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Abstract
We present a technique for automatically adding fine-grain
locking to an abstract data type that is implemented using a
dynamic forest —i.e., the data structures may be mutated,
even to the point of violating forestness temporarily dur-
ing the execution of a method of the ADT. Our automatic
technique is based on Domination Locking, a novel lock-
ing protocol. Domination locking is designed specifically
for software concurrency control, and in particular is de-
signed for object-oriented software with destructive pointer
updates. Domination locking is a strict generalization of ex-
isting locking protocols for dynamically changing graphs.

We show our technique can successfully add fine-grain
locking to libraries where manually performing locking is
extremely challenging. We show that automatic fine-grain
locking is more efficient than coarse-grain locking, and ob-
tains similar performance to hand-crafted fine-grain locking.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming; F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming Lan-
guages; E.1 [Data Structures]: Trees

General Terms Theory, Algorithms, Languages, Perfor-
mance

Keywords Concurrency, Locking Protocol, Synthesis, Se-
rializability, Atomicity, Reduction
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1. Introduction
The proliferation of multi-core processors and diminishing
returns in single-threaded performance have increased the
need for scalable multi-threading. Concurrent data structures
are a key ingredient of parallel programs: these implement
common data structures, such as search trees, but permit
multiple threads to concurrently perform operations on a
shared data structure instance. A commonly used correct-
ness criterion for such data structures is that each operation
should appear to execute atomically, which greatly simpli-
fies reasoning about programs that use these data structures.

In this paper, we consider the problem of turning a se-
quential data structure into a concurrent data structure. One
of the main challenges in this problem is to guarantee atom-
icity of concurrent operations in a scalable way, restricting
parallelism only where necessary. Furthermore, we are in-
terested in systematic techniques that are broadly applicable,
rather than techniques specific to a single data structure.

Existing approaches to this problem are limited. Opti-
mistic transactional memory [19, 22] provides limited ben-
efit due to high overhead and its limited ability to handle
irreversible operations (e.g., I/O). Automatic lock inference
techniques (e.g., [11, 12, 15, 17, 24, 29]) are traditionally
based on the two-phased locking protocol [16] that does not
permit early lock release and therefore limits parallelism.

Fine-Grain Locking One way to achieve scalable multi-
threading is to use fine-grain locking. In fine-grain locking,
one associates, e.g., each object with its own lock, permitting
multiple operations to simultaneously operate on different
parts of a data-structure. Reasoning about fine-grain lock-
ing is challenging and error-prone. As a result, programmers
often resort to coarse-grain locking, leading to limited scal-
ability.

The Problem We address the problem of automatically
adding fine-grain locking to a module. A module encapsu-
lates shared data with a set of procedures, which may be
invoked by concurrently executing threads. Given the code



of a module, our goal is to add correct locking that permits
a high degree of parallelism. Specifically, we are interested
in locking in which each shared object has its own lock, and
locks may be released before the end of the computation.

Our main insight is that we can use the restricted topology
of pointer data structures to simplify reasoning about fine-
grain locking and automatically infer efficient and correct
fine-grain locking.

Domination Locking We define a new locking protocol
called Domination Locking (DL). Domination Locking is
a set of conditions that guarantee atomicity and deadlock-
freedom. Domination Locking is designed to handle dynam-
ically manipulated recursive data-structures by leveraging
natural domination properties of dynamic data structures.
Domination locking is a strict generalization of several re-
lated fine-grain locking protocols such as hand-over-hand
locking [4, 6], and dynamic DAG locking [4, 10].

Automatic Fine-Grain Locking We present an automatic
technique to enforce the conditions of Domination Locking.
The technique is applicable to modules where the shape of
the shared memory is a forest. The technique allows the
shape of the heap to change dynamically as long as the
shape is a forest between invocations of module operations.
In contrast to existing lock inference techniques, which are
based on two-phased locking, our technique is able to release
locks at early points of the computation.

Finally, as we demonstrate in Section 4 and Section 5,
our technique adds effective fine-grain locking in several
practical data-structures where it is extremely hard to manu-
ally produce similar locking. Our examples include balanced
search-trees [3, 18], a self-adjusting heap [36] and special-
ized data-structure implementations [5, 31].

1.1 Motivating Example
Consider a module that implements the Treap data struc-
ture [3]. A Treap is a search tree that is simultaneously a
binary search tree (on the key field) and a heap (on the
priority field). If priorities are assigned randomly the re-
sulting structure is equivalent to a random binary search tree,
providing good asymptotic bounds for all operations. The
Treap implementation consists of three procedures: insert,
remove and lookup. Manually adding fine-grain locking to
the Treap’s code, is challenging since it requires considering
many subtle details in the context of concurrency.

For example, consider the Treap’s remove operation
shown in Fig. 1. To achieve concurrent execution of its
operations, we must release the lock on the root, while an
operation is still in progress, once it is safe to do so. Either
of the loops (starting at Lines 4 or 12) can move the cur-
rent context to a subtree, after which the root (and, similarly,
other nodes) should be unlocked. Several parts of this proce-
dure implement tree rotations that change the order between
the Treap’s nodes, complicating any correctness reasoning
that depends on the order between nodes. Fig. 2 shows an

1 boolean remove(Node par, int key) {
2 Node n = null;
3 n = par.right; // right child has root
4 while (n != null && key != n.key) {
5 par = n;
6 n = (key < n.key) ? n.left : n.right;
7 }
8 if (n == null)
9 return false; // search failed, no change

10 Node nL = n.left;
11 Node nR = n.right;
12 while (true) { // n is the node to be removed
13 Node bestChild = (nL == null ||
14 (nR != null && nR.prio > nL.prio)) ? nR : nL;
15 if (n == par.left)
16 par.left = bestChild;
17 else
18 par.right = bestChild;
19 if (bestChild == null)
20 break; // n was a leaf
21 if (bestChild == nL) {
22 n.left = nL.right; // rotate nL to n’s spot
23 nL.right = n;
24 nL = n.left;
25 } else {
26 n.right = nR.left; // rotate nR to n’s spot
27 nR.left = n;
28 nR = n.right;
29 }
30 par = bestChild;
31 }
32 return true;
33 }

Figure 1. Removing an element from a treap by locating it
and then rotating it into a leaf position.

example of manual fine-grain locking of the Treap remove
operation. Manually adding fine-grain locking to the code
took an expert several hours and was an extremely error-
prone process. In several cases, the expert locking released a
lock too early, resulting in an incorrect concurrent algorithm
(e.g., the release operation in Line 28).

Our technique is able to automatically produce fine-grain
concurrency in the Treap’s code, by relying on its tree shape.
This is in contrast to existing alternatives, such as manually
enforcing hand-over-hand locking, that require deep under-
standing of code details.

1.2 Overview of Our Approach
In this section, we present an informal brief description of
our approach.

Domination Locking We define a new locking protocol,
called Domination Locking (DL). DL is a set of conditions
that are designed to guarantee atomicity and deadlock free-
dom for operations of a well-encapsulated module.

DL differentiates between a module’s exposed and hid-
den objects: exposed objects (e.g., the Treap’s root) act as
the intermediary between the module and its clients, with
pointers to such objects being passed back and forth be-
tween the module and its clients, while the clients are com-
pletely unaware of hidden objects (e.g., the Treap’s interme-
diate nodes). The protocol exploits the fact that all operations
must begin with one or more exposed objects and traverse
the heap-graph to reach hidden objects. In essence, exposed



1 boolean remove(Node par, int key) {
2 Node n = null;
3 acquire(par);
4 n = par.right;
5 if(n != null) acquire(n);
6 while (n != null && key != n.key) {
7 release(par);
8 par = n;
9 n = (key < n.key) ? n.left : n.right;

10 if(n != null) acquire(n);
11 }
12 if (n == null){ release(par); return false; }
13 Node nL = n.left; if(nL != null) acquire(nL);
14 Node nR = n.right; if(nR != null) acquire(nR);
15 while (true) {
16 Node bestChild = (nL == null ||
17 (nR != null && nR.prio > nL.prio)) ? nR : nL;
18 if (n == par.left)
19 par.left = bestChild;
20 else
21 par.right = bestChild;
22 release(par);
23 if (bestChild == null)
24 break;
25 if (bestChild == nL) {
26 n.left = nL.right;
27 nL.right = n;
28 // release(nL); // an erroneous release statment
29 nL = n.left;
30 if(nL != null) acquire(nL);
31 } else {
32 n.right = nR.left;
33 nR.left = n;
34 nR = n.right;
35 if(nR != null) acquire(nR);
36 }
37 par = bestChild;
38 }
39 return true;
40 }

Figure 2. Treap’s remove code with manual fine-grain
locking.

objects own hidden objects. This implements an ownership
scheme which permits ownership transfer.

