
Automatic and Transparent I/O Optimization With Storage
Integrated Application Runtime Support

Noah Watkins
UC Santa Cruz

jayhawk@soe.ucsc.edu

Zhihao Jia
Stanford University

zhihao@cs.stanford.edu

Galen Shipman
LANL

gshipman@lanl.gov

Carlos Maltzahn
UC Santa Cruz

carlosm@soe.ucsc.edu

Alex Aiken
Stanford University

aiken@cs.stanford.edu

Pat McCormick
LANL

pat@lanl.gov

ABSTRACT
Traditionally storage has not been part of a programming
model’s semantics and is added only as an I/O library in-
terface. As a result, programming models, languages, and
storage systems are limited in the optimizations they can
perform for I/O operations, as the semantics of the I/O li-
brary is typically at the level of transfers of blocks of uninter-
preted bits, with no accompanying knowledge of how those
bits are used by the application. For many HPC applica-
tions where I/O operations for analyzing and checkpointing
large data sets are a non-negligible portion of the overall ex-
ecution time, such a “know nothing” I/O design has negative
performance implications.

We propose an alternative design where the I/O seman-
tics are integrated as part of the programming model, and a
common data model is used throughout the entire memory
and storage hierarchy enabling storage and application level
co-optimizations. We demonstrate these ideas through the
integration of storage services within the Legion [2] runtime
and present preliminary results demonstrating the integra-
tion.

1. INTRODUCTION
Persistent I/O performance is a critical factor in HPC ap-

plication efficiency, but applications today rarely achieve a
meaningful percentage of the peak bandwidth of a storage
system. While over-provisioning of storage resources has al-
lowed inefficiencies to be masked, next-generation exascale
systems will likely make such techniques economically infea-
sible.

The performance of storage systems and applications are
tightly coupled, influenced by hardware and software con-
figuration, as well as the behavior of constantly changing
workloads. Despite this co-dependence, applications and
storage systems have traditionally been developed in iso-
lation, reducing opportunities for co-optimization to an af-

Copyright 2015 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the United States government. As such, the United
States Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes
only.
PDSW 2015 November 15-20, 2015 Austin, TX, USA
Copyright 2015 ACM ISBN 978-1-4503-4008-3/15/11 ...$15.00.

HDF5
(HDF-specific data model
with shape, datatype, etc)

MPI I/O
(datatypes transformations to file)

Application
(comprehensive data model with
linearization, shape, datatype, etc)

PLFS
(file model transformations)

Parallel File
System

(posix file model with
parallel access)

Object Storage
System

(named objects in flat
namespace)

(a)

Application + Legion Runtime

Parallel File
System

(posix file model with
parallel access)

Object Storage
System

(named objects in flat
namespace)

(An unified distributed data model enables
co-design and co-optimization between

application layer and storage layer)

(b)

Figure 1: (a) In a contemporary I/O stack each layer uses
a distinct data model. (b) Our proposed architecture uses
a unified data model and run-time to enable system-wide
co-design and co-optimization strategies

.

terthought, often through the use of non-portable hints that
are either not easily configured or insufficiently expressive.
Auto-tuning techniques have been used to tune system con-
figurations, but these tools are often limited by interfaces
that restrict optimization techniques [5, 4]. What is lacking
in current system designs are interfaces that permit applica-
tions and storage systems to co-optimize behavior by expos-
ing system-wide requirements and intent. In this paper, we
propose the creation and integration of semantically rich I/O
interfaces with next-generation distributed run-time systems
that together utilize a common data model throughout the
entire software stack, enabling co-optimization strategies that
can be applied transparently to applications. Our work ex-
tends one previous effort that has looked at integrating per-
sistent storage within an HPC programming system [7]; our
approach allows for runtime (as opposed to compile-time)
decision making and much more general control over data
movement and layout.

