
A Development Environment for Horizontal Mi
ro
ode ProgramsAlexander Aiken� Alexandru Ni
olauyDepartment of Computer S
ien
eCornell UniversityItha
a, NY 14853Abstra
tThis paper des
ribes a development environment for horizontal mi
ro
ode. The environ-ment uses Per
olation S
heduling, a transformational system for parallelism extra
tion, andan intera
tive pro�ling system to give the user 
ontrol over the mi
ro
ode 
ompa
tion pro
esswhile redu
ing the burdensome details of ar
hite
ture, 
orre
tness-preservation, and syn
hro-nization. Through a graphi
al interfa
e the user suggests what should be done in parallel,while the system performs the a
tual 
hanges using semanti
s-preserving transformations. Ifa request 
annot be satis�ed, the system reports the problem 
ausing the failure. The usermay then help eliminate the problem by supplying guidan
e or information not expli
it in the
ode.1 Introdu
tionThis paper des
ribes a development environment for mi
roprograms. The environment 
onsistsof a system of parallelizing transformations, an intera
tive pro�ler and a graphi
al interfa
e. The
omponents of the system, their use, and 
urrent and future work will be dis
ussed.Our ultimate goal is to have a 
ompiler generate better 
ode than human experts. However,due to the 
omplexity of the 
ode-generation problems, the 
ompiler must rely on heuristi
swhi
h sometimes fail to produ
e optimal or nearly optimal 
ode. Furthermore, the human userwill usually have at his disposal a vast amount of knowledge about the problem he is attempting to
ode and thus may be able to make de
isions based on information not available to the 
ompiler.For example, it may be obvious to the programmer that a 
ertain variable 
an only take positivevalues without that information being expli
it in the a
tual 
ode. The support environmentwe are building is designed to allow the user to 
ontrol the 
ompa
tion pro
ess and provide anintegrated interfa
e through whi
h additional information that may assist in the optimizationpro
ess 
an be supplied. In our system, the role of the 
ompiler is to extra
t most of the easilya
hievable parallelism. While this may sometimes suÆ
e, the user may wish to �ne-tune the 
odefor better performan
e. The other 
omponents of the system, the pro�ler and graphi
al interfa
e,are being designed to support this a
tivity.The environment is geared towards mapping programs written in a high-level language ontohorizontal mi
roengines. A �rst version of our environment will generate 
ode for the 
urrentIBM/FPS-264 Produ
tion Super
omputer, part of the NSF Super
omputing Center at Cornell.�This work is supported in part by the Cornell NSF Super
omputing Center.yThis work is supported in part by NSF grant DCR-8502884 and the Cornell NSF Super
omputing Center.1



