
Bug Isolation via Remote Program Sampling ∗

Ben Liblit †

<liblit@cs.berkeley.edu>

Alex Aiken †

<aiken@cs.berkeley.edu>

Alice X. Zheng †

<alicez@cs.berkeley.edu>

Michael I. Jordan †, ‡

<jordan@cs.berkeley.edu>

†Department of Electrical Engineering and Computer Science
‡Department of Statistics

University of California, Berkeley
Berkeley, CA 94720-1776

ABSTRACT
We propose a low-overhead sampling infrastructure for gath-
ering information from the executions experienced by a pro-
gram’s user community. Several example applications illus-
trate ways to use sampled instrumentation to isolate bugs.
Assertion-dense code can be transformed to share the cost
of assertions among many users. Lacking assertions, broad
guesses can be made about predicates that predict program
errors and a process of elimination used to whittle these
down to the true bug. Finally, even for non-deterministic
bugs such as memory corruption, statistical modeling based
on logistic regression allows us to identify program behaviors
that are strongly correlated with failure and are therefore
likely places to look for the error.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
distributed debugging ; G.3 [Mathematics of Computing]:
Probability and Statistics—correlation and regression anal-
ysis; I.5.2 [Pattern Recognition]: Design Methodology—
feature evaluation and selection
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1. INTRODUCTION
It is an unfortunate fact that essentially all deployed soft-

ware systems have bugs, and that users often encounter
these bugs. The resources (measured in time, money, or
people) available for improving software are always limited,
and the normal case is that through sheer numbers the user
community brings far more resources to bear on testing a
piece of software than the team responsible for producing
that software.

This paper is about making lemonade from lemons. Given
that deployed software has problems, perhaps we can speed
up the process of identifying and eliminating those problems
by learning something from the enormous number of exe-
cutions performed by the software’s user community. We
propose an infrastructure where some information about
each user execution of a program is transmitted to a central
database. The data gathered from all executions is analyzed
to extract information that helps engineers find and fix prob-
lems more quickly; we call this automatic bug isolation. In
our view, such an infrastructure has several benefits:

• For deployed software systems, the number of execu-
tions in actual use dwarfs the number of executions
produced in testing by orders of magnitude. For many
software systems today, essentially all of the informa-
tion from user executions is discarded, because there
is no mechanism for feedback. Retaining even a small
portion of that information could be valuable.

• Gathering information from all, or at least a repre-
sentative sample, of user executions gives an accurate
picture of how the software is actually used, allowing
better decisions about how to spend scarce resources
on modifications. In particular, bugs that affect a large
number of users are a higher priority than bugs that
are very rare. This kind of information is almost im-
possible to obtain from anywhere other than actual
user executions.

• While our primary interest is in finding and fixing qual-
ity problems, information gathered from user execu-
tions could be useful for other purposes. For exam-
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ple, software authors may simply wish to know which
features are most commonly used, or we may be in-
terested in discovering whether code not covered by
in-house testing is ever executed in practice, etc.

• Traditional user feedback about problems often con-
sists of a call from a relatively unsophisticated user to
a perhaps only somewhat more sophisticated techni-
cal support center. In a networked world, it is simply
more efficient and accurate to gather this information
automatically.

• Many bugs sit on open bug lists of products for an ex-
tended period of time before an engineer is available to
work on the bug. Automatically gathering data from
user executions allows for automated analysis without
human intervention. Thus, when an engineer is finally
available to work on a problem, the results of auto-
mated analyses done in the interim may help the engi-
neer to identify and fix even relatively simple problems
more quickly.

The idea of gathering data from actual user executions
is not new. Commercial databases, for example, routinely
produce extensive log files, and the first action when a user
reports a problem is to inspect those logs. Similarly, each
flight of the Boeing 777 generates logs that are subsequently
combed for signs of possible problems [14]. There are many
other similar examples in the world of commercial software.

A more recent development is the result of ubiquitous In-
ternet connectivity. Netscape/Mozilla, Microsoft, GNOME,
and KDE have all deployed automated, opt-in crash report-
ing systems. These systems gather key information about
program state after a failure has occurred: stack trace, reg-
ister contents, and the like. By sending this information
back to the development organization, the user community
helps developers effectively triage bugs that cause crashes
and focus on the problems experienced by the most users.

We believe crash reporting is progress in the right di-
rection, but we also believe that existing approaches only
scratch the surface of what is possible when developers and
users are connected by a network. For example, the crash-
reporting systems do not gather any information about what
happened before the crash. Trace information leading up to
the failure may contain critical clues to the actual problem.
Also, crash reporting systems report no information for suc-
cessful runs, which makes it difficult to distinguish anoma-
lous (crash-causing) behavior from innocuous behavior com-
mon to all executions. In general, the information gathered
by crash-reporting systems is not very systematic, and in all
feedback systems of which we are aware (crash-reporting or
otherwise) the subsequent data analysis is highly manual.

We present one approach to systematically gathering in-
formation about program runs from a large, distributed user
community and performing subsequent automatic analysis
of that information to help in isolating bugs. Initially, we
believed that the interesting problem was the analysis of the
data, and that gathering the data was relatively straightfor-
ward. However, we discovered that designing a data gath-
ering infrastructure that would scale is non-trivial. As a
result, this paper is as much about the design and imple-
mentation of the system that gathers the data from user
executions (Section 2) as it is about the subsequent data
analysis (Section 3).

Our infrastructure is designed to gather information about
a large number of program executions taking place remotely
from a central site where data is collected. Any such design
must solve two problems.

The first problem is that the method for gathering in-
formation must have only a modest impact on the perfor-
mance of the user’s program. Our approach, discussed in
Section 2, is based on sampling. Classical sampling for mea-
suring program performance searches for the “elephant in
the haystack”: it is looking for the biggest consumers of
time. In contrast, we are looking for needles (bugs) that
may occur very rarely, and furthermore our sampling rates
may be very low to maintain client performance. This leads
us to be concerned with guaranteeing that the sampling is
statistically fair, so that we can rely on the reported frequen-
cies of rare events. We also develop new ways to reduce the
overhead of the necessary additional code that determines
whether to take a sample or not.

The second problem is that information from the client
must be transmitted over the network to a central database.
Gathering even a relatively small amount of data periodi-
cally from a large number of clients creates significant scal-
ability problems. We have found it necessary to discard
information about the order in which program statements
execute to achieve sufficiently compact representations of
sampled data (Section 2.5).

Section 3 presents three applications of increasing sophis-
tication:

• We show how to share the cost of program assertions
over a large user base through sampling. Each user
only executes a fraction of the assertions, and thus
sees good performance, but in the aggregate bugs due
to assertion failures are still extremely likely to be de-
tected (Section 3.1).

• We show how to isolate deterministic bugs without
the benefit of explicit assertions. A bug is determin-
istic with respect to a predicate P if whenever P is
true, the program is guaranteed to crash at some fu-
ture point. An initially large set of predicates hypoth-
esized to capture the cause of the crash is gradually
reduced over time as sampled executions reveal which
predicates predict program failure (Section 3.2).

