A Development Environment for Horizontal Microcode Programs

Alexander Aiken* Alexandru Nicolau!

Department of Computer Science
Cornell University
Ithaca, NY 14853

Abstract

This paper describes a development environment for horizontal microcode. The environ-
ment uses Percolation Scheduling, a transformational system for parallelism extraction, and
an interactive profiling system to give the user control over the microcode compaction process
while reducing the burdensome details of architecture, correctness-preservation, and synchro-
nization. Through a graphical interface the user suggests what should be done in parallel,
while the system performs the actual changes using semantics-preserving transformations. If
a request cannot be satisfied, the system reports the problem causing the failure. The user
may then help eliminate the problem by supplying guidance or information not explicit in the
code.

1 Introduction

This paper describes a development environment for microprograms. The environment consists
of a system of parallelizing transformations, an interactive profiler and a graphical interface. The
components of the system, their use, and current and future work will be discussed.

Our ultimate goal is to have a compiler generate better code than human experts. However,
due to the complexity of the code-generation problems, the compiler must rely on heuristics
which sometimes fail to produce optimal or nearly optimal code. Furthermore, the human user
will usually have at his disposal a vast amount of knowledge about the problem he is attempting to
code and thus may be able to make decisions based on information not available to the compiler.
For example, it may be obvious to the programmer that a certain variable can only take positive
values without that information being explicit in the actual code. The support environment
we are building is designed to allow the user to control the compaction process and provide an
integrated interface through which additional information that may assist in the optimization
process can be supplied. In our system, the role of the compiler is to extract most of the easily
achievable parallelism. While this may sometimes suffice, the user may wish to fine-tune the code
for better performance. The other components of the system, the profiler and graphical interface,
are being designed to support this activity.

The environment is geared towards mapping programs written in a high-level language onto
horizontal microengines. A first version of our environment will generate code for the current
IBM/FPS-264 Production Supercomputer, part of the NSF Supercomputing Center at Cornell.

“This work is supported in part by the Cornell NSF Supercomputing Center.
"This work is supported in part by NSF grant DCR-8502884 and the Cornell NSF Supercomputing Center.

Existing high-level language compilers for parallel machines do not provide the needed sup-
port for exploiting parallelism in microcode. Important advances in parallelizing ordinary code
have been achieved [1], [4], [9]. Interesting work has also been done in the development of envi-
ronments for supporting parallel computation [5],[15]. However, this work has dealt with coarse
grained parallelism and has provided support in configuring pre-optimized modules into coherent
concurrent systems. Because the parallelism-extraction of current compilers is too coarse, expert
humans are generally much better at microcode compaction than any available system. Thus, in
practice, microcode is still compacted by hand when speed is critical. We are proposing a system
that supports semi-automatic extraction of fine and coarse grained parallelism in a uniform en-
vironment in which the user provides directions which the system attempts to instantiate. Our
system preserves the semantics of the original program throughout the parallelization process
while automating the analysis and the mundane aspects of parallelization. The system will also
incorporate expert knowledge about the specific parallel machine for which code is generated,
freeing the user of the necessity to be intimately familiar with low-level details. Using this envi-
ronment we hope to achieve code quality comparable or even superior to that achieved by expert
hand-coding in much less time.

At the heart of our environment is Percolation Scheduling (PS), which developed out of our
experience with Trace Scheduling in the ELI project at Yale[3]. PS is a system of semantics-
preserving transformations that convert an original program graph (control-flow graph) into a
more parallel one. PS globally rearranges code in an attempt to exploit parallelism. Its core
consists of a small set of primitive program transformations defined in terms of adjacent nodes
in a program graph. These transformations are easy to understand and implement. Furthermore,
they are atomic and thus can be combined with a variety of guidance rules to direct the opti-
mization process. Above this core level are guidance rules and transformations which extend the
applicability of the core transformations to exploit coarser parallelism.

Aided by the higher levels of the hierarchy, the core transformations operate uniformly on
an entire program graph. They can also be applied to partially compacted code. This allows
modification of code produced by other types of compilers. In addition, these transformations
are themselves highly parallel and could be run on a parallel machine, significantly reducing
compilation time.