Existing high-level language 
ompilers for parallel ma
hines do not provide the needed sup-port for exploiting parallelism in mi
ro
ode. Important advan
es in parallelizing ordinary 
odehave been a
hieved [1℄, [4℄, [9℄. Interesting work has also been done in the development of envi-ronments for supporting parallel 
omputation [5℄,[15℄. However, this work has dealt with 
oarsegrained parallelism and has provided support in 
on�guring pre-optimized modules into 
oherent
on
urrent systems. Be
ause the parallelism-extra
tion of 
urrent 
ompilers is too 
oarse, experthumans are generally mu
h better at mi
ro
ode 
ompa
tion than any available system. Thus, inpra
ti
e, mi
ro
ode is still 
ompa
ted by hand when speed is 
riti
al. We are proposing a systemthat supports semi-automati
 extra
tion of �ne and 
oarse grained parallelism in a uniform en-vironment in whi
h the user provides dire
tions whi
h the system attempts to instantiate. Oursystem preserves the semanti
s of the original program throughout the parallelization pro
esswhile automating the analysis and the mundane aspe
ts of parallelization. The system will alsoin
orporate expert knowledge about the spe
i�
 parallel ma
hine for whi
h 
ode is generated,freeing the user of the ne
essity to be intimately familiar with low-level details. Using this envi-ronment we hope to a
hieve 
ode quality 
omparable or even superior to that a
hieved by experthand-
oding in mu
h less time.1At the heart of our environment is Per
olation S
heduling (PS), whi
h developed out of ourexperien
e with Tra
e S
heduling in the ELI proje
t at Yale[3℄. PS is a system of semanti
s-preserving transformations that 
onvert an original program graph (
ontrol-
ow graph) into amore parallel one. PS globally rearranges 
ode in an attempt to exploit parallelism. Its 
ore
onsists of a small set of primitive program transformations de�ned in terms of adja
ent nodesin a program graph. These transformations are easy to understand and implement. Furthermore,they are atomi
 and thus 
an be 
ombined with a variety of guidan
e rules to dire
t the opti-mization pro
ess. Above this 
ore level are guidan
e rules and transformations whi
h extend theappli
ability of the 
ore transformations to exploit 
oarser parallelism.Aided by the higher levels of the hierar
hy, the 
ore transformations operate uniformly onan entire program graph. They 
an also be applied to partially 
ompa
ted 
ode. This allowsmodi�
ation of 
ode produ
ed by other types of 
ompilers. In addition, these transformationsare themselves highly parallel and 
ould be run on a parallel ma
hine, signi�
antly redu
ing
ompilation time.2 Ar
hite
turesSeveral existing ar
hite
tures 
ould bene�t from the use of our environment. Horizontal mi-
roengines are the most obvious. Even non-parallel ar
hite
tures su
h as verti
al lookahead(pipelined) ma
hines 
ould bene�t by simply using the large numbers of sequential operations
lustered together by per
olation s
heduling to eÆ
iently �ll pipelines. Hardware to handle mul-tiple 
onditional-jumps 
an also be e�e
tively exploited by Per
olation S
heduling. The designof su
h an ar
hite
ture and its advantages are des
ribed in [7℄.Also suited to take advantage of our system are data-
ow mi
roengines [14℄. Traditionally, ithas been 
laimed that data
ow ar
hite
tures require very little 
ompile-time analysis. However,from a pragmati
 point of view, this la
k of 
ompile-time e�ort will impose a very heavy burdenin terms of 
ommuni
ation and syn
hronization 
osts, and may lead to extremely ineÆ
ient use1The ability of the system to keep tra
k of the 
omplex low-level details (e.g. data-dependen
ies and ar
hite
turaldetails) may give it an edge over expert human users working without su
h support.2



of memory and resour
es [6℄. We believe that the environment des
ribed in this paper 
ould beput to good use in this 
ontext. Through PS transformations a 
orre
t partial ordering for theissuing of operations 
an be obtained at 
ompile time and a reasonable partitioning of the programand data between the various fun
tional units 
ould be a
hieved. This 
ould signi�
antly redu
eruntime 
ommuni
ation and syn
hronization needs as well as the lengths of queues of waitingoperations. Furthermore, the atomi
 nature of the 
ore transformations and their independen
emakes PS attra
tive for both 
ompilation for and running on data-
ow ma
hines.Stati
ally s
heduled multipro
essors su
h as the FPS-264, FPS-164, Mars 432, and the ELI-512 
ould also bene�t from the use of the proposed environment and te
hniques.3 The Core of PSThe 
ore transformations are easy to understand and implement, and are independent of anyheuristi
s. They are the lowest layer in the hierar
hy of transformations and guidan
e rules thattogether form Per
olation S
heduling. Higher levels of this hierar
hy dire
t the 
ore transforma-tions and rearrange the program graph to allow more 
ode motion by the 
ore transformations.Aided by the other levels, the 
ore transformations operate uniformly and 
an be applied topartially parallelized 
ode, allowing PS to improve 
ode produ
ed by other 
ompilers.The following is an overview of the PS hierar
hy and the work we have 
ompleted. In thesese
tions, the term node (in a program graph) refers to a mi
roinstru
tion. An operation isa 
omponent of some mi
roinstru
tion. In our examples, we use lower 
ase letters to denoteoperations and 
apital letters for nodes. A formal des
ription of the model of 
omputation aswell as proofs of 
orre
tness of the 
ore transformations 
an be found in [13℄.Four primitive transformations form the 
ore of PS. They are de�ned in terms of adja
entnodes in a program graph. Repeatedly applying the transformations allows operations to \per
o-late" (move towards the top of the program-graph) from the various parts of the program graphtowards the start node; hen
e the name Per
olation S
heduling. As PS is used on a programgraph, operations will be pa
ked together in nodes, yielding more eÆ
ient mi
ro
ode.The details of the transformations deal with maintaining the integrity of all a�e
ted paths. Abrief des
ription of ea
h transformation is given below. Rigorous de�nitions 
an be found in [13℄.3.1 Delete TransformationA node in the program graph 
an be removed by the Delete transformation when the node hasno 
omponents (i.e., it 
ontains no exe
utable operations). Nodes without any 
omponents mayo

