
Soleil-X: Turbulence, Particles, and Radiation in the
Regent Programming Language

Hilario Torres
Department of Mechanical Engineering

Stanford University
Stanford, USA

hctorres@stanford.edu

Manolis Papadakis
Computer Science Department

Stanford University
Stanford, USA

mpapadak@cs.stanford.edu

Lluı́s Jofre
Center for Turbulence Research

Stanford University
Stanford, USA

jofre@stanford.edu

Wonchan Lee
Computer Science Department

Stanford University
Stanford, USA

wonchan@cs.stanford.edu

Alex Aiken
Computer Science Department

Stanford University
Stanford, USA

aiken@cs.stanford.edu

Gianluca Iaccarino
Department of Mechanical Engineering

Stanford University
Stanford, USA

jops@stanford.edu

Abstract—The Predictive Science Academic Alliance Program
(PSAAP) II at Stanford University is developing an Exascale-
ready multi-physics solver to investigate particle-laden turbulent
flows in a radiation environment for solar energy receiver ap-
plications. To simulate the proposed concentrated particle-based
receiver design three distinct but coupled physical phenomena
must be modeled: fluid flows, Lagrangian particle dynamics, and
the transport of thermal radiation. Therefore, three different
physics solvers (fluid, particles, and radiation) must run con-
currently with significant cross-communication in an integrated
multi-physics simulation. However, each solver uses substantially
different algorithms and data access patterns. Coordinating
the overall data communication, computational load balancing,
and scaling these different physics solvers together on modern
massively parallel, heterogeneous high performance computing
systems presents several major challenges. We have adopted
the Legion programming system, via the Regent programming
language, and its task parallel programming model to address
these challenges. Our multi-physics solver Soleil-X is written
entirely in the high level Regent programming language and
is one of the largest and most complex applications written in
Regent to date. At this workshop we will give an overview of the
software architecture of Soleil-X as well as discuss how our multi-
physics solver was designed to use the task parallel programming
model provided by Legion. We will also discuss the development
experience, scaling, performance, portability, and multi-physics
simulation results.

Index Terms—Multi-Physics, Flow Solver, Regent, Legion, Task
Based Parallelism

I. INTRODUCTION

The interaction between particle-laden turbulence and ther-
mal radiation plays a critical role in several applications. The
most prevalent examples include the interaction of gases, soot,
and thermal radiation in combustion systems as well as the
study of fuel particulates in solid rocket booster operation. Ad-
ditionally, concentrated solar energy particle-based receivers

This work was funded by the United States Department of Energy’s Na-
tional Nuclear Security Administration under the Predictive Science Academic
Alliance Program II at Stanford University, Grant DE-NA-0002373.

are an emerging application of interest that involves these same
physical interactions. These types of systems are the focus of
the Predictive Science Academic Alliance Program (PSAAP)
II at Stanford University [1], a collaborative effort between the
Mechanical Engineering and Computer Science departments.

The goal of the program is to run high-fidelity predictive
simulations of a particular concentrated solar energy receiver
design. The effective use of modern high performance com-
puting (HPC) systems is driven by the computational expense
of simulating this device at the required scale. However, effi-
ciently parallelizing and load balancing the drastically different
physics solvers and algorithms that are required to run these
simulations presents a major challenge. Additionally, doing so
in a performance portable way is especially difficult due to
the diverse set of heterogeneous system architectures that are
prevalent among many HPC systems today. Addressing these
challenges with an MPI+X type approach would put a major
burden on the application programmers, requiring them to be
experts in both the physics and the development of HPC codes
in the MPI+X framework.