2 Architectures

Several existing architectures could benefit from the use of our environment. Horizontal mi-
croengines are the most obvious. Even non-parallel architectures such as vertical lookahead
(pipelined) machines could benefit by simply using the large numbers of sequential operations
clustered together by percolation scheduling to efficiently fill pipelines. Hardware to handle mul-
tiple conditional-jumps can also be effectively exploited by Percolation Scheduling. The design
of such an architecture and its advantages are described in [7].

Also suited to take advantage of our system are data-flow microengines [14]. Traditionally, it
has been claimed that dataflow architectures require very little compile-time analysis. However,
from a pragmatic point of view, this lack of compile-time effort will impose a very heavy burden
in terms of communication and synchronization costs, and may lead to extremely inefficient use

! The ability of the system to keep track of the complex low-level details (e.g. data-dependencies and architectural
details) may give it an edge over expert human users working without such support.

of memory and resources [6]. We believe that the environment described in this paper could be
put to good use in this context. Through PS transformations a correct partial ordering for the
issuing of operations can be obtained at compile time and a reasonable partitioning of the program
and data between the various functional units could be achieved. This could significantly reduce
runtime communication and synchronization needs as well as the lengths of queues of waiting
operations. Furthermore, the atomic nature of the core transformations and their independence
makes PS attractive for both compilation for and running on data-flow machines.

Statically scheduled multiprocessors such as the FPS-264, FPS-164, Mars 432, and the ELI-
512 could also benefit from the use of the proposed environment and techniques.

3 The Core of PS

The core transformations are easy to understand and implement, and are independent of any
heuristics. They are the lowest layer in the hierarchy of transformations and guidance rules that
together form Percolation Scheduling. Higher levels of this hierarchy direct the core transforma-
tions and rearrange the program graph to allow more code motion by the core transformations.
Aided by the other levels, the core transformations operate uniformly and can be applied to
partially parallelized code, allowing PS to improve code produced by other compilers.

The following is an overview of the PS hierarchy and the work we have completed. In these
sections, the term node (in a program graph) refers to a microinstruction. An operation is
a component of some microinstruction. In our examples, we use lower case letters to denote
operations and capital letters for nodes. A formal description of the model of computation as
well as proofs of correctness of the core transformations can be found in [13].

Four primitive transformations form the core of PS. They are defined in terms of adjacent
nodes in a program graph. Repeatedly applying the transformations allows operations to “perco-
late” (move towards the top of the program-graph) from the various parts of the program graph
towards the start node; hence the name Percolation Scheduling. As PS is used on a program
graph, operations will be packed together in nodes, yielding more efficient microcode.

The details of the transformations deal with maintaining the integrity of all affected paths. A
brief description of each transformation is given below. Rigorous definitions can be found in [13].

3.1 Delete Transformation

A node in the program graph can be removed by the Delete transformation when the node has
no components (i.e., it contains no executable operations). Nodes without any components may
occur as a result of the other transformations or as part of the original program graph. Since
they do not affect the execution semantics of the program in any way, such nodes may be deleted,
provided the outgoing edges of their predecessors are reset to point to the successor of the deleted
node. This will preserve the semantics of the original program. An illustration is given in figure 1.

3.2 Move-op Transformation

This transformation moves an operation that does not affect the control-flow up from node N to
node M, through edge (M, N), provided no data-dependency exists between operations in M and
the operation being moved. In performing the movement, care must be taken not to affect the

Figure 1: Delete Transformation

Figure 2: Move-op Transformation

computation of paths passing only through N but not through M. To ensure this, these paths
are split and provided with a copy of the original N. An illustration is given in figure 2.