ur as a result of the other transformations or as part of the original program graph. Sin
ethey do not a�e
t the exe
ution semanti
s of the program in any way, su
h nodes may be deleted,provided the outgoing edges of their prede
essors are reset to point to the su

essor of the deletednode. This will preserve the semanti
s of the original program. An illustration is given in �gure 1.3.2 Move-op TransformationThis transformation moves an operation that does not a�e
t the 
ontrol-
ow up from node N tonodeM , through edge (M;N), provided no data-dependen
y exists between operations inM andthe operation being moved. In performing the movement, 
are must be taken not to a�e
t the3



Figure 1: Delete Transformation

Figure 2: Move-op Transformation
omputation of paths passing only through N but not through M . To ensure this, these pathsare split and provided with a 
opy of the original N . An illustration is given in �gure 2.3.3 Move-
j TransformationThis transformation moves a 
onditional-jump operation up from node N to node M through anedge (M;N), provided that no dependen
y exists between M and the 
omponent being moved.In performing the movement, 
are must be taken not to a�e
t paths passing only through Nbut not through M . To ensure this, the paths are split and a 
opy of N (
alled N 0 in �gure 3)is provided. Sin
e we allow an arbitrary rooted DAG of 
onditional-jumps in a node, and the
onditional-jump being moved may 
ome from an arbitrary spot in that DAG, N will be splitinto N and N 00, to 
orrespond to the true and false bran
hes of the moving 
onditional-jump.The details of the splitting and a proof that the transformation indeed preserves the semanti

orre
tness of the original program is beyond the s
ope of this paper and 
an be found togetherwith proofs of 
orre
tness and termination in [13℄. An illustration of the transformation is givenin �gure 3. A detailed des
ription of a hardware me
hanism that eÆ
iently implements general
onditional-jump DAGs of the type supported by PS is found in [7℄. While a multiway jumpme
hanism will take full advantage of the power of PS, it is not required for the use of oursystem. Our environment 
an be used to generate good 
ode for any horizontal ar
hite
ture.4



Figure 3: Move-
j Transformation
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Figure 4: Uni�
ation Transformation3.4 Uni�
ation TransformationThis transformation moves a unique 
opy of identi
al operations from a set of nodes fN0; N1; N2; : : :gto a prede
essor node M . This is done only when no dependen
y exists between M and the 
om-ponent being moved and when paths (M;Ni) exist for all nodes in the set. In performing the
ode motion, 
are must be taken not to a�e
t paths going through the Ni's but not through M- as usual, splitting and 
opying is used. An illustration is given in �gure 4.3.5 Inverse TransformationsFun
tional inverses of the 
ore transformations 
an be de�ned. The formulation is straightfor-ward for the delete, move-op, and uni�
ation transformations. The 
onditions under whi
h a
onditional 
an be moved from a node N to a su