It is for this purpose that the second major goal of the
PSAAP project is focused on developing and using an al-
ternative to MPI+X, the Legion/Regent Programming system
[4], [5], for multi-physics simulations in present and future
HPC environments. The Legion task-based runtime provides
an environment to dynamically load balance with minimal
input from the developer/user. Additionally the sequential
appearance of the Regent source code, with the parallelization
automatically determined at runtime via task/data dependen-
cies, allows the physics domain experts on the project to focus
on the physical models and numerical algorithms instead of the
parallel performance. This enables them to make substantial
contributions to the solver after only a short on-boarding
period and avoids the need for them to become experts in
MPI+X programming altogether. These advantages are gained
without sacrificing scalability. Additionally, using Regent also



Fig. 1. Cross sectional schematic of a volumetric concentrated solar energy
receiver. The black and light blue areas bounding the domain represent opaque
and transparent walls, respectively. The flow is from left to right. A uniform
initial temperature profile ,T0, is shown near the inlet to the irradiated section.
As the solid particles, represented by the black circles, flow through the
irradiated section, represented by the transparent red trapezoid, they absorb
heat. As the particles are advected down stream they exchange heat with the
fluid and result in the higher temperature profile, Tfinal, at the outlet.

reduces the number of lines and improves the readability and
maintainability of the code when compared to similar solvers
that use the MPI+X framework.

II. CONCENTRATED SOLAR ENERGY RECEIVER

The schematic in Figure 1 shows the apparatus that has been
the focus of a comprehensive experimental and computational
study as a part of PSAAP at Stanford. It depicts a fully
developed particle laden turbulent duct flow entering the
domain of interest, a 4 × 4 cm square cross section duct, at
the left side of the schematic. The fluid is considered to be
an ideal gas that is transparent to thermal radiation over the
optical depth of the duct. Room temperature air is supplied
at the inlet in the simulations and experiments discussed
here. The particles are considered to be solid spheres that
exchange momentum and energy with the flow and whose
radiative absorption and scattering properties are known. In
the current set of simulations and experiments the particles
are a polydisperse mixture of nickel particles with a mean
diameter of 12 microns. The flow and solid particles reach
a part of the test section where the walls are not opaque to
thermal radiation. In the laboratory-scale experiment that has
been built at Stanford this section of the duct is made of glass.
This transparent section is exposed to large amounts of thermal
radiation that is supplied from an external source. In a full
scale system this would be concentrated solar radiation and
in the lab scale experiment the test section is irradiated with
up to 3 kW by a laser diode array. As the solid particles pass
though this irradiated section they absorb thermal radiation
and increase in temperature. As stated previously, the working
fluid is essentially transparent to the thermal radiation over the
width of the duct. However, the particles exchange heat with
the fluid as they both flow downstream. This results in a high
temperature air-particle mixture downstream of the irradiated
section. A short distance after the heated section the particles
can be separated from the flow and sent back though the
energy receiver. The high temperature working fluid can then
be used for power generation.

Fig. 2. Fluid solver data access schematic. When the stencil is applied to
the fluid cell it’s orthogonal neighbors and the particles contained within the
center cell must be accessed.

III. PHYSICS SOLVER ALGORITHMS AND DATA ACCESS

Our solver simulates this system by doing an explicit time
integration of the governing equations for each of the relevant
physics. The fluid phase conservation equations for mass,
momentum, and energy are solved on an Eulerian mesh. The
position, momentum, and energy equations are integrated for
each particle. The radiative transfer equation is solved on an
Eulerian mesh using the discrete ordinates method. Each of the
physics solvers store and access data in very different ways.
Additionally, some data does need to be exchanged between
the physics solvers due to the coupling between them. The full
set of governing equations will not be discussed here due to
space limitations but can be found in previous papers [2], [3].
However, a high level discussion of the solver algorithms and
how they are coupled is provided below.

At each time step the fluid solver loops over the fluid cells
and applies a discretization stencil to compute the convection
and diffusion fluxes needed to advance the equations of fluid
motion. This step requires read access to several fields for all
cells within the stencil and write access to the cell at the center
of the stencil. Additionally the particles inside of the center
fluid cell contribute to the fluid momentum and energy via drag
forces and heat fluxes, so several of the fields associated with
the particles inside of the cell must be read by the fluid solver.
Figure 2 represents the data that is accessed when applying
the stencil to a fluid cell.