3.3 Move-cj Transformation

This transformation moves a conditional-jump operation up from node N to node M through an
edge (M, N), provided that no dependency exists between M and the component being moved.
In performing the movement, care must be taken not to affect paths passing only through N
but not through M. To ensure this, the paths are split and a copy of N (called N’ in figure 3)
is provided. Since we allow an arbitrary rooted DAG of conditional-jumps in a node, and the
conditional-jump being moved may come from an arbitrary spot in that DAG, N will be split
into N and N”, to correspond to the true and false branches of the moving conditional-jump.
The details of the splitting and a proof that the transformation indeed preserves the semantic
correctness of the original program is beyond the scope of this paper and can be found together
with proofs of correctness and termination in [13]. An illustration of the transformation is given
in figure 3. A detailed description of a hardware mechanism that efficiently implements general
conditional-jump DAGs of the type supported by PS is found in [7]. While a multiway jump
mechanism will take full advantage of the power of PS, it is not required for the use of our
system. Our environment can be used to generate good code for any horizontal architecture.

Figure 3: Move-cj Transformation

Figure 4: Unification Transformation

3.4 Unification Transformation

This transformation moves a unique copy of identical operations from a set of nodes { Nog, N1, Na, ...}
to a predecessor node M. This is done only when no dependency exists between M and the com-
ponent being moved and when paths (M, N;) exist for all nodes in the set. In performing the
code motion, care must be taken not to affect paths going through the N;’s but not through M

- as usual, splitting and copying is used. An illustration is given in figure 4.

3.5 Inverse Transformations

Functional inverses of the core transformations can be defined. The formulation is straightfor-
ward for the delete, move-op, and unification transformations. The conditions under which a
conditional can be moved from a node NN to a successor node M are somewhat more complex
and are not presented in this paper.

The inverse transformations are useful in situations where it is necessary to undo a trans-
formation. Such situations arise because an operation ¢ can “percolate” to a node where it
prevents another operation j from moving that could otherwise move. If at some point it would
be more advantageous to move j rather than ¢ then ¢ must be moved (via a sequence of inverse
transformations) to a point where it no longer blocks j.

4 Beyond the Core Transformations

The core transformations are very low-level. Even for small examples the number of transforma-
tions necessary to compact the graph of a microprogram is considerable; it would simply be too
tedious for a user to issue them one at a time. What is required is a set of higher-level transfor-
mations; however, we would like to maintain as much uniformity in the system as possible. Our
solution has been to group our transformations into two levels: scheduling transformations built
on the core transformations that actually compact the program graph, and enabling transforma-
tions, which rearrange the program graph to expose parallelism.

4.1 Scheduling Transformations

A simple transformation that we have implemented in the environment, called move-path, takes
as its arguments a source node A, an operation i, and a destination node B. Move-path then
generates a sequence of core transformations that will move operation ¢ from A to B if semantic
correctness is not violated by the move. If a potential data dependency violation is discovered,
the operation is moved as far as possible and the conflict is reported to the user. The only other
restriction on mowve-path is that the path between the two instructions be unique.

A more powerful transformation is migrate. Migrate takes an operation and a node as its
arguments, and then moves the operation as far “up” in the graph as dependencies allow. This
includes moving any copies of the operation that are created in the process. We wish, naturally,
to perform a unification whenever possible. Opportunities for unification arise when an operation
is copied on different paths, perhaps several times, and then at least some of the copies can be
moved to the point where the paths rejoin. For example, in figure 5, assume that statements i
and j can move on all paths above node A. It would be unfortunate to miss a unification here. In
the case of statement ¢ unnecessary copies of the operation would be left in the program, wasting
space and consuming resources in the final code. Operation j cannot even be moved into nodes A
and C' unless unifications are performed because of data dependency conflicts with other copies
of 7.

Let i denote the operation we wish to move, and let I(¢) denote the set of all copies of 4 in the
program graph at time t. We define the function node(j) to be the node containing operation j.
Finally, we assume for the moment that the program graph is acyclic.

It is easy to show that any algorithm which satisfies the following two conditions will perform
all possible unifications:

1. Let ¢ be the time at which the algorithm terminates. Then there is no j in I(¢) such that j
can be moved from node(j) to any predecessor of node(j).

2. Let reach(Y') denote the graph of all nodes reachable from a node Y. If j is moved from
node(j) to some predecessor X of node(j) at time ¢, then the operation is a unification and
there is no & in I(¢) such that node(k) is in reach(X) and & can move to some predecessor
of node(k) in reach(X).

Figure 6 gives a high-level description of migrate.

