
Data-Driven Equivalence Checking

Rahul Sharma
Stanford University

sharmar@cs.stanford.edu

Eric Schkufza
Stanford University

eschkufz@cs.stanford.edu

Berkeley Churchill
Stanford University

bchurchill@cs.stanford.edu

Alex Aiken
Stanford University

aiken@cs.stanford.edu

Abstract
We present a data driven algorithm for equivalence check-
ing of two loops. The algorithm infers simulation relations
using data from test runs. Once a candidate simulation rela-
tion has been obtained, off-the-shelf SMT solvers are used
to check whether the simulation relation actually holds. The
algorithm is sound: insufficient data will cause the proof
to fail. We demonstrate a prototype implementation, called
DDEC, of our algorithm, which is the first sound equiva-
lence checker for loops written in x86 assembly.

Categories and Subject Descriptors D.1.2 [Automatic
Programming]: Program Transformation; D.2.4 [Program
Verification]: Correctness proofs; D.3.4 [Processors]: Com-
pilers; D.3.4 [Processors]: Optimization

Keywords Binary Analysis; Compilers; Markov Chain
Monte Carlo; Optimization; Superoptimization; SMT; Veri-
fication; x86

1. Introduction
Equivalence checking of loops is a fundamental problem
with potentially significant applications, particularly in the
area of compiler optimizations. Unfortunately, the current
state of the art in equivalence checking is quite limited:
given two assembly loops, no existing technique is capable
of verifying equivalence automatically, even if they differ
only in the application of standard loop optimizations. In this
paper, we present the first practically useful, automatic, and
sound equivalence checking engine for loops written in x86.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
OOPSLA ’13, October 29–31, 2013, Indianapolis, Indiana, USA.
Copyright c© 2013 ACM 978-1-4503-2374-1/13/10. . . $15.00.
http://dx.doi.org/10.1145/2509136.2509509

Proofs of equivalence at the binary level are more desir-
able than proofs at the source or RTL level, because such
proofs minimize the trusted code base. For example, a bug
in the code generator of a compiler can invalidate a proof
performed at the RTL level or we can have a “what you see
is not what you execute” (WYSINWYX) phenomenon [3]
and the generated binary can deviate from what is intended
in the source.

Existing techniques for proving equivalence can be clas-
sified into three categories: sound algorithms for loop-free
code [1, 6, 10, 11, 23]; algorithms that analyze finite un-
windings of loops or finite spaces of inputs [17, 20, 28, 30];
algorithms that require knowledge of the particular transfor-
mations used for turning one program into another [24, 36]
and the order in which the transformations have been ap-
plied [14, 25, 29]. In contrast, our approach to handling
equivalence checking of loops does not assume any knowl-
edge about the optimizations performed.

We have implemented a prototype version of our algo-
rithm in a system called DDEC (Data-Driven Equivalence
Checker). This tool checks the equivalence of two loops
written in x86 assembly. In outline the tool works as follows.
First, DDEC guesses a simulation relation [25]. Roughly
speaking, a simulation relation breaks two loops into a set
of pairs of loop-free code fragments. Logical formulas asso-
ciated with each pair describe the relationship of the input
states of the fragments to the output states of the fragments.
Second, DDEC generates verification conditions encoding
the x86 instructions contained in each loop-free fragment
as SMT [7] constraints. Finally, DDEC constructs queries
which verify that the guessed relationships between the code
fragments in fact hold. By construction, if the queries suc-
ceed they constitute an inductive proof of equivalence of the
two loops.

It is worth stressing that DDEC works directly on un-
modified binaries for x86 loops. The x86 instruction set is
large, complex, and difficult to analyze statically. The key
idea that makes DDEC effective in practice, and even sim-

ply feasible to build, is that the process of guessing a sim-
ulation relation (step 1 above) is constructed not via static
code analyses, but by using data collected from test cases.
Because DDEC is data driven, it is able to directly exam-
ine the precise net effect of code sequences without first go-
ing through a potentially lossy abstraction step. Of course,
the use of test cases is an under-approximation and may not
capture all possible loop behaviors. Nonetheless, DDEC is
sound; a lack of test coverage may cause equivalence check-
ing to fail, but it cannot result in the unsound conclusion that
two loops are equivalent when they are not.

While our main result is simply a sound and effective ap-
proach to checking the equivalence of loops, we also show
that sufficiently powerful equivalence checking tools such
as DDEC have novel applications. In particular, we are
able to verify the equivalence of binaries produced by com-
pletely different compiler toolchains. For a representative set
of benchmarks, we automatically prove the equivalence of
code produced by COMPCERT and gcc (with optimizations
enabled), which allows us to certify the correctness of the
entire gcc compilation or, conversely, to produce more per-
formant COMPCERT code. Additionally, we extend the ap-
plicability of STOKE [33], a superoptimizer for straight-
line programs, to loops. We replace STOKE’s validator by
DDEC and the resulting implementation is able to perform
optimizations beyond STOKE’s original capabilities, in fact
producing verified code which is comparable in performance
to gcc -O3.

DDEC is not without limitations. In particular, DDEC
restricts the expressiveness of invariants required for a proof
to be conjunctions of linear or nonlinear equalities. However,
for most interesting intra-procedural optimizations, simple
equalities appear to be sufficiently expressive [25, 32, 36].
DDEC is also currently unable to reason about floating point
computations, simply because the current generation of off-
the-shelf SMT solvers do not support floating point reason-
ing. Floating point reasoning is orthogonal to our contribu-
tions; when even limited floating point reasoning becomes
available, DDEC can incorporate it immediately. However,
the current state of the art limits the demonstration of DDEC
to loops that work only with non-floating point values.

We begin by providing a detailed, but informal, worked
example (Section 2), which is followed by a presentation
of the equivalence checking algorithm (Section 3). Next
we describe the implementation of DDEC (Section 4). Our
evaluation (Section 5) shows DDEC is competitive with the
state of the art in equivalence checking and presents the
novel applications described above. Discussions of related
work, limitations, and future work are included in Sections
6 and 7.

2. A Worked Example
Figure 1 shows two versions of a function taken from [36].
The straightforward implementation X is optimized using a

strength reduction [2] to produce the code Y ; corresponding
x86 assembly codes T andR are shown beneath each source
code function. We use primes (′) to represent program points
and registers corresponding to the optimized code, which we
call the rewrite R, and unprimed quantities for those corre-
sponding to the unoptimized code, which we call the target
T , throughout the paper. The generation of R also involves
some low level compiler optimizations such as the use of an
x86 conditional-move (instruction 11′ of R) to eliminate a
jump (instruction 12 of T). We are unaware of any fully au-
tomatic technique capable of verifying the equivalence of T
and R. Nonetheless, our goal is to verify equivalence in the
absence of source programs, manually written expert rules
for equivalence, source code of the compiler(s) used, and
compiler annotations—in other words, given only the two
assembly programs and no other information. All of these
features are necessary requirements to check equivalence at
the assembly level when no knowledge is available about the
relationship between the two codes. This situation arises, for
example, in verifying the correctness of STOKE optimiza-
tions [33].

To verify that T and R are equivalent, we must confirm
that whenever T and R begin execution in identical machine
states and T runs to completion,R is guaranteed to terminate
in the same machine state as T and with the same return
value. In this example, which does not use memory, we limit
our discussion of machine states to a valuation of the subset
of hardware registers that the two codes use: eax, ebx, ecx,
esi, and edi (our technique does not make this assumption
in general and handles memory reads and writes soundly).
We also assume that we know which registers are live on
exit from the function, which in this case is just the return
value eax. We stress that the following discussion takes
place entirely at the assembly level and does not assume any
information about the sources X or Y .

We use the well-known concept of a cutpoint [39] to de-
compose equivalence checking of two loops into manage-
able sub-parts. A cutpoint is a pair of program points, one in
each program. Cutpoints are chosen to divide the loops into
loop-free segments. The cutpoints in Figure 1, labeled a, b,
and c, segment the programs as follows: 1) the code from
a to b excluding the backedge of the loop, 2) the code that
starts from b, takes the backedge once, and comes back to
b, and 3) the code that starts from b, exits the loop, and ter-
minates at c. Using these three cutpoints, we can produce an
inductive proof of equivalence which proceeds as follows.
Our goal is to show that the executions of T and R move
together from one cutpoint to the next and that at each cut-
point, certain invariants are guaranteed to hold. The required
invariants at a and c follow directly from the problem state-
ment. At point a, we require that T andR agree on the initial
machine states. Similarly at point c, we require that T and
R agree on the return value stored in eax.

int f(int x, int n){
 int i, k = 0;
 for (i=0; i!=n; ++i){
 x += k*5;
 k += 1;
 if (i >= 5)
 k += 3;
 }
 return x;
}

int f'(int x, int n){
 int i, k = 0;
 for (i=0; i!=n; ++i){
 x += k;
 k += 5;
 if (i >= 5)
 k += 15;
 }
 return x;
}

