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Algorithms that create and mutate graph data structures are challenging to implement correctly. However,

verifying even basic properties of low-level implementations, such as referential integrity and memory safety,

remains non-trivial. Furthermore, any extension to such a data structure multiplies the complexity of its

implementation, while compounding the challenges in reasoning about correctness. We take a language

design approach to this problem. We propose Seam, a language for expressing local edits to graph-like

data structures, based on a relational data model, and such that data integrity can be verified automatically.

We present a verification method that leverages an SMT solver, and prove it sound and precise (complete

modulo termination of the SMT solver). We evaluate the verification capabilities of Seam empirically, and

demonstrate its applicability to a variety of examples, most notably a new class of verification tasks derived

from geometric remeshing operations used in scientific simulation and computer graphics. We describe our

prototype implementation of a Seam compiler that generates low-level code, which can then be integrated

into larger applications. We evaluate our compiler on a sample application, and demonstrate competitive

execution time, compared to hand-written implementations.
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1 INTRODUCTION
Local edits on graphs are operations that mutate graph structure by deleting, creating, and rewiring

nodes and edges in local neighborhoods. Such operations touch only a portion of the graph, within

a statically bounded number of hops away from their arguments. For instance, contracting an edge,

splitting an edge, and merging two vertices are all local edits of graphs. In applications, these basic

kinds of operations manifest in richer, more structured settings. For example, two locations in a

geospatial service are discovered to be duplicates, and must be merged; elements of a geometric

mesh are subdivided to increase local resolution; a user on a social network blocks another user’s

access.
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Reasoning about the correctness of local edit operations is non-trivial, and this makes it easy

to introduce subtle bugs when implementing them. Such operations can freely delete, create, or

update objects and the connections between them, and thus low-level implementations have the

potential to violate basic memory correctness (e.g., no dangling pointers) or application-specific

invariants over the stored data (e.g., a policy that a blocked user is not allowed to tag their blocker

in photographs). We refer to these properties collectively as data integrity.
Each successive extension to the overall data structure (i.e., the addition of more classes of objects,

edit operations, and invariants) becomes increasingly harder to reason about, and thus implement

correctly. New invariants must be checked against all existing operations. A new operation often

requires new access patterns (e.g., finding all the triangles connected to a given vertex, or finding

all the photos taken by a blocked user that tag the blocking user), and introducing additional data

structures to support those access patterns multiplies code complexity, as these new data structures

must be maintained in all operations.

This paper presents a method for verifying that local edit operations preserve data integrity.

Rather than attempt to directly verify the complex code that results from writing such programs in

general-purpose languages, we design and implement a domain-specific language, called Seam,

to simplify the development and verification of graph data structures and local edit operations

on them. Seam provides sound (no false negatives) and precise (no false positives) verification of

local graph edits, by utilizing an SMT solver: If all the proof obligations that Seam generates are

discharged by the solver, then the operation in question is guaranteed to preserve data integrity in

all executions. If a proof obligation is disproven, then Seam provides a concrete execution input,

defined entirely over the data structures of the original program, that demonstrates the erroneous

behavior. Because the underlying logic that Seam uses is undecidable, non-termination is also a

possible outcome of attempting to verify a graph operation, though our verifier terminates on all

of our examples.

Key to our verification approach is the choice to disallow general recursion, and instead restrict

Seam’s looping construct to be a map over a finite (but unbounded) set. This looping construct is

sufficient for expressing local graph edit operations, and allows us to precisely identify each point

in an operation’s execution by the valuation of all visible loop variables. In turn, this enables the

verifier to precisely and succinctly name all values, especially all newly-created values, to which a

reference in the code can evaluate, using quantification over the sets being looped over.

Another crucial design choice is Seam’s transactional execution semantics: Memory operations

are collected in a log, and applied atomically after execution finishes. Thus, our verifier needs only

reason about the initial and final states of the data structure being updated, not intermediate states.

Additionally, we build our abstract representation of an operation’s effects using multisets, rather

than sets, which allows us to reason about duplicate values appearing at different points in the

execution (e.g., the same value appearing twice in delete statements). Finally, we allow programmers

to define the contents of auxiliary data structures declaratively, in terms of the base data, and the

Seam compiler produces correct-by-construction code to maintain them, thus reducing the amount

of code to verify.

Besides verification, our goals in designing Seam included programmer productivity and per-

formance of generated code competitive with native compiled code (so that code generated by

Seam can be incorporated into performance-critical applications). Perhaps surprisingly, in Seam

these goals are reinforced, rather than hindered, by the need to support verification. Implementing

local graph edits by hand requires solving complicated memory and index management problems.

Programmers struggle to manage this complexity, leading to simplified and inefficient implementa-

tion strategies. In Seam, an operation’s memory safety is statically verified, so the programmer
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does not need to perform any runtime checks, and auxiliary data structures are managed auto-

matically, by compiler-generated code. This reduction in the programmer’s responsibilities also

translates to more concise code. While preliminary, our performance results are very encouraging:

Seam-generated sequential code runs faster than hand-written sequential C++ code for at least

one application, compared to two existing code bases, precisely because those code bases adopt

inefficient implementations to reduce conceptual complexity. Furthermore, the corresponding Seam

code is an order of magnitude shorter than the handwritten implementations.

This paper makes the following contributions:

• We propose a new declarative language, Seam, that allows programmers to express local

graph edits more concisely, compared to general-purpose language such as C++ or Java. Our

compiler translates Seam programs into low-level code that can be integrated into native

applications.

• We present a sound and precise method for statically verifying that Seam operations maintain

data integrity in all executions (thus obviating the need for dynamic checks). Given an

operation, our verifier produces proof obligations that, if proven valid by an SMT solver,

guarantee that the operation is memory-safe, maintains referential integrity, and preserves

all user-specified invariants. If a proof obligation is disproven, the counter-example provided

by the SMT solver is translated into an operation input that is guaranteed to demonstrate

erroneous behavior.

• We demonstrate our method’s applicability to a new class of data structure verification tasks

that arise from geometric remeshing operations used in scientific simulation and computer

graphics.

• We present an empirical evaluation demonstrating the effectiveness of our verification

method in practice. Although verification of Seam programs is generally undecidable, all of

our examples are verified in under a minute, and their majority in under a second.

• We demonstrate end-to-end integration of Seam-generated code into an example application,

and give preliminary runtime measurements showing that the Seam compiler can generate

more efficient code than existing handwritten C++ code in at least one case.

2 EXAMPLES
Seam is a domain-specific language for describing graph data structures and writing local graph

edits. Data structures are described using a formalism analogous to a relational database schema.

Graph modification operations are written in a custom language, designed to support features

commonly used in local graph edits, while remaining amenable to formal verification. Programmers

can use these operations as modification primitives, composing them into larger applications. Seam

itself lacks any sequential execution constructs to compose the individual edit operations. Thus, a

Seam program needs to be paired with a host language that performs the initial build of the data

structures and invokes the operations.

In this section we give an overview of Seam’s design using two examples: a simple social network

and a triangle mesh. More examples of Seam code can be found in Appendix D
1
. We discuss Seam’s

limitations in Section 10.

2.1 A Simple Social Network
Consider a simple social network with user accounts that follow one another. We can model the

schema for such a data structure in Seam, as shown in Figure 1a. The keyword table indicates an

unordered set of elements, and field defines per-element data stored in a table. For instance, every

1
The Appendix is available on the ACM digital library, as a supplementary document to this paper.
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schema SocialNet
table Account
table Follow
field Follow.src:Account
field Follow.dst:Account
invariant no_follow_self( f:Follow )

assert(f.src != f.dst)
end

end

operation SocialNet.Remove( a:Account )
delete a
for f in Follow where f.src == a do

delete f
end
for f in Follow where f.dst == a do

delete f
end

end

(a) Original schema and operations

-- Incorrect version, will not compile
operation SocialNet.Merge( a1:Account, a2:Account )

delete a2
for f in Follow where f.src == a2 do

f.src = a1 end
for f in Follow where f.dst == a2 do

f.dst = a1 end
end

-- Compiler error message
Invariant 'no_follow_self' violated, on input:
Accounts = { a1, a2 }
Follows = { f1 }
f1.src = a1, f1.dst = a2

-- Corrected version
operation SocialNet.Merge( a1:Account, a2:Account )

delete a2
for f in Follow where f.src == a2 do

if f.dst == a1 then delete f else f.src = a1 end
end
for f in Follow where f.dst == a2 do

if f.src == a1 then delete f else f.dst = a1 end
end

end

(b) Adding an account merge operation

Fig. 1. A simple social network data structure

Follow models a kind of directed edge between accounts, by including a src and a dst Account. Each

entry in a table is unique (even if it happens to have the same values as another entry for all fields),

and addressable by a unique identifier, akin to unique row identifiers in relational databases.

Seam programmers can specify invariants by writing a function that asserts the properties

defining the invariant. Invariants are thus expressed using familiar control flow constructs. By

restricting invariants to have a single argument, we help ensure that they are local and can be

efficiently checked. Here, no_follow_self in Figure 1a is a simple invariant that disallows self-loops.

Once a schema has been defined, a Seam programmer can write operations on that schema. For

instance, the operation SocialNet.Remove of our example schema removes a user account from the

network.

In Seam, tables represent unordered sets. Consequently, our operation definitions must be

insensitive to the order in which the table elements are looped over. Furthermore, to keep operations

local, we only allow looping over elements connected to a variable already in scope. These two

decisions lead to a constrained loop construct that provides access to all elements connected with

some input element (a in the above operation), through a specific field (src and dst, for the first

and the second loop respectively).

Operations are not just order-insensitive, they are transactional. All the operation’s effects on

memory (deletes, news, and field writes) are applied atomically, after the body of the operation is

done executing. As a result, even though Seam operations are written as pseudo-imperative code,

their semantics are declarative. This behavior further frees the programmer from the responsibility

of ensuring that effects are correctly ordered. For instance, in operation SocialNet.Remove (Figure 1a),

Account a is deleted before being used in the two loops.
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Seam statically checks that all references to the deleted Account a have either been removed or

re-assigned at compile time. If we were using a database, we could have handled this particular

case by declaring an ON DELETE CASCADE policy [Ullman et al. 2002] between Accounts and Follows.

However, such policies have the drawback of defining behavior globally, rather than per-operation.