The restriction of migrate to acyclic graphs is not acceptable. Fortunately, there is a simple
extension which works for reducible graphs as well. The problem with loops is that operations
inside a loop body cannot be removed from the loop by the core transformations alone - when-
ever an operation is moved outside of the loop the node will be copied on the backedge. To
overcome this, we combine migrate with standard techniques to remove loop invariant code. The
modifications to migrate are (with some special cases omitted for clarity):

1. An operation which is initially in a loop L cannot move past the first node of L.

2. Let ¢ be an operation which is initially outside of a loop L and during the course of the
algorithm moves into L. If 7 is loop invariant with respect to L it is removed from L and
inserted immediately before the entry point to L. If ¢ is not loop invariant, then it is not
permitted to move into L.

Figure 5: Unification Example

Figure 6: Migrate Transformation

The first condition prevents operations initially in a loop body from being moved indefinitely
around the backedge of the loop. We assume that all such operations cannot be moved outside
of the innermost loop containing them. In our system, loop invariant code removal is used as a
pre-processing step. Condition two prevents operations from moving into loops from which they
cannot subsequently be removed. This avoids lengthening loop bodies unnecessarily.

Because conditionals are never unified, a much simplified version of migrate can be written
for conditional jumps.

We have also developed transformations that attempt to compact the entire program graph.
The need for such transformations is clear; it is unlikely that a user will wish or even need to
manually apply transformations to the entire program graph. Instead, critical sections of code
can be optimized, or simply transformed to expose parallelism, and then global heuristics can be
applied to the graph to obtain a good schedule.

Compact-blocks is one such strategy that we have implemented. The idea is very simple:
within each single-entry single-exit block of code perform as much compaction as possible. No
unifications are performed and no instructions are copied. It is well-known that the speed-up
achievable by exploiting parallelism within basic blocks is small [11]. In fact, compact-blocks is
intended for use primarily as a first step in the compaction process. Its application can reduce
the number of nodes in the graph considerably without moving any operation to a point where
it blocks (due to a data dependency) an operation that would otherwise have been able to move.

Another global heuristic is compact-path. Compact-path only moves operations on the “most-
important” path in a program. We assume that for each conditional ;7 we have two real numbers
true(j) and false(j) representing the probabilities that the true branch of j and the false branch of
7 will be followed respectively. In many cases such analysis can be performed automatically with
good results [11]. We can extend this idea to a DAG of conditionals, where the probability that a
certain path will be selected through the DAG is the product of the probabilities for the edges on
the path. In the algorithm for compact-path (see figure 7) p(X,Y’) denotes the probability that
program execution will continue with node Y after the execution of node X.

Figure 7: Compact-path Transformation

Figure 8: The operation cannot move unless a unification is performed.

In our system the user has the option of selecting the path for compact-path. For a typical
program, we envision that the user would first explicitly select the critical paths through the code
for optimization. The system could then select and compact less important paths automatically.

It is interesting to note that compact-path alone is strictly more powerful than the technique
of trace-scheduling developed in the ELI project at Yale [4]. Trace-scheduling also selects the
“important” path (or “trace”) through the program and compacts it. However, trace-scheduling
does not perform unifications. Figure 8 provides an (admittedly trivial) example for which trying
to compact a single trace without unification results in no improvement. Another advantage is
the tendency of unifications to minimize code explosion. Trace-scheduling introduces code at the
entry and exit points of the trace to preserve semantics. When subsequent paths are selected
for compaction, this fix-up code cannot move back onto the original trace. With compact-path
there is some chance that copied instructions can be subsequently unified, thus limiting the size
of the final code. This can be a major advantage in microcode compaction when the size of the
available microstore is small.

4.2 Enabling Transformations

This level provides transformations of the program graph that rely on global information and thus
could not be accomplished by the core transformations. The purpose of these transformations is

10

Figure 9: An example of variable renaming

primarily to expose parallelism that will subsequently be exploited by the core transformations.

A typical example of an enabling transformation is variable renaming. The judicious choice of
new variable names can often remove dependencies between statements. In 9, renaming variable
a in operations k£ and [allows the core transformations to compact this section of code.