• We generalize our approach to the isolation of non-
deterministic bugs. A bug is non-deterministic with
respect to a set of program predicates if it is not de-
terministic for any predicate in the set (i.e., none of
the considered predicates perfectly predicts program
crashes). We use statistical regression techniques to
identify predicates that are highly correlated with pro-
gram failure (Section 3.3).

Finally, monitoring of user executions raises privacy and
security concerns. The problems are both social and techni-
cal; a discussion of these issues appears in Section 5.

2. SAMPLING FRAMEWORK
This section describes our sampling framework. We begin

with sampling of basic blocks and gradually add features
until we can describe how to perform sampling for entire
programs. Suppose we start with the following C code:



{

check(p != NULL);

p = p->next;

check(i < max);

total += sizes[i];

}

Our sampling framework can be configured to sample ar-
bitrary pieces of code, which may be either portions of the
original program or instrumentation predicates added sepa-
rately. For this particular example, assume that the ital-
icized check() calls have been tagged for sampling. A
check() call might conditionally halt the program (as with
assert()), or it might append an event to a trace stream, or
it might update a per-predicate counter to record how often
the predicate is true. The precise behavior of the instrumen-
tation code is of no concern to the sampling transformation
itself.

2.1 Sampling the Bernoulli Way
Suppose that we wish to sample one hundredth of these

checks. Maintaining a global counter modulo one hundred is
simple, but has the disadvantage of being trivially periodic.
If the above fragment were in a loop, for example, one of
the checks would execute on every fiftieth iteration while the
other would never execute. We wish sampling to be fair and
uniformly random: each check should independently have a
1/100 chance of being sampled each time it occurs. This is
a so-called Bernoulli process, the most common example of
which is repeatedly tossing a coin. We wish to sample based
on the outcome of tossing a coin that is biased to come up
heads only one time in a hundred.

A näıve approach would be to use a simple random num-
ber generator. Suppose rnd(n) yields a random integer uni-
formly distributed between 0 and n− 1. Then the following
code gives us fair random sampling at the desired density:

{

if(rnd(100) == 0) check(p != NULL);

p = p->next;

if(rnd(100) == 0) check(i < max);

total += sizes[i];

}

This strategy has some practical problems. Random num-
ber generation is not free: tossing the coin may be slower
than simply doing the check unconditionally. Furthermore,
what was previously straight-line code is now dense with
branches and joins, which may impede other optimizations.

Sampling is sparse. Each of the conditionals has a 99/100 =
99% chance of not sampling. On any run through this block,
there is a (99/100)2 ≈ 98% chance that both instrumentation
sites are skipped. If we determine, upon reaching the top
of a basic block, that no site in that block is sampled, then
we can branch into fast-path code with all conditionally-
guarded checks removed. This requires two versions of the
code: one with sampled instrumentation, one without. It
also requires that we can predict how many future sampling
opportunities are skipped before the next one is taken.

Anticipating future samples requires a change in random-
ization strategy. Consider a sequence of biased coin tosses,
with “0” indicating no sample and “1” indicating that a

sample is to be taken. Temporarily increasing the sampling
density to 1/5, we might have:

〈0, 0, 0, 0, 0, 1︸ ︷︷ ︸
6

, 0, 0, 0, 1︸ ︷︷ ︸
4

, 0, 1︸︷︷︸
2

, 0, 0, 1︸ ︷︷ ︸
3

, . . . 〉

An equivalent representation counts the number of tosses
until (and including) the next sampled check: 〈6, 4, 2, 3, . . . 〉.
This representation is predictive: the head of the sequence
can be treated as a countdown, telling us how far away the
next sample is. If we are at the top of a basic block contain-
ing only two checks, and the next sampling countdown is 6,
we know in advance that neither of those sites is sampled on
this visit. Instead, we merely discard two tosses and proceed
directly to the instrumentation-free fast path:

{

if(countdown > 2) {

/* fast path: no sample ahead */

countdown -= 2;

p = p->next;

total += sizes[i];

} else {

/* slow path: sample is imminent */

if(countdown-- == 0) {

check(p != NULL);

countdown = getNextCountdown();

}

p = p->next;

if(countdown-- == 0) {

check(i < max);

countdown = getNextCountdown();

}

total += sizes[i];

}

}

The instrumented code does extra work to manage the
next-sample countdown, but the fast path is much improved.
The only overhead is a single compare/branch and a con-
stant decrement, and this overhead is amortized over the
entire block. In larger blocks with more instrumentation
sites, the initial countdown check has a larger threshold,
but that one check suffices to predict a larger number of
skipped sampling opportunities.

Consider the distribution of countdown values. With a
sampling density of 1/100, there is a 1/100 chance that we sam-
ple at the very next opportunity. There is a (99/100)× (1/100)
that the next chance is skipped but that the one after that is
taken. A countdown of three appears on a (99/100)2× (1/100)
chance, and so on. These numbers form a geometric dis-
tribution whose mean value is the inverse of the sampling
density (that is, 100). Numbers in a geometric distribution
characterize the expected inter-arrival times of a Bernoulli
process. However, repeated tossing of a biased coin is not
necessary: geometrically distributed random numbers can
be generated directly using a standard uniform random gen-
erator and some simple floating-point operations. (In theory,
a countdown may need to be arbitrarily large. However, the
odds of a 1/100 countdown exceeding 232 − 1 are less than

one in 10107
.)

As can be seen in the instrumented slow path, the count-
down is reset once it reaches zero. Thus, we consume next-
sample countdowns gradually over time. However, the rate



of consumption is slower than that for raw coin tosses: n
countdowns for 1/d sampling encode, on average, nd tosses.
A bank of pre-generated random countdowns, then, is quite
reasonable and will exhaust or repeat d times more slowly
than would a similar bank of raw coin tosses.

2.2 From Blocks to Functions
The scheme for blocks outlined above generalizes to an ar-

bitrary control flow graph as follows. Any region of acyclic
code has a finite number of possible paths. Let the maxi-
mum number of instrumented sites on any path be the re-
gion’s weight. A countdown threshold check can be placed
at the top of each acyclic region. If the next-sample count-
down exceeds the weight of an acyclic region r on entry to
r, then no samples are taken on that execution of r.

Any cycle in a control-flow graph without instrumenta-
tion is weightless and may be disregarded. Any cycle with
instrumentation must also contain a threshold check, which
guarantees that if we start at any threshold check and ex-
ecute forward, we cross only a finite number of instrumen-
tation sites before reaching the next threshold check. Thus,
we can compute a finite weight for each threshold check.

There is some flexibility regarding exactly where a thresh-
old check is placed, but computing an optimal solution is
NP-hard [18]. For simplicity, our present system places one
threshold check at function entry and one along each loop
back edge. Weights may be computed in a single bottom-
up traversal of each function’s control flow graph. If any
threshold check is found to have zero weight, it is simply
discarded.

We produce two complete copies of the function body.
One contains full instrumentation, with each possible sam-
ple guarded by a decrement and test of the next-sample
countdown. The other copy, the fast path, merely decre-
ments the countdown where appropriate, but otherwise has
all instrumentation removed. We stitch the two variants to-
gether at threshold check points: at the top of each acyclic
region, we decide whether a sample is imminent. If it is, we
branch into the instrumented code. If the next sample is far
off, we continue in the fast path code instead.