The protocol requires the exposed objects passed as pa-
rameters to an operation to be locked in a fashion similar
to two-phase-locking. However, hidden objects are handled
differently. A thread is allowed to acquire a lock on a hidden
object if the locks it holds dominate the hidden object. (A set
S of objects is said to dominate an object u if all paths (in
the heap-graph) from an exposed object to u contains some
object in S.) In particular, hidden objects can be locked even
after other locks have been released, thus enabling early re-
lease of other locked objects (hidden as well as exposed).

This simple protocol generalizes several fine-grain lock-
ing protocols defined for dynamically changing graphs [4, 6,
10] and is applicable in more cases (i.e., the conditions of
DL are weaker). We use the DL’s conditions as the basis for
our automatic technique.

Automatic Locking of Forest-Based Modules Our tech-
nique is able to automatically enforce DL, in a way that re-
leases locks at early points of the computation. Specifically,
the technique is applicable for modules whose heap-graphs
form a forest at the end of any complete sequential execution
(of any sequence of operations).

Note that existing shape analyses, for sequential pro-
grams, can be used to automatically verify if a module satis-
fies this precondition (e.g., [34, 40] ). In particular, we avoid
the need for explicitly reasoning on concurrent executions.

For example, the Treap is a tree at the end of any of its
operations, when executed sequentially. Note that, during
some of its operation (insert and remove) its tree shape
is violated by a node with multiple predecessors (caused by
the tree rotations).

Our technique uses the following locking scheme: a pro-
cedure invocation maintains a lock on the set of objects di-
rectly pointed to by its local variables (called the immediate
scope). When an object goes out of the immediate scope of
the invocation (i.e., when the last variable pointing to that
object is assigned some other value), the object is unlocked
if it has (at most) one predecessor in the heap graph (i.e., if it
does not violate the forest shape). If a locked object has mul-
tiple predecessors when it goes out of the immediate scope
of the invocation, then it is unlocked eventually when the ob-
ject has at most one predecessor. The forest-condition guar-
antees that every lock is eventually released.

To realize this scheme, we use a pair of reference counts
to track incoming references from the heap and local vari-
ables of the current procedure. All the updates to the ref-
erence count can be done easily by instrumenting every as-
signment statement, allowing a relatively simple compile-
time transformation. While we defer the details of the trans-
formation to Section 4, Fig. 3 shows the transformed im-
plementation of remove (from Fig. 1). ASNL and ASNF are
macros that perform assignment to a local variable and a
field, respectively, update reference counts, and condition-
ally acquire or release locks according to the above locking
scheme.

1.3 Contributions
The contributions of this paper can be summarized as fol-
lows:

• We introduce a new locking protocol entitled Domination
Locking. We show that domination locking can be en-
forced and verified by considering only sequential execu-
tions [4]: if domination locking is satisfied by all sequen-
tial executions, then atomicity and deadlock freedom are
guaranteed in all executions, including non-sequential
ones.

• We present an automatic technique to generate fine-grain
locking by enforcing the domination locking protocol
for modules where the heap graph is guaranteed to be a
forest in between operations. Our technique can handle
any temporary violation of the forest shape constraint,
including temporary cycles.

• We present an initial performance evaluation of our tech-
nique on several examples, including balanced search-
trees [3, 18], a self-adjusting heap [36] and specialized



1 boolean remove(Node par, int key) {
2 Node n = null;
3 Take(par);
4 ASNL(n, par.right);
5 while (n != null && key != n.key) {
6 ASNL(par, n);
7 ASNL(n, (key < n.key) ? n.left : n.right);
8 }
9 if (n == null) {

10 ASNL(par, null);
11 ASNL(n, null);
12 return false;
13 }
14 Node nL = null; ASNL(nL, n.left);
15 Node nR = null; ASNL(nR, n.right);
16 while (true) {
17 Node bestCh = null; ASNL(bestCh, (nL == null ||
18 (nR != null && nR.prio > nL.prio)) ? nR : nL);
19 if (n == par.left)
20 ASNF(par.left, bestCh);
21 else
22 ASNF(par.right, bestCh);
23 if (bestCh == null) {
24 ASNL(bestCh, null);
25 break;
26 }
27 if (bestCh == nL) {
28 ASNF(n.left, nL.right);
29 ASNF(nL.right, n);
30 ASNL(nL, n.left);
31 } else {
32 ASNF(n.right, nR.left);
33 ASNF(nR.left, n);
34 ASNL(nR, n.right);
35 }
36 ASNL(par, bestCh);
37 ASNL(bestCh, null);
38 }
39 ASNL(par, null); ASNL(n, null); ASNL(nL, null);
40 ASNL(nR, null);
41 return true;
42 }

Figure 3. Augmenting remove with macros to dynamically
enforce domination locking.

data-structure implementations [5, 31]. The evaluation
shows that our automatic locking provides good scalabil-
ity and performance comparable to hand crafted locking
(for the examples where hand crafted locking solutions
were available).

• We discuss extensions and additional applications of our
suggestions.

2. Preliminaries
Our goal is to augment a module with concurrency control
that guarantees strict conflict-serializability [33]. In this sec-
tion we formally define what a module is and the notion of
strict conflict-serializability for modules.

Syntax and Informal Semantics A module defines a set
of types and a set of procedures that may be invoked by
clients of the module, potentially concurrently. A type con-
sists of a set of fields of type boolean, integer, or pointer
to a user-defined type. The types are private to the module:
an object of a type T defined by a module M can be al-
located or dereferenced only by procedures of module M .
However, pointers to objects of type T can be passed back

stms = skip
| x = e(y1,...,yk)
| assume(b)
| x = new R()
| x = y.f | x.f = y
| acquire(x) | release(x)
| return(x)

Figure 4. Primitive instructions, b stands for a local boolean
variable, e(y1,...,yk) stands for an expression over local vari-
ables.

and forth between the clients of module M and the proce-
dures of module M . Dually, types defined by clients are pri-
vate to the client. Pointers to client-defined types may be
passed back and forth between the clients and the module,
but the module cannot dereference such pointers (or allocate
objects of such type). Procedures have parameters and local
variables, which are private to the invocation of the proce-
dures. (Thus, these are thread-local variables.) There are no
static or global variables shared by different invocations of
procedures. (However, our results can be generalized to sup-
port them.)

We assume that body of a procedure is represented by
a control-flow graph. We refer to the vertices of a control-
flow graph as program points. The edges of a control-flow
graph are annotated with primitive instructions, shown in
Fig. 4. Conditionals are encoded by annotating control-flow
edges with assume statements. Without loss of generality,
we assume that a heap object can be dereferenced only
in a load (“x = y.f”) or store (“x.f = y”) instruction.
Operations to acquire or release a lock refer to a thread-
local variable (that points to the heap object to be locked
or unlocked). The other primitive instructions reference only
thread-local variables.

We present a semantics for a module independent of any
specific client. We define a notion of execution that covers
all possible executions of the module that can arise with
any possible client, but restricting attention to the part of
the program state “owned” by the module. (In effect, our
semantics models what is usually referred to as a “most-
general-client” of the module.) For simplicity, we assume
that each procedure invocation is executed by a different
thread, which allows us to identify procedure invocations
using a thread-id. We refer to each invocation of a procedure
as a transaction. We model a procedure invocation as a
creation of a new thread with an appropriate thread-local
state. We describe the behavior of a module by the relation
−→. A transition σ −→ σ′ represents the fact that a state
σ can be transformed into a state σ′ by executing a single
instruction.

Transactions share a heap consisting of an (unbounded)
set of heap objects. Any object allocated during the execu-
tion of a module procedure is said to be a module (owned)
object. In fact, our semantics models only module owned ob-



jects. Any module object that is returned by a module pro-
cedure is said to be an exposed object. Other module objects
are hidden objects. Note that an exposed object remains ex-
posed forever. A key idea encoded in the semantics is that at
any point during execution a new procedure invocation may
occur. The only assumption made is that any module object
passed as a procedure argument is exposed; i.e., the object
was returned by some earlier procedure invocation.

Each heap allocated object serves as a lock for itself.
Locks are exclusive (i.e., a lock can be held by at most
one transaction at a time). The execution of a transaction
trying to acquire a lock (by an acquire statement) which is
held by another transaction is blocked until a time when the
lock is available (i.e., is not held by any transaction). Locks
are reentrant; an acquire statement has no impact when it
refers to a lock that is already held by the current transaction.
A transaction cannot release a lock that it does not hold.

Whenever a new object is allocated, its boolean fields are
initialized to false, its integer fields are initialized to 0,
and pointer fields are initialized to null. Local variables are
initialized in the same manner.

A formal semantics for the language appears in Ap-
pendix A.