17 ret

14 lea 1(edi), edi
15 cmp ecx, edi
16 jne 7

 7 mov esi, ebx
 8 lea (ebx,ebx,4), edx
 9 lea (eax,edx,1), eax
10 lea 1(esi), esi
11 cmp 5, edi
12 jb 14

13 lea 4(ebx), esi

 1' xor edx, edx
 2' mov 5, ecx
 3' mov edi, eax
 4' test esi, esi
 5' jne 12'
 6' jmp 15'

15' ret

 7' add ecx, eax
 8' lea 5(ecx), ebx
 9' add 20, ecx
10' cmp 4, edx
11' cmovbe ebx, ecx

1
2
3
4
5
6

7
8
9
10
11
12

14
15
16

1'
2'
3'
4'
5'
6'

7'
8'
9'
10'
11'

1
2
3
4
5
6

17

1'
2'
3'
4'
5'
6'

15'

7
8
9
10
11
12

13

14
15
16

7'
8'
9'
10'
11'

12'
13'
14'

7
8
9
10
11
12

14
15
16

7'
8'
9'
10'
11'

12'
13'
14'

7'
8'
9'
10'
11'

12'
13'
14'

iv

iiii

v

 1 mov edi, eax
 2 mov esi, ecx
 3 xor esi, esi
 4 xor edi, edi
 5 cmp 0, ecx
 6 je 17

12' add 1, edx
13' cmp edx, esi
14' jne 7'

a

b

c

X Y

12'
13'
14'

1
2
3
4
5
6

7
8
9
10
11
12

14
15
16

ii

13

1'
2'
3'
4'
5'
6'

17 15'

vi

T R

Figure 1. Equivalence checking for two possible compilations: (A) no optimizations applied either by hand or during
compilation, (B) optimizations applied. Cut points (a,b,c) and corresponding paths (i-vi) are shown.

We now encounter two major difficulties in producing a
proof of equivalence. The first problem we encounter is iden-
tifying the invariant that must hold at b. This invariant, I , is
a relation between the machine states of T and R. In this
paper, we consider invariants that consist of equality rela-
tionships between elements of the two machine states. Once
we have identified the appropriate invariant I , an inductive
proof would take the following form:

1. If T and R begin in a with identical machine states and
transition immediately to c, they terminate with identical
return values.

2. If T and R begin in a with identical machine states and
transition to b, they both satisfy I .

3. If T and R begin in b satisfying I , and return to b, then I
still holds.

4. If T andR begin in b satisfying I and transition to c, they
terminate with identical return values.

However, this proof is still incomplete. It does not guarantee
that if T makes a transition, then R makes the same transi-
tion: we do not for instance want T to transition from a to b

while R transitions from b to c. The proof can be completed
as follows.

Every transition between cutpoints is associated with
some instructions of T and R: these are the instructions,
or code paths, which need to be executed to move from one
cutpoint to the next. For example, in moving from cutpoint

b to c, T and R execute the instructions shown in code paths
vi of Figure 1. A code path pA of T corresponds to a code
path pB of R if they start and end at the same cutpoints and
when T executes pA then R executes pB . Figure 1 shows a
complete set of corresponding paths: i and ii are associated
with transition a-b, iii is associated with a-c, iv and v are
associated with b-b and vi is associated with b-c. We need
to check that when T executes a code path then R can only
execute the corresponding paths. Identifying these corre-
sponding paths is a second major difficulty. The question of
what invariants hold at b is crucial, as these must be strong
enough to statically prove that the execution of R follows
the corresponding paths of T and that the executions of both
T and R proceed through the same sequence of cutpoints.

Our solution to both problems, identifying the equalities
that hold at b and the corresponding paths of the two pro-
grams, is to analyze execution data. We identify correspond-
ing paths by matching program traces for both loops on the
same test inputs against the set of cutpoints. We observe the
instructions executed by T and R in moving from one cut-
point to the next and label them as corresponding. For exam-
ple, for a test case with initial state edi = 0 and esi = 1,
T begins its execution from a and executes instructions 1

to 16 to reach b. It then exits the loop and transitions from
b to c by executing instruction 17. R begins its execution
from a and executes instructions 1′ to 14′ to reach b. It then
executes instruction 15′ to reach c. From this test case, we
observe that code paths with instructions 1 to 16 correspond
to instructions 1′ to 14′ (i) and 17 corresponds to 15′ (vi).

The equality conditions at b can be determined by insert-
ing instrumentation at b to record the values of the live pro-
gram registers for both programs and observing the results.
For a test input where edi = 0 and esi = 2, we obtain the
following matrix where each row corresponds to the values
in live registers when both programs pass through b:

 eax esi edi ecx eax′ ecx′ edx′ esi′

0 1 1 2 0 5 1 2
5 2 2 2 5 10 2 2

The first row says that when T reaches b for the first time
the registers have the values shown in columns eax , esi,
edi, and ecx; when R reaches b for the first time, the reg-
isters have values shown in eax′, ecx′, edx′, and esi′. The
second row shows the values of registers when b is reached
the second time, i.e., in the next iteration of T and R. Us-
ing standard linear algebra techniques, it is possible to ex-
tract the following relationships, which are sufficient candi-
dates for the equalities which must hold at b: eax = eax′,
5∗esi = ecx′, edi = edx′, and ecx = esi′. The use of lin-
ear algebra on test data for invariant inference is well studied
in software verification and the limitations are known. The
process may generate spurious equality relationships [26],
however these can be systematically eliminated using a the-
orem prover [34]. We note that this method assumes that

equality relationships are sufficient to prove program equiv-
alence and we do not, for example, consider invariants which
contain inequalities. Previous work on translation valida-
tion [25, 36] makes the same assumption, which we find to
be largely sufficient in practice (see Section 5).

Although it is possible that the tests used to generate these
values do not produce sufficient coverage, and that either
more corresponding paths exist, or spurious equality rela-
tionships are discovered at b, the consequence is simply that
the proof will fail, and we will report that the two functions
may be different. We may then reattempt the proof with more
test cases, but a lack of test data cannot cause an unsound
result. Barring this possibility, almost all of the limitations
of this technique can be mapped to the restricted expres-
siveness of invariants. Better invariant generation techniques
will only improve performance.

3. Algorithm
We now present a formal description of the algorithm
sketched in Section 2. We assume we are given two functions
T and R, each containing one natural loop and no function
calls. We infer a candidate simulation relation consisting of
cutpoints and linear equalities as invariants. Then we check
whether the candidate is an actual simulation relation, and if
so then we have a proof of equivalence. We consider func-
tions containing multiple loops, calling other functions, and
inference of non-linear invariants in Section 3.1.3.

As is standard, we make a distinction between T , the
target or reference code, and R, the rewrite or proposed
replacement for the target T . A program state consists of
a valuation of registers, current stack frame, and memory.
The memory consists of the whole virtual memory except
the current stack frame. Generally, we will refer to the state
at a program point; in such instances we will limit the state
to only the live elements. We first define a suitable notion of
equality:

Definition 1. Target T is equivalent to rewrite R if for all
possible states s, when execution of T is started from s and
T terminates in final state s′ without aborting then when
rewrite R is executed from the initial state s, R terminates
in state s′ without aborting.

This definition captures the fact that if T terminates on
an input then so does R. Hence, this definition is richer
than partial equivalence. A segmentation fault or a floating
point exception are examples of aborting. The asymmetric
notion of equality in Definition 1 seems necessary to validate
several useful compiler optimizations. If the target T aborts
on some inputs, optimizing compilers are free to use an
R with any behavior, defined or undefined, on that input.
The notion of equality we use is captured in the verification
conditions (VCs) generated to symbolically compare the
behavior of T and R. Since our VCs are in a rich logic,
by modifying the VCs that are generated our approach can

handle a wide range of specifications of equality, including
requiring the target and rewrite to behave identically on
every input or allowing the rewrite to differ from the target
on any input that causes the target to abort.

Let t be a code path, that is, a sequence of instructions
in T , r a code path in R, and C the pair 〈t, r〉. Abusing the
notation of Hoare logic, we define proof obligations.

Definition 2. For predicates P and Q and code paths t and
r, a proof obligation {P}〈t, r〉{Q}, states that if t starts
execution from a state s1, r start execution from a state s2,
P (s1, s2) holds, and t terminates in a final state s′1 without
aborting, then r does not abort and for all possible final
states s′2 of r, Q(s′1, s

′
2) holds.

For example

{eax = eax′}〈mul $2 eax, shl $1 eax〉{eax = eax′}

says if t and r begin with values of eax equal and t performs
an unsigned multiplication by two and r shifts eax left by
one bit then the resulting states agree on the value of eax. We
want to generate sufficiently many proof obligations, such
that if they are all satisfied then they constitute an inductive
proof of equivalence of T and R.

3.1 Generating Proof Obligations
Each proof obligation {P}C{Q} has two components: the
code paths C and the predicates P and Q on the states of T
and R. We discuss the generation of each component.