essor node M are somewhat more 
omplexand are not presented in this paper.The inverse transformations are useful in situations where it is ne
essary to undo a trans-formation. Su
h situations arise be
ause an operation i 
an \per
olate" to a node where itprevents another operation j from moving that 
ould otherwise move. If at some point it wouldbe more advantageous to move j rather than i then i must be moved (via a sequen
e of inversetransformations) to a point where it no longer blo
ks j.4 Beyond the Core TransformationsThe 
ore transformations are very low-level. Even for small examples the number of transforma-tions ne
essary to 
ompa
t the graph of a mi
roprogram is 
onsiderable; it would simply be tootedious for a user to issue them one at a time. What is required is a set of higher-level transfor-mations; however, we would like to maintain as mu
h uniformity in the system as possible. Oursolution has been to group our transformations into two levels: s
heduling transformations builton the 
ore transformations that a
tually 
ompa
t the program graph, and enabling transforma-tions, whi
h rearrange the program graph to expose parallelism.
6



4.1 S
heduling TransformationsA simple transformation that we have implemented in the environment, 
alled move-path, takesas its arguments a sour
e node A, an operation i, and a destination node B. Move-path thengenerates a sequen
e of 
ore transformations that will move operation i from A to B if semanti

orre
tness is not violated by the move. If a potential data dependen
y violation is dis
overed,the operation is moved as far as possible and the 
on
i
t is reported to the user. The only otherrestri
tion on move-path is that the path between the two instru
tions be unique.A more powerful transformation is migrate. Migrate takes an operation and a node as itsarguments, and then moves the operation as far \up" in the graph as dependen
ies allow. Thisin
ludes moving any 
opies of the operation that are 
reated in the pro
ess. We wish, naturally,to perform a uni�
ation whenever possible. Opportunities for uni�
ation arise when an operationis 
opied on di�erent paths, perhaps several times, and then at least some of the 
opies 
an bemoved to the point where the paths rejoin. For example, in �gure 5, assume that statements iand j 
an move on all paths above node A. It would be unfortunate to miss a uni�
ation here. Inthe 
ase of statement i unne
essary 
opies of the operation would be left in the program, wastingspa
e and 
onsuming resour
es in the �nal 
ode. Operation j 
annot even be moved into nodes Aand C unless uni�
ations are performed be
ause of data dependen
y 
on
i
ts with other 
opiesof j.Let i denote the operation we wish to move, and let I(t) denote the set of all 
opies of i in theprogram graph at time t. We de�ne the fun
tion node(j) to be the node 
ontaining operation j.Finally, we assume for the moment that the program graph is a
y
li
.It is easy to show that any algorithm whi
h satis�es the following two 
onditions will performall possible uni�
ations:1. Let t be the time at whi
h the algorithm terminates. Then there is no j in I(t) su
h that j
an be moved from node(j) to any prede
essor of node(j).2. Let rea
h(Y ) denote the graph of all nodes rea
hable from a node Y . If j is moved fromnode(j) to some prede
essor X of node(j) at time t, then the operation is a uni�
ation andthere is no k in I(t) su
h that node(k) is in rea
h(X) and k 
an move to some prede
essorof node(k) in rea
h(X).Figure 6 gives a high-level des
ription of migrate.The restri
tion of migrate to a
y
li
 graphs is not a

eptable. Fortunately, there is a simpleextension whi
h works for redu
ible graphs as well. The problem with loops is that operationsinside a loop body 
annot be removed from the loop by the 
ore transformations alone - when-ever an operation is moved outside of the loop the node will be 
opied on the ba
kedge. Toover
ome this, we 
ombine migrate with standard te
hniques to remove loop invariant 
ode. Themodi�
ations to migrate are (with some spe
ial 
ases omitted for 
larity):1. An operation whi
h is initially in a loop L 
annot move past the �rst node of L.2. Let i be an operation whi
h is initially outside of a loop L and during the 
ourse of thealgorithm moves into L. If i is loop invariant with respe
t to L it is removed from L andinserted immediately before the entry point to L. If i is not loop invariant, then it is notpermitted to move into L. 7