Running Transactions Each control-flow graph of a pro-
cedure has two distinguished control points: an entry site
from which the transaction starts, and an exit site in which
the transaction ends (if a CFG edge is annotated with a
return statement, then this edge points to the exit site of
the procedure). We say that a transaction t is running in a
state σ, if t is not in its entry site or exit site. An idle state, is
a state in which no transaction is running.

Executions The initial state σI has an empty heap and no
transactions. A sequence of states π = σ0, . . . , σk is an
execution if the following hold: (i) σ0 is the initial state,
(ii) for 0 ≤ i < k, σi −→ σi+1.

An execution π = σ0, . . . , σk is a complete execution,
if σk is idle. An execution π = σ0, . . . , σk is a sequential
execution, if for each 0 ≤ i ≤ k at most one transaction in
σi is running.

An execution is non-interleaved if transitions of differ-
ent transactions are not interleaved (i.e., for every pair of
transactions ti 6= tj either all the transitions executed by ti
come before any transition executed by tj , or vice versa).
Note that, a sequential execution is a special case of a non-
interleaved execution. In a sequential execution a new trans-
action starts executing only after all previous transactions
have completed execution. In a non-interleaved execution, a
new transaction can start executing before a previous trans-
action completes execution, but the execution is not permit-
ted to include transitions by the previous transaction once
the new transaction starts executing.

We say that a sequential execution is completeable if it is
a prefix of a complete sequential execution.

Schedules The schedule of an execution π = σ0, . . . , σk
is a sequence 〈t0, e0〉, . . . , 〈tk−1, ek−1〉 such that for every
0 ≤ i < k, σi can be transformed into σi via transaction ti
executing the instruction annotating control-flow edge ei.

Graph-Representation The heap (shared memory) of a
state identifies a edge-labelled multidigraph (a directed
graph in which multiple edges are allowed between the same
pair of vertices), which we call the heap graph. Each heap-
allocated object is represented by a vertex in the graph. A
pointer field f in an object u that points to an object v is
represented by an edge (u, v) labelled f . (Note that the heap
graph represents only objects owned by the module. Objects
owned by the client are not represented in the heap graph.) .

Strict Conflict-Serializability Given an execution, we say
that two transitions conflict if: (i) they are executed by two
different transactions, (ii) they access some common object
(i.e., read or write fields of the same object).

Executions π and π′ are said to be conflict-equivalent if
they consist of the same set of transactions, and the schedule
of every transaction t is the same in both executions, the ex-
ecutions agree on the order between conflicting transitions
(i.e., the ith transition of a transaction t precedes and con-
flicts with the jth transition of a transaction t′ in π, iff the
former precedes and conflicts with the latter in π′). Conflict-
equivalent executions produce the same state [38]. An exe-
cution is conflict-serializable if it is conflict-equivalent with
a non-interleaved execution.

We say that an execution π is strict conflict-serializable
if it is conflict-equivalent to a non-interleaved execution π′

where a transaction t1 completes execution before a transac-
tion t2 in π′ if t1 completes execution before a transaction t2
in π.

Assume that all sequential executions of a module sat-
isfy a given specification Φ. In this case, a strict conflict-
serializable execution is also linearizable [23] with respect to
specification Φ. Thus, correctness in sequential executions
combined with strict conflict-serializability is sufficient to
ensure linearizability.

3. Domination Locking
In this section we present the Domination Locking Protocol
(abbreviated DL). We show that if every sequential execution
of a module satisfies DL and is completable, then every con-
current execution of the module is strict conflict-serializable
and completeable (i.e., atomicity and deadlock-freedom are
guaranteed).

The locking protocol is parameterized by a total order
≤ on all heap objects, which remains fixed over the whole
execution.

DEFINITION 3.1. Let ≤ be a total order of heap objects.
We say that an execution satisfies the Domination Locking
protocol, with respect to ≤, if it satisfies the following con-
ditions:



1. A transaction t can access a field of an object u, only if u
is currently locked by t.

2. A transaction t can acquire an exposed object u, only if t
has never acquired an exposed object v such that u ≤ v.

3. A transaction t can acquire an exposed object, only if t
has never released a lock.

4. A transaction t can acquire a hidden object u, only if
every path between an exposed object to u includes an
object which is locked by t.

Intuitively, the protocol works as follows. Requirement
(1) prevents race conditions where two transactions try to
update an object neither has locked. Conditions (2) and (3)
deal with exposed objects. Very little can be assumed about
an object that has been exposed; references to it may reside
anywhere and be used at any time by other transactions that
know nothing about the invariants t is maintaining. Thus,
as is standard, requirements (2) and (3) ensure all transac-
tions acquire locks on exposed objects in a consistent order,
preventing deadlocks. The situation with hidden objects is
different, and we know more: other threads can only gain
access to t’s hidden objects through some chain of refer-
ences starting at an exposed object, and so it suffices for t
to guard each such potential access path with a lock. An-
other way of understanding the protocol is that previous pro-
posals (e.g., [10, 25, 26, 35]) treat all objects as exposed,
whereas domination locking also takes advantage of the in-
formation hiding of abstract data types to impose a different,
and weaker, requirement on encapsulated data. In particu-
lar, no explicit order is imposed on the acquisition or release
of locks on hidden objects, provided condition (4) is main-
tained.

THEOREM 3.1. Let ≤ be a total order of heap objects.
If every sequential execution of the module is completeable
and satisfies Domination Locking with respect to ≤, then
every execution of the module is strict conflict-serializable,
and is a prefix of a complete-execution.

This theorem implies that a concurrent execution can-
not deadlock, since it is guaranteed to be the prefix of a
complete-execution. The proof can be found in Appendix B.

Domination Locking generalizes previously proposed
protocols such as Dynamic Tree Locking (DTL) protocol
and Dynamic Dag Locking (DDL) protocol [4], which them-
selves subsume idioms such as hand-over-hand locking. The
DTL and DDL protocols were inspired by database protocols
for trees and DAGs ([10, 25, 26, 35]), but customized for
use in programs where shape invariants may be temporarily
violated.

In particular, any execution that satisfies DTL or DDL can
be shown to satisfy DL. In comparing these protocols, it
should be noted that DTL and DDL were described in a re-
stricted setting where the exposed objects took the form of
a statically fixed set of global variables. DL generalizes this
by permitting a dynamic set of exposed objects (which can

grow over time). More importantly, DL is a strict generaliza-
tion of DTL and DDL: executions that satisfy DL might not
satisfy either DTL or DDL. Among other things, DL does not
require the heap graph to satisfy any shape invariants. Thus,
the above theorem generalizes a similar theorem established
for DDL and DTL in [4]. The above theorem, like those in [4],
is important because it permits the use of sequential rea-
soning, e.g., to verify if a module guarantees strict conflict-
serializability via DL. More interestingly, this reduction the-
orem also simplifies the job of automatically guaranteeing
strict conflict-serializability via DL, as we illustrate in this
paper.

One interesting aspect of the DL protocol is the follow-
ing. Even if every sequential execution of a module is com-
pletable and satisfies DL, a concurrent execution of the mod-
ule might not satisfy DL! This is in contrast to protocols such
as DTL and DDL. This fact complicates the proof of the above
theorem.

The requirement for a total order of exposed objects, does
not restrict its applicability since in any conventional pro-
gramming environment such order can be obtained (e.g.,
by using memory address of objects, or by using a simple
mechanism that assigns unique identifiers to objects). Fur-
thermore, no order is needed when each transaction accesses
a single exposed object.

4. Enforcing DL in Forest-Based Modules
In this section, we describe our technique for automatically
adding fine-grain locking to a module when the module op-
erates on heaps of restricted shape. Specifically, the tech-
nique is applicable to modules that manipulate data struc-
tures with a forest shape, even with intra-transaction viola-
tions of forestness. For example, the Treap of Section 1 has
a tree shape which is temporarily violated by tree-rotations
(during tree-rotations a node may have two parents). Our
technique has no limit on the number of violations or their
effect on the data structures shape, as long as they are elimi-
nated before the end of the transaction.

In Section 4.1, we describe the shape restrictions required
by our technique, and present dynamic conditions that are
enforced by our source transformation. We refer to these
conditions as the Eager Forest-Locking protocol (EFL), and
show that it ensures domination locking.

In Section 4.2, we show how to automatically enforce
EFL by a source-to-source transformation of the original
module code.

4.1 Eager Forest-Locking
When the shape of the heap manipulated by the module is
known to be a forest (possibly with temporary violations),
we can enforce domination locking by dynamically enforc-
ing the conditions outlined below.

First, we define what it means for a module to be forest-
based.



Forestness Condition We say that a hidden object u is
consistent in a state σ, if u has at most one incoming edge in
σ.1 We say that an exposed object u is consistent in a state
σ, if it does not have any incoming edges in σ.