3.1.1 Generating Corresponding Paths
We generate corresponding paths t and r for proof obliga-
tions using cutpoints [39]. A cutpoint n is a pair of program
points 〈ηT , ηR〉 where ηT ∈ T and ηR ∈ R. We select cut-
points using the following heuristic: Choose pairs of pro-
gram points where the corresponding memory states agree
on the largest number of values. Cutpoints with higher agree-
ment between the memory states of T and R have simpler
invariants than cutpoints where the relationship between the
two memory states is more involved.

The cutpoints are discovered using a brute force search
that compares the execution data for pairs of program points.
We create a candidate cutpoint for every program point pair
〈ηT , ηR〉. For every test σ, we find mσ

ηT (resp. mσ
ηR), the

number of times control flow passes through ηT (resp. ηR)
when the execution of T (resp. R) starts in the state σ. If
there do not exist constants a, b s.t. ∀σ.mσ

ηT = amσ
ηR + b

then 〈ηT , ηR〉 is rejected as a candidate cutpoint. We also re-
ject candidates for which the number of heap locations in the
observed heap states for T and R at 〈ηT , ηR〉 is not a con-
stant across all tests. Note that this operation is possible as
we run only terminating tests and thus the memory footprint
is bounded. For the remaining candidates, we assign them a
penalty representing how different the observed heap states
are for T and R at 〈ηT , ηR〉. We pick candidate cutpoints in

increasing order of penalty until T and R are decomposed
into loop free segments. Next, redundant candidates are re-
moved so that the minimum number of program point pairs
are selected as candidate cutpoints; a candidate n is redun-
dant if the decomposition is still loop free after removing
n. The choice of a minimum set of cutpoints may not be
unique and we simply try multiple proofs, with one proof
corresponding to every available choice. Multiple cutpoints
can be associated with the same program point of T or R.
For example, if a loop unrolling has been performed then
there might be several cutpoints sharing the same program
point of T .

If satisfactory cutpoints cannot be found then our tech-
nique fails, which highlights a limitation of our technique:
we fail to prove equivalence for programs which differ from
each other at an unbounded number of memory locations.
For example, a loop fusion transformation or reordering an
array traversal results in loops that cannot be proven equiv-
alent using our method. Handling such loops requires quan-
tified invariants, for which the current state of the art in in-
variant inference is less mature than for quantifier-free in-
variants. Generally, the techniques for quantified invariants
require manually provided templates; the templates prevent
the introduction of an unbounded number of quantified vari-
ables. Moreover, theorem provers are not as robust for quan-
tified formulas as they are for quantifier-free formulas.

The set of cutpoints is called a cutset S. For every pair
of cutpoints n1 and n2 in a cutset S, we define a transition
τ ≡ n1 .n2 from n1 to n2. This transition is associated with
a set of static code paths P1 of T and P2 of R. P1 and P2

consists of code paths which go from n1 to n2 without pass-
ing through some other cutpoint n3 ∈ S. The instructions
executed for a terminating and non-aborting execution of T
and R can be represented by a sequence of transitions. For
example, in Figure 1, let us denote by τ1 the transition from
a to b and τ2 from b to c. Then the execution discussed in
Section 2 represents the sequence of transitions τ1τ2. Code
paths i and ii of Figure 1 are associated with τ1 and vi

is associated with τ2. Now we define corresponding paths
formally:

Definition 3. Given a target T , a rewrite R, and a cutset
S, a code path t of T corresponds to a code path r of R if
they are associated with the same transition τ in S and for
some execution τ1, . . . , τ, . . . , τm, for the transition τ , if T
executes the code path t then R executes r.

Now we discuss our data-driven algorithm for generation
of corresponding paths. T and R are run on a test input
and we record the trace of instructions executed in both
functions. We analyze this pair of traces to build a set C
of corresponding paths. The algorithm walks over the traces
in parallel until a cutpoint is reached in both. The pair of
paths taken from the previous pair of cutpoints is added to C.
This process is repeated until we reach the end of the traces.
We then run the two functions on another input and repeat

the analysis. If test coverage is sufficient, C will contain all
corresponding paths.

We add additional proof obligations to ensure that we
have not missed any corresponding paths. For static paths
in T between cutpoints that no test executes, we add an ar-
bitrary path from R between the same cutpoints as a corre-
sponding path in C. For a path p of T associated with a tran-
sition τ , we add the verification condition that if the target
executes p then the rewrite can only execute the paths which
correspond to p in C. If these proof obligations fail then this
means that our data is insufficient and there are more corre-
sponding paths to be discovered.

3.1.2 Generating Invariants
Following Necula [25], we consider invariants that are equal-
ities over features, which are registers, stack locations and a
finite set ∆ of heap locations. Also as in [25], we replace
reads from and writes to stack locations by reads and writes
to named temporaries.

We perform a liveness analysis over T andR and for each
cutpoint (η1, η2) obtain the live features (see Section 4). Be-
cause x86 has sub-registers, these features can be of differ-
ent bit-widths. For example, it might be that only one byte of
a 64-bit register is live. We create a set of matrices, one for
each cutpoint (η1, η2), whose columns are the live features at
η1 and η2. If the bit-width of the longest live feature is x bits,
we create one column for every x bit live feature. For every
live feature of fewer than x bits, we create two columns: one
with the feature’s value zero-extended to x bits and the other
with the value sign-extended. The sign- and zero-extensions
are needed because x86 instructions implicitly perform these
operations on registers of different bit-widths.

We instrument the functions to record the values of the
features at the cutpoints; a snapshot of the state at one cut-
point corresponds to a single matrix row. If the cutpoint
(η1, η2) is executed m times then we have m rows in the
matrix for (η1, η2). Note that there are no negative values in
the matrices: negative numbers become large positive num-
bers.

We use elementary linear algebra to compute the linear
equality relationships between features. For the matrix asso-
ciated with each cutpoint, we compute its nullspace or ker-
nel. Every vector of the nullspace corresponds to an equality
relationship between features at that cutpoint for all test in-
puts. We take a conjunction of equalities generated by all
vectors in the basis of the nullspace and return the resulting
predicate as a candidate invariant for our candidate simula-
tion relation. For example, if our matrix has three features
and two rows: eax ebx eax′

1 1 1
2 2 2

then one possible basis of the nullspace consists of the vec-
tors [1,−1, 0] and [0, 1,−1]. These vectors correspond to

the equalities eax ∗ (1) + ebx ∗ (−1) + eax′ ∗ 0 = 0 and
eax ∗ 0 + ebx ∗ (1) + eax′ ∗ (−1) = 0. Hence the candidate
invariant is eax = ebx ∧ ebx = eax′. Note that the heap
locations, which are not included in features, are implicitly
constrained to have identical values for T and R. Hence, the
above invariant includes an implicit equality H = H ′, that
is, for all heap addresses, at the cutpoint, T andR have iden-
tical values. We use a nullspace algorithm for rational ma-
trices, which ensures that any discovered equality is exact.
The cutpoints are labeled with these equalities. One desir-
able feature of nullspaces is that no sound equality relation-
ship is missed. It can produce spurious equality relationships
(for lack of sufficient data) but if an equality holds statically
then it will be generated [34]. Intuitively, this is because ev-
ery possible equality is contained in the candidate invariant
unless there is a test that violates it. In the extreme, when
we have zero states in our data then the candidate invariant
consists of every possible equality between the features, and
hence it also includes the equalities present in the true invari-
ants. We generalize the results in [34], which uses nullspaces
to compute invariants for a single program, to features:

Lemma 1. If x is a set of features at a cutpoint n, and I(x)
is the strongest invariant at n that holds statically and is ex-
pressible by conjunctions of linear equalities, then the can-
didate invariant I(x) obtained by computing the nullspace
of test data is a sound under-approximation of I, that is,
I ⇒ I.

Before we discuss how candidate invariants are checked to
see if they are in fact invariants, we briefly digress to discuss
how our approach extends to more complex function bodies.

3.1.3 Extensions
Our approach easily generalizes to functions with multiple
natural loops, including nested loops. We identify the cutset
of T and R and identify cutpoints and transitions between
two cutpoints if there is a static path from one cutpoint to the
other. As is standard, we want every loop to contain at least
one cutpoint of the cutset. The algorithm described above
for generating proof obligations remains unchanged: run
tests, generate corresponding paths, and generate equality
relationships at cutpoints.

We can also extend our approach to handle loops that call
other functions. The function call is a cutpoint requiring the
invariant that the value of arguments and memory is same
across T and R and after the call we can assume that the
memory and return values are equal in the proof obligations.
We generate additional obligations to check that the order of
function calls is preserved.

Our approach easily extends to generate non-linear equal-
ities of a given degree d for invariants using ideas from in-
variant inference: We simply create a new feature for ev-
ery monomial up to the degree d from the existing fea-
tures [26, 34]. Say if eax and ebx are features and the cho-
sen degree is 2 then we add eax2, ebx2, and eax ∗ ebx to

the existing set of features. Now the nullspace yields linear
equalities over the extended features which represent poly-
nomial equalities over the original features. Since non-linear
invariants of degree d can represent disjunctions of d linear
equalities (e.g., x2 = y2 ≡ x = y ∨ x = −y), the ex-
pressiveness of the invariants we can infer includes boolean
combinations of linear equalities with a given number of dis-
junctions.