The particle solver requires looping over all of the particles
with read and write access to several of the particle fields.
The particle solver interacts directly with both the fluid and
radiation solvers. The fluid contributes to the energy and
momentum of the particles, which requires reading data from
the fluid cells that surround the particle. This process is
depicted in Figure 3 and requires searching for which cell
each particle is in. The particles also move (due to their own
inertia as well as drag forces by the underlying fluid) as a result
of each time-step, so that this mapping of fluid to particles
and vice versa must be done each time-step. An additional
challenge caused by the particles’ motion is that they must



Fig. 3. Particle solver data access schematic. The particles, represented by the
green circles, and the blue fluid cells that contain the particles are accessed
by the particle solver.

Fig. 4. Radiation solver data access for third step of a DOM sweep. The
radiation solver is reading from and writing to the red cells.

be exchanged between sub-regions of the domain when the
domain is decomposed for parallel processing.

The radiation solver uses the discrete ordinates method
(DOM) [6] to solve for the radiation field on an Eulerian
mesh, which can be significantly coarser than the Eulerian
mesh used for the fluid because of vastly different resolution
requirements. Before the DOM solver is able to run, the
radiative absorption and scattering properties must be defined
on this Eulerian mesh. These properties are directly dependent
on the number of particles in each cell and their diameter,
requiring read access to the particles located within each
radiation cell. Then the DOM requires “spherical sweeps” over
the radiation mesh starting from the corners of the domain. A
schematic of the third step of this sweep is shown in Figure
4.

IV. SOLVER ARCHITECTURE

The highly coupled nature of the three physics solvers
outlined in the previous section make it difficult to efficiently
parallelize this application manually in the MPI+X framework,
which is one of the main reasons the decision was made to
use the task parallel programming model provided by Regent.

Fig. 5. Example of a task definition in Soleil-X. The fields with read and
write privileges, which are used to parallelize tasks, are highlighted in blue
and red respectivly.

Fig. 6. Data flow task graph produced by Legion Spy tool for one time step in
Soleil-X. The dashed boxes highlight the tasks associated with each physics
solver.

We chose to use the Regent programming language instead
of the Legion C++ API so that the physics domain experts
could develop the code with only a high level understanding of
how the Legion programming system works. This development
method was largely successful, allowing the physics domain
experts to focus on the physics after learning only a few
high level concepts about the programming model and Regent
syntax. This allowed them to write what was essentially a
serial code that could be parallelized at runtime to run on HPC
systems. The tasks are automatically parallelized based on the
order in which they are launched and the privilege declarations
for fields that tasks operate on. Figure 5 shows an example of
how the field privileges for a task in Soleil-X are declared and
used. The fields with read and write access are highlighted in
blue and red respectively.

A portion of the data flow graph for one time-step of
the solver, generated by the Legion Spy tool, is shown in
Figure 6. The colored boxes represent tasks and the solid lines
represent data dependencies. The dashed lines were added to
draw attention to the fact that each physics solver has many
data dependencies between the tasks within it and also several
with the other physics solvers. The solid lines crossing the
dashed lines represent the flow of data between the different



Fig. 7. Profile of Soleil-X generated by the Legion profiling tool. The tight
packing of tasks and lack of white space indicate good utilization of the
machine.

1 2 4 8 16 32 64 128 256
Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

Soleil-X

Fig. 8. Full-physics weak scaling of Soleil-X on the Sierra supercomputer.

physics solvers. Figure 7 shows a profile, generated using the
Legion profiling tool, of the solver running on a portion of
one node. The horizontal axis represents time and the width
of the colored blocks represent the duration that a task was
running. The lack of gaps between the task blocks indicates
that the machine is being effectively utilized.

V. SOLVER PERFORMANCE AND PORTABILITY

We were easily able to port Soleil-X across a range of
machines, from single-processor laptops to local clusters at
Stanford (Certainty, Sherlock), and to leadership-class ma-
chines (Titan, Piz Daint, Lassen, Sierra, Summit). Two features
of the Legion platform were crucial in this: the cross-platform
nature of the runtime itself, and the Regent compiler’s support
for a wide range of processor and accelerator architectures
through its use of the LLVM compiler library.