The predominant approach to improving I/O performance
for HPC applications has been through the introduction of
I/O middleware libraries. Illustrated in Figure 1a, libraries
such as HDF5 provide portable application-level data mod-
els, while others transparently implement I/O methods that
use a variety of optimization strategies [11, 10, 8, 1]. How-
ever, as I/O flows through the opaque interfaces of the soft-

ware stack, application semantics are lost. For instance,
PLFS performs transparent I/O transformations to optimize
for checkpoint workloads, but in the process it completely
re-writes the I/O stream rendering the dataset unrecogniz-
able without consulting an index, potentially complicating
the process of in-situ and offline analyses that have been
tuned for alternative application data layouts. Further ex-
acerbating the problem are the economic realities that re-
quire storage systems to often be deployed as organization-
ally shared resources with virtually no information regard-
ing application access patterns or intent, preventing inter-
workload optimizations that may be effective at mitigating
the performance impact of resource contention. Thus, of-
fline tuning and hard-coded optimization strategies may be
difficult to achieve or ineffective because of cross-traffic from
other workloads, and failures cannot be predicted. One al-
ternative approach that has been proposed is to introduce
a low-capacity, high-performance buffer-cache layer into the
storage hierarchy [6, 9] that can absorb I/O bursts and reor-
ganize I/O for optimal utilization of bulk storage. However,
in general this type of extreme over-provisioning is not af-
fordable as systems grow in scale. The solution we propose is
a matter of co-design in which over-provisioning is replaced
by intelligent, automatic management of the memory and
storage hierarchy.

We demonstrate these ideas using the Legion run-time
system [3], a task-based runtime with a fully distributed
memory model that decouples the logical data model from
the physical layout allowing the runtime to manage data
dependencies and data placement transparent to the appli-
cation all while respecting application consistency require-
ments. Shown in Figure 1b, we propose a new structure
in which the Legion runtime replaces existing middleware
layers by reproducing salient I/O optimizations and main-
taining a consistent data model across the entire storage and
memory hierarchy..

2. BACKGROUND
We now provide background information and motivate

our work, briefly discussing common I/O optimization tech-
niques, and the Legion programming model and runtime
system that forms the basis for our prototype implementa-
tion.

2.1 Motivating Example
Consider the introduction of additional storage tiers to

a typical HPC environment, where each tier may differ in
capacity, bandwidth, and latency. Such an expanded stor-
age hierarchy presents many opportunities for sophisticated
storage strategies such as hiding latency, intelligently han-
dling low-memory situations, performing I/O staging, and
offloading data-intensive compute tasks. Unfortunately it
can be difficult for applications to fully exploit the storage
hierarchy when data must be managed explicitly by appli-
cation developers.

For example, an application running on a system with a
deep storage hierarchy may integrate knowledge about anal-
ysis tasks into its checkpointing strategy by storing one com-
ponent of application state (e.g., a field associated with a
grid point) on a fast tier composed of SSDs for a pending
visualization workflow, while the remaining grid fields are
placed in a capacity tier for resilience. The data manage-
ment challenge involved in this example is difficult to solve.

In current systems, the application would be required to
split the data structure into multiple files, store the data
in separate namespaces, and manage consistency and future
tier migration. While middleware is capable of performing
tasks such as a complex data mapping and sharding, the
data management tasks required to track asynchronous up-
dates to application state across a heterogeneous memory
and storage hierarchy while conforming to the consistency
requirements of the application are beyond the scope of cur-
rent I/O libraries that provide I/O optimizations or flexible
data serialization strategies. If such complex data manage-
ment is embedded in the structure of an application, mi-
grating to a new system may require invasive changes to the
application that prevent adoption in the first place.

This example provides context for the type of data man-
agement challenges that will exist in next-generation sys-
tems, but we also consider a broad class of common strate-
gies for improving I/O performance that we describe next.

2.2 Data Management and I/O Optimization
We now provide a brief overview of some common strate-

gies for improving persistent I/O performance. These strate-
gies are beneficial when they can be achieved, but perfor-
mance portability can be a challenge, making adoption of
new techniques less attractive.

