. Weening. Low-costprocess creation and dynamic partioning in Qlisp.In US/Japan Workshop on Parallel Lisp, pages183{199. Lecture Notes in Computer Science, June1989.[24] G. D. Plotkin. Call-by-name, call-by-value, and the�-calculus. Theoretical Computer Science, 1:125{159, 1975.[25] B. Reistad and D. Gi�ord. Static dependent costsfor estimating execution time. In Lisp and Func-tional Programming. Association for ComputingMachinery, June 1994.[26] J. C. Reynolds. GEDANKEN|a simple typelesslanguage based on the principle of completenessand the reference concept. Communications of theACM, 13(5):308{319, 1970.[27] D. Sands. Complexity analysis for a lazy higher-order language. In ESOP, pages 361{376. LectureNotes in Computer Science, May 1990.[28] D. Tarditi, A. Acharya, and P. Lee. No assemblyrequired: Compiling Standard ML to C. TechnicalReport CMU-CS-90-187, School of Computer Sci-ence, Carnegie Mellon University, November 1990.[29] M. Tofte. Operational Semantics and Polymor-phic Type Inference. PhD thesis, University of Ed-inburgh, Department of Computer Science, May1988.[30] M. T. Vandevoorde and E. S. Roberts. WorkCrews:An abstraction for controlling parallelism. Interna-tional Journal of Parallel Programming, 17(4):347{366, 1988.[31] P. L. Wadler. Strictness analysis aids time analysis.In Symposium on Principles of Programming Lan-guages, pages 119{132. Association for ComputingMachinery, January 1988.[32] B. Wegbreit. Mechanical program analysis. Com-munications of the ACM, 18(9):528{539, Septem-ber 1975.