DEFINITION 4.1. A module M is a forest-based module, if
in every sequential execution, all objects in idle states are
consistent.

For a forest-based module, we define the following Eager
Forest-Locking conditions, and show that they guarantee
that the module satisfies the domination locking conditions.

Eager Forest-Locking Requirements Given a transaction
t, we define t’s immediate scope as the set of objects which
are directly pointed to by local variables of t. Intuitively, ea-
ger forest-locking is a simple protocol: a transaction should
acquire a lock on an object whenever it enters its immediate
scope and it should release a lock on an object whenever the
object is out of its immediate scope and is consistent. The
protocol description below is a bit complicated because the
abovementioned invariant will be temporarily violated while
an object is being locked or unlocked. (In particular, condi-
tions 1, 2, and 4 restrict the extent to which the invariant can
be violated.)

DEFINITION 4.2. Let ≤ be a total order of heap objects.
We say that an execution satisfies the Eager Forest-Locking
(EFL) with respect to ≤, if it satisfies the following condi-
tions:

1. A transaction t can access a field of an object, only if all
objects in t’s immediate scope are locked by t.

2. A transaction t can release an object, only if all objects
in t’s immediate scope are locked by t.

3. A transaction t can release a lock of an object u, only if
u is consistent.

4. Immediately after a transaction t releases a lock of an
object u, t removes u from its immediate scope (i.e., the
next instruction of t removes u from immediate scope)

5. A transaction t can acquire an exposed object u, only if t
has never acquired an exposed object v such that u ≤ v.

In contrast to the DL conditions, the EFL conditions can
directly be enforced by instrumenting the code of a given
module because all its dynamic conditions can be seen as
conditions on its immediate scope and local memory. Such
code instrumentation is allowed to only consider sequential
executions, as stated by the following theorem and conclu-
sion:

THEOREM 4.1. Let ≤ be a total order of heap objects. Let
π be a sequential execution of a forest-based module. If π
satisfies EFL with respect to ≤, then π satisfies DL with
respect to ≤.

1 In the graph representation of the heap. Recall that the heap-graph contains
only module owned objects. In particular, this definition does not consider
pointers to exposed objects that may be stored in client objects

From Theorem 3.1 and Theorem 4.1 we conclude the
following.

CONCLUSION 4.1. Let ≤ be a total order of heap objects.
If every sequential execution of a forest-based module is
completeable and satisfies EFL with respect to≤, then every
execution of this module is strict conflict-serializable, and is
a prefix of a complete-execution.

4.2 Enforcing EFL
In this section, we present a source-to-source transformation
that enforces EFL in a forest-based module. The idea is to in-
strument the module such that it counts stack and heap refer-
ences to objects, and use these reference counts to determine
when to acquire and release locks. Since the EFL conditions
are defined over sequential executions, reasoning about the
required instrumentation is fairly simple.

Run-Time Information The instrumented module tracks
objects in the immediate scope of the current transaction2 by
using stack-reference counters; the stack-reference counter
of an object u, tracks the number of references from local
variables to u; hence u is in the immediate scope of current
transaction whenever its stack-reference counter is greater
than 0. To determine consistency of objects, it uses a heap-
reference counter; the heap-reference counter of an object u,
tracks the number of references in heap objects that point to
u; a hidden object is consistent, whenever its heap-counter
equals to 0 or 1; and an exposed object is consistent, when-
ever its heap-counter equals to 0. To determine whether an
object has been exposed, it uses a boolean field; whenever
an object is exposed (returned) by the module, this field is
set to true (in that object).

Locking Strategy The instrumented code uses a strategy
that follows EFL conditions. At the beginning of the proce-
dure, the instrumented module acquires all objects that are
pointed to by parameters (and are thus exposed objects).
The order in which these objects are locked is determined
by using a special function, unique that returns a unique
identifier for each object3. After locking all exposed objects,
the instrumented module acts as follows: (i) it acquires ob-
ject u whenever its stack-reference-counter becomes 1; (ii)
it releases object u whenever u is consistent, and its stack-
reference-counter becomes 0.

This strategy releases all locks before completion of a
transaction (since every object becomes consistent before
that point), so it cannot create incompleteable sequential
executions.

Source-to-Source Transformation Our transformation in-
struments each object with three additional fields: stackRef

2 Note that we consider sequential executions, so we can assume a single
current transaction.
3 Note that only exposed objects are pointed by the procedure parameters.
And according to Definition 4.1 these are the only exposed objects the
transaction will see.



Operation Code

Take(x)

if(x!=null) {
acquire(x);
x.stackRef++;

}

Drop(x)

if(x!=null) {
x.stackRef-- ;
if(x.stackRef==0 && IsConsistent(x))
release(x);

}

IsConsistent(x)

if(x.isExposed)
return (x.heapRef == 0);

else
return (x.heapRef <= 1);

MarkExposed(x) if(x!=null) x.isExposed=true;

Table 1. Primitive operations used in the EFL transformation.

1 TakeArgs2(x,y) {
2 if(unique(x) < unique(y))
3 { Take(x); Take(y); }
4 else
5 { Take(y); Take(x); }
6 }

Figure 5. Acquiring two procedure arguments in a unique
locking order.

x = ptrExp

ASNL(x,ptrExp) {
temp=ptrExp;
Take(temp);
Drop(x);
x=temp;
}

x.f = ptrExp

ASNF(x.f,ptrExp) {
temp=x.f;
Take(temp);
if(temp!=null) temp.heapRef--;
Drop(temp);
temp=ptrExp;
Take(temp);
if(temp!=null) temp.heapRef++;
Drop(temp);
x.f = temp;
}

Table 2. The macros ASNL and ASNF for pointer assign-
ments enforcing EFL.

and heapRef to maintain the stack and heap reference
counts (respectively), and isExposed to indicate whether
the object has been exposed. The transformation is based on
the primitive operations of Table 1.

The procedures Take and Drop maintain stack reference
counters and perform the actual locking. Take(x) locks the
object referenced by x and increments the value of its stack
reference counter. Drop(x) decreases the stack reference
count of the object referenced by x, and releases its lock if it
is safe to do so according to the EFL protocol, i.e., if the ref-
erence from x was the only reference to the object, and the
object is consistent. Drop uses the function IsConsistent
which indicates whether an object is consistent or not (ac-
cording to its heap-counter and the isExposed field).

1 void AddValues(Node x, Node y) {
2 while(x!=null && y!=null) {
3 x.value+=y.value;
4 x=x.next;
5 y=y.next;
6 }}

Figure 6. Example procedure adding the values from one
linked-list into another.

For each procedure, of the module, our transformation is
performed as follows:

1. At the beginning of the procedure, add code that acquires
all objects pointed to by arguments according to a fixed
order; in a case of a single pointer argument l, this can be
done by adding Take(l) (as in line 3 of Fig. 3); the code
of Fig. 5 demonstrates the case of 2 pointer arguments;
in the general case objects are sorted to obtain the proper
order.

2. Replace every assignment of a pointer expression with
the corresponding code macros in Table 2. The macro
ASNL(x,ptrExp) replaces an assignment of a pointer
expression ptrExp to a local pointer x, this macro per-
forms this assignment, while maintaining stack-counters
and following the required locking strategy. The macro
ASNF(x.f,ptrExp) replaces an assignment of a pointer
expression to a field of an object, this macro maintains the
heap-counters in objects (its implementation follows the
required locking strategy).

3. Whenever a local variable l reaches the end of its
scope, add ASNL(l,null); this releases the object
pointed by l. If this is the end of the procedure, and l is
about to be returned (i.e., by the statement return(l)),
then instead of adding ASNL(l,null) add the block
{MarkExposed(l);Drop(l);}.

Example The procedure of Fig. 6 takes a pair of pointers
to singly-linked lists, and adds values of one list to the values
of the other. Fig. 7 shows the code transformed to enforce
EFL. The transformed procedure starts with an invocation
of TakeArgs2 (shown in Fig. 5) to lock exposed objects in



1 void AddValues(Node x, Node y) {
2 TakeArgs2(x,y);
3 while(x!=null && y!=null) {
4 x.value+=y.value;
5 ASNL(x,x.next);
6 ASNL(y,y.next);
7 }
8 ASNL(x,null); ASNL(y,null);
9 }

Figure 7. Transformed code enforcing EFL for the proce-
dure AddValues of Fig. 6.

a fixed order. In the body of AddValues, the assignment
x=x.next is replaced by the macro ASNL(x,x.next),
which assigns x.next to x while maintaining EFL require-
ments. The assignment y=y.next is handled in a similar
way. At the end of AddValues, local variables go out of
scope and locks are released by adding ASNL(x,null) and
ASNL(y,null).