3.2 Checking Proof Obligations
For every transition τ between cutpoints n1 and n2 where
the candidate invariant at n1 is equality relationship P , the
candidate invariant at n2 is equality relationship Q, and C is
a pair of corresponding paths associated with τ , we construct
a proof obligation {P}C{Q}. As noted in Section 2, we also
generate additional verification conditions or VCs to check
that all pairs of corresponding paths are covered. Once the
VCs have been obtained, they can be sent to an off-the-
shelf theorem prover. These queries are in the quantifier-free
theory of bit-vectors. More details about generating VCs can
be found in Section 4.6. The proof obligations {P}C{Q}
are of three types:

• {E}C{Q}, where E represents exact equivalence be-
tween states. Here the corresponding paths are code paths
from the start of T andR to a cutpoint andQ is the equal-
ity relationship associated with that cutpoint.

• {P}C{Q}, where for C = 〈t, r〉, t and r start at a
cutpoint n1 and end at a cutpoint n2. P and Q are the
equality relationships at n1 and n2.

• {P}C{F}, where the corresponding paths start at a cut-
point and end at a return statement of T and R. Here F
expresses that the return values are equal and the memory
states are equivalent.

If proof obligation {E}C{Q} or {P}C{Q} fails then we
can obtain a counter-example from the decision procedure
and follow the approach of [34]: If the counter-example
violates some equality of Q then we incorporate the data
from the counter-example in the appropriate matrix. Next,
we recompute the nullspace to obtain new equality relation-
ships satisfying both the data and the counter-example. If
the nullspace is just the null vector then we return the trivial
invariant true. This process systematically guides our data-
driven algorithm to generate equality relationships that are
actual invariants. It also removes some artifacts of test cases:
for example, in all tests some pointer p is assigned the same
address a then we can infer a spurious equality relationship
that p = a. A counter-example can remove this spurious
equality. However, if the counter-example satisfies Q then
the proof fails; this can happen because r might abort on
some state for which t does not.

Note that [34] contains a completeness theorem, which
is possible because it deals with a restricted language with
no heap and has no specification to verify. Since we han-

dle memory, the possibility of aborting, and need to prove
equivalence, we are only able to prove a soundness theorem:

Theorem 1. If all VCs are proven then the target is equiva-
lent to the rewrite and the cutset and the invariants together
constitute a simulation relation.

4. Implementation
DDEC is a prototype implementation of the algorithm dis-
cussed in Section 3. We discuss the most important and in-
teresting features of the implementation below.

4.1 Liveness Computation
Several components of DDEC require the live variables at a
program point. For the most part, liveness is computed us-
ing a standard dataflow algorithm, but we note the following
modification for the x86 architecture. As mentioned previ-
ously, for 64-bit x86 some general purpose registers have
subregisters. For example, dil, di, and edi refer to the low-
est 8, 16, and 32-bits of rdi, respectively:

dil ⊂ di ⊂ edi ⊂ rdi

To account for this register aliasing, when calculating the
read set of an instruction we include the registers it reads,
along with all subsets of those registers. An instruction that
reads di, for example, also reads dil. Similarly, when cal-
culating the write set of an instruction we include the reg-
isters it writes, along with all super- and subsets of those
registers. Some instructions also produce undefined register
values, which are treated as killing any live values.

4.2 Testcase Generation
For programs that deal exclusively with stack and register
values, DDEC is able to produce tests automatically. Using
the control flow graph of the target (recall the distinction
between the target and rewrite introduced in Section 3),
DDEC identifies the set of live-in registers and generates
random values as necessary. For programs that dereference
heap locations, DDEC requires a user-defined environment
in which to execute the target. For large software projects,
we expect that a representative set of whole-program tests
will exist, and DDEC may simply observe the behavior of
the code during normal program execution. When no such
inputs exist, a user must provide a small unit test harness
which will establish whatever heap structures are necessary
to enable the functions to execute correctly.

4.3 Target Tracing
To observe the values of live program variables at cut-points,
we rely on the ability to instrument the target and observe
those values dynamically as they appear under representa-
tive inputs. This instrumentation is performed using a cus-
tom light-weight JIT assembler for 64-bit x86; the trace()
function is shown in Figure 2. Prior to execution, an array

Stack

void trace(Code c){
 EMIT(next = 0);
 EMIT(save_callee_save_state());

 foreach (Instr i : c){
 if (mem_deref(i))
 EMIT(addr = deref_addr(i));

 EMIT(record(i, next++));
 EMIT(i);
 EMIT(record(i, next++));
 }
}

void sandbox(Code c){
 EMIT(next = 0);

 foreach (Instr i : c){
 if (mem_deref(i))
 EMIT(sandbox_addr(i));

 EMIT(record(i, next++));

 if (backedge_jump(i))
 EMIT(sandbox_jump(i));
 else if (is_return(i))
 EMIT(sandbox_return());
 else if (is_mem_deref(i))
 EMIT(sandbox_deref(i));
 else
 EMIT(i);

 EMIT(record(i, next++));
 }
}

void error(bool bit){
 bit = true;
 restore_callee_saved_state();
 ret;
}

Heap

int next;
int addr;
int jumps;
bool sigsegv;
bool sigfpe;
bool diverge;

heap[0]
heap[1]
...

trace[0]
trace[1]
...

void sandbox_addr(Instr i){
 addr = deref_addr(i);
 if (addr >= s)
 error(sigsegv);
 if (addr >= s')
 return;
 addr -= hmin;
 if (addr<0 || addr>hmax)
 error(sigsegv);
 addr -= &heap[0];
}

void record(Instr i, int next){
 foreach (GpReg r : gp)
 trace[next].gp[r] = val(r);
 foreach (XmmReg x : xmm)
 trace[next].xmm[x] = val(x);
 foreach (Flag f : eflags)
 trace[next].ef[f] = val(f);
 if (mem_deref(i)) {
 trace[next].addr = addr;
 trace[next].val = *addr;
 }
}

void sandbox_jump(Instr jump){
 if (++jumps == max)
 error(diverge);
 jump;
}

void sandbox_return(Instr ret){
 if (!callee_save_restored())
 error(segv);
 ret;
}

void sandbox_deref(Instr i){
 i.set_deref_addr(addr);
 i;
}

void sandbox_rsp(){
 if (rsp >= s || rsp < s')
 segfault();
}

// local vars

s

s'

hmin

hmax

Figure 2. Implementation of instrumentation for target and rewrite tracing using a JIT assembler. Targets are assumed safe and
instrumented using the trace() function. Rewrites are instrumented using the sandbox() function which is parameterized
by values observed during the execution of the target.

of trace states are allocated on the heap. For every instruc-
tion executed by the target, we emit a call to the record()

function to copy the majority of the hardware state (general
purpose, SSE, and condition registers) as well as values read
from or written to the heap, to the back of the array. Array
bounds are tracked (not shown), and in the event of overflow
additional capacity is added as necessary. When the target
function completes execution, the trace array holds a com-
plete record of the values manipulated by the target in both
registers and memory.

Because we already assume that users supply tests for
target functions that access data structures in memory, in
our prototype we have also assumed that the target is safe
and will not crash the machine or corrupt DDEC’s state
on any of the supplied inputs. This assumption held for the
experiments in this paper, however for a production tool it
would be necessary to isolate the target from the tool using
well-known but more involved techniques (e.g., emulation).

4.4 Rewrite Tracing
The correctness assumptions that we make for the target do
not hold for all the rewrites in our experiments. For exam-
ple, some candidate rewrites can and do dereference invalid
memory locations (see Section 5.4). Thus, our prototype
instruments rewrites using the heavier-weight sandbox()
function (see Figure 2). We can, however, take advantage
of information observed in tracing the target to simplify the
tracing of the rewrite.

From the execution of the target, we obtain the maximum
stack size used along with the minimum and maximum heap
addresses that were dereferenced. Using these values, we de-
fine stack and heap sandboxes to guard the execution of the
rewrite. Specifically, we identify the stack pointer, s, which
defines the upper bound on the frame used by the rewrite,
and from this value identify s′, a location which defines a
frame no larger than the one used by the target. Similarly, we

allocate a heap sandbox array large enough to contain each
heap dereference performed by the target without aliasing
containing values which are initialized to the live-in mem-
ory values dereferenced by the target. Memory dereferences
are guarded by the sandbox addr() function, which pre-
serves stack accesses inside the bounds of the stack sandbox,
redirects valid heap accesses to the heap sandbox, and traps
all other accesses and instead produces a safe premature ter-
mination. If necessary, both sandboxes may be scaled by a
constant user-defined factor to allow for the possibility of a
rewrite with greater memory requirements than the target.