Figure 5: Uni�
ation Example
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Figure 6: Migrate TransformationThe �rst 
ondition prevents operations initially in a loop body from being moved inde�nitelyaround the ba
kedge of the loop. We assume that all su
h operations 
annot be moved outsideof the innermost loop 
ontaining them. In our system, loop invariant 
ode removal is used as apre-pro
essing step. Condition two prevents operations from moving into loops from whi
h they
annot subsequently be removed. This avoids lengthening loop bodies unne
essarily.Be
ause 
onditionals are never uni�ed, a mu
h simpli�ed version of migrate 
an be writtenfor 
onditional jumps.We have also developed transformations that attempt to 
ompa
t the entire program graph.The need for su
h transformations is 
lear; it is unlikely that a user will wish or even need tomanually apply transformations to the entire program graph. Instead, 
riti
al se
tions of 
ode
an be optimized, or simply transformed to expose parallelism, and then global heuristi
s 
an beapplied to the graph to obtain a good s
hedule.Compa
t-blo
ks is one su
h strategy that we have implemented. The idea is very simple:within ea
h single-entry single-exit blo
k of 
ode perform as mu
h 
ompa
tion as possible. Nouni�
ations are performed and no instru
tions are 
opied. It is well-known that the speed-upa
hievable by exploiting parallelism within basi
 blo
ks is small [11℄. In fa
t, 
ompa
t-blo
ks isintended for use primarily as a �rst step in the 
ompa
tion pro
ess. Its appli
ation 
an redu
ethe number of nodes in the graph 
onsiderably without moving any operation to a point whereit blo
ks (due to a data dependen
y) an operation that would otherwise have been able to move.Another global heuristi
 is 
ompa
t-path. Compa
t-path only moves operations on the \most-important" path in a program. We assume that for ea
h 
onditional j we have two real numberstrue(j) and false(j) representing the probabilities that the true bran
h of j and the false bran
h ofj will be followed respe
tively. In many 
ases su
h analysis 
an be performed automati
ally withgood results [11℄. We 
an extend this idea to a DAG of 
onditionals, where the probability that a
ertain path will be sele
ted through the DAG is the produ
t of the probabilities for the edges onthe path. In the algorithm for 
ompa
t-path (see �gure 7) p(X,Y ) denotes the probability thatprogram exe
ution will 
ontinue with node Y after the exe
ution of node X.9



Figure 7: Compa
t-path Transformation

Figure 8: The operation 
annot move unless a uni�
ation is performed.In our system the user has the option of sele
ting the path for 
ompa
t-path. For a typi
alprogram, we envision that the user would �rst expli
itly sele
t the 
riti
al paths through the 
odefor optimization. The system 
ould then sele
t and 
ompa
t less important paths automati
ally.It is interesting to note that 
ompa
t-path alone is stri
tly more powerful than the te
hniqueof tra
e-s
heduling developed in the ELI proje
t at Yale [4℄. Tra
e-s
heduling also sele
ts the\important" path (or \tra
e") through the program and 
ompa
ts it. However, tra
e-s
hedulingdoes not perform uni�
ations. Figure 8 provides an (admittedly trivial) example for whi
h tryingto 
ompa
t a single tra
e without uni�
ation results in no improvement. Another advantage isthe tenden
y of uni�
ations to minimize 
ode explosion. Tra
e-s
heduling introdu
es 
ode at theentry and exit points of the tra
e to preserve semanti
s. When subsequent paths are sele
tedfor 
ompa
tion, this �x-up 
ode 
annot move ba
k onto the original tra
e. With 
ompa
t-paththere is some 
han
e that 
opied instru
tions 
an be subsequently uni�ed, thus limiting the sizeof the �nal 
ode. This 
an be a major advantage in mi
ro
ode 
ompa
tion when the size of theavailable mi
rostore is small.4.2 Enabling TransformationsThis level provides transformations of the program graph that rely on global information and thus
ould not be a