Suppose we realize that our network contains duplicate accounts, so we decide to implement an

operation to merge accounts (Figure 1b). This operation deletes one of the two accounts, but rather

than delete the connected follows, re-routes them to the retained account. As this example shows,

different applications, and even different operations within the same application, may require

different approaches to maintaining data integrity.

If we are in a rush, we might quickly code the account merge operation as shown at the top of

Figure 1b, without realizing that it can violate our invariant no_follow_self. By using the model-

finding capabilities of SMT solvers, Seam is able to provide programmers with concise counter-

example inputs. Here, the compiler responds with a minimal network (containing two accounts)

that satisfies the invariant, but will no longer do so after SocialNet.Merge executes. If we modify

the loops to check for follows between the merged accounts, and delete those follows, then we get

an operation (bottom of Figure 1b) that successfully compiles.

As we add more types of elements, operations or invariants to our data structure, Seam automat-

ically checks for problems arising from their interactions.

2.2 Triangle Mesh: Edge-Based Remeshing
Geometric data structures, used to represent 2D and 3D shapes, are a rich class of complex graph

data structures. For instance, a triangle mesh (a common input format for rendering engines, such as

OpenGL) consists of triangles and vertices, where each triangle has three distinct vertices. Figure 2a

defines a possible implementation of a triangle mesh data structure in Seam.

In implementations of triangle mesh data structures, the edges between vertices are often defined

as another table of explicitly managed elements. However, this is redundant; once the triangles are

specified, all the edges between their vertices are implicitly defined. To help ease and automate the

programmer’s work in such situations, we leverage the concept of a view from databases. A view

is a set of typed tuples, along with a function (viewdef) that computes its contents based on the

contents of the base tables. Such view definition functions take a single argument and use the same

control constructs as operations, but use emit statements in place of delete, new and field-write

statements.

One of the more complex triangle mesh-based techniques, called adaptive remeshing, is the
continuous adaptation of a mesh, to adjust its resolution and fidelity over the course of a larger

computation [Brochu and Bridson 2009; Da et al. 2014; Narain et al. 2013, 2012; Pfaff et al. 2014;

Wojtan et al. 2009, 2010]. This technique is critical in the simulation of certain phenomena, such

as paper folding and paper tearing. A common approach to remeshing is to define two local edit

operations, edge-collapse and edge-split (Figure 3), to reduce and increase the resolution respectively.

The edge-split operation creates a new split vertex, and then replaces every triangle connected to

the edge with the two triangles resulting from splitting that edge. The edge-collapse operation

collapses one vertex into another by deleting it (similar to account merging), then re-routing any

connected triangles to the remaining vertex. We implement these operations in Figure 2c.

This example illustrates how the view mechanism eliminates a combinatorial increase in the

amount of code, as an application is extended. The views TV and TE in this example are each used

in only one of the two operations. The Seam compiler automatically generates code to propagate

updates to the views, and adds it to both operations. If we had instead represented these views as

base tables (equivalently to what programmers have to do when they develop similar applications

manually), we would have had to write update code for the combination of each view and each
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schema TriMesh
table Tri -- triangles
table Vert -- vertices
field Tri.v0:Vert
field Tri.v1:Vert
field Tri.v2:Vert
invariant non_degenerate( t:Tri )

assert(t.v0 != t.v1 and t.v1 != t.v2
and t.v0 != t.v2)

end
view Edge : { hd:Vert, tl:Vert }
-- def: hd & tl appear on same triangle
view TE : { t:Tri, hd:Vert, tl:Vert }
-- def: {hd,tl} is an edge of t
view TV : { t:Tri, v:Vert }
-- def: v is a vertex of t
viewdef( t:Tri )

emit { t, t.v0 } into TV
emit { t, t.v1 } into TV
emit { t, t.v2 } into TV
emit { t.v0, t.v1 } into Edge
emit { t, t.v0, t.v1 } into TE
emit { t.v1, t.v2 } into Edge
emit { t, t.v1, t.v2 } into TE
...

end
end

(a) Schema

invariant unique_tri_key( t:Tri )
assert(forall t2:Tri

where t2.v0 == t.v0,
t2.v1 == t.v1,
t2.v2 == t.v2

: t == t2)
end

(b) Additional invariant: no duplicate triangles

operation TriMesh.EdgeSplit( e:Edge )
let vh = e.hd -- head of e
let vt = e.tl -- tail of e
let sv = new Vert -- vertex splitting the edge
for t_e in TE
where t_e.hd == vh, t_e.tl == vt do

let t = t_e.t
-- the following line is a pattern-match
let vh, vt, vopp = t.v0, t.v1, t.v2
delete t
new t_h:Tri { v0 = vh, v1 = sv, v2 = vopp }
new t_t:Tri { v0 = sv, v1 = vt, v2 = vopp }

end
end

operation TriMesh.EdgeCollapse( e:Edge )
let vh = e.hd
let vt = e.tl
-- strategy: delete vt, then
-- redirect touching triangles to vh
delete vt
for t_v in TV where t_v.v == vt do

let t = t_v.t
if t.v0 == vh or t.v1 == vh or t.v2 == vh then

delete t
else

if t.v0 == vt then t.v0 = vh
elseif t.v1 == vt then t.v1 = vh
elseif t.v2 == vt then t.v2 = vh end

end
end

end

(c) Operations

Fig. 2. A triangle mesh data structure

(a) TriMesh.EdgeSplit (b) TriMesh.EdgeCollapse

?

(c) Tetrahedral Collapse Edge Case

Fig. 3. Edge-based remeshing operations
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operation, i.e. we would have had to maintain a quadratically rather than linearly growing amount

of code, as new operations and views are added.

This example also illustrates how Seam can automatically identify problematic edge cases, that

the programmer could easily miss. Suppose we decide we need to enforce an additional invariant,

that no duplicate triangles are allowed (i.e., triangles with the same set of vertices). Seam lets

us concisely express this requirement (Figure 2b). Having done so, the EdgeSplit operation still

compiles, but EdgeCollapse does not. In fact, this problem is a well-known edge case, which Seam

identifies automatically: a triangle mesh on four vertices, forming a tetrahedron (Figure 3c). When

one of the edges is collapsed (indicated in the figure by the two arrows, which show the two

endpoints of the edge being merged into one), two triangles are deleted, and the remaining two

triangles coincide on the same three remaining vertices. In some papers [Da et al. 2014] this issue is

addressed by deleting one of the two triangles, effectively merging them. In other papers [Brochu

and Bridson 2009] this case is handled by deleting both triangles. Which rule is appropriate depends

on what the mesh is modeling. Seam directs the programmer’s attention to such edge cases, rather

than trying to automatically resolve these fundamentally application-specific decisions.

Finally, this example illustrates how Seam helps support the safe evolution of data structure

code over time, as application requirements change. Consider the case of the ArcSim code base,

which was used in the publication of three successive research papers [Narain et al. 2013, 2012;

Pfaff et al. 2014], on cloth, paper folding, and paper tearing simulation respectively—all relying on

triangle mesh edge-based remeshing. As the code base evolved, the schema changed. Initially, the

triangle mesh (implemented as a C++ data structure) resembled our TriMesh schema, without views.

However, by the third paper, a new requirement had been added. The triangle mesh now had to

track two “versions” of the paper sheet being simulated: its torn topology, as well as its topology as

if it had not been torn. Both topologies were modeled using triangles and vertices, with vertices

having a one-to-one correspondence between topologies, except for one case: A single vertex on

the untorn topology, if located directly on a tear, would correspond to two (or more) vertices on the

torn topology, tracking its position on the two (or more) sides of the tear. We could easily model

this extension in Seam, by declaring a new UntornVertex table, and adding an untorn_vertex field

to the Vertex table. Then, instead of having to manually reason about the effects of this modeling

change on all existing operations, we could rely on the compiler to direct our attention to the

minimal set of edge-cases that need to be addressed.

3 TECHNICAL OVERVIEW
The main technical result of this paper is a proof of correctness: Provided the operations in a Seam

program typecheck and pass the SMT-based checker, then they are memory-safe and preserve all

user-specified invariants (Theorem 5.1). Conversely, if an operation fails some check, then there

exists some input for which the operation violates memory safety or invalidates some invariant, and

we can construct such an input from the counter-example provided by the SMT solver (Theorem 5.2).

In the following sections, we give the major definitions and lemmas required for this proof; the

complete proof can be found in Appendix C.

The first step towards expressing our theorems is to formally define a core Seam language

(Section 4), such that full Seam programs can be reduced to it (Section 6). We develop a syntax and

type system for this core language, and define its execution semantics over a memory model that

maps each schema component onto an abstract machine memory. To capture the transactional

nature of operation execution, we separate Seam’s operational semantics in two stages: an execution
stage, which produces a log of effects to be applied, and a log application stage. This separation

allows us to formulate the property that data integrity is maintained as a validity property of the

log. Our definition of a valid log includes a non-obvious reorderability component, which is useful
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for guaranteeing that the operation is consistently defined, regardless of table iteration or log

playback order.

In Section 5 we describe how to construct an abstract operation representation that succinctly

describes the contents of all logs that may be produced in any execution, independent of a particular

input model or argument assignment. We use this representation to construct a formula which

encodes the property that the operation maintains data integrity in all executions. We delegate the

task of proving this formula to an SMT solver.

4 LANGUAGE & SEMANTICS
In the following, we use the notation ⟨ . . .⟩ to create tuple values. We denote the set of k-length
tuples, whose i-th element is drawn from set Xi , as X1 × . . . ×Xk . We use |t | for the length of tuple

t , and πi (t ) to project out its i-th element. We denote the set of sequences containing elements

from X as seq(X ). We use ++ to concatenate sequences, and [. . .] to form sequence literals. We

denote the length of a sequence s as |s | and its i-th element, where i ∈ {1, . . . , |s |}, as s[i]. We use

the shorthand x ∈ s to mean ∃i ∈ {1, . . . , |s |}. s[i] = x . Note that we use 1-based numbering for

both tuples and sequences.

4.1 Syntax
We present our formal discussion on a simplified version of Seam, called the core language. We

discuss how to reduce full Seam programs to this language in Section 6. A program in this language

consists of a single schema, possibly several invariants, and a single operation. The constructs of

the core language are defined in Figure 4.

Any reference appearing in a Seam operation evaluates at runtime to either an entry that existed

before the operation executed, or to an entry allocated during the current execution. We separate

these two categories of references syntactically: var and expr can only refer to pre-existing entries,

while a nid (new-id) can only refer to a newly-allocated entry. The programmer cannot read fields

off of a nid, only use it directly in assignments. This behavior follows from our two-stage execution

model: Allocation of new entries does not actually occur until after execution has completed,

therefore it does not make sense to read their fields.