Practical Consideration In some cases, some of our in-
strumentation code can be avoided. For example, instead of
replacing x=null with ASNL(x,null), we could just add
Drop(x) before the assignment. Or whenever it is known
that a variable will not have a null value, we could avoid
the if statements in Take and Drop.

In modules where the forestness condition is not violated
even temporarily, the heap reference counter is not needed
(since all objects remain consistent during a sequential exe-
cution of this transaction).

In many cases, exposed objects can be identified by the
types of objects (e.g., List is a type of exposed objects,
and Node is a type of hidden object); in such cases type
information can be used instead of using the isExposed
field.

Using Static Analysis The shown instrumented code can
be optimized by using various static techniques. It is suffi-
cient for such static techniques to consider only sequential
executions of the module.

A live-variables analysis [2] can detect local pointers
with unused values. Assigning null to such pointers will
eliminate unused pointers, and as a result will release locks
earlier.

Some static tools (e.g. [27]) can help avoid some of the
instrumentation code. For example, if a tool can detect that
a local variable l is always null at some point of the CFG,
our instrumentation code can avoid calling Take(l) in this
case.

4.3 Example for Dynamically Changing Forest
As an example for a dynamically changing forest, consider
the procedure shown in Fig. 8. This procedure operates on
two Skew-Heaps [36] (a self-adjusting minimum-heap im-
plemented as a binary tree). The procedure moves the con-
tent of one Skew Heap (pointed by src) to another one
(pointed by dest), by simultaneously traversing the heaps;

1 void move(SkewHeap src, SkewHeap dest) {
2 Node t1, t3, t2;
3 t1=dest.root;
4 t2=src.root;
5 if(t1.key > t2.key) { // assume both heaps are not empty
6 t3=t1; t1=t2; t2=t3;
7 }
8 dest.root=t1;
9 src.root=null;

10 t3=t1.right;
11 while(t3 != null && t2 != null) {
12 t1.right=t1.left;
13 if(t3.key < t2.key) {
14 t1.left=t3; t1=t3; t3=t3.right;
15 }
16 else {
17 t1.left=t2; t1=t2; t2=t2.right;
18 }
19 }
20 if(t3 == null) t1.right=t2;
21 else t1.right=t3;
22 }

Figure 8. Moving the content of one Skew-Heap to another
Skew-Heap.

1 void move(SkewHeap src, SkewHeap dest) {
2 Node t1, t3, t2;
3 TakeArgs2(src,dest);
4 ASNL(t1, dest.root);
5 ASNL(t2, src.root);
6 if(t1.key > t2.key) {
7 ASNL(t3,t1); ASNL(t1,t2); ASNL(t2,t3);
8 }
9 ASNF(dest.root, t1);

10 ASNL(dest, null); // dest becomes dead
11 ASNF(src.root, null);
12 ASNL(src, null); // src becomes dead
13 ASNL(t3, t1.right);
14 while(t3 != null && t2 != null) {
15 ASNF(t1.right, t1.left);
16 if(t3.key < t2.key) {
17 ASNF(t1.left, t3); ASNL(t1, t3); ASNL(t3, t3.right);
18 }
19 else {
20 ASNF(t1.left, t2); ASNL(t1, t2); ASNL(t2, t2.right);
21 }
22 }
23 if(t3 == null) ASNF(t1.right, t2);
24 else ASNF(t1.right, t3);
25 ASNL(t1, null); ASNL(t2, null); ASNL(t3, null);
26 }

Figure 9. Moving Skew Heaps with automatic fine-grain
locking.

during its operation, nodes are dynamically moved from one
data-structure to another one. Fig. 9 show its code, after the
source transformation.

5. Performance Evaluation
We evaluate the performance of our technique on several
benchmarks. For each benchmark, we compare the perfor-
mance of the benchmark using fine-grain locking automat-
ically generated using our technique to the performance of
the benchmark using a single coarse-grain lock. We also
compare some of the benchmarks to versions with hand-
crafted fine-grain locking. For some benchmarks, manually



adding fine-grain locking turned out to be too difficult even
for concurrency experts.

In our experiments, we consider 5 different benchmarks:
two balanced search-tree data structures, a self-adjusting
heap data structure, and two specialized tree-structures
(which are tailored to their application).

The experiments were run on a machine with 8 hardware
threads. Specifically, we used an Intel Core2 i7 processor
with 4 cores that each multiplex 2 hardware threads.

5.1 General Purpose Data-Structures
5.1.1 Balanced Search-Trees
We consider two Java implementations of balanced search
trees: a Treap [3], and a Red-Black Tree with a top-down
balancing [8, 18]. For both balanced trees, we consider the
common operations of insert, remove and lookup.

Methodology We follow the evaluation methodology of
Herlihy et al. [20], and consider the data structures under
a workload of 20% inserts, 10% removes, and 70% lookups.
The keys are generated from a random uniform distribution
between 1 and 2 × 106. To ensure consistent and accurate
results, each experiment consists of five passes; the first pass
warms up the VM and the four other passes are timed. Each
experiment was run four times and the arithmetic average of
the throughput is reported as the final result.

Every pass of the test program consists of each thread
performing one million randomly chosen operations on a
shared data-structure; a new data-structure is used for each
pass.

Evaluation For both search trees, we compare the results
of our automatic locking to a coarse-grain global lock. For
the Treap, we also consider a version with manual hand-
over-hand locking. Enforcing hand-over-hand locking for
the Treap is challenging because after a rotation, the next
thread to traverse a path will acquire a different sequence
of locks. Assuring the absence of deadlock under different
acquisition orders is challenging.

For the Red-Black Tree, the task of manually adding fine-
grain locks proved to be too challenging and error prone.
Rotations and deletions are much more complicated than in
a Treap. Previous work on fine-grain locking for these trees
alters the tree invariants and algorithm, as in [32]. Even after
spending a whole day, we were unable to find or develop a
correct manual locking strategy for true Red-Black Trees.

Fig. 10 shows results for the Treap. Our locking scales as
well as manual hand-over-hand locking. They both outper-
form the single-lock as the number of threads is increased.

Fig. 11 shows results for the Red-Black Tree. Starting
from 2 threads, our locking is faster than the single-lock.

5.1.2 Self-Adjusting Heap
We consider a Java implementation of a Skew Heap [8, 36],
which is a self-adjusting heap data-structure. We consider
the operations of insert and removeMin.
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Figure 10. Throughput for a Treap with a single lock, man-
ual hand-over-hand locking, and EFL-based automatic lock-
ing; with 70% lookups, 20% inserts and 10% removes.
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Figure 11. Throughput for a Red-Black Tree with a single
lock, and EFL-based automatic locking; with 70% lookups,
20% inserts and 10% removes.
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Figure 12. Throughput for a Skew Heap with a single lock,
and EFL-based automatic locking; with 50% inserts and
50% removeMin.

We use the same evaluation methodology we used for the
search trees. Here we consider a workload of 50% inserts
and 50% removes on a heap initialized with one million
elements. We compare the results of our automatic locking to
a coarse-grain global lock. The results are shown in Fig. 12.

5.2 Specialized Implementations
To illustrate the applicability of our technique to specialized
data-structures (which are tailored to their application), we
consider Java implementation of Barnes-Hut algorithm [5],
and a C++ implementation of the Apriori Data-Mining algo-
rithm [1] from [31].
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Figure 13. Apriori, Normalized Time of Hash-Tree Con-
struction.
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Figure 14. Barnes-Hut, Normalized Time of OCT-Tree
Construction.

5.2.1 Apriori
In this application, a number of threads concurrently build a
Hash-Tree data-structure (a tree data-structure in which each
node is either a linked-list or a hash-table). The original ap-
plication uses customized hand-over-hand locking tailored
to this application. We evaluate the performance of our lock-
ing relative to this specialized manual locking and to a single
global lock. We show that our locking performs as well as
the specialized manual locking scheme in the original appli-
cation.

In the experiments, we measured the time required for the
threads to build the Hash-Tree. Fig. 13 shows the speedup
of the original hand-crafted locking, and our locking over a
single lock. For 2 and 4 threads, the speedup of our locking is
almost as good as the original manual locking. In the case of
8 threads it performs better than the original locking (around
30% faster). Both have a small overhead in the case of a
single thread (around 4% slower).

5.2.2 Barnes-Hut
The Barnes-Hut algorithm simulates the interaction of a
system of bodies (such as galaxies or particles) and is built
from several phases. Its main data-structure is an OCT-Tree.
We parallelized the Construction-Phase in which the OCT-
Tree is built, and used our technique for synchronization. We
measured the benefit gained by our locking.

In the experiments, we measured the time required for
threads to build the OCT-tree (i.e., the Construction-Phase).
Fig. 14 shows the results. Our locking and manual hand-
over-hand locking show high overhead for 1 and 2 threads

(150% for our locking, and 70% for manual hand-over-
hand). For a larger number of threads our locking and man-
ual hand-over-hand are comparable, and they are both faster
than the sequential version.