I/O Parallelism. I/O parallelism is often achieved by
aligning data, which guarantees that concurrent tasks are ac-
cessing disjoint parts of the data. But it can be challenging
for an application to achieve good parallel I/O performance
because the file abstraction hides physical properties that
may allow applications to align I/O accesses and avoid in-
advertently invoking expensive locking and consistency pro-
tocols. Applications may use hints provided by the storage
system to align data within a file but hints are non-portable,
and aligning unstructured data may be difficult. Sharding
(e.g. N-N checkpoint, in which case each of N clients writes
to its own file) is one way to avoid these alignment issues,
but sharding is rarely used because data management is dif-
ficult.

Latency Hiding. Performing I/O asynchronously is a
common technique to hide latency by overlapping I/O and
computation. Applications written in low-level languages
hard-code these optimizations, implicitly embedding perfor-
mance assumptions that may be invalid on different archi-
tectures, or even from one run to the next. Finding and
exploiting opportunities for latency hiding techniques can
be difficult and quickly add complexity to application data
management, and are difficult to achieve as offline optimiza-
tions.

Relaxed Consistency Requirements. Maintaining data
and metadata consistency in a distributed storage environ-
ment can significantly impact performance due to the over-
heads imposed by algorithms used to handle distributed
locking and transactional namespace updates. Relaxing these
consistency requirements can significantly improve applica-
tion performance and scalability while reducing the overall
complexity of the system, but can be challenging to inte-
grate.

Future HPC systems will continue to increase in scale,
complexity, and heterogeneity. Exploiting and adapting to
current and future system diversity and complexity requires
flexible application and storage system behavior. Next we
describe the Legion system for developing applications that

can adapt to a wide variety of systems without requiring
application changes.

2.3 Legion
Our runtime prototyping vehicle for this work is the Le-

gion [3] runtime system, a data-centric parallel programming
system for portable high-performance applications. Legion
supports a logical, distributed data model that is decoupled
from its implementation on memory or storage and provides
us the ability to manage the consistency of application dis-
tributed state. We briefly describe elements of the Legion
architecture and its support of persistent storage.

Data Model. Legion introduces and is built upon the
concept of logical regions, an abstraction for describing struc-
tured distributed data. Logical regions are a cross product
of an N-dimensional index space and a number of fields (a
field space). Logical regions do not commit to and are dis-
tinct from any particular data layout or placement within
memories of the machine. A logical region may have one or
more physical instances, each of which is assigned to a par-
ticular memory with a specific layout. The data model also
supports subdividing the data, either by picking out sub-
sets of the index space or of the fields. We extend this data
model to persistent storage by allowing the application data
model to directly map to the underlying distributed storage
model.

Memory Hierarchy. Legion models all hardware that
can be used to store data as memory. The current Legion
implementation [12] involves four kinds of memory in which
instances of logical regions can be held: distributed GASNet
memory accessible by all nodes, system memory on each
node, GPU device memory, and zero-copy memory (sys-
tem memory mapped into both CPU and GPU’s address
spaces). To support persistence, we introduce HDF5 and
RADOS [13] memories within the Legion memory hierar-
chy, which allows Legion to import HDF5 files and RADOS
objects into its runtime, unifying memory and persistent
storage with application semantics.

Out-of-order scheduling and explicit tracking of
data dependencies. Legion’s data movement and com-
putation are handled by an out-of-order scheduler that can
automatically extract parallelism and identify pipelining op-
portunities. Coupled with a distributed data model in which
dependencies between computational tasks and logical re-
gions are explicit, the runtime can transparently overlap
computation with data movement both within the tradi-
tional memory hierarchy and within the storage system.
Furthermore, the runtime is able to maintain consistency
of logical regions across a distributed memory through data
dependency analysis among tasks accessing those logical re-
gions.

The integration of the storage system with the Legion run-
time provides opportunities to make I/O optimization deci-
sions based on both static and dynamic system characteris-
tics. Closer integration of the application level data model
and the storage environment allows the runtime to optimize
for application specific data decompositions alongside other
system characteristics while insulating the application from
these optimizations. These optimizations include automatic
tiering, sharding, asynchronous I/O, relaxed consistency se-
mantics, and offloading data-intensive tasks to the storage
system. These opportunities are explored in the next sec-
tion.