In the core language, references to newly allocated entries always appear annotated with a

sequence of variables, forming a parameterized nid (pnid). Let p = n[v1, . . . ,vk ] be such a pnid,
corresponding to nid n, and let s be the new statement that introduces it. Then v1, . . . ,vk are the

variables in the for-loops under which s is nested, ordered from outer-most to inner-most loop. All

instances of the same pnid carry the same annotation. User-written operations do not include these

annotations; our compiler adds this information automatically. Figure 2 in Appendix B outlines

how to check that such annotations are consistent with the code. These annotations do not add

any information to the program, but they help to simplify our formal presentation.

Seam’s control constructs are standard, with the exception of the for loop, which has a restricted

range: At runtime, a loop for v in R do s will execute once for each entry on tableR, in an arbitrary
order. This restriction is crucial in enabling our verification approach, because it allows any point

in the execution to be uniquely identified as a combination of the specific statement being executed,

and the values of all loop variables that are in-scope at that statement. This is true in particular for

new statements, which implies that we can precisely name the values allocated during an execution,

by the unique nid used at their allocation site, and the values of loop variables visible at their

point of allocation. This fact motivates the annotation of nids with loop variables, as described

previously: The values of those loop variables are exactly the information we need to uniquely

identify a newly-allocated value, wherever it might appear in the code.
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R ∈ tab (table name) s ∈ stmt ::= new pnid : tab in stmt

f ∈ fld (field name) | delete expr

v ∈ var (ref. to existing entry) | ref . fld = ref

n ∈ nid (ref. to new entry) | if cond then stmt

p ∈ pnid ::= nid [ var∗ ] | for var in tab do stmt

e ∈ expr ::= var | expr . fld | stmt ; stmt

r ∈ ref ::= expr | pnid tabdef ::= table tab

c ∈ cond ::= true flddef ::= field tab . fld : tab
| expr == expr inv ::= inv cond

| not cond o ∈ oper ::= oper( [var : tab]∗ ) stmt

| cond and cond prog ::= tabdef ∗ flddef ∗ inv∗ oper

| forall var : tab . cond

Fig. 4. Core Seam language syntax

4.2 Typing
We assume no table or field is defined more than once, or used before its definition. For every

field f declared as field R1. f : R2 we define dom( f ) = R1 and rng( f ) = R2. For every table R we

define flds(R) to be those fields f with dom( f ) = R. We assume there are no name clashes between

variables and nids introduced at different places in the code.

We require the program’s invariants and operation to adhere to a simple type system, presented

in Figure 5. The set of types is exactly the set of tables declared in the program’s schema. We also

define the special types Bool, for well-typed conditions and invariants, and Void, for well-typed
statements and operations.

In the Appendix (Lemma C.1) we prove that an operation’s typing derivation, if one exists, is

unique. This implies that, for every reference r in a well-typed operation o, there must exist a

single node in o’s unique type derivation that maps r to some table R. We then define type(r ) = R.
Additionally, if type(p) = R for some pnid p = n[v1, . . . ,vk], we also define type(n) = R.

Note that, as part of typechecking new statements, we also verify that all fields on newly-allocated

entries are initialized exactly once. This is easy to enforce syntactically by disallowing initializations

nested under for-loops or if-conditions.

4.3 Memory Model
We use an abstract store to represent the memory of the machine on which a Seam operation

executes. A store is a mapping from abstract memory addresses, called locations, to memory cells.

Let l ∈ loc denote the set of all locations. We assume the store is of unbounded size (we can always

obtain a fresh, unused location), and each memory cell has enough space to store the full contents

of any table entry.

A Seam program can only access a (finite) subset of the store, the locations allocated for its

tables. This subset of the store is captured by the model M of the program’s schema, which is a pair

⟨M tab,Mfld⟩ of mappings, associating each schema component to its concrete representation in the

store: For every table R,M tabJRK ⊆ loc is the (finite) set of memory locations that store entries of

R. For every field f , MfldJf K : loc → loc is a function that retrieves the value of field f stored at

a memory location. MfldJf K(l ) is undefined if no value for field f has been previously stored at

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 78. Publication date: October 2017.



78:10 Manolis Papadakis, Gilbert Louis Bernstein, Rahul Sharma, Alex Aiken, and Pat Hanrahan

Γ ∈ tenv = (var ∪ pnid) → tab

initsJpnid,fldK : stmt ⇀ N

initsJp, f K(new p ′ : R in s ) = initsJp, f K(s )

initsJp, f K(delete e ) = 0

initsJp, f K(r1 . f ′ = r2) =

1 if r1 = p and f = f ′, otherwise 0

initsJp, f K(if c then s ) =

0 if initsJp, f K(s ) = 0, otherwise undefined

initsJp, f K(for v in R do s ) =

0 if initsJp, f K(s ) = 0, otherwise undefined

initsJp, f K(s1 ; s2) = initsJp, f K(s1) + initsJp, f K(s2)

tenv ⊢ ref : tab

Γ(v ) = R

Γ ⊢ v : R

Γ ⊢ e : dom( f )

Γ ⊢ e . f : rng( f )

Γ(p) = R

Γ ⊢ p : R

tenv ⊢ cond : Bool

Γ ⊢ true : Bool
Γ ⊢ e1 : R Γ ⊢ e2 : R

Γ ⊢ e1 == e2 : Bool
Γ ⊢ c : Bool

Γ ⊢ not c : Bool

Γ ⊢ c1 : Bool Γ ⊢ c2 : Bool
Γ ⊢ c1 and c2 : Bool

Γ[v 7→ R] ⊢ c : Bool

Γ ⊢ forall v : R . c : Bool

tenv ⊢ stmt : Void∧
f ∈flds(R ) initsJp, f K(s ) = 1

Γ[p 7→ R] ⊢ s : Void

Γ ⊢ new p : R in s : Void

Γ ⊢ c : Bool Γ ⊢ s : Void
Γ ⊢ if c then s : Void

Γ ⊢ r1 : dom( f ) Γ ⊢ r2 : rng( f )

Γ ⊢ r1. f = r2 : Void
Γ ⊢ e : R

Γ ⊢ delete e : Void

Γ[v 7→ R] ⊢ s : Void

Γ ⊢ for v in R do s : Void

Γ ⊢ s1 : Void Γ ⊢ s2 : Void
Γ ⊢ s1;s2 : Void

⊢ inv : Bool ⊢ oper : Void

∅ ⊢ c : Bool
⊢ inv c : Bool

{⟨v1,R1⟩, . . . , ⟨vn ,Rn⟩} ⊢ s : Void
⊢ oper(v1 : R1, . . . ,vn : Rn) s : Void

Fig. 5. Typing rules
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location l . An operation can update its model by emitting one of three possible memory operations,

which we represent as parametric functions in model → model:
• Insertion: INSJtab, loc, pnid, envK : model → model

INSJR1, l1,p,ηK(M ), defined only if

∧
R∈tab l1 < M

tabJRK, returns a new model N where:

– N tabJRK = M tabJRK ∪ {l1} if R = R1, otherwiseM
tabJRK

– N fld = Mfld
(fields of newly allocated entries are uninitialized)

The last two parameters, p and η, are only used as annotations, and have no execution

semantics.

• Deletion: DELJtab, locK : model → model
DELJR1, l1K(M ), defined only if l1 ∈ M

tabJR1K, returns a new model N where:

– N tabJRK = M tabJRK \ {l1} if R = R1, otherwiseM
tabJRK

– N fldJf K = MfldJf K���N tabJdom(f )K (fields of deleted entries become undefined)

• Update: UPDJfld, loc, locK : model → model
UPDJf1, l1, l2K(M ), defined only if l1 ∈ M

tabJdom( f1)K and l2 ∈ M
tabJrng( f1)K, returns a new

model N where:

– N tabJRK = M tabJRK
– N fldJf K(l ) = l2 if f = f1 and l = l1, otherwiseM

fldJf K(l )

4.4 Operational Semantics
A Seam operation executes over an input modelM and an environmentηwhichmaps the operation’s

arguments to locations on the appropriate tables. The execution proceeds according to the big-step

semantics in Figure 6.

Executing an operation does not update the store immediately. Instead, the memory operations

emitted by the execution are collected in a log L = ⟨Li ,Ld ,Lu ⟩, which is a triple of seq(model →
model), containing all the emitted insertions, deletions and updates respectively. We lift the con-

catenation operator ++ to logs in the natural way: L1++log L2 = ⟨L
i
1
++Li

2
,Ld

1
++Ld

2
,Lu

1
++Lu

2
⟩. We say

that L1 is a permutation of L2 iff each of Li
1
, Ld

1
and Lu

1
is a permutation of Li

2
, Ld

2
and Lu

2
respectively.

After execution finishes, the resulting log L is applied on the input modelM , to form the output

model M ′ = applyJLK(M ), where applyJlogK : model → model is defined as applyJ⟨Li ,Ld ,Lu ⟩K =
Lu
|Lu | ◦ . . . ◦ L

u
1
◦ Ld
|Ld |
◦ . . . ◦ Ld

1
◦ Li
|Li | ◦ . . . ◦ L

i
1
(memory operations are applied in the order:

insertions, deletions, updates).

Note that application of a log can fail, in case one of its constituent memory operations is

undefined. The failure cases of memory operations were chosen to mirror error scenarios on a

typical memory system. In particular, we have defined deletions to fail in cases that would trigger a

double-free error on a real computer.

4.5 Safety Properties
We want to provide a language expressive enough that programmers can implement complex

local edit operations. This flexibility, however, allows programmers to write operations that may

(under certain inputs) execute successfully, but modify the store in such a way that data integrity is

violated. Our solution is to formally define data integrity as a property of the program’s model,

called validity. We can then reduce the problem of verifying that an operation always maintains

data integrity to the problem of verifying that the operation will never transform a valid model

into an invalid one.