The cycle-breaking transformation guides the application of the core transformations to loops.
Intuitively, cycle-breaking “breaks” a loop by picking an edge e across which no operation may
move. The loop is shifted so that e becomes the backedge (this requires introducing fix-up code
immediately before the loop). The point where a cycle is broken is chosen to minimize the
lengths of dependency chains in the resulting loop. The loop body can then be compacted as a
straight-line piece of code by the core transformations.

The primary loop optimization tool used in the environment is loop quantization, a technique
for unrolling multiple loops to expose parallelism [12]. Quantization is used to expose parallelism
across several iterations of nested loops. This is important for good compaction, since the paral-
lelism may not be found in the innermost loop. The techniques of the previous section can then
be used to compact the resulting loop. Tree height reduction techniques [8] are very useful in
conjunction with quantization. Quantization applies to non-linear as well as linear recurrences; in
fact, quantization is limited only by the degree to which indirect references can be disambiguated.

The basic idea of loop quantization is to unwind a few iterations of all nested loops. The
unwindings chosen should maximize parallelism exposed (i.e., minimize the lengths of dependency
chains). However, care must be taken not to alter the order of data-dependent statements. To
quantize n nested loops with loop indices Iy, Is, ..., I, loop 7 is unwound k; times by duplicating
the loop body k; times. In the first duplication of the original body the index I; is unchanged;
in the second, each occurrence of I; is replaced with I; + 1, and so on, up to I; — k; — 1. This
procedure is repeated for each nested loop, proceeding from the innermost to the outermost. This
is equivalent to unwinding all the nested loops fully when their upper bounds are ki,..., k.

When multiple loops are unwound, an iteration of the loop involves executing an n—dimensional
box B of size k1 X ko X ... X k. All statements in B are executed before the box is shifted (by

11

a “quantum jump”) along any of the dimensions. The movement along the n dimensions, while
quantized, is in normal loop order. The conditions under which a quantization preserves correct-
ness can be found in [12].

We have recently discovered and implemented an algorithm which solves the following quan-
tization problem: given a set of n nested loops, what is the greatest unrolling of every loop for
which correctness is preserved and all unrolled iterations are independent? While this will not
in general be the best quantization, the computation can be done without any explicit unrolling,
thus avoiding the problem of code explosion. Because the iterations in the quantized loop are in-
dependent, we can represent the final loop as the original loop body and a vector < i1,%2,...,0, >,
where ; is the number of times loop j is unwound.

4.3 Other Levels

In the General Support layer data dependencies are found and recorded. Memory disambiguation
and enhanced flow analysis methods [10] increase the accuracy of data dependencies and permit
more code motions. Traditional optimizations, such as dead code removal, are also used at this
level.

A profiler is being incorporated into the system to provide assistance in the optimization
process. The profiler can be used in two modes. First, the program can be run on “typical” data
and statistics (e.g., the frequency of execution of blocks of code, frequency of data-dependencies
between indirect memory references, and structure sizes) can be gathered automatically. Al-
ternatively, if such exploratory runs are unrepresentative or too expensive to perform without
parallelization, an interactive mode can be used. The system then uses micro-analysis [2] to eval-
uate the time complexity of the program and to identify “hot-spots” with the user (or the system,
for some obvious situations) supplying estimates of the above statistics. As the user improves the
code the profiler must dynamically update its estimates. Accurate updating is non-trivial, as it
involves knowledge of the target machine and its influence on the running time of the compacted
code.

The transformations described above expose the parallelism available and provide a partial
ordering on the issue of operations. The transformed graph can be viewed as the code for an
idealized machine in which no resource conflicts ever occur. Obviously this ideal is unrealizable,
and can only serve as a bound on the effectiveness of the transformations. To execute the resulting
code on realistic architectures, we need a mechanism to convert the ideal schedule to a schedule
that recognizes resource limitations. Unfortunately, even for simple architectural models finding
an optimal schedule is NP-hard.

We are currently implementing the Mapping Layer to cope with this problem. At the heart of
this level is a description of the microengine for which code is to be generated. The description is
stored in tabular form, and can be easily modified by the user to match a particular microengine
architecture.