After achieving correctness at a small scale we were able
to leverage the flexibility of the Legion runtime to scale up
to the sizes necessary for our capstone experiments with little
additional effort. Figure 8 shows some of the results of our
latest weak scaling study.

These tests were performed on the Sierra supercomputer,
using just the 4 NVIDIA Tesla V100 GPUs on each node to
solve the physics. We ran on a triply periodic domain that
we split across our nodes using a straightforward volumetric
decomposition, such that each node is assigned 2563 fluid
cells and around 32M particles. These numbers were chosen
to be close to the GPU memory limit on a node. We ran our
solver once for each node count, completing 50 timesteps, and

solving full physics on each timestep (we disregard 5 warm-
up and 5 ramp-down timesteps in our results). The 1-node
case completes in 125 seconds. We chose to use a simplified
radiation model instead of DOM for this study, as the DOM
method has inherent scalability issues that we did not want to
conflate with the scalability of the main solver code.

Overall, our solver demonstrated good weak scaling behav-
ior up to 256 nodes. What appears like a drop in performance
from 1 to 8 nodes can be attributed to an increase in required
communication: When our fluid domain is not split along some
dimension (e.g. along the x dimension on a 1x2x2 tiling, which
is used for the 4-node case), there is no need to trade ghost
cells on that dimension between iterations. Starting at 8 nodes
(where we follow a 2x2x2 tiling) every node has the maximum
number of neighbors (two along each dimension), and thus
performance stabilizes.

Unfortunately, at this time we cannot offer a baseline
performance comparison of Legion versus MPI+X for our
application. Due to the complexity of our application, we did
not have enough resources to devote to doing a proper re-
implementation of Soleil-X on a different programming system
so that we could perform a direct comparison.

VI. CONCLUSIONS

The PSAAP center at Stanford University is a collaborative
effort between mechanical engineers and computer scientists
with a dual research goal: (i) understanding the coupled multi-
physics phenomena involved in a novel-type of solar energy
receiver using large scale simulations, and (ii) developing
the computer science framework required to build the multi-
physics solver and achieve performance and portability on
leadership-class supercomputers. To address these goals we
have developed a multi-physics solver written entirely in the
Regent programming language, Soleil-X. The various physics
solvers and numerical algorithms that are implemented in
Soleil-X were described. The performance and portability of
the code was also discussed. Our application demonstrates
the use of an alternative to MPI+X, the Legion programming
system via the Regent programming language, for a complex
application that is being used to run simulations at scale on
leadership-class HPC systems.

REFERENCES

[1] Exascale Computing Engineering Center, “Predictive Science Academic
Alliance Program (PSAAP) II,” Stanford University, 2019.

[2] H. Pouransari, and A. Mani, “Effects of Preferential Concentration
on Heat Transfer in Particle-Based Solar Receivers,” Journal of Solar
Engineering, vol. 139, 2017.

[3] L. Jofre, G. Geraci, H. R. Fairbanks, A. Doostan, and G. Iaccarino,
“Multi-fidelity uncertainty quantification of irradiated particle-laden tur-
bulence,” CTR Annual Research Briefs, pp. 21-34, 2017.

[4] E. Slaughter, W. Lee, S. Treichler, M. Bauer, A. Aiken, “Regent: A High-
Productivity Programming Language for HPC with Logical Regions,”
SC 15, November 15 - 20, 2015, Austin, TX, USA.

[5] M. Bauer, S. Treichler, E. Slaughter, A. Aiken, “Legion: Expressing
Locality and Independence with Logical Regions,” SC12, November
10-16, 2012, Salt Lake City, Utah, USA.

[6] M. Modest, ”The Method of Discrete Ordinates“ in Radiative Heat
Transfer, Oxford, UK, Academic Press, 2013, ch. 17