Figure 1 shows an example of code layout for a function
containing one conditional and one loop. Dotted nodes rep-
resent instrumentation sites; these are reduced to countdown
decrements in the fast path. The boxed nodes represent
threshold checks; we have added one at function entry and
one along the back edge of the loop. This code layout strat-
egy is a variation on that used by Arnold and Ryder to
reduce the cost of code instrumented for performance pro-
filing [2]. The principal change in our transformation is the
use of geometrically distributed countdowns in conjunction
with acyclic region weights to choose between the two code
variants. Arnold and Ryder use fixed sampling periods (e.g.,
exactly once per n opportunities, or exactly once per n in-
structions) and do not apply region-specific weighting. Our
approach imposes more overhead, but offers greater statis-
tical rigor in the resultant sampled data. Arnold and Ryder
have studied several variations with different trade-offs of
code size versus overhead; the same choices apply here.

2.3 Function Calls
New optimization opportunities arise in the presence of

function calls. A conservative treatment assumes any func-
tion call changes the countdown arbitrarily. Therefore, a
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Figure 1: Example of instrumented code layout

new threshold check must appear immediately after each
function call. This treatment is appropriate if, e.g., the
callee is being compiled separately.

However, if the callee is known and available for exam-
ination, a simple interprocedural analysis can be used. A
weightless function has the following properties:

• The function contains no instrumentation sites.

• The function only calls other weightless functions.

The set of weightless functions can be computed via a
standard iterative algorithm.

For purposes of identifying acyclic regions and placing
threshold checks, calls to weightless functions are invisible.
Acyclic regions can extend below such calls, and no addi-
tional threshold check is required after such a call returns. A
further benefit is that the bodies of weightless functions may
be compiled with no modifications. They have no thresh-
old checks, no instrumented code, and therefore require no
cloning or transformation of any kind.

2.4 Global Countdown Management
Our initial experience suggests that having the next-site

countdown in a global variable can be expensive. Our sys-
tem is implemented as a source-to-source transformation for
C, with gcc as our native compiler. We find that gcc treats
the many “countdown--” decrements along the fast path
quite poorly. It will not, for example, coalesce a sequence of
five such decrements into a single “countdown -= 5” adjust-
ment. This apparently stems from conservative assumptions
about aliasing of global variables.

Efficient countdown management requires that the na-
tive C compiler take greater liberties when optimizing these
decrements. We assist the native compiler by maintaining
the countdown in a local variable within each function:



1. At function entry, import the current global count-
down into a local variable.

2. Use this local copy for all decrements, threshold checks,
and sampling decisions.

3. Just before function exit, export this local copy back
out to the global.

To maintain agreement across all functions, we must also
export just before each function call and import again after
each call returns. Again, though, calls to weightless func-
tions may simply be ignored, as they do not change or even
inspect the countdown. Similarly, the bodies of weightless
functions need not import and export at entry and exit,
since they always leave the countdown unchanged. With
this change, the conventional native C compiler can coa-
lesce decrements and perform other standard but important
optimizations.

2.5 Issues in Remote Sampling
Our framework for statistically fair sampling can be used

for any program monitoring application. As discussed in
Section 1, there are issues peculiar to monitoring a large
number of remote sites. Here we briefly discuss the main
problems and a particular solution that we adopt.

Remote monitoring can harm performance in several ways.
As usual the performance penalty imposed by the extra
monitoring code is a concern, but so are the use of local
storage to hold results (even temporarily) on a user’s ma-
chine, the use of network bandwidth to transmit results,
and finally the storage needed to hold results on a central
server for analysis. For example, if we wish to retain all
sampled data, then the storage requirements for the central
server grow linearly with the number of executions even if
the data collected from each execution is constant size.

Our approach is to sample the number of observations of
each of a very large, but fixed, set of predicates (see Sec-
tions 3.2 and 3.3). The final form of the data is a vector of
integers, with position i containing the number of times we
observed that the ith predicate was true. For example, a
typical entry might be that the predicate x > y at a partic-
ular program point was observed to be true 42 times in one
execution.

Maintaining a vector of counters produces data for an ex-
ecution whose size is largely independent of the sampling
density or running time. The loss of information, however,
is significant, as the order of the observations is discarded.
While our results can be interpreted as showing that one can
go a long way ignoring ordering, we expect there are inter-
esting applications that require ordering information. We
leave the problem of determining how to efficiently gather,
store and analyze partial traces (with ordering information)
for future work.

3. APPLICATIONS AND EXPERIMENTS
As outlined in Section 1, we report on three applications

of our framework. From the least to the most sophisticated,
these are:

• sharing the cost of assertions among many users (Sec-
tion 3.1);

• isolating a bug that is deterministic with respect to a
predicate (Section 3.2);

• using statistical regression techniques to isolate a bug
that is non-deterministic with respect to every consid-
ered predicate (Section 3.3).

For each application we report on the overhead of instru-
mentation. For the last two applications we also quantify
how effectively and efficiently the bugs are isolated. While
the bug isolation examples presented here are based on find-
ing particular bugs in specific programs, the techniques are
general.

3.1 Sharing the Cost of Assertions
In conventional usage, C assert() calls are used dur-

ing program development but are disabled when code ships
to boost performance. However, deployed programs fail in
unanticipated ways, and it would be helpful to retain some
level of assertion checking if the performance penalty were
not excessive.

The CCured translator analyzes programs written in C
and attempts to prove that pointer operations are mem-
ory safe. Where this cannot be done, CCured inserts dy-
namic checks to enforce memory safety at run time [21]. For
our purposes, CCured is simply a source of assertion-dense
code. The individual assertions are quite small and fast
(array bounds checks, testing for null, etc.) but their per-
formance impact can be significant. We wish to use random
sampling to spread this cost among many users.

We have applied sampling to CCured versions of several
Olden [10] and SPECINT95 [23] benchmarks. All programs
run to completion and we are simply measuring the overhead
of performing the dynamic checks.

3.1.1 Whole-Program Sampling
Table 1 summarizes static aspects of the sampling trans-

formation when applied to the entirety of each benchmark.
For each program, we give the total number of non-library
functions and the number of these that are weightless. As
CCured is a whole-program analysis, weightless function
identification has the advantage of being able to examine
every function body. We also count the number of functions
that directly contain at least one instrumentation site. (The
remainder are functions that have no sites of their own but
that call other non-weightless functions.)

Considering just the functions that directly contain at
least one instrumentation site, Table 1 also presents the av-
erage number of sites per function, the average number of
threshold check points per function, and the average thresh-
old weight for all such points. (Note that the product of the
last two of these metrics may exceed the first, as a single in-
strumentation site may fall under more than one threshold
check point. This can be seen in the example in Figure 1 as
well.) The average site count shows the density of assertions
in the code. The average threshold weight measures how ef-
fective our transformation has been in amortizing the cost
of countdown checks over multiple sites. Single-site func-
tions are not uncommon; thus, an average threshold weight
above two is encouraging because it suggests that overall
amortization rates are good.