6. Discussion
In this section, we discuss extensions and additional poten-
tial applications of our approach.

Other Ways to Enforce Domination Locking We have
presented a way to enforce domination locking on forest-
based modules. Still, domination locking can be enforced
in several other cases (both manually and automatically). In
particular, it can be enforced in cases in which the shared
heap is not a forest.

As an illustrative example, consider a non forest-based
module M with a single exposed object e in which hidden
objects never point to e. Assume that M uses the instrumen-
tation presented in Section 4, and that each transaction re-
leases all its locks before its completion (can be realized, for
example, by adding a ReleaseAll statement at the end of
transactions; this statement releases all locks that are owned
by the transaction). It is easy to see that M follows domina-
tion locking in sequential executions. Hence, if M ’s sequen-
tial executions are completable, then its concurrent execu-
tions are strict conflict-serializable and completeable.

We believe that it is interesting to explore different ways
for realizing the domination locking protocol, together with
their practical implications.

Using Optimistic Synchronization for Read-Only Opera-
tions Domination locking can be combined with optimistic
synchronization to improve scalability for read-only transac-
tions by adding version information to objects. Read-write
transactions would synchronize between themselves using
DL, with no chance of rollback, while read-only transactions
would use the version numbers to ensure consistent reads.
Version numbers could either be managed locally, by incre-
menting them on each commit (e.g., as in [9]), or globally us-
ing a timestamp scheme (e.g., as in [14]). The local scheme
would provide better scalability for writers, while the global
scheme admits very efficient read-only transactions. Con-
tention management in our system would be easier than in
purely optimistic schemes such as STM, because read-only
transactions can fall back to DL locking after experiencing
too many rollbacks.

Verification Domination Locking protocol can provide a
basis for verification. For example, [4] describes a verifica-
tion technique based on special cases of domination lock-
ing (dynamic DAG and Tree locking). By using domination
locking, their analysis can be simplified and extended be-
cause of the weaker conditions of domination locking.



7. Related Work
Locking Protocols Locking protocols are used in database
and other software systems to guarantee correctness of con-
currently executing transactions. A widely used protocol is
the two-phase-locking (2PL) protocol [16] which guarantees
conflict-serializability of transactions, but does not guaran-
tee deadlock-freedom. In the 2PL protocol, locking is done
in two phases, in the first phase locks are only allowed to be
acquired (releasing locks is forbidden); in the second phase
locks are only allowed to be released.

These restrictions require that locks are held until the final
lock is obtained, thus preventing early release of a lock even
when locking it is no longer required. This limits parallelism,
especially in the presence of long transactions. (e.g., a tree
traversal must hold the lock on the root until the final node
is reached.)

Other locking protocols (non-2PL protocols) rely on the
shape of the heap. Most of these protocols (e.g.[25, 35])
were designed for databases in which the shape of shared ob-
jects does not change during a transaction, and thus are not
suitable for more general cases with dynamically changing
heaps. [4, 10, 26] show protocols that can handle dynami-
cally changing heap shapes.

Attiya et al. [4] present a dynamic tree-locking protocol
and show that if it is satisfied by all sequential executions
then it is also satisfied by all concurrent executions. In con-
trast, DL does not enforce any requirement on the heap. In
fact, it is possible for a program that follows DL for all se-
quential executions to violate the DL conditions during a
concurrent execution. Still, we show that if DL is satisfied
by all sequential executions then all concurrent executions
are correct, i.e., guarantee atomicity and deadlock freedom.
This result simplifies the task of reasoning about programs
using DL, since it allows both programmers and program
analysis tools to ignore interleaved states.

Wang et al. [37] describe a static analysis and accompa-
nying runtime instrumentation that eliminates the possibil-
ity of deadlock from multi-threaded programs using locks.
Their tool adds additional locks that dominate any potential
locking cycle, but it requires as a starting point a program
that already has the locks necessary for atomicity.

Boyapati et al. [7] describe an ownership type system
that guarantees data race freedom and deadlock freedom,
but still not atomicity. Their approach can prevent deadlocks
by relying on partial-order of objects, and also permit to
dynamically change this partial-order. Interestingly, DL also
relies on the intuition of dynamic ownership where exposed
objects dominate hidden objects.

Lock inference There has been a lot of work on inferring
locks for implementing atomic sections. Most of the algo-
rithms in the literature infer locks for following the 2PL
locking protocol [11, 12, 15, 17, 24, 29]. The algorithms in
[15, 24, 29] employ a 2PL variant in which all locks are re-
leased at the end of a transaction. In these algorithms, dead-

lock is prevented by statically ordering locks and rejecting
certain programs. The algorithms in [11, 17] use a 2PL vari-
ant in which all locks are acquired at the beginning of trans-
actions and released at the end of transactions. In these algo-
rithms, deadlock is prevented by using a customized locking
protocol at the beginning of atomic sections. As described
above, 2PL limits parallelism as all locks must be held until
the final lock is acquired.

Transactional Memory Transactional memory approaches
(TMs) dynamically resolve deadlocks by rolling back par-
tially completed atomic regions.4 The TM programming
model can be implemented as an extension to the cache
coherence protocol [22] or as a code transformation [21].
Preserving the ability to roll back requires that transactions
be isolated from the rest of the system, which prohibits them
from performing I/O. Software transactions are also prohib-
ited from calling modules that have not been transformed
by the TM. Ad-hoc proposals for specific forms of I/O are
present in many TMs [30], but in the general case at most
one transaction at a time can safely perform an irrevoca-
ble action [39]. Pessimistic automatic concurrency control
schemes such as our technique, in contrast, do not limit con-
current I/O or calls to foreign modules.

GC Algorithms It is interesting to note that our locking
using reference counters bears similarities with garbage col-
lection algorithms based on reference counts (e.g., [13, 28]).
In particular, it is beneficial to maintain separate reference
counts from the stack and the heap.
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Instruction Transition Side Condition

skip σ
〈t,e〉−→ 〈h, r, %[t 7→ 〈k′, ρ, L〉]〉

x = e(y1, . . . , yk) σ
〈t,e〉−→ 〈h, r, %[t 7→ 〈k′, ρ[x 7→ [[e]](ρ(y1), . . . , ρ(yk))], L〉]〉

assume(b) σ
〈t,e〉−→ 〈h, r, %[t 7→ 〈k′, ρ, L〉]〉 ρ(b) = true

x = newR() σ
〈t,e〉−→ 〈h[a 7→ o], r, %[t 7→ 〈k′, ρ[x 7→ a], L〉]〉 a 6∈ dom(h) ∧ ι(R)() = o

x = y.f σ
〈t,e〉−→ 〈h, r, %[t 7→ 〈k′, ρ[x 7→ h(ρ(y))(f)], L〉]〉 ρ(y) ∈ dom(h)

x.f = y σ
〈t,e〉−→ 〈h[ρ(x) 7→ (h(ρ(x))[f 7→ ρ(y)])], r, %[t 7→ 〈k′, ρ, L〉]〉 ρ(x) ∈ dom(h)

acquire(x) σ
〈t,e〉−→ 〈h, r, %[t 7→ 〈k′, ρ, L ∪ {ρ(x)}〉]〉 ρ(x) ∈ L ∨ ∀〈k′′, ρ′, L′〉 ∈ range(%) : ρ(x) 6∈ L′

release(x) σ
〈t,e〉−→ 〈h, r, %[t 7→ 〈k′, ρ, L \ {ρ(x)}〉]〉 ρ(x) ∈ L

return(x) σ
〈t,e〉−→ 〈h, r[ρ(x) 7→ true], %[t 7→ 〈k′, ρ, L〉]〉 ρ(x) ∈ dom(h)

return(x) σ
〈t,e〉−→ 〈h, r, %[t 7→ 〈k′, ρ, L〉]〉 ρ(x) 6∈ dom(h)

Table 3. The semantics of primitive instructions. For brevity, we use the shorthands: σ = 〈h, r, %〉 and %(t) = 〈k, ρ, L〉, and
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v ∈ V al = Loc ] Z ] {true, false, null}
ρ ∈ E = V ↪→ V al
h ∈ H = Loc ↪→ F ↪→ V al
l ∈ L = Loc
s ∈ S = K × E × 2L

σ ∈ Σ = H× (Loc ↪→ {true, false})× (T ↪→ S)

Figure 15. Semantic domains

A. Semantics
Fig. 15 defines the semantic domains of a state of a module,
and meta-variables ranging over them. Let t ∈ T be the
domain of transaction identifiers.