3. STORAGE INTERFACE AND RUNTIME
CO-DESIGN

We propose a closer coordination between the applica-
tion runtime and the lower level storage services in order to
unify the application’s distributed data model used in com-
putation directly with the underlying storage model used
for persistence, enabling transparent optimizations such as
dynamic data placement, data distribution, and data repli-
cation based on a semantic understanding of application in-
tent.

Figure 2 illustrates our co-design goal by showing how
the runtime system with storage integration could effectively
map an adaptive mesh refinement (AMR) application data
structure into a distributed hierarchical storage system. To
the left of the figure is a multi-resolution grid with each ver-
tex associated with three fields (i.e., F1, F2, and F3). To the
right of the figure is the integrated, distributed multi-layer
storage hierarchy (for simplification, the figure only demon-
strates disk and NVRAM tiers on three different nodes).

F1
F2

F1
F2

F1
F2

F1
F2

F1
F2

F1
F2

F1
F2

F1
F2

F3 F3

F3 F3

F3 F3

F3 F3

F1
F2

F3

F1 F1
F2 F2

F3

F1
F2

F3

F1
F2

F3

D
is

k

NVRAM

Application Data

F3

Node 1

Node 2

Node 3

D
is

k
D

is
k

NVRAM

NVRAM

Storage Tiers

Full-Resolution

Low-
Reso

lution

Low-
Reso

lution

Figure 2: Legion data model and mapping to distributed
and hierarchical storage.

Regions for AMR applications are often organized at dif-
ferent resolution levels. In Figure 2, we use green and yel-
low to label regions in full resolution, and use other colors
for lower-resolution regions (areas with arrows marked full-
resolution and low-resolution can be referred to for black-
and-white print). AMR applications are often more inter-
ested in full-resolution regions, which may also come with
more frequent accesses. One predominant I/O optimization
for AMR application is placing full-resolution regions into a
low-latency and high-bandwidth storage layer for better I/O
performance. However, the resolution distribution depends
on input data, which prevents this optimization from being
performed at compile time. Therefore, supporting dynamic
data partitioning and data placement at runtime is critical
for AMR application performance.

The colors of the fields and storage tiers also represent an
application-specific mapping from regions to the persistent
storage hierarchy. The coloring in Figure 2 demonstrates a
possible mapping decision that keeps full-resolution regions
(in the top right corner of the grid), as well as field F3 for a
subset of lower-resolution regions (marked in orange) in the
NVRAM tier, while all other regions are stored on the disk
tier. This mapping decision can be completely dynamic and
made by the Legion runtime as a result of an optimization
strategy, such as staging data on the NVRAM for frequent
access.

Coloring. Legion employs a general method for spec-

ifying partitions of logical regions based on colorings that
allow for arbitrary data decompositions and layout. A col-
oring assigns zero or more colors to each element of a log-
ical region. Based on the coloring of each element, Legion
provides a primitive partition operation that constructs sub-
regions (partitions) of the elements of each color. As illus-
trated in Figure 2, the multi-resolution grid, which is itself
a logical region in the Legion framework, is partitioned into
subregions with different colors. The Legion runtime is able
to perform different placement, re-partitioning, and layout
optimizations for the different subregions.

In Figure 2 there are two colorings represented. One col-
oring is used to facilitate the distribution of the AMR mesh
in memory, and a separate coloring on the same data struc-
ture represents the desired sharding and tiering decisions
that are communicated to the storage system when the data
is persisted.

Co-optimization. We believe integrating the storage
hierarchy into the Legion programming model enables co-
optimization opportunities between the storage layer and
the runtime layer. For instance, transparent to the appli-
cation, the Legion runtime can expose application specific
data boundaries used to optimize data alignment and local-
ity. Likewise, storage systems that expose details such as
physical topologies, and latency and throughput estimates,
can be used by Legion to schedule I/O and implement data
sharding and placement strategies.