Table 2 shows the performance impact of unconditional in-
strumentation as well as sampled instrumentation at various
densities. The baseline for comparison is code translated by
CCured and from which all dynamic memory safety checks
are removed. We report the speedup (> 1) or slowdown
(< 1) relative to this baseline when sampling at various den-



function counts average for functions with sitesbenchmark
total weightless has sites sites threshold checks threshold weight

bh 64 15 48 11.9 3.8 9.5
bisort 13 3 10 4.1 1.9 2.6
em3d 15 5 10 5.5 3.1 4.7
health 16 2 14 6.1 2.9 3.1
mst 16 5 11 6.2 2.5 3.9
perimeter 11 4 6 7.8 2.7 2.1
power 19 4 15 5.8 3.0 2.8
treeadd 7 2 5 3.6 2.0 2.5
tsp 14 5 8 15.2 3.9 3.5
compress 20 4 15 7.1 2.9 3.9
go 380 12 359 14.8 6.0 4.7
ijpeg 314 34 267 18.7 5.0 7.3
li 375 16 336 6.2 3.2 2.9

Table 1: Static metrics for CCured benchmarks. Olden benchmarks are listed first, followed by SPECINT95.

benchmark always 10−2 10−3 10−4 10−6

bh 2.81 1.30 1.10 1.07 1.07
bisort 1.08 1.07 1.05 1.05 1.04
em3d 2.14 1.12 1.04 1.02 1.04
health 1.02 1.03 1.02 1.02 1.02
mst 1.25 1.06 1.04 1.03 1.04
perimeter 1.08 1.19 1.13 1.13 1.12
power 1.36 1.07 1.05 1.04 1.04
treeadd 1.13 1.09 1.09 1.09 1.11
tsp 1.05 1.17 1.16 1.15 1.14
compress 2.01 1.21 1.14 1.14 1.14
go 1.17 1.46 1.26 1.22 1.22
ijpeg 2.46 1.17 1.05 1.04 1.03
li 1.58 1.24 1.18 1.16 1.16

Table 2: Relative performance of CCured bench-
marks with unconditional or sampled instrumenta-
tion. Italics marks cases where sampled instrumen-
tation outperforms unconditional instrumentation.

sities. All benchmarks were compiled using gcc 3.2 using
optimization level -O2. Times were collected on a 1.3 GHz
Pentium 4 Linux workstation with 512 megabytes of RAM.
Reported speedups represent the average of four runs; each
run used a different pre-generated bank of 1024 geometri-
cally distributed random countdowns.

Unconditional instrumentation imposes slowdowns that
vary widely from (health: 2%) to (bh: 181%; ijpeg: 146%).
Even at a fairly high sampling density of 1/100, more than two
thirds of our benchmarks run faster than when all checks are
always performed. Because each single check is small and
fast, this suggests that we have been successful in amor-
tizing the sampling overhead. On the other hand, three
benchmarks run slower, with go showing the largest penalty.
In these cases, the time recovered by skipping 99/100 checks
is not enough to mask the added overhead of sampling.
Furthermore, in all benchmarks, the overhead relative to
instrumentation-free code remains large. Only five bench-
marks have less than a 10% slowdown, and only one is below
5%.

Performance improves as we reduce the sampling density
to 1/1000. Most benchmarks suffer less than a 10% penalty
relative to uninstrumented code, and half are below 5%.
Further reducing the sampling density to 1/10,000 shows lit-
tle change, and by the time we reach 1/1,000,000 it is clear

that we have reached a performance floor. Three bench-
marks (perimeter, tsp, go) are unable to compensate for
their sampling overhead relative to unconditional instrumen-
tation, while the remaining ten do run faster. Among these,
a few benchmarks (treeadd, compress, li) retain high over-
head relative to instrumentation-free code, but in most cases
the penalty is quite modest. Some benchmarks that perform
the worst using unconditional instrumentation perform quite
well with sampling: ijpeg, for example, moves from an un-
conditional instrumentation overhead of 146% to only 3%
with sparse sampling.

3.1.2 Statically Selective Sampling
It is not necessary to put all instrumentation into a sin-

gle executable; one can easily create multiple executables
where each contains a subset of the complete instrumen-
tation. Partitioning instrumentation by site, by module,
by function, or by object file are all reasonable schemes.
Any individual executable contains less instrumentation and
therefore incurs a smaller performance penalty. Fewer sites
mean more weightless functions, and therefore better inter-
procedural optimization per Section 2.3. Functions with-
out instrumentation sites require no code duplication, which
limits executable growth. Known trusted code can be ex-
empted from instrumentation, or especially suspect code can
be “farmed out” to a larger proportion of users for more in-
tensive study. Given a suitable dynamic instrumentation
infrastructure, sites can be added or removed over time as
debugging needs and intermediate results warrant.

We have experimented with variants of the CCured
benchmarks in which only a single function is instrumented
at a time. Whereas fully instrumented executables range
from 13%-149% larger than their non-sampling counter-
parts, average growth for single-function instrumented exe-
cutables is just 12% for the small Olden benchmarks and 6%
for the larger SPECINT95 applications. Performance is uni-
formly good: at 1/1000 sampling, 94% of site-containing func-
tions incur less than 5% slowdown versus instrumentation-
free code, while even the worst single function has less than
a 12% penalty.

3.1.3 The Effectiveness of Sampling
From these benchmarks and the examples in Sections 3.2

and 3.3, we conclude that realistic deployments will use sam-
pling densities between 1/100 and 1/1000. But how effective is
1/1000 sampling at observing rare program behavior? Sup-



pose we are interested in an event occurring once per hun-
dred executions. To achieve 90% confidence of observing
this event in at least one run, we need at least

log (1− 0.90)/ log

(
1− 1

100× 1000

)
= 230,258 runs.

While this is a large number, consider that sixty million
Office XP licenses were sold in its first year on the mar-
ket [19]. Assuming each licensee runs Microsoft Word twice
per week, then this user base produces 230,258 runs every
nineteen minutes. Achieving 99% confidence of observing
an event that occurs on one in a thousand runs requires
4,605,168 runs, which takes less than seven hours to gather.

For smaller deployments, we must either wait longer for
sufficient data or increase the sampling density. As we shall
see in Sections 3.2 and 3.3, at least for restricted classes of
bugs we can perform useful analysis with a few thousand
executions. Thus, our techniques are likely most suited to
applications where it is possible to gather data with at least
1/1000 sampling from thousands of executions per day.

3.2 Bug Isolation Using Predicate Elimination
In this section we consider automatic isolation of deter-

ministic bugs. Recall from Section 1 that for a deterministic
bug there is a predicate that becomes true if the program
must crash at some point in the future. Deterministic bugs
are quite common, though they are generally easier to find
and fix using any method than non-deterministic bugs (see
Section 3.3).

3.2.1 Instrumentation Strategy
As a case study in finding deterministic bugs we take re-

lease 1.2 of the ccrypt encryption tool. This version is
known to contain a bug that involves overwriting existing
files. If the user responds to a confirmation prompt with
EOF rather than yes or no, ccrypt crashes.

The EOF sensitivity suggests that the problem has some-
thing to do with ccrypt’s interactions with standard file
operations. In C, these functions commonly return values
to indicate success or failure. Many C application program-
mers follow the same model for their own error reporting.
Thus, randomly sampling function return values may iden-
tify key operations that behave differently in successful ver-
sus crashed runs. We group function return values into three
classes: negative values, zero, and positive values. This re-
duces the amount of information we must track while still
making distinctions consistent with common C program-
ming style.