In addition to sandboxing memory accesses, several other
behaviors need to be checked to protect DDEC from unde-
fined behavior. First, there is the possibility that the rewrite
will go into an infinite loop. This behavior is guarded by a
call to sandbox jump(), which counts the number of times
that a backedge is taken and causes a premature termination
if a bound calculated from the number of backwards jumps
taken in the target execution is exceeded. Second, we must
guarantee that return instructions take place only after cer-
tain invariants specific to the x86 application binary interface
have been restored. This property is guaranteed by a call to
sandbox return(), which checks that the value of callee-
saved registers are restored to the state they held when the
rewrite began executing.

4.5 Invariant Generation
Invariants are computed using the nullspace function of
the Integer Matrix Library [5] which is specialized for com-
puting the nullspace of integer and rational matrices using p-
adic arithmetic. DDEC uses sixteen random tests to generate
data for invariant computation. For the experiments in this
paper, these tests were sufficient for obtaining sound invari-
ants and all necessary corresponding paths. For a production
system, a larger number of tests would likely be necessary.
However at under 2 ms for each null space computation, we
do not expect that this computation would be a bottleneck.

4.6 VC Generation
Proof obligations are discharged using Z3 [7]. Because Z3
does not currently provide support for floating point oper-
ations, DDEC’s ability to reason about such instructions is
limited as well. However, Z3 does have a complete algo-
rithm for real numbers and one might be tempted to use this
capability to reason about floating point programs. Unfor-
tunately, floating point semantics are not over-approximated
by reals—a simple example is the non-associativity of float-
ing point addition. Hence, sound optimizations using real se-
mantics may be unsound using floating point semantics.

We manually encode x86 instructions as Z3 formulas, pri-
marily due to lack of access to formal specification of x86
instructions at the hardware level. For example, some x86 in-
structions, such as popcnt, are informally described by Intel
as loops. Wherever possible, we deferred to corresponding
loop-free implementations given in A Hacker’s Delight [40].

Our formulas precisely model the complexity of the x86
instruction set, which in some cases is quite sophisticated
(consider the crc instruction, which considers bit-vectors as
polynomials in Z2 and performs a polynomial division). For-
mula correctness is a necessary prerequisite for proof cor-
rectness, and unfortunately, testing is the only available op-
tion for ensuring this property. Each formula was tested ex-
tensively against hardware semi-automatically to check cor-
rectness. In the process we rediscovered known instances
in which the x86 instruction set deviates from its specifica-
tion [12]. For such instances, our formulas encode a sound
over-approximation of the observed hardware behavior and
the specification.

We generate VCs in the quantifier-free theory of bit-
vector arithmetic. Z3 is complete for this theory [41] and
is able to soundly analyze the effect of x86 instructions on
the machine state with bit-wise precision. When generating
constraints, registers are modeled, depending on bit-width,
as between 8- and 128-bit bit-vectors. Memory is modeled
as two vectors: one of 64-bit addresses and one of corre-
sponding 8-bit values (x86 is byte addressable). For 32-bit
x86, addresses are restricted to 32 bits.

DDEC translates proof obligations {P}〈t, r〉{Q}, where
P and Q are predicates over registers (the invariants can
be more general as described in Section 3.1.2), to a VC as
follows. DDEC first asserts the constraint P . It then iter-
ates over the instructions in t, written in SSA form, and for
each instruction asserts a constraint which encodes the trans-
formation the instruction induces on the current hardware
state. These constraints are chained together to produce a
constraint on the final state of live outputs with respect to t.
Analogous constraints are asserted for r. In our implemen-
tation, operators that are very expensive for Z3 to analyze,
such as bit vector multiplication and division, are replaced
by uninterpreted functions constrained by some common ax-
ioms. Finally, for all pairs of memory accesses at addresses
addr1 and addr2, DDEC asserts additional constraints re-
lating their values: addr1 = addr2 ⇒ val1 = val2. These
aliasing constraints grow quadratically in the number of ad-
dresses, though dependency analysis can simplify the con-
straints in many cases.

Using these constraints, DDEC constructs a Z3 query
which asks whether there exists an initial state satisfying P
that causes the two code paths to produce values for live
outputs which either violate Q or result in different mem-
ory states. If the answer is no, then the obligation is dis-
charged, otherwise the prover produces a counter example,
and DDEC fails to verify equivalence. If every VC is dis-
charged successfully, then DDEC has proven that the two
functions are equivalent.

Although the implementation described above is cor-
rect, it is overly conservative with respect to stack accesses.
Specifically, an access to a spill slot [2] will appear indis-
tinguishable from a memory dereference, and Z3 will dis-

cover a counter-example in which the input addresses to t
and r alias with respect to that slot. As a result, any sound
optimized code which eliminates stack traffic will be re-
jected. We address this issue by borrowing an idea from
Necula [25], who solves this problem by replacing spill
slots with temporary registers that eliminate the possibil-
ity of aliasing between addresses passed as arguments and
the stack frame. For well-studied compilers such as gcc and
COMPCERT, simple pattern matching heuristics are known
to be well-suited to this task [25]. For example, for code
compiled with gcc, all stack accesses are at constant offsets
from the register rbp. We can create a new register for rbp-8,
rbp-16, and so on and model loads and stores from the stack
frame by loads and stores from these temporaries. Model-
ing spill slots in this way could result in unsound results if
an input address is used to form an offset into the current
stack frame. However, this behavior is undefined even in the
high-level languages that in theory permit it (e.g., C) and, to
the best of our knowledge, existing optimizing compilers are
also unsound for such programs.

Given that we have gone to the effort to construct a faith-
ful symbolic encoding of the x86 instruction set, the reader
might wonder why we do not simply obtain the simula-
tion relation statically—what does data add? The answer is
that inference is harder than checking. Consider an exam-
ple where we compute the dot product of two 32-bit arrays,
where the multiplication of two 32-bit unsigned numbers is
used to produce a 64-bit result. Say the target uses Karat-
suba’s trick [19] and performs three 32-bit signed multiplica-
tions to obtain a 64-bit result, whereas the rewrite uses a spe-
cial x86 instruction that performs an unsigned multiplication
of two 32-bit numbers and directly produces a 64-bit result.
A static analysis that attempts to discover the relationship
between Karatsuba’s trick and the special x86 instruction has
a very large search space containing many other plausible
proof strategies to sift through, and in fact we know of no in-
ference technique that can reliably perform such reasoning.
In contrast, with DDEC the equality simply manifests itself
in the data, and knowing that this specific equality is what
needs to be checked narrows the search space to the point
that off-the-shelf solvers can verify this fact automatically.

5. Experiments
We summarize our experiments with DDEC on a num-
ber of benchmarks drawn from both the literature and from
existing compiler test suites. In doing so, we demonstrate
the relationship between DDEC and the state of the art in
translation validation, the use of DDEC in the optimiza-
tion of a production codebase, and show how DDEC en-
ables the design of novel applications using existing com-
piler toolchains. Specifically, we use DDEC to combine the
correctness guarantees of COMPCERT with the performance
properties of gcc -O2, and to extend the applicability of a
binary superoptimizer to functions containing loops.

Program LOC #Loop Run-time

lerner1a1b 29/26 1 19.39s
lerner3b3c 32/32 2 102.89s
unroll 13/20 1 75.04s
off-by-one 15/14 1 0.13s

Table 1. Performance results for micro-benchmarks. LOC
shows lines of assembly of target/rewrite pair.

Program LOC #Loop Run-time Speedup Test

lerner1a 39/17 1 12.94s none 4
lerner3b 43/27 2 53.72s 1.49x 5
bansal 19/10 1 9.89s 1.02x 2
chomp 30/22 1 11.00s none 3
fannkuch 30/23 1 17.03s 1.11x 4
knucleotide 28/21 1 6.56s none 3
lists 21/17 1 1.40s none 3
nsievebits∗ 70/38 2 36.44s 1.20x 5
nsieve∗ 44/31 2 166.31s 1.06x 5
qsort∗ 64/56 3 140.87s 1.05x 7
sha1∗ 79/28 1 12888.87s 1.07x 8

Table 2. Performance results for COMPCERT and gcc

equivalence checking for the integer subset of the COM-
PCERT benchmarks and the benchmarks in this paper. LOC
shows lines of assembly code for the binaries generated by
COMPCERT/gcc. Test is the maximum number of random
tests required to generate a proof. A star indicates that a uni-
fication of jump instructions was required.

Program LOC #Loop Run-time Speedup O0/O3

Bansal 9/6 1 44s/5492.75s 1.58x/1.04x
SAXPY 9/9 1 211s/0.62s 9.22x/1.48x

Table 3. Performance results for gcc and STOKE+DDEC
equivalence checking for the loop failure benchmarks
in [33]. LOC shows lines of assembly code for the bina-
ries generated by STOKE/STOKE+DDEC. Run-times for
search/verification are shown along with speedups over gcc
-O0/O3.

Experiments were performed on a 3.40 GHz Intel Core
i7-2600 CPU with 16 GB of RAM. For each experiment
we report the number of assembly instructions for target
and rewrite, the number of loops contained in each function,
the run-time required for DDEC to verify equivalence, and
where applicable the observed performance improvement
between target and rewrite. Run-times for all experiments
were tractable, varying from under a second to several hours,
depending on the complexity of the constraints. Memory
usage was not an issue and did not exceed 500Mb.