omplished by the 
ore transformations. The purpose of these transformations is10



Figure 9: An example of variable renamingprimarily to expose parallelism that will subsequently be exploited by the 
ore transformations.A typi
al example of an enabling transformation is variable renaming. The judi
ious 
hoi
e ofnew variable names 
an often remove dependen
ies between statements. In 9, renaming variablea in operations k and l allows the 
ore transformations to 
ompa
t this se
tion of 
ode.The 
y
le-breaking transformation guides the appli
ation of the 
ore transformations to loops.Intuitively, 
y
le-breaking \breaks" a loop by pi
king an edge e a
ross whi
h no operation maymove. The loop is shifted so that e be
omes the ba
kedge (this requires introdu
ing �x-up 
odeimmediately before the loop). The point where a 
y
le is broken is 
hosen to minimize thelengths of dependen
y 
hains in the resulting loop. The loop body 
an then be 
ompa
ted as astraight-line pie
e of 
ode by the 
ore transformations.The primary loop optimization tool used in the environment is loop quantization, a te
hniquefor unrolling multiple loops to expose parallelism [12℄. Quantization is used to expose parallelisma
ross several iterations of nested loops. This is important for good 
ompa
tion, sin
e the paral-lelism may not be found in the innermost loop. The te
hniques of the previous se
tion 
an thenbe used to 
ompa
t the resulting loop. Tree height redu
tion te
hniques [8℄ are very useful in
onjun
tion with quantization. Quantization applies to non-linear as well as linear re
urren
es; infa
t, quantization is limited only by the degree to whi
h indire
t referen
es 
an be disambiguated.The basi
 idea of loop quantization is to unwind a few iterations of all nested loops. Theunwindings 
hosen should maximize parallelism exposed (i.e., minimize the lengths of dependen
y
hains). However, 
are must be taken not to alter the order of data-dependent statements. Toquantize n nested loops with loop indi
es I1; I2; : : : ; In, loop i is unwound ki times by dupli
atingthe loop body ki times. In the �rst dupli
ation of the original body the index Ii is un
hanged;in the se
ond, ea
h o

urren
e of Ii is repla
ed with Ii + 1, and so on, up to Ii � ki � 1. Thispro
edure is repeated for ea
h nested loop, pro
eeding from the innermost to the outermost. Thisis equivalent to unwinding all the nested loops fully when their upper bounds are k1; : : : ; kn.When multiple loops are unwound, an iteration of the loop involves exe
uting an n�dimensionalbox B of size k1 � k2 � : : : � kn. All statements in B are exe
uted before the box is shifted (by11



a \quantum jump") along any of the dimensions. The movement along the n dimensions, whilequantized, is in normal loop order. The 
onditions under whi
h a quantization preserves 
orre
t-ness 
an be found in [12℄.We have re
ently dis
overed and implemented an algorithm whi
h solves the following quan-tization problem: given a set of n nested loops, what is the greatest unrolling of every loop forwhi
h 
orre
tness is preserved and all unrolled iterations are independent? While this will notin general be the best quantization, the 
omputation 
an be done without any expli
it unrolling,thus avoiding the problem of 
ode explosion. Be
ause the iterations in the quantized loop are in-dependent, we 
an represent the �nal loop as the original loop body and a ve
tor < i1; i2; : : : ; in >,where ij is the number of times loop j is unwound.4.3 Other LevelsIn the General Support layer data dependen
ies are found and re
orded. Memory disambiguationand enhan
ed 
ow analysis methods [10℄ in
rease the a

ura
y of data dependen
ies and permitmore 
ode motions. Traditional optimizations, su
h as dead 
ode removal, are also used at thislevel.A pro�ler is being in
orporated into the system to provide assistan
e in the optimizationpro
ess. The pro�ler 
an be used in two modes. First, the program 
an be run on \typi
al" dataand statisti
s (e.g., the frequen
y of exe
ution of blo
ks of 
ode, frequen
y of data-dependen
iesbetween indire
t memory referen
es, and stru
ture sizes) 
an be gathered automati
ally. Al-ternatively, if su
h exploratory runs are unrepresentative or too expensive to perform withoutparallelization, an intera
tive mode 
an be used. The system then uses mi
ro-analysis [2℄ to eval-uate the time 
omplexity of the program and to identify \hot-spots" with the user (or the system,for some obvious situations) supplying estimates of the above statisti
s. As the user improves the
ode the pro�ler must dynami
ally update its estimates. A