We instrument ccrypt as follows. Consider each syntactic
call site that returns scalar values, including both arithmetic
types as well as pointers. After each such call, update one of
three counters depending upon the sign of the result: one for
negative values, one for zeros, and one for positive values.
Each call site has its own triple of counters. Thus, when
the program terminates, we can examine any function call
of interest and ask how often that call returned a negative,
zero, or positive value.

For ccrypt, there are 570 call sites of interest, for 570×3 =
1710 counters. Each counter corresponds to a single predi-
cate that is hypothesized to behave differently in successful
versus crashed runs. Specifically, we pose the problem as
follows:

Assume that predicates capture incorrect behav-
ior. That is, assume that each predicate P should
always be false during correct execution. When
P is true, the program either fails (a determinis-
tic bug) or is at increased risk of failing (a non-
deterministic bug).

If we eliminate all predicates for which this hypothesis
is disproved by observed runtime behavior, then the predi-
cates that remain describe the conditions under which the
program fails.

3.2.2 Elimination Strategies
We make no effort to restrict instrumentation to known

system or library calls, nor do we distinguish functions that
return status codes from those that do not. Most of those
1710 predicates, then, have no bearing on program success
or failure. Given a set of runs, we can discard irrelevant
predicates using a set of elimination strategies:

〈Elimination by universal falsehood〉: Disregard any
counter that is zero on all runs. These likely repre-
sent predicates that can never be true.

〈Elimination by lack of failing coverage〉: Disregard any
triple of counters all three of which are zero on all
failed runs. Because one counter in each triple must
always be true for any sample, these likely represent
instrumentation sites that are not even reached in fail-
ing executions.

〈Elimination by lack of failing example〉: Disregard any
counter that is zero on all failed runs. These likely
represent predicates that need not be true for a failure
to occur.

〈Elimination by successful counterexample〉: Disregard any
counter that has a non-zero value on any successful
run. These must represent predicates that can be true
without a subsequent program failure.

We characterize these as strategies because they are sub-
ject to noise from random sampling, and also because not
all are equally applicable to all bugs. For example, elimina-
tion by 〈successful counterexample〉 assumes that the bug is
deterministic. The other three strategies do not make this
assumption, but do require enough runs so that any predi-
cate that is ever true is likely to have been observed true at
least once. Note that these strategies are also not indepen-
dent: 〈universal falsehood〉 and 〈lack of failing coverage〉 each
eliminate a subset of the counters identified by 〈lack of failing
example〉. Elimination strategies also vary in which kinds of
runs they exploit: 〈successful counterexample〉 considers only
successful runs; 〈lack of failing example〉 and 〈lack of failing
coverage〉 consider only failures; 〈universal falsehood〉 uses
both.

3.2.3 Data Collection and Analysis
One function call, with one update to one of three coun-

ters, is considered one instrumentation site. We transform
the instrumentation to be sampled rather than uncondi-
tional using the framework described in Section 2. In lieu
of a large user community, we generate many runs artifi-
cially in the spirit of the Fuzz project [20]. Each run uses a
randomly selected set of present or absent files, randomized



command line flags, and randomized responses to ccrypt

prompts including the occasional EOF.
We have collected 2990 trial runs at a sampling rate of

1/1000; 88 of these end in a crash. Applying each elimination
strategy independently to the counter traces:

〈Universal falsehood〉 discards 1569 counters that are zero
on all runs, leaving 141 candidate predicates.

〈Lack of failing coverage〉 discards 526 counter triples that
are all zero on all crashes, leaving 132 candidate pred-
icates.

〈Lack of failing example〉 discards 1665 counters that are
zero on all crashes, leaving 45 candidate predicates.

〈Successful counterexample〉 discards 139 counters that
are non-zero on any successful run, leaving 1571 can-
didate predicates.

At first glance, elimination by 〈universal falsehood〉 is quite
effective while elimination by 〈successful counterexample〉
seems rather poor. However, these two strategies test dis-
joint properties and can be combined to good effect. The
combination leaves only those predicates that are sometimes
observed to be true in failed runs but never observed to be
true in successful runs. For our ccrypt trials, only two pred-
icates meet this criterion:

1. traverse.c:320: file_exists() return value > 0
2. traverse.c:122: xreadline() return value == 0

Examining the corresponding code shows that these predi-
cates are consistent with the circumstances under which the
bug is reported to occur. This call to file_exists() re-
turns “1” when an output file already exists. A confirmation
prompt is presented, and this call to xreadline() returns
the user’s reply, or null if the input terminal is at EOF. Inspec-
tion of the code immediately following the xreadline() call
shows that the programmer forgot to check for the EOF case:
he assumes that xreadline() returns a non-null string, and
immediately inspects its contents. We have successfully iso-
lated this (known) bug in ccrypt, and the fix is clear.

While the file_exists() predicate is not itself the cause
of the bug, the fact that it appears on our list is useful in-
formation. It represents a necessary condition under which
crashes occur. That may be helpful, for example, if the engi-
neer wishes to reproduce the bug in-house for further study.
Of course, there should be some runs where file_exists()

reports that the file exists but xreadline() returns a valid
response from the user and therefore the program does not
crash. If the file_exists() call is sampled on any such
run, elimination by 〈successful counterexample〉 correctly de-
termines that this predicate does not imply failure. It will
be eliminated from further consideration, and only the true
“smoking gun,” the call to xreadline(), will remain. Thus
we have the ability to identify not only the direct cause of a
bug but also related behaviors that are strongly but imper-
fectly correlated with failure. We further explore this idea
of broad correlation in Section 3.3, where even the buggy
line of code itself does not always cause a crash.

As previously noted, the first three elimination strategies
partially overlap, whereas the last, 〈successful counterexam-
ple〉, is distinct. 〈Universal falsehood〉 and 〈successful coun-
terexample〉 only look at successful runs, hence are easily
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Figure 2: Progressive elimination by 〈successful coun-
terexample〉 as successful runs accumulate. Crosses
mark means; error bars mark one standard devia-
tion.

analyzed together. 〈Lack of failing example〉 in general elim-
inates the most features, and therefore is also a good can-
didate to combine with 〈successful counterexample〉. Doing
so in the case of ccrypt leaves us with exactly the same
two features, though in general one might find different re-
sults. Elimination by 〈lack of failing coverage〉, on the other
hand, is an inherently weaker strategy: when combined with
〈successful counterexample〉, we are still left with 86 features.

3.2.4 Refinement over time
In order to gain a better understanding of how the elimi-

nation strategies benefit from increasing the number of runs,
we have experimented with randomized subsets of our com-
plete run suite. We have seen that elimination by 〈successful
counterexample〉 is quite effective when given a few thousand
successful runs; how well does it perform with a smaller
suite? We start with the 141 candidate predicates that are
ever nonzero on any run. We assemble a random subset of
fifty successful runs and filter the predicate set using elimi-
nation by 〈successful counterexample〉. We then add another
fifty runs, and another fifty, and so on in steps up to the full
set of 2902 successful runs. We repeat this entire process
one hundred times to gauge how rapidly one can expect the
predicate set to shrink as more runs arrive over time.