Additionally, we have chosen to leave certain details of operation execution undefined, to provide

more flexibility to the implementation, and enable further optimizations in the future. In particular,

the order in which table entries are visited during the execution of a for-loop is left undefined,
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η ∈ env = (var ∪ pnid) → loc

EJref K : model × env → loc

EJvK(M,η) = η(v )

EJpK(M,η) = η(p)

EJe . f K(M,η) = MfldJf K
(
EJeK(M,η)

)
CJcondK : model × env → Bool

CJtrueK(M,η) = TRUE

CJnot cK(M,η) = ¬ CJcK(M,η)

CJe1==e2K(M,η) =
(
EJe1K(M,η) = EJe2K(M,η)

)
CJc1 and c2K(M,η) = CJc1K(M,η) ∧CJc2K(M,η)

CJforall v : R . cK(M,η) =∧
l ∈M tabJRKCJcK(M,η[v 7→ l])

model, env ⊢ oper ⇓ log

η = {⟨v1, l1⟩, . . . , ⟨vn , ln⟩}∧
i ∈{1, ...,n } li ∈ M

tabJRiK
M,η ⊢ s ⇓ L

M,η ⊢ oper(v1 : R1, . . . ,vn : Rn) s ⇓ L

model, env ⊢ stmt ⇓ log

l is a fresh location M,η[p 7→ l] ⊢ s ⇓ L

L′ =
〈[

INSJR, l ,p,ηK
]
++ Li ,Ld ,Lu

〉
M,η ⊢ new p : R in s ⇓ L′

EJeK(M,η) = l l ∈ M tabJRK

M,η ⊢ delete e ⇓
〈
[ ],

[
DELJR, lK

]
, [ ]
〉

EJr1K(M,η) = l1 EJr2K(M,η) = l2

M,η ⊢ r1. f = r2 ⇓
〈
[ ], [ ],

[
UPDJf , l1, l2K

]〉
¬ CJcK(M,η)

M,η ⊢ if c then s ⇓
〈
[ ], [ ], [ ]

〉
CJcK(M,η) M,η ⊢ s ⇓ L

M,η ⊢ if c then s ⇓ L

M tabJRK = {l1, . . . , ln }∧
i ∈{1, ...,n }M,η[v 7→ li ] ⊢ s ⇓ Li
L′ = L1 ++log . . . ++log Ln

M,η ⊢ for v in R do s ⇓ L′

M,η ⊢ s1 ⇓ L1 M,η ⊢ s2 ⇓ L2

M,η ⊢ s1;s2 ⇓ L1 ++log L2

Fig. 6. Operational semantics

which means that executing a single operation on a particular input can have multiple possible

results. We make this non-determinism explicit in our semantics, so we can detect cases where a

program’s behavior is dependent on some loop’s iteration order.

Definition 4.1 (Model validity). A modelM is valid iff all the following hold:

• No location is mapped to multiple tables:∧
R,R′M

tabJRK ∩M tabJR′K = ∅.

• Every field is defined on exactly those locations allocated to its table:∧
f ∈fld domain(MfldJf K) = M tabJdom( f )K.

• Every field valuation falls within the field’s range:∧
f ∈fld codomain(MfldJf K) ⊆ M tabJrng( f )K.

• For each invariant defined as inv c , CJcK(M,∅) holds.

Note that the first three components of model validity follow directly from the mathematical

definition of an abstract memory model, given in Section 4.3: Unless these three properties are

satisfied, it is impossible to map the model meaningfully onto a real machine memory. Seam

operations, however, are able to modify their model such that it violates one or more of these

properties.
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Definition 4.2 (Well-formed input). A well-formed input for an operation defined as oper(v1 :

R1, . . . ,vn : Rn) s is any pair of modelM and environmentη0 that satisfy the following properties:M
is a valid model, and η0 maps exactly the arguments v1, . . . ,vn of the operation, and is type-correct:∧

i ∈{1, ...,n } η0 (vi ) ∈ M
tabJRiK.

Lemma 4.3 (Preservation). Let r be a reference appearing in operation o, with type(r ) = R. Let
⟨M,η0⟩ be a well-formed input for o, and EJrK(M,η) an evaluation of r occurring during execution of
o on this input. Then, that evaluation always succeeds, producing some location l , where:
• If r is an expression, then l ∈ M tabJRK.
• If r is a pnid p and the execution terminates producing some log L, then ∃η′. INSJR, l ,p,η′K ∈ Li .

The last lemma implies that, during execution of a well-typed operation on a well-formed input,

any (arbitrarily nested) chain of type-correct field dereferences can be successfully followed, and

the result will be a pre-existing location, on the appropriate table. Additionally, any reference to a

newly-allocated entry evaluates to a location (allocated during execution of a new statement) that is

scheduled for insertion.

Lemma 4.4 (Execution termination). If ⟨M,η0⟩ is a well-formed input for operation o, then execution
of o on that input always completes, producing some log L:M,η0 ⊢ o ⇓ L.

Lemma 4.5 (Basic log properties). Assume that operation o executes on some well-formed input,
producing a log L. Then, the following properties hold for L:
• Inserted locations are not present on any existing table.
• Each inserted location is distinct from all the others.
• Deleted locations exist on the appropriate table.
• Inserted locations are not deleted.
• Updates are type-correct: UPDJf , l1, l2K ∈ Lu ⇒ l1 ∈ M

tabJdom( f )K∨∃p,η. INSJdom( f ), l1,p,ηK
∈ Li (and similarly for l2 and rng( f )).

Assume we are given an operation o and a well-formed input ⟨M,η0⟩ for o. Execution of o will
always complete, producing some log L. Whether the execution was successful or not will be

determined when we try to apply L to the input modelM . We can thus reason about the properties

of the execution by inspecting just the output log.

Definition 4.6 (Execution correctness). The execution of some operation o on a well-formed input

⟨M,η0⟩, producing an output log L, is correct iff the output log L has all the following properties:

• Applicable: applyJLK(M ) is defined.
• Validity-preserving: applyJLK(M ) is a valid model.

• Reorderable: For any permutationL′ ofL, applyJL′K(M ) is defined, and identical to applyJLK(M ).

Definition 4.7 (Operation safety). An operation o is safe if it executes correctly on all well-formed

inputs.

The last lemma implies that a safe operation always terminates when executed on a well-formed

input, and the generated log can always be successfully applied on that input, is reorderable, and

its application generates a valid output model.

Of the three properties required for a correct execution, the first two are self-explanatory:

A correct execution must, at the very least, transform a valid model into another valid model.

The reorderability property is useful for guaranteeing that an operation has the same behavior,

regardless of the order in which the entries of a table are visited during the execution of a for-loop.

The other source of non-determinism in the operational semantics is the arbitrary choice of a fresh
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location, at each execution of a new statement. These fresh locations, however, are distinct from each

other and from all pre-existing locations, therefore we can ignore this non-deterministic behavior,

by considering the equivalence class of logs up to renaming of newly-allocated locations.

Lemma 4.8 (Execution non-determinism). Assume two possible executions of operation o on a
well-formed input ⟨M,η0⟩, producing logs L1 and L2. Then L2 is a permutation of L1, up to renaming
of inserted locations.

Our final lemma connects the log properties required for a correct execution with a different set

of properties, which can be more easily generalized to symbolic inputs, for use by our verification

method.

Lemma 4.9 (Execution correctness—alternate). Assume an operation o, a well-formed input ⟨M,η0⟩
for o, and an executionM,η0 ⊢ o ⇓ L. If L has all of the following properties, then the execution was
correct:
• NO-DOUBLE-FREE:∧

R∈tab ∄l , i , j .
(
Ld [i] = DELJR, lK

)
∧
(
Ld [j] = DELJR, lK

)
i.e. the operation did not emit multiple deletions for the same entry

• NO-DOUBLE-ASSIGN:∧
f ∈fld ∄l , i , j .

(
∃l ′. Lu [i] = UPDJf , l , l ′K

)
∧
(
∃l ′′. Lu [j] = UPDJf , l , l ′′K

)
i.e. the operation did not update any entry more than once on the same field

• NO-WRITE-ON-FREED:∧
f ∈fld ∄l .

(
DELJdom( f ), lK ∈ Ld

)
∧
(
∃l ′. UPDJf , l , l ′K ∈ Lu

)
i.e. the operation did not update any field of a deleted entry

• NO-SET-TO-FREED:∧
f ∈fld ∄l .

(
DELJrng( f ), lK ∈ Ld

)
∧
(
∃l ′. UPDJf , l ′, lK ∈ Lu

)
i.e. the operation did not set any field to point to a deleted entry

• NO-DANGLING-REFS:∧
f ∈fld ∀l .

(
DELJrng( f ),MfldJf K(l )K ∈ Ld

)
⇒
(
DELJdom( f ), lK ∈ Ld

)
∨
(
∃l ′. UPDJf , l , l ′K ∈ Lu

)
i.e. the operation updated or deleted all pointers to deleted entries

• INVS-MAINTAINED:

applyJLK(M ) satisfies all invariants

Note that our safety properties only apply to each execution of an individual operation. Seam

operations are meant to be invoked by a host application, that also initializes the data structures.

We assume that the host program checks data integrity at initialization time, runs Seam operations

atomically and sequentially, and cannot directly modify the data structures. Thus, by a simple

inductive argument, we conclude that, if all invoked operations are safe, then the full program

cannot violate data integrity.

Also note that our definition of safety only covers memory safety and maintenance of user-

defined invariants. It is possible to write a safe operation that has logical bugs, or one that will

never run because the invariants of its schema are impossible to satisfy.

5 VERIFICATION
This section presents our main result, a sound and precise method for checking whether a Seam

operation is safe.