A state σ = 〈h, r, %〉 ∈ Σ of a module is a triple: h
assigns values to fields of dynamically allocated objects.
A value v ∈ Val can be either a location, an integer, a
boolean value,or null. r maps exposed objects to true, and
hidden objects to false. Finally, % associates a transaction t
with its transaction local state %(t). A transaction-local state
s = 〈k, ρ, L〉 ∈ S is: k is the value of the transaction’s
program counter, ρ records the values of its local variables,
and L is the transaction’s lock set which records the locks
that the transaction holds.

The behavior of a module is described by the relations
−→ and⇒. The relation −→ is a subset of Σ× (T × (K ×
K))× Σ, and is defined in Table 3.5

A transition σ
〈t,e〉−→ σ′ represents the fact that σ can be

transformed into σ′ via transaction t executing the instruc-
tion annotating control-flow edge e. Invocation of a new
transaction is modeled by the relation ⇒⊆ Σ × T × Σ;
we say that 〈h, r, %〉 t⇒ σ′ if σ′ = 〈h, r, %[t 7→ s]〉 where
t 6∈ dom(%) and s is any valid initial local state: i.e., s =
〈entry, ρ, {}〉, where entry is the entry vertex, and ρ maps
local variables and parameters to appropriate initial values
(based on their type). In particular, ρ must map any pointer
parameter of a type defined by the module to an exposed ob-
ject (i.e., an object u in h such that r(u) = true). We write
σ −→ σ′, if there exists t such that σ t⇒ σ′ or there exists
〈t, e〉 such that σ

〈t,e〉−→ σ′.
The schedule of an execution π = σ0, . . . , σk is a se-

quence 〈t0, e0〉, . . . , 〈tk−1, ek−1〉 such that for 0 ≤ i < k:

σi
〈ti,ei〉−→ σi+1, or σi

ti⇒ σi+1 and ei = einit (where einit is
disjoint with all edges in the CFG).

We say that a sequence ξ = 〈t0, e0〉, . . . , 〈tk−1, ek−1〉 is
a feasible schedule, if ξ is a schedule of an execution. The
schedule of a transaction t in an execution is the (possibly

5 For simplicity of presentation, we use an idempotent variant of acquire
(i.e., acquire has no impact when the lock has already owned by the current
transaction). We note that this variant is permitted by the Lock interface
from the java.util.concurrent.locks package, and can easily be implemented
in languages such as Java and C++.



non-contiguous) subsequence of the execution’s schedule
consisting only of t’s transitions.

We define the allocation id of an object in an execution
to be the pair (t, i) if the object was allocated by the i-th
transition executed by a transaction t. An object o1 in an
execution π1 corresponds to an object o2 in an execution π2
iff their allocation ids are the same. In the sequel we will
compare states and objects belonging to different executions
modulo this correspondence relation.

B. Proofs
DEFINITION 1. An execution is said to be well-locked if
every transaction in the execution accesses a field of an
object, only when it holds a lock on that object.

DEFINITION 2. We say that a set S of objects dominates an
object u (in a given state) if every path from an exposed
object to u contains some objects from S. We say that a
transaction t blocks an object u (in a given state) if the set
of objects locked by t dominates u.

DEFINITION 3. We say that a transaction t is in phase-1 if it
is still running and has never released a lock. Otherwise, we
say that t is in phase-2 (i.e., t is in phase-2 if it has already
completed, or it has released at least one lock).

LEMMA 1. Let ξ = ξpξtξs be any feasible well-locked
schedule, where ξt is the schedule of a transaction t. If t
is in phase-1 (after ξ), then there is no conflict between ξt
and ξs (in ξ) .

Proof Immediate from the definition of phase-1.

DEFINITION 4. We say that an ni-execution (non-interleaved
execution) is phase-ordered if all phase-2 transactions pre-
cede phase-1 transactions.

LEMMA 2. Any feasible well-locked ni-schedule ξ1ξ2 · · · ξn
is conflict-equivalent to a well-locked phase-ordered ni-
schedule ξi1 · · · ξin .

Proof Because of Lemma 1, moving all phase-1 transac-
tions to the end of the schedule does not affect any of the
conflict-dependences.

In the following we assume that ≤h is a total order of
all heap objects. We assume that ≤h has a minimal value ⊥
(i.e., if u is an object then ⊥ ≤h u). We say that u <h v, if
u 6= v and u ≤h v.

DEFINITION 5. We say that max(σ, t) = u, if u is the
maximal exposed object that is locked by transaction t in
state σ (i.e., u is locked by t in σ, and every exposed object
v that is locked by t in σ satisfies v ≤h u). If no exposed
object is locked by t in σ, then max(σ, t) = ⊥.

DEFINITION 6. Let π = α1 · · ·αk be a phase-ordered exe-
cution. Let s be the last state of π. We say that π is fully-
ordered, if for every αi and αj that are in phase-1 the fol-
lowing holds: if i < j then max(s, tj) ≤h max(s, ti).

LEMMA 3. Any feasible well-locked ni-schedule ξ1ξ2 · · · ξn
is conflict-equivalent to a well-locked fully-ordered ni-
schedule ξi1 · · · ξin .

Proof Similar to Lemma 2. Here we also reorder the phase-
1 transactions according to ≤h.

LEMMA 4. Consider any sequential-execution π1 → σ →
π2 that follows domination locking. Assume that t is in phase
2 at the end of π1 → σ. For any object o in state σ, t can
access o during the (remaining) execution σ → π2 only if t
blocks o in σ.

Proof Let u be an object in σ which is not blocked by t in
σ. Hence σ contains a path P from an exposed object to u,
such that none of the objects in P are locked by t. We can
inductively show that none of the objects in P are locked,
and hence not accessed or modified during the rest of the
execution.

DEFINITION 7. Let π1 and π2 be two executions such that
for every transaction t the schedule of t in π1 is a prefix of the
schedule of t in π2. π2 is said to be a conflict-equivalent ex-
tension of π1 if every step (t, e) in π1 has the same conflict-
predecessors as the corresponding step in π2. π2 is said to be
an equivalent completion of π1 if it is a complete execution
and is a conflict-equivalent extension of π1.

Note that if an execution α1β1 · · ·αnβn is a conflict-
equivalent extension of π = α1 · · ·αn, then the execution
α1 · · ·αnβ1 · · ·βn is also a conflict-equivalent extension of
π.

LEMMA 5. Let πni be a well-locked ni-execution with a
schedule α1 · · ·αk. Let πe be a conflict-equivalent exten-
sion of πni with a schedule α1β1 · · ·αkβk. Assume that ti
blocks an object u at the end of αi in πe. Then, the execution
of αi+1 · · ·αk in πni does not access u 6 .

Proof Let σ denote the state at the end of αi in πni. For
any object x in σ accessed by the execution of αi+1 · · ·αk

in πni we define the path Px inductively as follows. If x
is an exposed object in σ, then Px is defined to be the se-
quence [x]. If x is a hidden object in σ, then the execution
of αi+1 · · ·αk must have dereferenced some field of some
object that pointed to x. Consider the first field y.f derefer-
enced by αi+1 · · ·αk that pointed to x, where y represents an
object. We define Px to consist of the sequence Py followed
by x.

6 Note that in this case ti might not actually block object u at the end of αi

in πni.



Assume that u is accessed during the execution of
αi+1 · · ·αk in πni. Hence Pu exists at the end of αi in πni.
By the definition of a conflict-equivalent extension, Pu also
exists at the end of execution of αi in πe. (in particular, for
1 ≤ j ≤ i the execution of βj in πe does not access any
object in Pu). Hence, ti must hold a lock on some object y
in this path (at the end of αi in both πni as well as πe). Since
πni is well-locked, the execution of αi+1 · · ·αk in πni could
not have locked y which is a contradiction. Hence u is not
accessed during the execution of αi+1 · · ·αk in πni

LEMMA 6. Let π = α1 · · ·αn be a well-locked fully-
ordered execution with at least one incomplete transac-
tion. Let tk be the first incomplete transaction in π (i.e.,
k is the minimal number such that tk is incomplete). If ev-
ery sequential-execution of a module follows domination
locking and is completable, then π has an equivalent ex-
tension α1 · · ·αkβkαk+1 · · ·αn in which transaction tk is
completed.

Proof Since α1 · · ·αk represents a sequential-execution, it
has a completion α1 · · ·αkβk that follows domination lock-
ing.
We consider the following cases.

Case 1: After π transaction tk is in phase-2.
Let σ represent the state produced by the execution of
α1 · · ·αk.
From Lemma 4, all objects in σ accessed during the execu-
tion of βk (in α1 · · ·αkβk) must be blocked by tk in σ.
From Lemma 5 the execution of αk+1 · · ·αn (in α1 · · ·αn)
cannot access any object blocked by tk in σ.
Hence the schedule α1 · · ·αkβkαk+1 · · ·αn is feasible and
is a conflict-equivalent extension of α1 · · ·αn.