urate updating is non-trivial, as itinvolves knowledge of the target ma
hine and its in
uen
e on the running time of the 
ompa
ted
ode.The transformations des
ribed above expose the parallelism available and provide a partialordering on the issue of operations. The transformed graph 
an be viewed as the 
ode for anidealized ma
hine in whi
h no resour
e 
on
i
ts ever o

ur. Obviously this ideal is unrealizable,and 
an only serve as a bound on the e�e
tiveness of the transformations. To exe
ute the resulting
ode on realisti
 ar
hite
tures, we need a me
hanism to 
onvert the ideal s
hedule to a s
hedulethat re
ognizes resour
e limitations. Unfortunately, even for simple ar
hite
tural models �ndingan optimal s
hedule is NP-hard.We are 
urrently implementing the Mapping Layer to 
ope with this problem. At the heart ofthis level is a des
ription of the mi
roengine for whi
h 
ode is to be generated. The des
ription isstored in tabular form, and 
an be easily modi�ed by the user to mat
h a parti
ular mi
roenginear
hite
ture.The two major extensions of the environment that are in
luded in the Mapping Layer are theaddition of resour
e 
onstraints and the elimination of the assumption that all operations requireone 
y
le to exe
ute. Under the heading of resour
es falls anything that is required to exe
ute anoperation: bus lines, registers, fun
tional units, et
. An operation is not allowed to move into anode if adding that operation would result in the node requiring more resour
es than the ma
hinehas available to it.Dealing with variable length operations requires 
hanges in the de�nitions of the 
ore trans-12



Figure 10: A pipelining example.formations. Besides the 
onstraints already stated, now an operation i 
an only move when thereare no 
on
i
ts with operations it overlaps in time. This is a

omplished by sear
hing a region inthe neighborhood of the a�e
ted node for operations that may 
on
i
t with i. We store the stru
-ture of the life-
y
le for ea
h type of operation - the number of 
y
les after issue required beforeloads, arithmeti
 operations, writes, et
., 
an be performed. Let m be the length (in 
y
les) ofthe longest operation. When operation i is moved, the stru
ture information is used to 
omparei with all other operations within m 
y
les on all paths rea
hable from and rea
hing to node(i).If any stage of another operation overlaps a stage of i in su
h a way that data dependen
iesare violated, the transformation is not performed. An example of move-op with stages of theinstru
tions displayed is given in �gure 10.The Mapping Layer will be transparent; the user will still deal with the high-level representa-tion of the program, and may rely on heuristi
s (e.g., list s
heduling [4℄) built into the system toperform the mapping of the program to hardware. However, the user may wish to 
ontrol resour
eallo
ation and operation pipelining dire
tly. To allow for this, operations 
an be expanded in theenvironment to expli
itly display operation stages in the program graph.In
luding resour
e 
onstraints and variable length operations greatly 
ompli
ates the 
ondi-13



tions under whi
h a transformation is allowed. Fortunately, these 
he
ks 
an be done automati-
ally and eÆ
iently. In 
urrent systems, the user has to either a

ept suboptimal results or themi
ro
ode 
ompa
tion has to be done by hand with no automati
 support. This is, at best, atedious and error-prone pro
ess. The use of an environment to assist in the parallelization pro
esswould greatly redu
e the time and e�ort required to optimize a program and, and probably leadto better 
ode.5 ImplementationThe guiding 
onsideration in implementing the system was that the user's view should be keptas high-level and abstra
t as possible. In intera
ting with the system the user only deals with anabstra
t model of 
omputation [13℄ that provides a