5.1 Abstraction of Program Values
We associate every reference r in the body of an operation with a symbolic bag, an abstract repre-

sentation implicitly parameterized on the input model and argument assignment, that succinctly
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selectk =

k︷            ︸︸            ︷
ref × . . . × ref

д ∈ from = var → tab

c ∈ where = cond

b ∈ bagk ::= ∅

| bagk ⊎ bagk

| {selectk | from ;where}

abs ∋ A = ⟨Ai ,Ad ,Au ⟩

Ai ∈ nid → bag1

Ad ∈ tab → bag1

Au ∈ fld → bag2

(a) Representation of effects

⊢ oper ⇑ abs

∅, true ⊢ s ⇑ A
⊢ oper(v1 : R1, . . . ,vn : Rn) s ⇑ A

(b) Symbolic execution of operations

from,where ⊢ stmt ⇑ abs

д, c ⊢ s ⇑ A b = {p | д ; c} p = n[ . . . ]

д, c ⊢ new p : R in s ⇑ ⟨Ai
[n 7→ b],Ad ,Au ⟩

Ai (n) = Ad (R, type(e )) = Au ( f ) = ∅
Ad (type(e )) = {e | д ; c}

д, c ⊢ delete e ⇑ A

Ai (n) = Ad (R) = Au ( f ′, f ) = ∅
Au ( f ) = {⟨r1, r2⟩ | д ; c}

д, c ⊢ r1. f = r2 ⇑ A

д, c and c ′ ⊢ s ⇑ A

д, c ⊢ if c ′ then s ⇑ A

д[v 7→ R], c ⊢ s ⇑ A

д, c ⊢ for v in R do s ⇑ A

д, c ⊢ s1 ⇑ A1 д, c ⊢ s2 ⇑ A2

д, c ⊢ s1;s2 ⇑ A1 ⊎abs A2

(c) Symbolic execution of statements

Fig. 7. Representing Seam operations symbolically

describes all values that r can possibly evaluate to during any execution. We combine multiple

bags, representing different references in the code, and tagged with the operation associated with

each reference (e.g., deleted, or used as the key for an update), to form a complete abstraction of

the operation. We also use symbolic bags to track pairs of references, so we can reason about keys

and values of updates together.

Figure 7a lists the three possible forms of a symbolic bag: ∅ represents the empty bag, the ⊎

operator represents multiset sum (non-deduplicating union, used to combine information from

different statements), and {r | д ; c} is a comprehension (an analogue to set comprehension syntax,

used to describe the effects of a specific statement). On a comprehension {r | д ; c}, any variable v
appearing in r or c must be either an argument to the modeled operation, or introduced in д. We

lift tuple projection to bags of tuples in the natural way: π
bag
i : bagk → bag1.

Let b = {r | д ; c} be a comprehension, representing the values to which some reference r can
evaluate, and let д = {⟨v1,R1⟩, . . . , ⟨vk ,Rk ⟩}. We also write b as {r | v1 : R1, . . . ,vk : Rk ; c}. The
collection of values that b represents can be intuitively understood as the result of the SQL query

SELECT r FROM R1v1, . . . ,Rk vk WHERE c: For every combination of values l1 ∈ R1, . . . , lk ∈ Rk that

satisfy c[l1/v1, . . . , lk/vk ], b contains one instance of r [l1/v1, . . . , lk/vk ] (b may contain duplicates

of the same value). The range д on the bag represents the set of for-loops under which the modeled

reference is nested, and the filter c the aggregate condition of all the containing if-statements. The

reference r itself forms the projection, defining the syntactic form of the modeled reference, which

is enough to fully define the value to which that reference would evaluate at runtime, given a

valuation of the operation arguments, and loop variables in д. This is possible to do in Seam, because

our looping constructs are essentially maps over finite sets, rather than general while-loops.
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Unlike sets, symbolic bags include multiplicity information, which allows us to model cases

where a reference evaluates to the same value on two separate occasions during the same execution,

e.g. on two different iterations of a containing loop, and also cases where the same value occurs

twice in the same execution, at the execution of two different statements. Like sets, symbolic bags

do not explicitly include a notion of ordering. However, simply checking that certain bags do

not contain duplicates is enough to verify that the modeled operation can never exhibit different

behavior under different execution orders.

Note that our abstraction scheme actually involves no loss of precision. In a symbolic bag

comprehension, values are tracked symbolically and the entire path predicate is included as the

filter component. Rather, symbolic bags abstract over the two sources of non-determinism in our

operational semantics: the iteration order of loops, and the choice of fresh locations made at the

execution of new statements. We can ignore these aspects of execution because they are irrelevant

for our verification method
2
and, if we verify that an operation is safe, we also guarantee that it

executes correctly regardless of loop execution order and fresh location choices (Definition 4.7).

5.2 Abstraction of Operation Effects
Our goal in this section is to define an abstract representation for Seam operations, such that a

single abstraction can succinctly represent the effects of the operation over all possible inputs. We

will build this representation as a collection of symbolic bags, each modeling a different aspect of

the operation’s behavior.

We call our abstract representation of an operation an abstract log, A ∈ abs. We define an

abstract log to represent all the concrete logs that can possibly be emitted by executing the modeled

operation on any well-formed input. Specifically, each A ∈ abs is comprised of the following parts:

• Ai
: nid → bag1: a comprehension {p | д ; c} for every nid n, recording the loops under

which n’s introduction statement s is nested (as a range д), and the aggregate condition up to

s (as a filter c)
• Ad

: tab → bag1: a bag for every table R, representing the entries deleted from that table

• Au
: fld → bag2: a bag for every field f , representing all the updates performed on it, as

key-value pairs

We lift the ⊎ operator to abstract logs: If A = A1 ⊎abs A2 then Ai (n) = Ai
1
(n) ⊎Ai

2
(n) (similarly for

Ad
and Au

).

Figures 7b and 7c describe how to extract an abstract log from the code of an operation. As

mentioned previously, a symbolic bag modeling a specific reference in the code needs to encode the

entered loops, the aggregate path predicate up to that point, and the syntactic form of the reference.

Therefore, our symbolic execution environment needs to include a set д of the entered loops, and a

condition c that encodes the running path predicate.

5.3 Translation to Logic
Our goal in this section is to derive a formula which, if proven, verifies the safety of the operation

under consideration. We will rely on an SMT solver to actually prove this formula. For our appli-

cation, the fragment of first order logic with no predicate symbols except equality, as outlined in

Figure 8b, is sufficient.

As part of this logical modeling, we need to define our domain of discourse. We need to define

this domain such that the set of valid instances correspond exactly to the set of valid models of

the operation’s schema, and translating between them is straightforward. The domain should

2
The specific locations returned by the execution of new statements are irrelevant, but the verification method does depend

on the fact that different executions of such statements return distinct fresh locations.
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therefore parallel the components of the operation’s schema. Specifically, the domain will contain

the following sorts and functions:

• For every table R, the following uninterpreted sorts: R̃, which represents its initial contents,

R̃δ , which represents the entries inserted into it, and R̃out
, which represents its final contents.

• For every field f with dom( f ) = R1 and rng( f ) = R2, the following uninterpreted functions:

f̃ : R̃1 → R̃2, which represents its initial contents, and f̃ out : R̃out
1
→ R̃out

2
∪ {NIL}, which

represents its final contents.

• For every nid n introduced in a statement new n[v1, . . . ,vk] : R in s , an uninterpreted

function ñ with signature ñ : R̃1 × . . . × R̃k → R̃δ ∪ {NIL} (where Ri = type(vi )), that names

the entry which is allocated on each execution of the new statement.

All sorts are disjoint, except for the following pairs of sorts, for every R: R̃ and R̃out
, R̃δ and R̃out

.

The extra element NIL that we include in the codomain of f̃ out and ñ functions does not correspond

to any value that occurs during execution. It is only included as a convenience, to simplify the

development of the proofs.

5.4 Checking Operation Safety
Let o = oper(v1 : R1, . . . ,vk : Rk) s be the operation we want to verify, and ⊢ o ⇑ A. Proving that
this operation is safe reduces to proving that the formula in Figure 8c is valid. This formula uses a

number of predicates on symbolic bags, which are defined on Figure 8a (we only give the definitions

for bags in bag1; these can be easily extended to bagk ). It assumes the following axioms:

SORT-DISJ: Only appropriate sorts may share elements:

Sorts representing the initial contents of different tables are disjoint:

∧
R1,R2

R̃1 ∩ R̃2 = ∅
Sorts representing the newly-created entries on different tables are disjoint:

∧
R1,R2

R̃δ
1
∩ R̃δ

2
= ∅

The previous two categories of sorts are pairwise disjoint:

∧
R1,R2∈tab R̃

δ
1
∩ R̃2 = ∅

INV-SAT: Any valid domain instance must satisfy the operation’s invariants:

∧
inv c Φ(c )

NFUN-DEF: The ñ functions properly model the execution semantics of new statements: Assuming

Ai (n) = {r | v1 :R1, . . . ,vk :Rk ; c}, R = type(n) and Ai (n′) = {r ′ | v ′
1
:R′

1
, . . . ,v ′m :R′m ; c ′}:

Every execution of a new statement produces a new entry (represented by some element in R̃δ ):∧
n∈nid ∀ṽ1 ∈ R̃1, . . . , ṽk ∈ R̃k . Φ(c ) ⇒ ñ(ṽ1, . . . , ṽk ) ∈ R̃

δ

Each element of a R̃δ sort corresponds to some execution of a new statement:

∀x ∈ R̃δ .
∨

n∈nid ∃ṽ1 ∈ R̃1, . . . , ṽk ∈ R̃k . Φ(c ) ∧ x = ñ(ṽ1, . . . , ṽk )
Different executions of a new statement (for different iterations of its containing loops) allocate

distinct entries:∧
n ∀x1,y1∈R̃1, . . .,xk ,yk∈R̃k . Φ(c )[xi/ṽi ]∧Φ(c )[yi/ṽi ]∧ñ(x1, . . . ,xk )=ñ(y1, . . .,yk ) ⇒

∧
i xi =yi

Entries allocated at different new statements are always distinct:∧
n′,n ∀ṽ1 ∈ R̃1, . . . , ṽk ∈ R̃k , ṽ

′
1
∈ R̃′

1
, . . . , ṽ ′m ∈ R̃

′
m . Φ(c )∧Φ(c

′) ⇒ ñ(ṽ1, . . ., ṽk ) , ñ
′(ṽ ′

1
, . . ., ṽ ′m )

ROUT-DEF: For every R ∈ tab, the contents of R̃out
are consistent with the insertions and deletions

occurring in the operation:

∧
R∈tab R̃

out =
{
x ∈ R̃ ��� ¬ in

(
x ,Ad (R)

)}
∪ R̃δ

FOUT-DEF: For every f ∈ fld with dom( f ) = R1 and rng( f ) = R2, the definition of f̃
out

is consistent

with the updates occurring in the operation:

Updates are reflected on the final contents of the field:

∀x ∈ R̃out
1
,y ∈ R̃out

2
. in
(
⟨x ,y⟩,Au ( f )

)
∧
(
∄z ∈ R̃out

2
. y , z ∧ in

(
⟨x , z⟩,Au ( f )

))
⇒ f̃ out (x ) = y

Non-deleted, non-updated entries retain their previous valuations on f :

∀x ∈ R̃1. ¬ in
(
x ,Ad (R1)

)
∧ ¬ in

(
x ,π

bag
1

(Au ( f ))
)
∧ ¬ in

(
f̃ (x ),Ad (R2)

)
⇒ f̃ out (x ) = f̃ (x )
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in : term × bag1 → form

in(t ,∅) = FALSE

in(t ,b1 ⊎ b2) = in(t ,b1) ∨ in(t ,b2)

in
(
t , {r | v1 :R1, . . . ,vk :Rk ; c}

)
=

∃ṽ1 ∈ R̃1, . . ., ṽk ∈ R̃k .
(
Φ(c ) ∧ t = T (r )

)
nodups : bag1 → form

nodups(∅) = TRUE

nodups(b1 ⊎ b2) =

nodups(b1) ∧ nodups(b2) ∧

∄x . in(x ,b1) ∧ in(x ,b2)

nodups
(
{r | v1 :R1, . . . ,vk :Rk ; c}

)
=

∀x1,y1 ∈ R̃1, . . . ,xk ,yk ∈ R̃k .