In our proposed system architecture, optimization tech-
niques are not limited to the Legion runtime system. For
instance, Legion uses an out-of-order execution model, which
allows the runtime to have knowledge of pending operations.
Exposing data dependencies and computational scheduling
information to the storage system may allow automatic I/O
scheduling among tiers, or data transformations such as re-
partitioning.

4. PRELIMINARY RESULTS
We demonstrate integration of storage into the Legion

memory model using a microbenchmark application that
simulates a checkpoint-restart workload. The application
performs a checkpoint of a globally distributed logical region
into persistent storage and then reads the same data struc-
ture back into memory, approximating a restart process.
We consider global checkpoint-restart because of its general
use for fault-tolerance, as well as its scaling challenges in
terms of I/O pattern (e.g. N-1 vs N-M), and in terms of
I/O scheduling (global barrier vs. asynchronous I/O). The
application initially constructs a globally distributed data
structure containing the application state and provides a
coloring of this state that corresponds to a desired physi-
cal partitioning on persistent storage. This coloring and the
resulting distribution in persistent storage may be orthog-
onal to the distribution used by the computation, and the
runtime handles data movement with respect to application
consistency requirements. We record an I/O trace from the
execution to derive the throughput of each of the read and
write I/O phases, as well as to demonstrate the I/O schedul-
ing capabilities of Legion.

While Legion is capable of the optimizations we have pro-
posed earlier in this paper, we report only preliminary per-
formance results in which Legion uses an application-specific
coloring to control data partitioning, as well as the usage of
independent I/O scheduling with respect to the data de-

pendencies of the application expressed through the Legion
programming model.

Experiment Setup. For our experiments we use two dif-
ferent computational environments. The first is a 308 node
cluster with Intel Xeon E5-2670 processors, 32 GB RAM,
Qlogic QDR IB network, and a 3.5 PB Lustre file system
with 35 GB/sec peak bandwidth. The second cluster is a
smaller testbed environment in which 12 nodes were config-
ured as both RADOS clients and servers. Each node con-
tained a modern 12-core Intel CPU, 64 GB of RAM, 512 GB
SSD, and the nodes were connected using a 10 GbE network.
We demonstrate the flexibility of unifying storage into the
Legion runtime by running experiments on both a backend
that stores HDF5 files in a Lustre file system, as well as a
backend that uses raw object storage in the RADOS object
storage system [13]. In the case of the HDF5 backend, the
HDF5 external link facility is used to produce a top-level file
that presents a unified view of the dataset through links to
individual HDF5 shards.

Logical region sharding maps naturally to one or more
memories, and allows Legion to perform completely inde-
pendent I/O while maintaining a consistent view. We re-
lax consistency across the dataset, and require transactional
consistency only at the shard level. A globally consistent
view is created after shard I/O is complete using Legion’s
explicit tracking of I/O state.

Weak Scaling. Scaling I/O for HPC applications that
perform N-1 checkpointing can be difficult when the map-
ping between application data and the file interact nega-
tively with the physical alignment of the storage system.
Legion can avoid this problem by transparently sharding
application data and handling the complexity of managing
data set consistency.

We conduct a weak scaling experiment comparing I/O
performance of our Legion benchmark with IOR. We scale
from 2 to 16 application nodes, using a fixed set of 256
shards, and increase total data set size from 4 GB to 32
GB. The IOR benchmark is configured to use the HDF5
API and an N-1 I/O pattern. Figure 3b plots sustained
write throughput, showing that Legion I/O write bandwidth
scales with the number of nodes, while IOR bandwidth be-
gins to decrease after 4 nodes. Figure 3a shows the read
bandwidth where Legion I/O scales with the number of
nodes, but IOR is able to achieve a higher throughput rate
in most cases due to caching affects. Figure 3c shows the
same workload run against a RADOS backend. Although
Figure 3c shows clear scalability, performance suffers com-
pared to Lustre, likely due to a lack of client-side write coa-
lescing, and a hardware configuration using a shared device
for both bulk storage and write-ahead logging. However, we
consider the salient point to be the flexibility of storage I/O
interfaces and ability to avoid non-POSIX file systems and
their short-comings at scale, such as metadata scalability,
that object storage systems are less prone to suffer from.