The two major extensions of the environment that are included in the Mapping Layer are the
addition of resource constraints and the elimination of the assumption that all operations require
one cycle to execute. Under the heading of resources falls anything that is required to execute an
operation: bus lines, registers, functional units, etc. An operation is not allowed to move into a
node if adding that operation would result in the node requiring more resources than the machine
has available to it.

Dealing with variable length operations requires changes in the definitions of the core trans-

12

Figure 10: A pipelining example.

formations. Besides the constraints already stated, now an operation ¢ can only move when there
are no conflicts with operations it overlaps in time. This is accomplished by searching a region in
the neighborhood of the affected node for operations that may conflict with . We store the struc-
ture of the life-cycle for each type of operation - the number of cycles after issue required before
loads, arithmetic operations, writes, etc., can be performed. Let m be the length (in cycles) of
the longest operation. When operation ¢ is moved, the structure information is used to compare
i with all other operations within m cycles on all paths reachable from and reaching to node(i).
If any stage of another operation overlaps a stage of ¢ in such a way that data dependencies
are violated, the transformation is not performed. An example of move-op with stages of the
instructions displayed is given in figure 10.

The Mapping Layer will be transparent; the user will still deal with the high-level representa-
tion of the program, and may rely on heuristics (e.g., list scheduling [4]) built into the system to
perform the mapping of the program to hardware. However, the user may wish to control resource
allocation and operation pipelining directly. To allow for this, operations can be expanded in the
environment to explicitly display operation stages in the program graph.

Including resource constraints and variable length operations greatly complicates the condi-

13

tions under which a transformation is allowed. Fortunately, these checks can be done automati-
cally and efficiently. In current systems, the user has to either accept suboptimal results or the
microcode compaction has to be done by hand with no automatic support. This is, at best, a
tedious and error-prone process. The use of an environment to assist in the parallelization process
would greatly reduce the time and effort required to optimize a program and, and probably lead
to better code.

5 Implementation

The guiding counsideration in implementing the system was that the user’s view should be kept
as high-level and abstract as possible. In interacting with the system the user only deals with an
abstract model of computation [13] that provides access to fine-grained parallelism without the
burden of architectural, semantics-preservation, and synchronization details.

The environment actually resides on two machines, a Vax 11/780 and a Xerox Dandelion
workstation. All of the code is written either in Franz Lisp (on the Vax) or Interlisp (on the
Dandelion). Lisp was selected for its robust environment of system functions and debugging
tools. The initial compilation and all transformations are executed on the Vax. The workstation
serves primarily to display the program graph and profiler information and to accept user input.

The system was placed on two machines so that we could take advantage of the graphics
capabilities of the Dandelion. Nearly all user commands are issued with the Dandelion’s mouse.
A typical sequence might be to click on an operation, select “Move” from a menu of options, and
then click on a destination node. The environment would then try to move the operation to the
destination node using the move-path transformation.

6 Sample Use of the Environment

This section illustrates the transformations achievable in our environment. The transformations
involved are relatively simple; their application under user control serves just to illustrate a
possible mode of interaction with the environment, and roughly corresponds to its capabilities
to date. A detailed description of the process would require a more thorough discussion of the
techniques than is possible in the context of this paper. For simplicity, we assume unit time
execution for all operations and no resource conflicts.

Consider the sample program in figure 11 (Livermore Loop 24). Figure 12 shows the result
of unwinding the loop three times (achieved by the “unwind” command). Several standard
optimizations (e.g., renaming of index variables, constant-folding) have also been performed by
the system at this point.

The user may then specify the point at which the loop is to be broken (cycle-breaking transfor-
mation). In this example, the user elects to leave the loop body as it is. After one application of
compact-path (the path consists of all true branches) most of the compaction has been performed.
At this point all that remains to be done is dead-code removal and a few invocations of migrate
to bunch conditional jumps together.

The resulting code is shown in figure 13. We have omitted many details in this example.
For example, migrate has used several simple algebraic enabling transformations; in operation
10, R; was substituted for Rg as a result of operation 10 moving above operation 6. Similarly,
flow-analysis and peephole optimizations removed redundant memory fetches, while dead-code

14

Figure 11: Sample original program.