(x1,y1 ∨ . . . ∨ xk ,yk ) ∧

Φ(c )[xi/ṽi ] ∧ Φ(c )[yi/ṽi ]

⇒ T (r )[xi/ṽi ] , T (r )[yi/ṽi ]

T : ref → term

T (v ) = ṽ

T (e . f ) = f̃
(
T (e )
)

T (n[v1, . . . ,vk]) = ñ(ṽ1, . . . , ṽk )

Φ : cond → form

Φ(true) = TRUE

Φ(e1 == e2) =
(
T (e1) = T (e2)

)
Φ(not c ) = ¬ Φ(c )

Φ(c1 and c2) = Φ(c1) ∧ Φ(c2)

Φ(forall v : R . c ) = ∀ṽ ∈ R̃. Φ(c )

(a) Predicates on symbolic bags

x ,y, ṽ ∈ lvar (1-to-1 mapping from v to ṽ)

R̃, R̃δ , R̃out ∈ sort

ñ, f̃ , f̃ out ∈ fun

t ∈ term ::= lvar | fun ( term∗ )

ϕ ∈ form ::= TRUE | FALSE | ¬ form
| term = term | term , term

| form ∧ form | form ∨ form

| ∀ lvar ∈ sort. form

| ∃ lvar ∈ sort. form

(b) Logic fragment

∀ṽ1 ∈ R̃1, . . . , ṽk ∈ R̃k .

[axioms]⇒

NO-DOUBLE-FREE :∧
R∈tab

nodups
(
Ad (R)

)
NO-DOUBLE-ASSIGN :∧

f ∈fld

nodups
(
π
bag
1

(Au ( f ))
)

NO-WRITE-ON-FREED :∧
f ∈fld

∄x ∈ R̃. in
(
x ,Ad (R)

)
∧ in
(
x ,π

bag
1

(Au ( f ))
)

where R = dom( f )

NO-SET-TO-FREED :∧
f ∈fld

∄x ∈ R̃. in
(
x ,Ad (R)

)
∧ in
(
x ,π

bag
2

(Au ( f ))
)

where R = rng( f )

NO-DANGLING-REFS :

∧
f ∈fld

∀x ∈ R̃1. in
(
f̃ (x ),Ad (R2)

)
⇒

in
(
x ,Ad (R1)

)
∨ in
(
x ,π

bag
1

(Au ( f ))
)

where R1 = dom( f ) and R2 = rng( f )
INVS-MAINTAINED :∧

inv c

Φ(c )
[
f̃ out/ f̃

] [
R̃out/R̃

]

(c) Formula asserting ⊢ oper(v1 :R1, . . .,vk :Rk) s ⇑ A is safe

Fig. 8. Verification of Seam operations
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5.5 Proof of Correctness
Theorem 5.1 (Soundness of translation to logic). Let o be an operation with ⊢ o ⇑ A, and ϕ the
formula defined in Figure 8c based on A. If ϕ holds, then o is safe.

Proof. (Sketch) Assume that o is not safe. Then, there must exist some well-formed input ⟨M,η⟩
to o, and a possible execution M,η ⊢ o ⇓ L on that input that is incorrect. Therefore, L must

violate (at least) one of the properties outlined in Lemma 4.9. We can construct an instance D of

ϕ’s domain based on the valid modelM (for the initial-state sorts and functions: eachM tabJRK is
used as R̃, eachMfldJf K as f̃ ) and the execution producing L (for the rest of the sorts and functions,

which model the modifications occurring during the operation). The environment η can be used to

instantiate each of the universally quantified variables ṽi at the head of ϕ, to η(vi ). The resulting
formula will be false: the domain instance D that we constructed satisfies all the axioms for the

given instantiation of the quantified variables, but falsifies (at least) one of the conjuncts (the one

corresponding to the correctness property that L violates). □

Theorem 5.2 (Completeness of translation to logic). Let o be an operation with ⊢ o ⇑ A, and ϕ the
formula defined in Figure 8c based on A. If ϕ does not hold, then o is not safe.

Proof. (Sketch) If ϕ does not hold, then there must exist some instance D of its domain of

discourse and some instantiation of its quantified variables that satisfies all axioms on the precedent,

but falsifies (at least) one of the conjuncts on the antecedent. Based on these, we can construct a

well-formed input ⟨M,η⟩ to o (eachM tabJRK mirrors R̃, eachMfldJf K mirrors f̃ , and η mirrors the

instantiation of quantified variables), such that M,η ⊢ o ⇓ L and L violates one of the properties

from Lemma 4.9 (the one corresponding to ϕ’s conjunct that is violated). □

5.6 Translation to SMTQuery
The final step in checking an operation’s safety is to actually verify the formula ϕ we have con-

structed. To do that, we use an SMT solver capable of reasoning in the theory of uninterpreted

functions.

The logic fragment we have used in this section is not fully compatible with SMTLIB, the logic

dialect accepted by modern SMT solvers. In particular, SMTLIB assumes that uninterpreted sorts

are disjoint, which means we cannot directly express R̃δ , R̃out
sorts (because we have assumed they

can overlap with the corresponding R̃ input-state sort), or f̃ out , ñ functions (which have one of the

problematic sorts as their domain or codomain). Thus, we have to drop these sorts and functions

from the domain of discourse, and translate ϕ such that all quantifiers range over an input-state

sort R̃, and all functions occurring in terms are input-state functions f̃ . We perform this translation

by applying the following four rewrites. Each rewrite is applied until fixpoint, before proceeding to

the next one.

(1) For an equality or disequality involving more than one final-state function f̃ out , decompose

it into sub-formulas, each including exactly one call to a final-state function. For example,

z = д̃out
(
f̃ out (x )

)
is decomposed into ∃y ∈ R̃out . y = f̃ out (x )∧z = д̃out (y), where R = rng( f ).

(2) For a ∀x ∈ R̃out
or ∃x ∈ R̃out

quantifier, use the appropriate ROUT-DEF axiom to decompose

it into cases. For example, assume n is the only nid of type R in the operation, and Ai (n) =

{r | v1 : R1,v2 : R2 ; c}. Then ∀x ∈ R̃out . ϕ ′ becomes

(
∀x ∈ R̃. ¬ in(x ,Ad (R)) ⇒ ϕ ′

)
∧(

∀ṽ1 ∈ R̃1, ṽ2 ∈ R̃2. Φ(c ) ⇒ ϕ ′[ñ(ṽ1, ṽ2)/x]
)
.
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(3) For an equality or disequality involving a final-state function f̃ out , use the appropriate FOUT-

DEF axioms to decompose it into cases. For example, y= f̃ out (x ) becomes in
(
⟨x ,y⟩,Au ( f )

)
∨

¬in
(
x ,Ad (R)

)
∧ ¬in

(
x ,π

bag
1

(Au ( f ))
)
∧ y = f̃ (x ).

(4) For an equality or disequality involving a nid function ñ, use the appropriate NFUN-DEF
axioms to decompose it into cases. For example, ñ(x1, . . . ,xk ) = ñ(y1, . . . ,yk ) becomes

x1 = y1∧ . . . ∧ xk = yk , while ñ(x1, . . . ,xk ) = ñ′(y1, . . . ,ym ) and ñ(x1, . . . ,xk ) = f̃ (x ) are
both trivially false.

Each time the first rewrite is applied, it reduces the number of nested f̃ out calls in ϕ by one. Each

time the second rewrite is applied, it reduces the nesting depth of final-state quantifiers in ϕ by

one and does not introduce any nested f̃ out calls. Each application of the third rewrite reduces the

number of final-state functions appearing in ϕ by one and does not introduce any nested f̃ out calls
or final-state quantifiers. On a formula with no final-state functions, each application of the fourth

rewrite will remove at least one instance of a ñ function, while not introducing any final-state

quantifiers or functions. Combining all these facts, we conclude that the full rewrite process is

guaranteed to terminate.

For each rewrite, the original and final forms of the affected sub-formula can be shown to be

logically equivalent, by applying the axioms in both directions. For the first three rewrites, which

only affect the INVS-MAINTAINED part of ϕ, we additionally perform some simplifications that

assume all the other properties, i.e. we implicitly convert ϕ from Rest ∧ InvMaint to Rest ∧ (Rest ⇒
InvMaint). For example, if NO-DANGLING-REFS holds, then for dom( f ) = R1 and rng( f ) = R2 we

have that ¬ in
(
x ,Ad (R1)

)
∧ ¬ in

(
x ,π

bag
1

(Au ( f ))
)
implies ¬ in

(
f̃ (x ),Ad (R2)

)
, so we do not need

to include the last constraint in the third rewrite. The last two rewrites also exploit the fact that, by

the time they are applied to ϕ, all variables range over input-state sorts. Finally, the fourth rewrite

exploits the fact that, whenever a ñ(ṽ1, . . . , ṽk ) term appears in ϕ, it is guarded by (at least) the

constraint that the new statement which emits ñ(ṽ1, . . . , ṽk ) is reached.
After this process is completed, all axioms except INV-SAT have become irrelevant and can

be dropped (because they reference a dropped domain, or, in the case of SORT-DISJ, are trivially

satisfied). We also note that, after dropping the ñ functions from the domain of discourse, all

uninterpreted functions we use are now monadic.