Asynchronous I/O. Checkpoint applications that use a
global barrier to achieve data consistency can be inefficient
when even one task is delayed reaching the synchronization
point. In contrast, Legion is able to perform fully indepen-
dent I/O while maintaining consistency without expensive
transactions.

We demonstrate the ability of Legion to perform indepen-
dent I/O by recording a trace of our microbenchmark and
plot a time-series of the I/O phases (write and read) asso-

 0

 1

 2

 3

 4

 5

 6

2 4 8 12 16

Ba
nd

wi
dt

h
(G
B/

se
c)

Number of Nodes

Legion
IOR

(a) Legion vs IOR (Read)

 0

 0.5

 1

 1.5

 2

 2.5

 3

2 4 8 12 16

Ba
nd

wi
dt

h
(G
B/

se
c)

Number of Nodes

Legion
IOR

(b) Legion vs IOR (Write)

 0

 200

 400

 600

 800

 1000

 1200

2 4 6 8 10

Ba
nd

wi
dt

h
(M
B/

se
c)

Number of Nodes

Read
Write

(c) Legion on RADOS (Read/Write)

Figure 3: Weak scaling experiment. Figures (a) and (b) show Legion I/O over Lustre compared with N-1 IOR over HDF5
over MPI-IO over Posix on Lustre. Figure (c) shows weak scaling for Legion I/O using RADOS object storage.

 0 2 4 6 8 10 12 14

Sh
ar
d

Time (sec)

Write
Read

(a) HDF5 over Lustre

 0 2 4 6 8 10 12 14

Sh
ar
d

Time (sec)

Write
Read

(b) RADOS Object Store

Figure 4: Write and Read phases demonstrating indepen-
dent I/O scheduling.

ciated with each shard of the global data structure being
persisted. Figure 4 shows the time interval for reading and
writing each of 256 shards, using both an HDF5 (Figure 4a)
and RADOS (Figure 4b) storage backends. The workload
was generated using 12 nodes and each shard was 56 MB
for a total data set size of 14 GB. The x-axis shows time
in seconds, and the y-axis represents each individual shard.
The first phase (dark) is write and the second phase (grey) is
read. The horizontal transition from the write phase to the
read phase represents the I/O for single shard. From this ex-
periment we can see that individual tasks within Legion may
be scheduled at different times and the completion of these
tasks may vary dramatically based on the performance and
utilization of the underlying storage environment. Further-
more, we see that Legion is able to schedule different phases
of operations based on explicit data dependencies which may
allow reading tasks to run concurrently with writing tasks
on the same logical region. The performance difference be-
tween HDF5 over Lustre and RADOS (HDF5 has a shorter
write phase, and RADOS has a shorter read phase), could
be attributed to caching. The relatively small data set size
easily fits into memory on the RADOS cluster that has no
other users competing for memory, compared to the shared
Lustre system.

Strong Scaling. Next we present the results of a strong
scaling experiment in which the problem size is held constant
while we increase the number of application nodes perform-
ing I/O. This is a common scaling strategy used to reduce
time-to-solution for many problem areas, and represents the
I/O workload for such an application using a checkpoint-
restart resilience mechanism.

The results from this experiment are shown in Figure 5
for both HDF5 over Lustre (Figure 5a) and RADOS stor-

 0

 0.5

 1

 1.5

 2

 2.5

4 8 12 16 32

Ba
nd
wi

dt
h

(G
B/

se
c)

Number of Nodes

Read
Write

(a) HDF5 Over Lustre

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

2 4 6 8 10 12

Ba
nd
wi

dt
h

(G
B/

se
c)

Number of Nodes

Read
Write

(b) I/O Over RADOS

Figure 5: Throughput for hard scaling experiment using 14
GB data set and 256 shards.

age backends (Figure 5b). Each graph shows the bandwidth
achieved when reading and writing a total of 14 GB parti-
tioned across 256 shards.