Figure 12: Partially transformed code.

15

Figure 13: Final transformed code.

removal eliminated redundant assignments to m. Automatic disambiguation of indirect refer-
ences was successful in removing spurious dependencies in this example; otherwise, some of the
motions involving indirect references would have appeared illegal to the system which would have
complained and requested help.

While the transformations were controlled at a relatively low level, the user did not deal with
actual hardware. The code in figure 13 is just an “abstract parallel” schedule. The actual mapping
to hardware will be done by the system. Nevertheless, the user’s choices can be guided by the
system, since PS transformations, the profiler, and the dependency-chain analyzer may be forced
to take into account machine restrictions (e.g., instruction times, resource availability). Thus the
schedule obtained could map well onto the hardware, without the user being intimately familiar
with the architecture. As our work progresses, we will integrate higher level transformations into
the system. For example, the user will be able to specify code motions in terms of the high-level
language statements and constructs.

The speedup achieved even for this simple example is a factor of 4 assuming the hardware
supports a multiway jump mechanism, or 2.3 otherwise. If hardware restrictions permitted, this
could be further increased by additional unwinding and compaction.

7 Conclusions

We have described a tool for the interactive extraction of fine-grain parallelism from ordinary
code. As our work progresses we expect to further automate the parallelization process, by
integrating more expertise into the guidance layer of PS and into a machine-specific mapping
layer.

References

[1] J. R. Allen and K. Kennedy. PFC: a program to convert Fortran to Parallel form.

16

[10]

[11]

[12]

[13]

[14]

[15]

Rice University Technical Report MASC TR 82-6, (1982).

J.Cohen. Computer-assisted microanalysis of programs. Communications of the

ACM 25, 10, 00. 724-733, (1982)

J.A Fisher, J.R.Ellis, J.C.Ruttenberg and A.Nicolau. Parallel Processing: A Smart
Compiler and a Dumb Machine. Proc. of the ACM Symposium on Compiler Con-
struction, (1984).

J.A.Fisher. Trace scheduling: A technique for global microcode compaction. IEEE
Transactions on Computers, Number 7, pp. 478-490 1981.

R.T.Hood and K.Kennedy. A Programming Environment for Fortran. Rice Univer-
sity Technical Report COMP TR 84-1, (1984).

D.D.Gajski, D.A.Padua, D.J.Kuck and R.H.Kuhn A Second Opinion on Data-Flow
Machines and Languages. IEEE Computer, Vol. 15, No. 2, (1982).

K.Karplus and A.Nicolau. Getting High Performance with Slow Memory. Proceed-
ings of the 18th Annual Workshop on Microprogramming, Asilomar, CA, December
1985.

D.J.Kuck. Parallel Processing of Ordinary Programs. In Advances in Computers,
Vol. 15, pp. 119-179, (1976).

D.Kuck, R.Kuhn, D.Padua, B.Leasure and M.Wolfe. Dependence Graphs and Com-
piler Optimizations. Proceedings of POPL 81, ACM, pp. 207-218 (1981).

A Nicolau. Parallelism, Memory Anti-Aliasing and Correctness for Trace Scheduling
Compilers. Yale University Ph.D. Thesis, (1984).

A Nicolau and J.Fisher. Measuring the Parallelism Awvailable for Very Long Instruc-
tion Word Architectures IEEE Transactions on Computers, Number 11, pp. 968-76
1984.

A Nicolau. Loop Quantization, or Unwinding Done Right. Cornell University, Dept.
of Computer Science Technical Report, (1984).

A Nicolau. Percolation Scheduling: A Parallel Compilation Technique. Cornell Uni-
versity, Dept. of Computer Science Technical Report, (1984).

Y.N.Patt, W.Hwu, and M.C.Shebanow. HPS, A New Microarchitecture: Rationale
and Introduction. Proceedings of the 18th Annual Workshop on Microprogramming,
Asilomar, Ca, December 1985.

L.Snyder. Introduction to the Poker Parallel Programming Environment. Purdue
University Technical Report CSD-TR-432, (1983).

17