5.7 Undecidability of Verification
Our verification problem is undecidable in the general case, because the fragment L of first order

logic that we use (Figure 8b) subsumes the fragment L′ that includes a single sort, universal

quantification, equality and two function symbols. The fragment L′ is undecidable ([Börger et al.
2001], Theorem 4.0.1). All of the above features are necessary for modeling Seam programs: A

Seam schema can include arbitrarily complex invariants, involving both universal and existential

quantification, with no restriction on alternation. The verification tasks produced for operations

on such a schema will contain formulas with correspondingly alternating quantifiers, as both

hypotheses and goals. Function symbols are necessary for encoding the non-nullable fields on table

entries. Equality is a necessary operator for testing connectivity in user code.

6 LANGUAGE EXTENSIONS
The full Seam language includes a number of constructs not present in the core language. Most of

these can be reduced to the core language in a straightforward way. We present the most interesting

cases here, and describe the rest in Appendix A.
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6.1 Pre-Image Looping
In the full Seam language we disallow scoping for-loops and forall conditions over an entire table

R. Instead, the user is required to constrain the iteration to the pre-images of bound variables,

like so: for x in R where x.f1 == e1, . . . ,x.fn == en do s . We can reduce such constrained looping

constructs to the core language, by converting the where clause into an if-statement (or implication,

in the case of forall).

We do not need to carry this restriction over to the core language, because that language is only

used for the translation to logic, and the translation does not differentiate between a condition

appearing in a where clause and one appearing in a nested if-statement. The reason for restricting

programmers to pre-image loops is to limit the memory access patterns available to them, to only

image operations (i.e., following a pointer stored in a field) and pre-image operations (i.e., accessing

the entries that point to some in-scope value), thus guaranteeing that any operation they write is

local. The locality of operations is an important part of ensuring that current SMT solver heuristics

work well for our domain (see Section 8.2).

Another reason for this restriction is that it simplifies the task of generating efficient code. By

restricting loops to pre-images, we require programmers to be explicit about their access patterns,

and define whatever acceleration structures they need as views. This is not the norm with query

languages such as SQL, the more traditional formalism that programmers use to interact with a

relational data model. However, by requiring accesses to be explicit, we do not need to employ any

form of query planning. Additionally, we can guarantee that both primitive access patterns we

support are executed with minimal overhead: An image operation is simply a pointer dereference,

and a pre-image loop can be executed efficiently by maintaining an inverted index on the field it uses

(see Section 7). Therefore, unlike query languages, Seam can guarantee predictable performance,

allowing users to reason about the performance characteristics of their code.

6.2 View Reduction
In the full language, view definitions are written using a syntax similar to operations, except

only one argument is allowed, and new, delete and field-write statements are replaced by the

single emit {e1, . . . , ek} in view statement. For the purposes of verification, we simply inline the

definition of each view V , whenever it is referenced in the code. This transformation proceeds by

first converting a view definition to a symbolic bag, and then converting that bag into the code

that gets inlined in place of a view reference.

To derive the symbolic bag b that describes a viewV , we adapt the symbolic execution algorithm

from Figure 7 to collect all the tuples of values that appear in emit . . . in V statements. Then,

we further rewrite b, treating it as a set (we can do this for bags that describe views, since the

contents of view tables get deduplicated), to create a single comprehension, with only variables in

the projection component. We do this by introducing output variables, e.g.:

{
x . f ��� x :X ,y1 :Y ; y1.д = x

}
⊎

{
y2.д

��� y2 :Y , z :Z ; z.h = y2
}
=

{
w ��� w :X ,x :X ,y1 :Y ,y2 :Y , z :Z ; (w = x . f ∧ y1.д = x ) ∨ (w = y2.д ∧ z.h = y2)

}

In the full language, a view can appear as the range of an iteration construct (i.e., a for-loop or

forall condition), or as an argument (to an operation or invariant). We decompose an iteration

over the contents of a view into multiple nested loops, ranging over all possible combinations of

projected values, guarded by a condition that checks whether each such combination was indeed

emitted into the view. For instance, suppose we have a view A described by the symbolic bag

{⟨x, y⟩ | x : X, y : Y, z : Z ; c}, and a loop for a in A do s . Then, the inlined version of this loop

would be: for ax in X do for ay in Y do if exists az : Z . c[ax /x,ay /y,az/z] then s ′, where s ′
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is the same as s , except a.x is replaced by ax , a.y is replaced by ay , and a == e is decomposed

into ax == e.x and ay == e.y. An argument of view type is similarly decomposed into multiple

arguments, one for each projected value, and with the guard condition wrapping the entire opera-

tion/invariant body.

7 IMPLEMENTATION
Our prototype compiler is written in Lua [Ierusalimschy et al. 1996] and uses Terra [DeVito et al.

2013] as a code-generation interface to LLVM [Lattner and Adve 2004]. Formulas produced by our

verifier are checked using the CVC4 [Deters et al. 2014] SMT solver.

Most of our prototype implementation is determined by the layout of a Seam data structure.

We represent table entries with 32-bit unsigned integers (keys), that index into multiple dynamic

arrays (akin to a struct-of-arrays representation): (i) one array for every field, (ii) an extra array

of reference counts for tracking external references, (iii) inverted indices, that enable efficient

execution of pre-image loops, and (iv) view materializations indexed by the table. To give an

example of an inverted index, consider the SocialNet example, and the loop that retrieves all

f in Follow where f.src == a. To support this access, we store an inverted index of Follow.src on

the Account table, which stores for every Account a a dynamic array of all Follow keys f satisfying

f.src == a. This index is incrementally maintained whenever entries in Follow are inserted, updated,

or deleted.

Seam maintains views similar to the way it maintains inverted indices. Tuples of a view V are

grouped bywhichever field they are accessed by in pre-image loops, and each tuple is annotated with

the number of emit statement executions that generated it. We automatically derive incremental

view maintenance code using a variation of Koch’s algebraic “discrete derivative” approach [Koch

2010], and insert it where appropriate in the operation’s code. For the examples in this paper,

this method is excessive, since all our views simply consist of a list of emit statements, for which

incremental update functions are trivial to derive.

To support the hosting of Seam code in larger applications, our compiler, given a schema and set

of operations, generates a library of routines corresponding to the written operations, routines

for initializing and navigating (but not directly modifying) the data structures, and routines for

checking whether references to table entries held by the host program are stale. The initialization

routines, besides bulk-loading the initial table data into Seam’s internal representation, validate

this data against the invariants, and build the view tables. This library is compatible with the C

ABI, and thus can be used by any language that includes a C FFI.

One complication arises from the fact that the host program can retain references to Seam objects

after those objects have been deleted. To handle this issue, the emitted API does not return raw

identifiers to the host code, but instead wraps them into opaque reference objects. The host code

can use appropriate routines to test whether the element pointed to by such a reference still exists.

8 EXPERIMENTS
8.1 Verification Timings
We implemented the verification method outlined in Section 5, and ran it to verify a collection of

operations on the following schemas (each schema is followed by a description of its user-defined

invariants):

• UGraph: A simple undirected graph

– Self-loops are not allowed.

– Any two edges cannot have the same set of vertices, even if those vertices appear in a

different order on the two edges.
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• DiGraph: A simple directed graph

– Self-loops are not allowed.

– Duplicate edges are not allowed.

– For every edge, the symmetric edge also exists.

• SocialNetAsym: The social network example from Figure 1a

– Self-Follows are not allowed.

• SocialNetSymm: A variant of SocialNetAsym, where the Follow relation is bidirectional

– Self-Follows are not allowed.

– For every Follow, the symmetric Follow also exists.

• SocialNetUnq: A variant of SocialNetAsym, where no duplicate Follows are allowed

– Self-Follows are not allowed.

– Duplicate Follows are not allowed.

• HalfEdge: An edge-based mesh [Sack and Urrutia 2000], where edges are connected directly

with each other, through next, prev and opp pointers

– The next pointer is the inverse of the prev pointer.

– For every edge, the symmetric edge also exists.

– Moving around a face, all edges have the same face pointer: e.next.face == e.face

– Moving around a node, all edges have the same head pointer: e.next.opp.head == e.head

• BasicTriMesh: The triangle mesh example from Figure 2a

– The three vertices of each triangle must be distinct.

• UnqTriMesh: A variant of BasicTriMesh

– The three vertices of each triangle must be distinct.

– Any two triangles cannot have the same set of vertices, even if those vertices appear in a

different order on the two triangles.

• UnqTetMesh: A mesh composed of tetrahedra, each represented as a tuple of four vertices

– The four vertices of each tetrahedron must be distinct.

– Any two tetrahedra cannot have the same set of vertices, even if those vertices appear in a

different order on the two tetrahedra.

The functionality of most operations should be apparent from their name. The operations on

TriMesh and TetMesh implement local transformations commonly used in mesh improvement

algorithms [Brochu and Bridson 2009; Klingner and Shewchuk 2008]. The full code for these

examples can be found in Appendix D.

In Table 1 we report on the wall-clock time taken by the SMT solver to prove our queries. The

time taken by our toolset (to process the code and produce the SMT proof obligations) is around

3s for the UnqTetMesh schema, and between 0.15s and 0.3s for each of the other schemas. We

performed our measurements on a laptop with a 2GHz Intel i7-4750HQ processor, running Linux

Mint 18. We used a nightly build of CVC4 from 2017-02-27, optimized for Linux x86_64 machines,

running under finite-model-finding mode [Reynolds et al. 2013].

The main point to note about these measurements is that most of the solver’s time is spent

proving invariant maintenance, rather than basic memory safety. This is to be expected, as invariant

maintenance is the only component of the proof task that requires reasoning about the final state of

the data structure, after all effects have been applied, rather than only reasoning about components

of the operation’s effects in isolation.

8.2 Verification Discussion
The proof obligations we emit make heavy use of quantification over uninterpreted sorts, and thus

the efficiency of our verification method is heavily dependent on good quantifier instantiation
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Schema Operation Mem. Safety Inv. Maint.