It is worth noting that many of the invariants discovered
by DDEC, such as 4∗eax = edx′+3 and 10∗eax+edx =
ecx′, were non-trivial. In all cases the run-time required
to run tests, infer equality relationships and generate proof
obligations was minimal (a few milliseconds) compared to
the run-time required to discharge the VCs. Essentially all
of DDEC’s run-time was spent in Z3 queries.

// Target:

while(p != null) { p=p->next; ... }

// Rewrite (Unrolled once):

while(p != null) {

p=p->next; ...

if (p != null) { p=p->next; ... }

}

Figure 3. Abstracted codes (target and rewrite) for unroll
of Table 1.

// Target:

for (i = len - 1; i >= 0; --i) { ... }

// Rewrite (with off-by-one error):

for (i = len /*BUG*/; i >= 0; --i) { ... }

Figure 4. Abstracted codes (target and rewrite) for
off-by-one of Table 1.

5.1 Micro-benchmarks
In this section, we attempt to provide a detailed compari-
son between DDEC and techniques based on equality satu-
ration [18, 36]. Equality saturation [36] is a state of the art
technique for verifying compiler optimizations which relies
on expert-written equality rules, such as “multiplication by
two is equivalent to a bit shift”. Beginning from both the tar-
get and the rewrite, the repeated application of these rules
is used to attempt to identify a common representation of
both functions, the existence of which implies equality. Un-
surprisingly, the technique is precisely as good as the ex-
pert rules that it has at its disposal. Missing rules correspond
to optimizations for which equivalence cannot be proven.
Furthermore, identifying such rules for a CISC architecture
such as x86 is a daunting task. As a result, the application
of equality saturation has been limited to the verification of
optimizations in several intermediate RTL languages.

We compare DDEC to equality saturation using the two
motivating examples described in the original paper [36], the
first of which appears in Section 2; these correspond to the
first two rows in Table 1. Each example consists of two pairs
of programs demonstrating strength reductions. We compile
each pair with gcc -O0 to both transform the functions into
a format that DDEC accepts and to preserve the structure
of the original optimizations as best as possible. DDEC
successfully proves the equivalence of the resulting binaries.

Equality saturation, in its current form, is unable to han-
dle important optimizations such as loop unrolling [36]. The
unroll benchmark in Table 1 is an equivalence checking
task involving loop unrolling. We take a program which
walks over a linked list and unroll it to obtain a new program
that walks over two elements in every iteration (Figure 3).
Hence, we are able to handle optimizations that equality sat-

uration cannot even in the presence of an extensive set of
expert written rules.

When given two programs that are semantically differ-
ent, the process of equality saturation is not guaranteed to
terminate. It simply continues applying rules indefinitely in
an attempt to prove that the two programs are equal. When
given two semantically different programs, DDEC always
terminates with a counter-example (Z3 is complete for the
VCs we use). Note that counter-examples are also possible
even for equivalent programs because DDEC is incomplete.

Counter-examples from a failed proof can be used to
explain why DDEC believes that a target/rewrite pair are
not equivalent. To demonstrate this ability, we take a pro-
gram which walks backwards over an array and introduce
an off-by-one error (Figure 4). We compile both programs
with gcc -O0 and use the correct program as the target and
the buggy version as the rewrite. When we ask DDEC to
prove the equivalence of the two programs, DDEC fails
and terminates with a counter-example (off-by-one in Ta-
ble 1). Hence, DDEC can be used for finding equivalence
bugs. However, in general, it is difficult to map the counter-
example at the assembly level to the source code, and espe-
cially in the presence of compiler optimizations. A version
of DDEC that works on source code and finds equivalence
bugs is left as future work.

5.2 Full System Benchmark
One criticism of DDEC is that it is not purely static: it re-
quires tests. However, we believe that for many systems ex-
isting regression tests should suffice. To validate this be-
lief, we perform a case study with OPENSSL. The core
computation routine of OPENSSL is big number multiplica-
tion: a loop which multiplies n-bit numbers stored as arrays.
OPENSSL includes performance tests which use this mul-
tiplication loop extensively. For example, the RSA perfor-
mance test included with OPENSSL executes the core more
than fifteen million times.

We instrument OPENSSL to obtain these tests and se-
lect sixteen tests at random from the large number per-
formed. We compile the core using gcc -O0 and gcc -O3

and use the tests to drive DDEC, which is then able to prove
the equivalence in about two hours. We also find that the
maximum time taken by any individual VC is ten minutes.
Since checking proof obligations is an embarrassingly par-
allel task, if we assign a single cpu for every obligation then
the proof can be obtained in ten minutes. When we measure
the sensitivity of DDEC to the number of tests for this ex-
ample, we find that 6-8 randomly selected tests are sufficient
to obtain a proof.

Hence, for verifying the optimizations of kernels, it seems
possible to obtain sufficient tests from existing test suites to
drive verification. The tests included with programs might
not exercise all parts of the code but they will exercise the
performance-critical parts well and hence we believe DDEC
can be successfully applied to the performance-critical ker-

nels. Being data-driven, our technique will fail to prove in-
teresting optimizations performed on dead code or the part
of code exercised rarely by tests; a static equivalence check-
ing engine for x86, if it existed, could have succeeded here.

5.3 CompCert
COMPCERT is a certified compiler for a subset of the C
programming language: it is guaranteed to produce binaries
that are semantically equivalent to the input source code.
COMPCERT 1.12, the current version, does not perform loop
optimizations and its compilation model does not fit well
with CISC architectures such as x86, due to their “paucity
of [general purpose] registers” [21].

We use DDEC to verify the equivalence of binaries gen-
erated by COMPCERT and gcc -O2 -m32. The -m32 flag
is necessary for compatibility with COMPCERT, which only
produces 32-bit x86 binaries. Furthermore, optimization is
restricted to -O2 because, for these benchmarks, higher op-
timization levels produce only syntactic differences that do
not affect DDEC. In doing so, we are able to extend the cor-
rectness guarantees made by COMPCERT to the more per-
formant but uncertified code generated by gcc.

Performance data is shown in Table 2 for the integer sub-
set of the COMPCERT compiler test suite (the benchmarks in
the test/c directory of the COMPCERT 1.12 download) and
several of the benchmarks described in this section. For the
COMPCERT benchmarks, we profile each program and re-
port results for the one loop (possibly containing other loops)
that dominates execution time. The results are encouraging;
DDEC is able to prove equivalence in all cases. We note,
however, that DDEC did encounter difficulty with some of
the benchmarks due to the restrictive logic that it uses. The
problem is illustrated by the following example:

Target:
if(0<n) {for (i=0; i<n; i++);} return i;

Rewrite:
if(0<n) {for (i=0; i!=n; i++);} return i;

To prove the equivalence of these two functions, DDEC re-
quires the inductive invariant i = i′ ∧ n = n′ ∧ i ≤ n. Cru-
cially, i ≤ n is inexpressible with equalities. For the final
four benchmarks in Table 2 (the ones marked with a star),
DDEC reported failure due to gcc replacing an inequality
by a dis-equality. For these benchmarks it was necessary to
manually make the test predicates identical before perform-
ing a successful equality verification. DDEC can also be
combined with an abstract interpreter over binaries [31, 37]:
these are capable of finding invariants over state elements of
a single program (such as i ≤ n). It is also straightforward
to extend DDEC to recognize this common special case, but
a solution that incorporates inequality relationships between
state elements of two programs in a general way is challeng-
ing and we leave it for future work.

Finally, we note that the long verification time required
for sha1 is due to the large numeric constants used by this
cryptographic computation that lead to poor performance
in the underlying Z3 theorem prover. We confirmed that
if these constants are replaced by small integers the proof
obligations are discharged in a few minutes.

5.4 STOKE
STOKE [33] is an x86 binary superoptimizer based on the
principle that program optimization can be cast as a stochas-
tic search problem. Given a suitable cost function and run
for long enough (which may be an extremely long time),
STOKE is guaranteed to produce a code with the lowest
cost [33]. STOKE performs binary optimization by execut-
ing up to billions of small random modifications to a pro-
gram. For each modification, STOKE evaluates a cost func-
tion representing a combination of correctness and perfor-
mance metrics. STOKE accepts all modifications that de-
crease the value of this function, and with some probability
also accepts modifications that increase the value. Although
most of the programs that STOKE considers are ill-formed,
the sheer volume of programs that it evaluates leads it in
practice to discover correct optimizations. STOKE runs for
a user-defined amount of time and returns the lowest cost
program that it can prove equivalent to the original program.

Previous work on STOKE demonstrated promising re-
sults for loop-free kernels. Beginning from code compiled
using llvm -O0, STOKE produces programs that outper-
form code produced by gcc -O3 and in some cases outper-
forms handwritten assembly. Unfortunately, STOKE’s ap-
plication to many interesting high-performance kernels is
limited by its inability to reason about equivalence of codes
containing loops. We address this limitation by extending
STOKE’s set of program transformations to include moves
which enable loop optimizations and replacing STOKE’s
equivalence checker by DDEC. Our version of STOKE is
able to produce optimizations for the loop benchmarks that
could not be fully optimized in [33].