Figure 2 shows the results. The crosses mark the mean
number of predicates remaining, while the vertical bars ex-
tend one standard deviation above and below the mean. The
short vertical bars in this case tells us that there is relatively
little diversity in each of the hundred random subsets at any
given size. The results show that, on average, 1750 runs are
enough to isolate twenty candidate features, another 500
runs reduces that count by half, and a total of 2600 runs
is enough to narrow the set of good features down to just
five. One would expect more variety in runs collected from
real users rather than an automated script. Greater diver-
sity can only benefit the analysis, as it would provide more
novel counterexamples and therefore may eliminate more
uninteresting predicates more rapidly.



3.2.5 Performance Impact
Instrumenting function return values confounds several of

the optimizations proposed in Section 2. If most function
calls are instrumentation sites, and if most function calls
terminate acyclic regions, then most acyclic regions contain
only a single site and we have poor amortization of sampling
overhead. Furthermore, ccrypt is built one object file at a
time, and we must conservatively assume that any cross-
object function call is not weightless. Thus, for much of
ccrypt, our sampling transformation devolves to a simpler
but slower pattern of checking the next-sample countdown
at each and every site.

In spite of this, the performance impact of sampled instru-
mentation is minimal. Using an experimental setup similar
to that described earlier in Section 3.1.1, we find that the
overhead for 1/1000 sampling is less than 4%, and progres-
sively sparser sampling rates shrink this still further. Un-
conditional instrumentation also performs well here, making
either reasonable for this particular application. In the next
section, though, we consider a more invasive instrumenta-
tion strategy that requires sampling to keep overhead under
control.

3.3 Statistical Debugging
In this section we consider the automatic isolation of non-

deterministic bugs. Recall from Section 1 that a bug is non-
deterministic with respect to a set of program predicates
if no predicate in the set is perfectly correlated with pro-
gram crashes. For this case study we use version 1.06 of the
GNU implementation of bc. We find that feeding bc nine
megabytes of random input causes it to crash roughly one
time in four from, as it turns out, a previously unknown
buffer overrun error. Since bc sometimes terminates suc-
cessfully even when it overruns the buffer, this bug is non-
deterministic.

We instrument bc using a variation on our previous strat-
egy of counter triples. We abandon elimination by 〈successful
counterexample〉1 in favor of statistical modeling to identify
behavior that is broadly correlated with failure.

3.3.1 Instrumentation Strategy
We instrument bc to guess and randomly check a large

number of predicates. As before, our goal is to identify
predicates that capture bad behavior: false when the pro-
gram succeeds and true when the program crashes. We cast
an extremely broad net, but with an eye toward pointer and
buffer errors. For pointers, null pointers are of interest. Rel-
ative addresses of pointers may be interesting as well, as this
may capture cases where one pointer scans within a second
pointed-to buffer. Checking pointer/pointer equality may
reveal aliasing that, when not anticipated by the program-
mer, can lead to dangling “wild” pointer bugs. Scalar vari-
ables serve as array indexes, pointer offsets, and in many
other roles; relationships among scalars may reveal buffer
overruns, unanticipated consequences of negative values, in-
valid enumeration constants, or a variety of other problems.

At any direct assignment to a scalar variable a, we iden-
tify all other local or global variables {b1, b2, . . . , bn} that
are also in scope and that have the same type. We then com-
pare the updated a to each bi, and note whether a was less

1Because the bug is non-deterministic, if we have enough
runs no predicates will satisfy elimination by 〈successful
counterexample〉.

than, equal to, or greater than bi. We compare pointers to
same-typed pointers as well, and additionally compare each
pointer for equality with null. One comparison between a

and bi, which bumps one of three counters, is considered
to be one instrumentation site subject to random sampling.
When an instrumented application terminates, it emits the
vector of counter triples along with a flag indicating whether
it completed successfully or was aborted by a fatal signal.

For bc there are 10,050 counter triples, or 30,150 counters
in all. The vast majority of these are of no interest: either
they compare completely unrelated variables, or they ex-
press relationships that behave identically in both successful
and failed runs. The challenge is to find the few predicates
that matter.

3.3.2 Crash Prediction Using Logistic Regression
To find the important predicates, we recast bug isolation

as a statistical analysis problem. Each run of bc consti-
tutes one sample point consisting of 30,150 observed features
(counters) and one binary outcome (0 = succeeded, 1 =
crashed). Given numerous data points (sampled runs), we
want to identify a subset of our 30,150 features that pre-
dict the outcome. This is equivalent to the machine learning
problem of learning a binary classifier with feature selection,
i.e., using as few input features as possible.

In the classification setting, we take a set of data with
known binary output (a training set), and attempt to learn
a binary classifier that gives good predictions on a test set.
The learning process usually involves additional parameters
whose values can be determined using a cross-validation set.
In our case, the end goal is to narrow down the set of fea-
tures. Hence our method must balance good classification
performance with aggressive feature selection.

A binary classifier takes feature values as inputs, and out-
puts a prediction of either 0 or 1. Logistic regression [17]
is a method of learning a binary classifier where the output
function is assumed to be logistic. The logistic function is a
continuous “S”-shaped curve approaching 0 on one end, and
1 on the other. The output can be interpreted as a prob-
ability measure of how likely it is that the data point falls
within class 0 or 1. Quantizing the logistic function out-
put then gives us a binary classifier: if the output is greater
than 1/2, then the data point is classified as class 1 (a crash),
otherwise it falls under class 0 (a successful run). Feature
selection can be achieved by regularizing the function pa-
rameters to ignore most input features, forcing it to form a
model that predicts success or failure using just a small se-
lection of sampled features. Regularization is important for
our purposes because we expect that most of our features are
wild guesses, but that there may be just a few that correctly
characterize the bug.

While other techniques for combined classification and
feature selection exist, few of them are particularly well-
suited for this problem. Some methods [15, 24] calculate
a univariate correlation coefficient independently for each
feature; other methods, such as decision trees [6], are more
computationally intensive. In our dataset, the features are
clearly not independent of each other, and the size of the
problem can potentially be too large for more computation-
ally intensive methods. Furthermore, logistic regression is a
discriminative classification method, and thus does not make
any assumptions about the underlying distribution of the in-
put. This is crucial since our features arise from a decidedly



artificial process and would be difficult to characterize using
simple distributions.

Suppose our training set D consists of M data points
(x1, y1), . . . , (xM , yM ), where each xi ∈ RN denotes a vector
of input predicate counters, and each yi = {0, 1} denotes
the corresponding output label. To learn a good classifier,
we can maximize the log likelihood of the training set.

LL(D) =

M∑
i=1

[yi log P (Y = 1|x)

+(1− yi) log(1− P (Y = 1|x))].

Here the output labels yi are used as indicator functions to
zero out exactly one of the two terms in each summand. In
logistic regression, the distribution P (Y = 1|x) is modeled

as the logistic function µβ̃(x) with parameters β̃ = 〈β0 ∈
R, β ∈ RN 〉.

P (Y = 1|x) = µβ̃(x) =
1

1 + exp(−β0 − βT x)
.