UGraph deleteVertex 0.005s 0.008s

DiGraph deleteVertex 0.015s 0.032s

SocialNetAsym

addFollow 0.006s 0.004s

mergeAccounts 0.012s 0.006s

removeAccount 0.005s 0.004s

SocialNetSymm

addFollow 0.006s 0.008s

mergeAccounts 0.011s 0.027s

removeAccount 0.006s 0.010s

SocialNetUnq

addFollow 0.005s 0.006s

mergeAccounts 0.027s 0.040s

removeAccount 0.006s 0.006s

HalfEdge

collapseEdge 0.049s 0.079s

splitEdge 0.009s 0.065s

BasicTriMesh

collapseEdge 0.014s 0.019s

flipEdge 0.011s 0.061s

splitEdge 0.010s 0.045s

UnqTriMesh

collapseEdge 0.074s 0.208s

flipEdge 0.016s 0.212s

splitEdge 0.011s 0.292s

UnqTetMesh

addSteinerPoint 0.011s 2.722s

splitEdge 0.014s 1.830s

removeEdge 0.027s 26.154s

flip23 0.053s 32.467s

flip32 0.102s 13.196s

Table 1. Time taken by CVC4 to verify various operations, broken down into time spent verifying invariant
maintenance and basic memory safety (all other properties together)

support. In particular, the finite-model-finding heuristic is a good fit for the kinds of queries that

result from typical local edit operations: Such operations are centered on a specific region of the

data structure, and have limited range (this is guaranteed by Seam’s restricted looping construct).

Therefore, it is highly likely that a small input suffices to demonstrate a potential error in the

operation. By construction, finite-model-finding efficiently explores all valid instances of its domain

of discourse, in order of increasing cardinality. Therefore, if a counter-example exists that disproves

one of our queries, it is likely small, and finite-model-finding is likely to find it quickly.

Note, however, that the search strategy employed by finite-model-finding is heuristic-driven,

and thus can provide no performance guarantees. This behavior is hinted at by the solver timings

in Table 1: As schemas become more complex (i.e., the number of tables, fields and invariants

increases), the dimensionality of the solver’s search space increases (i.e., the solver needs to fill in

more sorts and functions on each candidate instance), and the solver runtime increases accordingly.

In practice, we have found that finite-model-finding works well for our domain, and has been

very useful at uncovering problematic corner cases. While writing our verification examples, we

have often introduced bugs, which we were able to quickly identify using the counter-examples

produced by the SMT solver.
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8.3 End-to-End Application Execution Measurements
We implemented a version of the Enright Test [Brochu and Bridson 2009] in Seam, using Terra as the

host language. This test uses a geometric flow to severely distort and then un-distort a sphere over

the course of 300 computed timesteps of simulation. Remeshing is performed on every timestep.

Additionally, we modified the Enright Test implementation in Brochu’s ElTopo codebase [Brochu

and Bridson 2009], and implemented a version of the test using the remeshing code from the TopTop

codebase [Bernstein and Wojtan 2013]. Both ElTopo and TopTop are written in C++. All three

versions were written or modified to remove all remeshing/improvement operations outside of

edge-split and edge-collapse, which was the common denominator supported by all three. The

scheduling of these operations differs between the three systems: ElTopo priority sorts an array and

makes multiple passes until no more operations need to be applied; TopTop uses a priority queue;

our Seam code simply makes a single pass over the edges that exist at the outset of a remeshing

pass. To reduce the effect of this variance, we restricted all 3 systems to make only one pass over

the edges, in arbitrary order.

All code was run on a 2015 Macbook with an Intel Core M-5Y71 processor clocked up to 1.3 GHz

and more than enough RAM. Total wall-clock times for the three variations were 4.5 sec (Seam),

10.8 sec (TopTop), 1145 sec (ElTopo). Peak memory usage for the three variations was 4.9 MB (Seam),

3.7 MB (TopTop), and 6.8 MB (ElTopo). Profiling reveals that TopTop spends around 45% of its time

generating a TopoCache data structure at the start of every remeshing pass. In terms of Seam, this

is analogous to regenerating the views and indices. This data structure is then “committed” and

discarded at the end of a remeshing pass. Profiling ElTopo reveals that it spends around 90% of

its time in a defrag pass over the data at the end of every remeshing pass. Because all references

to an element must be updated whenever an element is moved, this re-arrangement pass can

become quite expensive. By contrast, Seam uses free-lists and strictly incremental maintenance of

data structures—the data structure is fully valid after the completion of any individual remeshing

operation.

The entire Seam application, including the test harness, is about 800 lines of code, 135 of which

are Seam code. TopTop’s data structures and application code take about 3000 lines, after slicing

out unused code and support libraries. ElTopo—which is less obvious how to slice—is a library

of 25,000 lines of code. We can also look specifically at the code required to write edge split and

collapse in the various systems. Seam takes 22 and 33 lines respectively. TopTop takes 212 and 300

respectively. ElTopo takes 225 and 344 respectively.

What should we observe from these comparisons? First, and most importantly, existing code is

not heavily performance tuned. A Seam back-end that we know contains significant performance

flaws can achieve better performance than hand-written C++ code. Second, in the absence of more

automated memory and indexing management, programmers are forced to make trade-offs between

performance and comprehensibility in this kind of complex remeshing code. Third, this memory

management and index maintenance code leaks into higher-level algorithms rather than remaining

encapsulated; as a result, it becomes disproportionately difficult to change memory management or

indexing strategies in pre-existing code. Fourth, and finally, Seam allows programmers to express

local edit operations more concisely than general-purpose languages, by providing domain-specific

primitives, and automatically generating the code that handles memory management.

9 RELATEDWORK
Seam is the first language that supports sound and precise verification of local graph edits, including

being able to verify memory safety and other invariants of realistic, difficult examples.
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Seam uses relations to specify graphs declaratively and generates low-level imperative code.

The most closely related work to Seam is “Data Representation Synthesis” [Hawkins et al. 2011],

which uses relations to specify containers declaratively, and exports C++ implementations. This

system is limited to a single container, and is thus less expressive than Seam, which can express

multiple containers with connections between them. Much of the machinery of Seam is aimed at

ensuring that pointers between containers are not left dangling, a problem that is absent in the

single container setting. However, unlike “Concurrent Data Representation Synthesis” [Hawkins

et al. 2012], which can specify a multi-threaded container, Seam has been designed for the sequential

setting.

Domain-specific languages have been used to generate formally verified implementations of

Puppet updates [Shambaugh et al. 2016], network configurations [Anderson et al. 2014], data

partitioning [Treichler et al. 2016], etc. Seam is a domain-specific language for implementing local

edits on graphs. Currently, developers implement edits in general-purpose languages such as C++.

There are a huge number of tools that verify low-level implementations, and we cannot cover them

all here. These include tools based on shape analysis [Sagiv et al. 1999], separation logic [Calcagno

et al. 2009; Piskac et al. 2013], symbolic execution [Itzhaky et al. 2013; Lahiri and Qadeer 2008],

interactive theorem provers [Bhargavan et al. 2017; Lamport 2002; Wilcox et al. 2015], etc. These

tools fall broadly into two categories: those that perform bounded checking (e.g., Alloy [Jackson

2002], Sketch [Solar-Lezama et al. 2005], etc.) and are unsound in the presence of loops (with no

fixed bound on the number of iterations), and those that are sound but require inductive invariants,

which are inferred heuristically or provided manually. Sacrificing the expressiveness provided by

general-purpose languages (e.g., no transitive closure [Strecker 2011]) allows Seam to verify for

loops, with no a priori bound on the number of iterations, soundly, without the need for inductive

invariants.

Seam checks both memory safety and user-provided invariants on schemas by querying SMT

solvers, which provide counter-examples when the implementations are incorrect. The counter-

examples are not available when verifying database transactions using refinement types [Bal-

topoulos et al. 2011] or weakest preconditions [Benedikt et al. 1996]. If we restrict our attention to

memory safety, then languages such as CCured [Necula et al. 2002], Rust [Matsakis and II 2014], or

Cyclone [Hicks et al. 2003] can help developers write memory safe code by a combination of static

analysis and runtime checks. However, implementing and maintaining local edits in such languages

would still require significant effort. Instead of asking programmers to write low-level code and

then attempt to verify/monitor it, the Seam compiler verifies the high-level Seam programs and

exports low-level code.

We note that the low-level code generated by the Seam compiler is, in fact, unverified. Although

the Seam programs are verified, the Seam compiler is not a certified compiler like CompCert [Leroy

2009]. Verifying that the translation performed by the Seam compiler is correct is a translation

validation problem [Pnueli et al. 1998] that is not addressed here. Furthermore, our soundness

guarantees rely on the soundness of CVC4. Instead of using a general purpose SMT solver, we

could have attempted to construct a specialized decision procedure, such as in [Klarlund and

Schwartzbach 1993; McPeak and Necula 2005; Walukiewicz 2002]. Our reason behind using CVC4

is pragmatic; it performs well in this domain.

To the best of our knowledge, this is the first paper that performs formal verification of imple-

mentations in computational geometry. Prior work provides much weaker guarantees [Czumaj

et al. 2000; Mehlhorn et al. 1996].
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10 CONCLUSION & FUTUREWORK
Seam explores one way to verify and synthesize programs that manipulate data structures, by

focusing on local graph edit operations. In exploring this idea, we avoided primitives that were not

necessary for expressing local connectivity properties, e.g. nullable references (i.e., option types),

enumeration types, tagged union types, and non-connectivity predicates, including any form of

ordering operator (which means that Seam currently cannot express all properties of certain data

structures, such as search trees). These features are not fundamentally incompatible with Seam’s

design, and we believe that Seam can be extended with some or all of them, though ensuring that

verification remains efficient will be a challenge.

Conversely, the lack of general recursion is a fundamental limitation of Seam’s design, which

restricts the programs that can be written in the language. For example, it is impossible to express

non-local updates purely in Seam. However, some variants of non-local updates (e.g., worklist-

based iterative mesh improvement algorithms) can be expressed by utilizing the host language to

freely traverse the data structure (in read-only mode) and invoke Seam operations repeatedly, each

execution centered where appropriate. Note that this scheme recovers some expressivity without

sacrificing Seam’s data integrity guarantees.

Another consequence of Seam’s restricted recursion is the lack of a transitive closure operator,

which is necessary for expressing certain data structure invariants. In some cases, however, proper-

ties that require transitive closure can be decomposed into equivalent (or slightly stronger) local

properties [Lev-Ami et al. 2005] that are expressible in Seam, potentially after the introduction

of auxiliary “ghost fields” [McPeak and Necula 2005]. For example, consider the fundamental

invariant of a cyclic singly-linked list: “Starting from any node n, if we follow next pointers, we
will eventually reach n.” This property cannot be directly encoded in Seam, however we can instead

introduce an additional prev pointer on every node, and express the logically equivalent invariant

“For every node n, n.next.prev = n.”
Our implementation leaves optimization largely unaddressed. In particular, we believe that

data representation synthesis ideas [Hawkins et al. 2011] could be effectively ported to this richer

multi-table setting.
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