STOKE’s underlying program representation is a con-
stant length sequence of 64-bit x86 instructions. STOKE
uses a special [UNUSED] token in place of a valid x86
instruction to represent programs that are shorter than this
length. STOKE explores candidate rewrites using the fol-
lowing transformations. Instruction moves replace a random
instruction with either the [UNUSED] token or with a com-
pletely different random instruction. Operand and opcode
moves randomly replace the value of a random operand or
opcode respectively. And finally, swap moves interchange
two instructions at random. STOKE’s program transforma-
tions are all intra-basic block, and it does not allow moves
which modify control flow structure. Our implementation
of STOKE remedies these shortcomings by introducing an
inter-basic block swap move (Figure 5f) and a basic block
resizing move (Figure 5g), which changes the number of in-
structions allowed inside a basic block. These simple exten-

xor rax,rax
add rax,rdi
[UNUSED]
jmp .L0

.L0
sub rdi,rsi
retq

[UNUSED]
add rax,rdi
[UNUSED]
jmp .L0

.L0
sub rdi,rsi
retq

xor rax,rax
add rax,rdi
sbb edi,r8d
jmp .L0

.L0
sub rdi,rsi
retq

xor rax,rax
add rax,rdi
[UNUSED]
jmp .L0

.L0
cmp rdi,rsi
retq

xor rax,rax
add r15,rdi
[UNUSED]
jmp .L0

.L0
sub rdi,rsi
retq

xor rax,rax
sub rdi,rsi
[UNUSED]
jmp .L0

.L0
add rax,rdi
retq

xor rax,rax
add rax,rdi
jmp .L0

.L0
[UNUSED]
sub rdi,rsi
retq

(a) (b) (c) (d) (e) (f) (g)

Figure 5. STOKE moves applied to a representative code (a). Instruction moves randomly produce the UNUSED token (b) or
replace both opcode and operands (c). Opcode moves randomly change opcode (d). Operand moves randomly change operand
(e). Swap moves interchange two instructions either within or across basic blocks (f). Resize moves randomly change the
allocation of instructions to basic blocks (g).

sions are sufficient to allow for the exploration of rewrites
which include loop-invariant code motion, strength reduc-
tion, and most other classic loop optimizations.

The cost function used by STOKE to evaluate transfor-
mations includes two terms, a correctness term and a per-
formance term. We leave the correctness term described by
[33] unmodified. Candidate rewrites are executed in a mem-
ory sandbox on a representative set of tests. Values con-
tained in live memory and registers are compared against
the corresponding values produced by the target and penal-
ties are assessed for bits which are incorrect or appear in
the wrong location. STOKE approximates the performance
of a candidate rewrite by summing the expected latencies of
its constituent instructions in nanoseconds. We modify this
function to account for loop nesting depth, nd(·) as follows,
where w is a constant which we set to 20.

perf(C) =
∑
bb∈C

∑
i∈bb

E
[
latency(i)

]
· wnd(bb)

We now discuss the failure cases of STOKE: the bench-
marks of [33] for which STOKE produces code inferior to
gcc -O3. The other benchmarks of [33] are loop free and
are not relevant here. Our modified version of STOKE is
able to produce the two optimizations shown (simplified) in
the lower half of Figure 6. The optimizations produced by
the original version of STOKE are shown above for refer-
ence. Figure 6a is a linked-list traversal. The kernel iterates
over the elements in the list until it discovers a null pointer
and multiplies each element by two. Our modified version of
STOKE is able to cache the value of the head pointer in a
register across loop iterations. Figure 6b performs the BLAS
vector function a · ~x + ~y. Whereas the original version of
STOKE is able to produce an optimization using vector in-
trinsics, our version is able to further improve on that opti-
mization by first performing a register renaming and remov-
ing the invariant computation of a 128-bit constant from the

2: mov 8(rsp),rdi
3: sal (rdi)
4: mov 8(rdi),rdi
5: mov rdi,8(rsp)

6: mov 8(rsp),rdi
7: cmp 0,rdi
8: jne 2

1: jmp 6 1: movd edi,xmm0
2: shufps 0,xmm0,xmm0
3: movups (rsi,rcx,4),xmm1
4: pmullw xmm1,xmm0
5: movups (rdx,rcx,4),xmm1
6: paddw xmm1,xmm0
7: movups xmm1,(rsi,rcx,4)
 ...

3: movups (rsi,rcx,4),xmm1
4: pmullw xmm0,xmm1
5: movups (rdx,rcx,4),xmm2
6: paddw xmm2,xmm1
7: movups xmm1,(rsi,rcx,4)
 ...

1: movd edi,xmm0
2: shufps 0,xmm0,xmm0

3: sal (rdi)
4: mov 8(rdi),rdi

5: cmp 0, rdi
6: jne 3

1: mov 8(rsp),rdi
2: jmp 5

(a)

(b)

(a')

(b')

Figure 6. Simplified versions of the optimizations produced
and verified by our modified version of STOKE. The itera-
tion variable in (a) is cached in a register (a’). The compu-
tation of the 128-bit constant in (b) is removed from an inner
loop (b’).

loop. The code motion is not possible if the registers are not
suitably renamed first.

Performance data for these experiments are shown in Ta-
ble 3. We note that the time spent verifying bansal is sig-
nificantly greater than what was reported for the COMPCERT

benchmarks. This is because STOKE produces 64-bit as op-
posed to 32-bit x86 binaries, which results in more complex
memory equality constraints. The aim of our experiments
is to describe the effectiveness of our core ideas and stan-
dard heuristics for constraint simplification, which we have
not implemented, can be applied to achieve better perfor-
mance [8]. To illustrate just how important constraint sim-
plification is, for the SAXPY benchmark, following [42] we
perform slicing on VCs to eliminate constraints that are not
relevant to the verification task. The result is that verification
requires less than a second, a significant improvement and
the fastest verification time in our benchmark suite. With-
out these constraint simplifications, DDEC times out after
four hours. This suggests that there is substantial room left
for further performance optimization of DDEC’s generated
constraints; however such optimizations increase the size of
the trusted code base, which is currently just the circuits for
instructions, VC generator, and the theorem prover. Since
STOKE starts optimizations from llvm -O0 compilations,
our verification results imply that STOKE+DDEC can pro-
duce binaries comparable to gcc -O3 in performance and
provably equivalent to unoptimized binaries generated by
llvm.

6. Related Work
Our approach borrows a number of ideas from previous work
on equivalence checking [6], translation validation [25], and
software verification [34]. Combining these ideas with our
technique for guessing the simulation relation from tests
yields the first equivalence checking engine for loops written
in x86.

Program equivalence checking is an old problem with
references that date back to the 1950s. Equivalence check-
ing is common practice in hardware verification, where it is
well known that cutpoints play a critical role in determin-
ing equality. In sequential equivalence checking, for exam-
ple, state-carrying hardware elements constitute cutpoints.
Equivalence checking of low-level code has also been stud-
ied for embedded software [1, 6, 10, 11, 35]. None of these
techniques support while loops and so are not applicable to
our benchmarks.

Our goal is more ambitious than the state of the art in
equivalence checking for general purpose languages: DDEC
is a practically useful, automatic, and sound procedure for
checking equivalence of loops. UC-KLEE [30] performs a
bounded model checking that checks equivalence for all in-
puts up to a certain size. In another version of bounded
model checking, differential symbolic execution [28] and
SymDiff [20] bound the number of iterations of loops. Se-
mantic Diff [17] checks only whether dependencies are pre-
served in two procedures. The approach in [23] handles nei-
ther while loops nor pointers. Regression verification [13]
handles only partial equivalence: it does not deal with termi-
nation. As an alternative to DDEC, one can imagine com-

posing two programs into a single program and then using an
abstract interpreter [27]. However, the composition of [27]
relies on syntactic heuristics that seem difficult to apply to
binaries. Even if the composition step is successful, it is not
clear how one would argue about the termination behaviors
of the target and the rewrite (Definition 1) from the com-
posed program and indeed [27] assumes terminating execu-
tions.

Fractal symbolic analysis [24] and translation valida-
tion [14, 25, 29] are two techniques that reason about loops
in general. Both rely on information about the compiler, such
as the specific transformations that the compiler can per-
form. Hence, these are not directly applicable to the problem
of equivalence checking of code of unknown provenance. If
one is simply given two assembly programs to check for
equivalence there is no “translation” and hence translation
validation is not applicable.