The logistic parameters β0 and β take on the respective
roles as the intercept and slope of the classifier, and essen-
tially weigh the relative importance of each feature in the
final outcome. We expect most of the input features to have
no influence over the success or failure of the program, so
we place an additional constraint that forces most of the β’s
toward zero. This is accomplished by subtracting a penalty
term based on the `1 norm ‖β̃‖1 =

∑M
j=0|βj |. We can tune

the importance of this regularization term through a regular-
ization parameter λ. The penalized log likelihood function
is:

LL(β̃|D, λ) =

M∑
i=1

[yi log µβ̃(xi) + (1− yi) log(1− µβ̃(xi))]

− λ‖β̃‖1.

An assignment of β coefficients that maximizes this func-
tion represents a model that maximizes the fidelity of its
predictions while still limiting itself to form those predic-
tions on the basis of only a small number of features from
the complete feature set.

3.3.3 Data Collection and Analysis
Our bc data set consists of 4390 runs with distinct ran-

dom inputs and distinct randomized 1/1000 sampling. We
randomly chose 2729 runs for training, 322 runs for cross-
validation, and 1339 runs for testing. Although there are
30,150 raw features, many can be discarded immediately us-
ing elimination by 〈universal falsehood〉: in the training set
27,242 features are always zero. Hence the effective number
of features used in training is 2908. (Elimination by 〈lack of
failing example〉 can eliminate another 647 features that are
zero for all failed runs. However we find that the presence
or absence of these 647 features does not significantly affect
the quality of the regularized logistic regression results.)

To make the magnitude of the β parameters comparable,
the feature values must be on the same scale. Hence all
the input features are shifted and scaled to lie on the in-
terval [0, 1], then normalized to have unit sample variance.
A suitable value for the regularization parameter λ is de-
termined through cross-validation to be 0.3. The model is
then trained using stochastic gradient ascent to reach a local
maximum of the penalized log likelihood. Using a step size

152 void
153 more_arrays ()
154 {
155 int indx;
156 int old_count;
157 bc_var_array **old_ary;
158 char **old_names;
159

160 /* Save the old values. */
161 old_count = a_count;
162 old_ary = arrays;
163 old_names = a_names;
164

165 /* Increment by a fixed amount and allocate. */
166 a_count += STORE_INCR;
167 arrays = (bc_var_array **) bc_malloc (a_count*si...
168 a_names = (char **) bc_malloc (a_count*sizeof(ch...
169

170 /* Copy the old arrays. */
171 for (indx = 1; indx < old_count; indx++)
172 arrays[indx] = old_ary[indx];
173

174

175 /* Initialize the new elements. */
176 for (; indx < v_count; indx++)
177 arrays[indx] = NULL;
178

179 /* Free the old elements. */
180 if (old_count != 0)
181 {
182 free (old_ary);
183 free (old_names);
184 }
185 }

Figure 3: Suspect bc function more_arrays(). All
top-ranked crash-predicting features point to large
values of indx on line 176.

of 10−5, the model usually converges within sixty iterations
through the training set. This takes roughly thirty minutes
in MATLAB on a 1.8 GHz Pentium 4 CPU with 1 GB of
RAM.

Once the model has been trained, predicates with the
largest β coefficients suggest where to begin looking for the
bug. In our case, the top five ranked coefficients are well-
separated in magnitude from the rest, and show an unmis-
takable trend:

1. storage.c:176: more_arrays(): indx > scale
2. storage.c:176: more_arrays(): indx > use_math
3. storage.c:176: more_arrays(): indx > opterr
4. storage.c:176: more_arrays(): indx > next_func
5. storage.c:176: more_arrays(): indx > i_base

The source code for more_arrays() appears in Figure 3.
A comment earlier in the same file suggests that this one
of a suite of “three functions for increasing the number of
functions, variables, or arrays that are needed.” The logic
is a fairly clear instance of the buffer reallocation idiom,
even to one unfamiliar with the code: line 167 allocates
a larger chunk of memory; line 171 is the top of a loop
that copies values over from the old, smaller array; line 176
completes the resize by zeroing out the new extra space.
As the comment suggests, there are two similar functions
(more_functions() and more_variables()) nearby that do
largely the same thing with different storage pools. The text
of these three functions is nearly identical, but each uses
different global variables (such as a_count versus f_count

versus v_count).



The top ranked predicates seem bizarre on first exami-
nation, because the variables they relate do not appear to
have any real connection to each other or to more_arrays().
For example, scale tracks significant digits for floating point
calculations, while use_math records whether an initial math
library is to be loaded. Why would crashes tend to happen
when local variable indx exceeds these seemingly unrelated
globals on this particular line? An obvious hypothesis is
that indx is simply unusually large in such cases. If indx

is large, then it will tend to be larger than any number of
otherwise unrelated variables. Perhaps crashes occur when
the input to bc defines unusually large numbers of arrays.

Closer scrutiny of more_arrays() quickly reveals this to
be the case. The allocation on line 167 requests space for
a_count items. The copying loop on line 171 ranges from
1 through old_count - 1. The zeroing loop on line 176
continues on from old_count through v_count - 1. And
here we find the bug: the new storage buffer has room for
a_count elements, but the second loop is incorrectly bound
by v_count instead. After a glimpse at the neighboring
more_variables() function it is clear that more_arrays()

was created by copying and pasting more_variables() and
then changing names like v_count and v_names to a_count

and a_names. The loop bound on line 176 was missed in the
renaming.

The logistic regression model points us at the buggy line,
the buggy variable, and even reveals something of the condi-
tions under which the bug appears. Having found the bug,
it is reasonable to ask whether the statistical analysis could
have pointed at it even more directly. The mistaken use of
v_count instead of a_count on line 176 means that a buffer
overrun occurs when indx > a_count on line 176. This does
correspond to a predicate sampled by our system, but this
predicate is ranked 240th in the trained model. Why was
this, the smoking gun, not ranked first?

There are several reasons to consider. Samples are taken
randomly, while the model itself is trained using stochastic
gradient ascent. Thus, a degree of noise is fundamental to
the process. Even crashing is not guaranteed: out of 320
runs in which sampling spotted indx > a_count at least
once, 66 did not crash. Thus, C programs can “get lucky”,
meaning that this is not a strict overrun =⇒ crash impli-
cation. Manual inspection of the data reveals a high degree
of redundancy among many instrumentation sites within
more_arrays(), meaning that the model has several fea-
tures to choose from that have equivalent predictive power.
This suggests that our counters may be too fine-grained: we
are distinguishing many behaviors that are in fact so tightly
interrelated as to be equivalent.

This bug seems clear enough once found. However it has
been present and undiscovered at least since 1992 (the time
stamp on this file in the oldest version of GNU bc that we can
find). Many bugs are obvious only once one knows where
to look. The logistic regression results directed us to one
misbehaving variable on one line of code, out of 8910 lines
in bc as a whole. Our approach does not automatically find
and fix bugs. But it does suggest where to start looking,
and what sort of scenarios (e.g., unusually large indx) to
consider. Although we are still learning about the capa-
bilities of this system and how to interpret its results, we
believe that statistically guided debugging has the potential
to make the process of finding and fixing bugs more efficient
and more responsive to the needs of end users.
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Figure 4: Relative performance of bc with uncondi-
tional or sampled instrumentation

3.3.4 Performance Impact
Our bc instrumentation is fairly dense. The leftmost bar

in Figure 4 shows that if this instrumentation is added with-
out sampling, the performance penalty is 13%. A sampling
density of 1/100 cuts this in half (6%). At the 1/1000 density
used in our statistical debugging experiment, the penalty is
barely measurable (0.5%). Still lower densities show small,
unexpected speedups relative to uninstrumented code. This
is apparently due to effects such as changes in relative code
alignment, cache behavior, measurement noise, and other
unpredictable factors.