ess to �ne-grained parallelism without theburden of ar
hite
tural, semanti
s-preservation, and syn
hronization details.The environment a
tually resides on two ma
hines, a Vax 11/780 and a Xerox Dandelionworkstation. All of the 
ode is written either in Franz Lisp (on the Vax) or Interlisp (on theDandelion). Lisp was sele
ted for its robust environment of system fun
tions and debuggingtools. The initial 
ompilation and all transformations are exe
uted on the Vax. The workstationserves primarily to display the program graph and pro�ler information and to a

ept user input.The system was pla
ed on two ma
hines so that we 
ould take advantage of the graphi
s
apabilities of the Dandelion. Nearly all user 
ommands are issued with the Dandelion's mouse.A typi
al sequen
e might be to 
li
k on an operation, sele
t \Move" from a menu of options, andthen 
li
k on a destination node. The environment would then try to move the operation to thedestination node using the move-path transformation.6 Sample Use of the EnvironmentThis se
tion illustrates the transformations a
hievable in our environment. The transformationsinvolved are relatively simple; their appli
ation under user 
ontrol serves just to illustrate apossible mode of intera
tion with the environment, and roughly 
orresponds to its 
apabilitiesto date. A detailed des
ription of the pro
ess would require a more thorough dis
ussion of thete
hniques than is possible in the 
ontext of this paper. For simpli
ity, we assume unit timeexe
ution for all operations and no resour
e 
on
i
ts.Consider the sample program in �gure 11 (Livermore Loop 24). Figure 12 shows the resultof unwinding the loop three times (a
hieved by the \unwind" 
ommand). Several standardoptimizations (e.g., renaming of index variables, 
onstant-folding) have also been performed bythe system at this point.The user may then spe
ify the point at whi
h the loop is to be broken (
y
le-breaking transfor-mation). In this example, the user ele
ts to leave the loop body as it is. After one appli
ation of
ompa
t-path (the path 
onsists of all true bran
hes) most of the 
ompa
tion has been performed.At this point all that remains to be done is dead-
ode removal and a few invo
ations of migrateto bun
h 
onditional jumps together.The resulting 
ode is shown in �gure 13. We have omitted many details in this example.For example, migrate has used several simple algebrai
 enabling transformations; in operation10, R7 was substituted for R9 as a result of operation 10 moving above operation 6. Similarly,
ow-analysis and peephole optimizations removed redundant memory fet
hes, while dead-
ode14
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Figure 11: Sample original program.

.
Figure 12: Partially transformed 
ode.
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Figure 13: Final transformed 
ode.removal eliminated redundant assignments to m. Automati
 disambiguation of indire
t refer-en
es was su

essful in removing spurious dependen
ies in this example; otherwise, some of themotions involving indire
t referen
es would have appeared illegal to the system whi
h would have
omplained and requested help.While the transformations were 
ontrolled at a relatively low level, the user did not deal witha
tual hardware. The 
ode in �gure 13 is just an \abstra
t parallel" s
hedule. The a
tual mappingto hardware will be done by the system. Nevertheless, the user's 
hoi
es 
an be guided by thesystem, sin
e PS transformations, the pro�ler, and the dependen
y-
hain analyzer may be for
edto take into a

ount ma
hine restri
tions (e.g., instru
tion times, resour
e availability). Thus thes
hedule obtained 
ould map well onto the hardware, without the user being intimately familiarwith the ar
hite
ture. As our work progresses, we will integrate higher level transformations intothe system. For example, the user will be able to spe
ify 
ode motions in terms of the high-levellanguage statements and 
onstru
ts.The speedup a
hieved even for this simple example is a fa
tor of 4 assuming the hardwaresupports a multiway jump me
hanism, or 2.3 otherwise. If hardware restri
tions permitted, this
ould be further in
reased by additional unwinding and 
ompa
tion.7 Con
lusionsWe have des
ribed a tool for the intera
tive extra
tion of �ne-grain parallelism from ordinary
ode. As our work progresses we expe
t to further automate the parallelization pro
ess, byintegrating more expertise into the guidan
e layer of PS and into a ma
hine-spe
i�
 mappinglayer.Referen
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