Case 2: k = n
Here α1 · · ·αkβk is the equivalent extension.

Case 3: k < n, and after π transaction tk is in phase-1
Let σ represent the state produced by the execution of
α1 · · ·αk−1.
Let k < m ≤ n.
Because of Lemma 1, no conflict-dependence can exist
between the running transactions (because they are all in
phase-1), hence α1 · · ·αk−1αm represents a feasible se-
quential execution that follows domination locking.

Let u be an exposed object in σ that is accessed by tk in
α1 · · ·αk−1αkβk, we will show that u is not accessed by tm
in α1 · · ·αk−1αm.
If u is accessed or locked by αk in α1 · · ·αk−1αkβk, then u
is not accessed or locked by αm in α1 · · ·αk−1αm (because
tk and tm have no conflict in π).
Otherwise, u is locked by βk in α1 · · ·αk−1αkβk.

Let σ′ denote the state produced by the execution of π.
max(σ′, tm) <h max(σ′, tk) (because after the fully-
ordered execution π, tk and tm are in phase-1 and tk pre-
cedes tm ).
max(σ′, tk) <h u (because of condition 2).
Hence, max(σ′, tm) <h u
Hence, u is not accessed or locked by tm in α1 · · ·αk−1αm.

Let v be a hidden object in σ that is accessed by tk in
α1 · · ·αk−1αkβk. we will show that v is not accessed by
tm in α1 · · ·αk−1αm.
v is necessarily reachable from exposed objects in σ, hence
there exists a path P (in σ) from an exposed object w to v,
such that w is the only exposed object in P .
tk accesses w in α1 · · ·αk−1αkβk (because of conditions 4
and 1).
Assume that v is accessed by tm in α1 · · ·αk−1αm, then tm
accesses w in α1 · · ·αk−1αm (conditions 4 and 1). But we
have showed that this is not possible for exposed objects.
Therefore v is not accessed by tm in α1 · · ·αk−1αm.

We have showed, for every k < m ≤ n, tk does not ac-
cess (in α1 · · ·αk−1αkβk) any object that is accessed by tm
(in α1 · · ·αk−1αm). Hence, α1 · · ·αkβkαk+1 · · ·αn is an
equivalent extension of α1 · · ·αn.

LEMMA 7. Let π = α1 · · ·αn be a well-locked fully-ordered
execution. If every sequential-execution of a module follows
domination locking and is completable, then π has an equiv-
alent completion α1β1 · · ·αnβn.

Proof If π is not a complete execution, we can construct an
equivalent completion α1β1 · · ·αnβn by repeatedly apply-
ing Lemma 6.

LEMMA 8. Let ξ = ξpξtξs be any feasible well-locked ni-
schedule, where ξt is the schedule of a transaction t. If
ξ · (t, e) is feasible, then ξpξt · (t, e) is also feasible.

Proof Assume that ξ · (t, e) is feasible. We show that
ξpξt · (t, e) is feasible. The only sources of infeasibility are
when the step (t, e) involves a conditional branch (i.e., an
assume statement) or an attempt to acquire a lock. We make
the simplifying assumption that an assume statement refers
to only thread-local variables. (Note that there is no loss
of generality here since any statement “assume e” can be
rewritten as “x = e; assume x” where x is a thread-local
variable.) As a result, ξpξt · (t, e) must be feasible if (t, e)
involves a conditional branch. Now, consider the case where
(t, e) involves an “acquire x” instruction where x is a
thread-local variable. If the object x points to is unlocked at
the end of ξpξtξs, it must be unlocked at the end of ξpξt as
well. Hence, feasibility follows in this case as well.



LEMMA 9. If every sequential-execution of a module fol-
lows domination locking and is completable, then every ni-
execution is well-locked.

Proof We prove by induction on the length of the execu-
tions. Let ξ be a schedule of a well-locked ni-execution. We
will prove that if ξ · (t, e) is feasible, then it is a schedule of
a well-locked execution. Assume that after ξ, the step (t, e)
accesses an object u. From Lemma 3, ξ is conflict-equivalent
to a fully-ordered ni-schedule ξ′ = α1 · · ·αn.
We consider the following cases.

Case 1: there exists i such that t = ti and 1 ≤ i < n.
From Lemma 8, α1 · · ·αi ·(ti, e) is a feasible schedule. From
the induction hypothesis, ti holds a lock on u after α1 · · ·αi.
Hence, ti holds a lock on u after ξ′ = α1 · · ·αn. Hence, ti
holds a lock on u after ξ.

Case 2: t = tn.
From Lemma 7, ξ′ has an equivalent completion with the
schedule α1β1 · · ·αnβn.
We define ξ′′ = α1β1 · · ·αn−1βn−1αn (this is a prefix of
α1β1 · · ·αnβn).
The step (tn, e) accesses u after ξ′′ (because tn has the same
local state after ξ′ and ξ′′). Since ξ′′ · (tn, e) represents a
sequential execution, u is locked by tn after ξ′′. Hence, tn
holds a lock on u after α1 · · ·αn. Hence, tn holds a lock on
u after ξ.

Case 3: t does not appear in ξ
According the definition of a schedule, the first step of a
transaction does not access an object.

LEMMA 10. If every sequential-execution of a module fol-
lows domination locking and is completable, then every ex-
ecution π is conflict-equivalent to a fully-ordered execution
π′ such that a transaction t completes before a transaction
t′ begins in π′ if t completes before t′ begins in π.

Proof We prove this by induction on the length of the ex-
ecution. Consider any execution with a schedule ξ · (ti, e).
By the inductive hypothesis, the execution of ξ is conflict-
equivalent to a fully-ordered execution with the schedule
ξ′ = α1 · · ·αk

7 such that a transaction t completes before a
transaction t′ begins in ξ′ if t completes before t′ begins in
ξ.
From Lemma 9, ξ′ is well-locked.
We consider the following cases:

Case 1: After α1 · · ·αi, transaction ti is in phase 2, and
(ti, e) does not access an heap object.
In this case, α1 · · ·αk · (ti, e) is conflict equivalent to
α1 · · ·αi · (ti, e) · αi+1 · · ·αk

7 Note that 1 ≤ i ≤ k and αi may be empty

Case 2: After α1 · · ·αi, transaction ti is in phase 2, and
(ti, e) accesses an heap object u.
According to Lemma 7, ξ′ = α1 · · ·αk has an equivalent
completion ξ′′ = α1β1 · · ·αkβk.
Let ξ′′′ = α1β1 · · ·αi−1βi−1αi (ξ′′′ is a prefix of ξ′′).
ti has the same local state after α1 · · ·αi and ξ′′′ (according
the definition of conflict-equivalent extension).
According to Lemma 8, α1 · · ·αi · (ti, e) is a feasible sched-
ule, so ξ′′′ · (ti, e) is also a feasible schedule.
Also ξ′′′ · (ti, e) represents a sequential execution (which
follows domination locking).
Hence according to Lemma 4, ti blocks u after ξ′′′.
Hence, ti blocks u after αi in ξ′′.
Hence, according to Lemma 5, αi+1 · · ·αk does not access
u in ξ′ = α1 · · ·αk.
Therefore, α1 · · ·αk · (ti, e) is conflict equivalent to
α1 · · ·αi · (ti, e) · αi+1 · · ·αk

Case 3: Transaction ti is in phase 1 after α1 · · ·αi.
Because of Lemma 1, we can reorder all phase-1 transac-
tions and ti (even if ti is in phase-2 after α1 · · ·αk · (ti, e)).
If ti is in phase-2 after α1 · · ·αk · (ti, e), then we can con-
struct the fully-ordered equivalent execution by moving
αi · (ti, e) just before all the phase-1 transactions.
Otherwise (ti is still in phase-1 after α1 · · ·αk · (ti, e)), we
can construct the fully-ordered equivalent execution by mov-
ing αi · (ti, e) to the right place according to the max values
(between the phase-1 transactions).

THEOREM B.1. If every sequential-execution of a module
follows domination locking and is completable, then every
execution of the module is strict conflict-serializable.

Proof Immediate from Lemma 10.

THEOREM B.2. If every sequential-execution of a module
follows domination locking and is completable, then every
execution of the module is a prefix of a complete-execution.

Proof Consider any execution π. According to Lemma 10,
there exists a fully-ordered execution π′ = α1 · · ·αn which
is conflict equivalent to π. According to Lemma 7, π′ has an
equivalent completion α1β1 · · ·αnβn. According the defini-
tion of conflict-equivalent extension, there exists execution
α1 · · ·αnβ1 · · ·βn. Hence, π′ is a prefix of a complete exe-
cution. Since π and π′ end with the same state, π is also a
prefix of a complete execution.