5. CONCLUSION
As storage systems and memory hierarchies continue to

increase in complexity it has become increasingly difficult
for applications to optimize I/O performance through hard-
coded strategies which may involve fragile as well as non-
portable data management techniques and assumptions about
performance.

In this paper we consider the integration of the storage
system into Legion, a next-generation application program-
ming model and run-time that provides a hardware inde-
pendent machine abstraction. We demonstrate that by un-
derstanding the semantics of application data, Legion can
perform I/O optimization tasks such as data sharding com-
pletely transparent to the application, and easily supports
the use of non-POSIX storage systems by handling data
management tasks normally hard-coded into applications.

6. ACKNOWLEDGMENTS
This work was supported by the Department of Energy

National Nuclear Security Administration under Award Num-
ber DE-NA0002373-1, by the Advanced Simulation and Com-
puting Program, Advanced Technology Development and
Mitigation element administered by Thuc Hoang, and by
Los Alamos National Laboratories Subcontract No. 173315-
1 through the U.S. Department of Energy under Contract
No. DE-AC52-06NA25396. Additional support came from
the U.S. Department of Energy, Office of Advanced Scien-
tific Computing Research, LA-UR-15-27390.

7. REFERENCES
[1] Introduction to hdf5. https:

//www.hdfgroup.org/HDF5/doc/H5.intro.html, 2010.

[2] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken.
Legion: Expressing locality and independence with
logical regions. In I’12, Los Alamitos, CA, USA, 2012.

[3] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken.
Structure slicing: Extending logical regions with fields.
In SC ’14, New Orleans, LA, 2014.

[4] B. Behzad, S. Byna, S. M. Wild, Prabhat, and
M. Snir. Improving parallel I/O autotuning with
performance modeling. In HPDC ’14, Vancouver, BC,
Canada, 2014.

[5] B. Behzad, H. Vu, T. Luu, J. Huchette, S. Byna,
Prabhat, R. Aydt, Q. Koziol, and M. Snir. Taming
parallel I/O complexity with auto-tuning. In SC ’13,
Denver, CO, 2013.

[6] J. Bent, S. Faibish, J. Ahrens, G. Grider, J. Patchett,
P. Tzelnic, and J. Woodring. Jitter-free co-processing
on a prototype exascale storage stack. In MSST ’12,
Lake Arrowhead, CA, 2012.

[7] M. Houston, J.-Y. Park, M. Ren, T. Knight,
K. Fatahalian, A. Aiken, W. Dally, and P. Hanrahan.
A portable runtime interface for multi-level memory
hierarchies. In PPoPP ’08, New York, NY, USA, 2008.

[8] John, , G. Gibson, G. Grider, B. McClelland,
P. Nowoczynski, J. Nunez, M. Polte, and M. Wingate.
Plfs: A checkpoint filesystem for parallel applications.
In SC ’09, Portland, OR, 2009.

[9] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross,
G. Grider, A. Crume, and C. Maltzahn. On the role of
burst buffers in leadership-class storage systems. In
MSST/SNAPI ’12, Pacific Grove, CA, 2012.

[10] J. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and
C. Jin. Flexible I/O and integration for scientific codes
through the adaptable I/O system (ADIOS). In
CLADE ’08, Boston, MA, 2008.

[11] R. Thakur, W. Gropp, and E. Lusk. On implementing
mpi-io portably and with high performance. In
IOPADS ’99, number 10, New York, NY, USA, 1999.

[12] S. Treichler, M. Bauer, and A. Aiken. Realm: An
event-based low-level runtime for distributed memory
architectures. In PACT ’14, New York, NY, USA,
2014.

[13] S. A. Weil, A. Leung, S. A. Brandt, and C. Maltzahn.
Rados: A fast, scalable, and reliable storage service for
petabyte-scale storage clusters. In PDSW’07, Reno,
NV, 2007.