4. RELATED WORK
Sampling has a long history, with most applications focus-

ing on performance profiling and optimization. Any sam-
pling system must define a trigger mechanism that signals
when a sample is to be taken. Typical triggers include pe-
riodic hardware timers/interrupts [8, 25, 27], periodic soft-
ware event counters (e.g., every nth function call) [3], or
both. In most cases, the sampling interval is strictly peri-
odic; this may suffice when hunting for large performance
bottlenecks, but may systematically miss rare events.

The Digital Continuous Profiling Infrastructure [1] is un-
usual in choosing sampling intervals randomly. However,
the random distribution is uniform, such as one sample ev-
ery 60K to 64K cycles. Samples thus extracted are not inde-
pendent. If one sample is taken, there is zero chance of tak-
ing any sample in the next 1–59,999 cycles and zero chance
of not taking exactly one sample in the next 60K–64K cy-
cles. We trigger samples based on a geometric distribution,
which correctly models the interval between successful in-
dependent coin tosses. The resulting data is a statistically
rigorous fair random sample, which in turn grants access to
a large domain of powerful statistical analyses.

Recent work in trace collection has focused on program
understanding. Techniques for capturing program traces
confront challenges similar to those we face here, such as
minimizing performance overhead and managing large quan-
tities of captured data. Dynamic analysis in particular must



encode, compress, or otherwise reduce an incoming trace
stream in real time, as the program runs [12, 22]. It may be
difficult to directly adapt dynamic trace analysis techniques
to a domain where the trace is sampled and therefore in-
complete.

Our effort to understand and debug programs by selecting
predicates is partly inspired by Daikon [13]. Like Daikon, we
begin with fairly unstructured guesses and eliminate those
that do not appear to hold. Unlike Daikon, we are concerned
with gathering data from production code, which leads us to
use sampling of a large number of runs and statistical mod-
els; the Daikon experiments are done on a smaller number
of complete traces. We are also interested in detecting bugs,
while Daikon focuses on the somewhat different problem of
detecting program invariants.

The DIDUCE project [16] also attempts to identify bugs
using analysis of executions. Unlike Daikon, most processing
does take place within the client program. As in our study,
DIDUCE attempts to relate changes in predicates to the
manifestation of bugs. However, DIDUCE performs com-
plete tracing and focuses on discrete state changes, such as
the first time a predicate transitioned from true to false. Our
approach is more probabilistic: we wish to identify broad
trends over time that correlate predicate violations with in-
creased likelihood of failure.

Software tomography as realized through the GAMMA
system [5] shares our goal of low-overhead distributed mon-
itoring of deployed code. Applications to date have focused
on code coverage and traditional performance monitoring
tasks, whereas our primary interest is bug isolation.

5. PRIVACY AND SECURITY
As noted in Section 1, the most important program behav-

iors are those exhibited by deployed software in the hands of
users. However, any scheme for monitoring software post-
deployment necessarily raises privacy and security concerns.
The issues are complex and as much social as technical.
However, our approach can only succeed if users feel safe
contributing to the shared data pool. Thus, addressing these
concerns is both a moral and a practical imperative.

The experiences of Netscape/Mozilla with crash feedback
systems may be illustrative. We have met with members
of the Netscape Talkback Team, a group of quality assur-
ance engineers who manage crash reports from the auto-
mated feedback system. Considerable effort has gone into
designing the client side of this system so that users are fully
informed. The system is strictly opt-in on a per-failure ba-
sis, or may be disabled entirely. The user may optionally
examine the contents of the crash report, and no informa-
tion is ever sent to Netscape without explicit authorization.
Figure 5 shows the sort of information presented each time
Netscape or Mozilla has crash data to submit.

Not all users will read or understand these assurances.
Even so, there are some technical measures we can take to
protect the privacy of even non-technically savvy users. The
very nature of the sampling process itself affords a degree of
anonymity. We collect a small bit of information from many,
many users; any single run has little revelatory power.

Some data, or some parts of execution, may be so sensitive
that even this diffuse information leakage is unacceptable.
Several type-based analyses under the broad heading of se-
cure information flow [7, 26, 28] may be helpful here. Such
systems statically identify parts of a program that manipu-

The Netscape Quality Feedback Agent is a feature that
gathers predefined technical information about Communi-
cator and sends it back to the Netscape software develop-
ment team so they can improve future versions of Commu-
nicator.

. . .

No information is sent until you can examine exactly what
is being sent.

. . .

Information gathered by this agent is limited to information
about the state of Communicator when it has an error.
Other sensitive information such as web sites visited, email
messages, email addresses, passwords, and profiles will not
be collected.

All information Netscape collects via this agent will be used
only for the purposes of fixing product defects and improv-
ing the quality of Netscape Communicator. This data is
for internal diagnostic purposes only and will not be shared
with third parties.

For more information on Netscape’s general privacy pol-
icy, go to: <http://home.netscape.com/legal_notices/
privacy.html>

Communicator activates the agent dialog box when a prob-
lem occurs, or when it has gathered information that
Netscape needs to improve future versions of Communi-
cator.

. . .

If you prefer to disable the agent, you may do so here:

Figure 5: Privacy assurances as used in Netscape
Quality Feedback Agent

late sensitive data; we can avoid inserting instrumentation
that reveals such values. Of course, this will make it diffi-
cult to track bugs in security-sensitive parts of an applica-
tion, but that trade-off is always present: one can only fix
bugs about which the customer is willing to provide useful
information.

When using statistical models such as that of Section 3.3,
an attractive mechanism for protecting user anonymity be-
comes available. Many statistical analyses are characterized
by a set of sufficient statistics: a collection of values that
completely capture the internal state of the analysis. For
example, if one wanted to compute the mean of a stream of
numbers, then a running total and a count would be suffi-
cient statistics: the mean can be computed from these with-
out retaining the individual numbers in the stream. Simi-
larly, once the logistic regression parameters have been up-
dated with a new trace, the trace itself may be discarded. If
the analysis host is compromised, an attacker cannot recover
the precise details of any single past trace.

A statistical approach designed to cope with noise offers
some protection against malicious users who might try to
poison the central database with bogus data, or overwhelm
it with data representing the particular bugs they wish to
see fixed. Recent work on protecting privacy and preventing
abuse in collaborative filtering systems may also be applica-
ble [9, 11].

6. CONCLUSIONS
We have described a sampling infrastructure for gathering

information about software from the set of runs produced
by its user community. To ensure that rare events are ac-

http://home.netscape.com/legal_notices/privacy.html
http://home.netscape.com/legal_notices/privacy.html


curately represented, we use a Bernoulli process to do the
sampling, and we have described an efficient implementa-
tion of that process. We have also presented several sample
applications: sharing the overhead of assertions, predicate
guessing and elimination to isolate a deterministic bug, and
regularized logistic regression to isolate a non-deterministic
memory corruption error.
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