Conceptually, if one tries to port the approach of Nec-
ula [25] to x86, then one will need to build a static analysis
for x86 which is sound and precise enough to generate sim-
ulation relations. This is a decidedly non-trivial engineer-
ing task and has never been done (see Section 4.6); DDEC
side-steps this issue by using concrete executions (i.e., tests)
for finding cutpoints and generalizing from tests to invari-
ants. In addition, the constraints generated by symbolically
executing x86 opcodes are complicated enough that we be-
lieve that the decision procedure of [25] will fail to infer
equalities in most cases. Nonetheless, compiler annotations
are a rich source of high level information, and as a re-
sult translation validation techniques can handle transforma-
tions that DDEC currently cannot, such as reordering traver-
sals over matrices. For DDEC to handle such programs we
would need better invariant inference algorithms that can in-
fer quantified invariants fully automatically.

Generation of invariants from test data for verification
was pioneered by Daikon [9]. In a previous work [34], we
computed equality invariants for a single program using
nullspace computations for a restricted language with as-
signments, branches, and loops. Similar to DDEC, the can-
didate invariants were checked by a theorem prover. We have
shown that by choosing features appropriately, nullspaces
can help infer simulation relations for the much more com-
plex x86 language.

Some of the most recent work on equivalence checking
includes random interpretations [15] and equality satura-
tion [36, 38]. The former represents programs as polynomi-
als which it requires to be of low degree. Unfortunately, bit-
manipulations and other similar machine-level instructions
are especially problematic for this technique. For example,
a shift left by one bit has a polynomial of degree 263 for the
carry flag. Unlike equality saturation, DDEC does not rely
on expert provided equality relationships between program
constructs, which would be difficult to produce by hand for

a CISC architecture such as x86. Further comparison with
equality saturation is in Section 5.1.

Superoptimizations and the related synthesis task have
previously been limited to sequences of loop-free code [4,
16, 18, 22]. Using DDEC, we have presented the first re-
sults for a superoptimizer able to synthesize provably correct
loops.

7. Conclusion
In this paper we describe a data-driven procedure for veri-
fying equivalence of two loops, using it to verify the equiv-
alence of binaries produced by a certified compiler against
those produced by an optimizing compiler and also extend-
ing a stochastic superoptimizer to perform loop optimiza-
tions. Other interesting applications are possible, such as
checking that code refactoring preserves equivalence, and
we hope to explore these in the future. The main limitations
of the current implementation are restricted expressiveness
of the inferred invariants and the inability to handle floating
point instructions. With advances in invariant inference and
decision procedures, we hope to remove both limitations.

Acknowledgments
We thank George Necula, Jan Vitek, and the anonymous
reviewers for their constructive comments. This work was
supported by the Army High Performance Computing Re-
search Center and NSF grant CCF-0915766. This material
is also based on research sponsored by the Air Force Re-
search Laboratory, under agreement number FA8750-12-2-
0020. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstand-
ing any copyright notation thereon.

References
[1] T. Arons, E. Elster, L. Fix, S. Mador-Haim, M. Mishaeli,

J. Shalev, E. Singerman, A. Tiemeyer, M. Y. Vardi, and L. D.
Zuck. Formal verification of backward compatibility of mi-
crocode. In CAV, pages 185–198, 2005.

[2] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler trans-
formations for high-performance computing. ACM Comput.
Surv., 26(4):345–420, 1994.

[3] G. Balakrishnan and T. W. Reps. WYSINWYX: What you see
is not what you execute. ACM Trans. Program. Lang. Syst.,
32(6), 2010.

[4] S. Bansal and A. Aiken. Automatic generation of peephole
superoptimizers. In ASPLOS, pages 394–403, 2006.

[5] Z. Chen and A. Storjohann. A BLAS based C library for exact
linear algebra on integer matrices. In ISSAC, pages 92–99,
2005.

[6] D. W. Currie, A. J. Hu, and S. P. Rajan. Automatic formal
verification of DSP software. In DAC, pages 130–135, 2000.

[7] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver.
In TACAS, pages 337–340, 2008.

[8] I. Dillig, T. Dillig, and A. Aiken. Small formulas for large
programs: On-line constraint simplification in scalable static
analysis. In SAS, pages 236–252, 2010.

[9] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao. The Daikon sys-
tem for dynamic detection of likely invariants. Sci. Comput.
Program., 69(1-3):35–45, 2007.

[10] X. Feng and A. J. Hu. Automatic formal verification for
scheduled VLIW code. In LCTES-SCOPES, pages 85–92,
2002.

[11] X. Feng and A. J. Hu. Cutpoints for formal equivalence
verification of embedded software. In EMSOFT, pages 307–
316, 2005.

[12] P. Godefroid and A. Taly. Automated synthesis of symbolic
instruction encodings from I/O samples. In PLDI, pages 441–
452, 2012.

[13] B. Godlin and O. Strichman. Regression verification. In DAC,
pages 466–471, 2009.

[14] B. Goldberg, L. D. Zuck, and C. W. Barrett. Into the loops:
Practical issues in translation validation for optimizing com-
pilers. Electr. Notes Theor. Comput. Sci., 132(1):53–71, 2005.

[15] S. Gulwani. Program analysis using random interpretation. In
Ph.D. Dissertation, UC-Berkeley, 2005.

[16] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Synthesis
of loop-free programs. In PLDI, pages 62–73, 2011.

[17] D. Jackson and D. A. Ladd. Semantic Diff: A tool for summa-
rizing the effects of modifications. In ICSM, pages 243–252,
1994.

[18] R. Joshi, G. Nelson, and Y. Zhou. Denali: A practical al-
gorithm for generating optimal code. ACM Trans. Program.
Lang. Syst., 28(6):967–989, 2006.

[19] D. E. Knuth. The Art of Computer Programming, Volume
II: Seminumerical Algorithms, 2nd Edition. Addison-Wesley,
1981. ISBN 0-201-03822-6.

[20] S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Rebêlo.
SYMDIFF: A language-agnostic semantic diff tool for imper-
ative programs. In CAV, pages 712–717, 2012.

[21] X. Leroy. The CompCert C verified compiler
documentation and users manual, 2013. URL
http://compcert.inria.fr/man/manual.pdf.

[22] H. Massalin. Superoptimizer - a look at the smallest program.
In ASPLOS, pages 122–126, 1987.

[23] T. Matsumoto, H. Saito, and M. Fujita. Equivalence checking
of C programs by locally performing symbolic simulation on
dependence graphs. In ISQED, pages 370–375, 2006.

[24] V. Menon, K. Pingali, and N. Mateev. Fractal symbolic analy-
sis. ACM Trans. Program. Lang. Syst., 25(6):776–813, 2003.

[25] G. C. Necula. Translation validation for an optimizing com-
piler. In PLDI, pages 83–94, 2000.

[26] T. Nguyen, D. Kapur, W. Weimer, and S. Forrest. Using
dynamic analysis to discover polynomial and array invariants.
In ICSE, pages 683–693, 2012.

[27] N. Partush and E. Yahav. Abstract semantic differencing for
numerical programs. In SAS, pages 238–258, 2013.

[28] S. Person, M. B. Dwyer, S. G. Elbaum, and C. S. Pasareanu.
Differential symbolic execution. In SIGSOFT FSE, pages
226–237, 2008.

[29] A. Pnueli, M. Siegel, and E. Singerman. Translation valida-
tion. In TACAS, pages 151–166, 1998.

[30] D. A. Ramos and D. R. Engler. Practical, low-effort equiva-
lence verification of real code. In CAV, pages 669–685, 2011.

[31] T. W. Reps, S. Sagiv, and G. Yorsh. Symbolic implementation
of the best transformer. In VMCAI, pages 252–266, 2004.

[32] M. Rinard. Credible compilers. Technical report, Mas-
sachusetts Institute of Technology, 1999.

[33] E. Schkufza, R. Sharma, and A. Aiken. Stochastic superopti-
mization. In ASPLOS, pages 305–316, 2013.

[34] R. Sharma, S. Gupta, B. Hariharan, A. Aiken, P. Liang, and
A. V. Nori. A data driven approach for algebraic loop invari-
ants. In ESOP, pages 574–592, 2013.

[35] K. C. Shashidhar, M. Bruynooghe, F. Catthoor, and
G. Janssens. Verification of source code transformations by
program equivalence checking. In CC, pages 221–236, 2005.

[36] R. Tate, M. Stepp, Z. Tatlock, and S. Lerner. Equality satura-
tion: a new approach to optimization. In POPL, pages 264–
276, 2009.

[37] A. V. Thakur and T. W. Reps. A method for symbolic compu-
tation of abstract operations. In CAV, pages 174–192, 2012.

[38] J.-B. Tristan, P. Govereau, and G. Morrisett. Evaluating value-
graph translation validation for LLVM. In PLDI, pages 295–
305, 2011.

[39] A. Turing. Checking a large routine. In The early British
computer conferences, pages 70–72. MIT Press, Cambridge,
MA, USA, 1989.

[40] H. S. Warren. Hacker’s Delight. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2002. ISBN
0201914654.

[41] C. M. Wintersteiger, Y. Hamadi, and L. M. de Moura. Effi-
ciently solving quantified bit-vector formulas. Formal Meth-
ods in System Design, 42(1):3–23, 2013.

[42] Y. Xie and A. Aiken. Scalable error detection using boolean
satisfiability. In POPL, pages 351–363, 2005.

