
Precise and Compact Modular Procedure
Summaries for Heap Manipulating Programs ∗

Isil Dillig
Department of Computer Science

Stanford University
isil@cs.stanford.edu

Thomas Dillig
Department of Computer Science

Stanford University
tdillig@cs.stanford.edu

Alex Aiken
Department of Computer Science

Stanford University
aiken@cs.stanford.edu

Mooly Sagiv
Department of Computer Science

Tel Aviv University
msagiv@post.tau.ac.il

Abstract
We present a strictly bottom-up, summary-based, and precise heap
analysis targeted for program verification that performs strong up-
dates to heap locations at call sites. We first present a theory of heap
decompositions that forms the basis of our approach; we then de-
scribe a full analysis algorithm that is fully symbolic and efficient.
We demonstrate the precision and scalability of our approach for
verification of real C and C++ programs.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verication

General Terms Languages, Verification, Experimentation

1. Introduction
It is well-known that precise static reasoning about the heap is a key
requirement for successful verification of real-world software. In
standard imperative languages, such as Java, C, and C++, much of
the interesting computation happens as values flow in and out of the
heap, making it crucial to use a precise, context- and flow-sensitive
heap analysis in program verification tools. Flow-sensitivity, in par-
ticular, enables strong updates. Informally, when analyzing an as-
signment a := b, a strong update replaces the analysis informa-
tion for a with the analysis information for b. This natural rule is
unsound if a is a summary location, meaning a may represent more
than one concrete location. In previous work there is an apparent
tension between scalability and precision in heap analysis:

∗ This work was supported by grants from NSF and DARPA (CCF-
0430378, CCF-0702681).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’11, June 4–8, 2011, San Jose, California, USA.
Copyright c© 2011 ACM 978-1-4503-0663-8/11/06. . .

• For scalability, it is desirable to analyze the program in pieces,
for example, one function at a time. Many of the most scalable
analyses in the literature are modular [1, 2].
• For precision, a large body of empirical evidence shows it is

necessary to perform strong updates wherever possible [3, 4].

It is not obvious, however, how to perform strong updates in a
modular heap analysis. Consider a function h(x, y){e}. When ana-
lyzing h in isolation, we do not know how many, or which, locations
x and y may point to at a call site of h—it may be many (if either x
or y is a summary location), two, or even one (if x and y are aliases).
Without this information, we cannot safely apply strong updates to
x and y in e. Thus, while there is a large body of existing work
on flow- and context-sensitive heap analysis, most algorithms for
this purpose either perform a whole-program analysis or perform
strong updates under very restrictive conditions.

In this paper, we present a modular, strictly bottom-up, flow-
and context-sensitive heap analysis that uses summaries to apply
strong updates to heap locations at call sites. As corraborated by
our experiments, strong updates are crucial for the level of preci-
sion required for successful verification. Furthermore, we are inter-
ested in a modular, summary-based analysis because it offers the
following key advantages over a whole program analysis:

• Reuse of analysis results: A major problem with whole-
program analysis is that results for a particular program com-
ponent cannot be reused, since functions are analyzed in a par-
ticular context. For instance, adding a single caller to a library
may require complete re-analysis of the entire library. In con-
trast, modular analyses allow complete reuse of analysis results
because procedure summaries are valid in any context.
• Analysis scalability: Function summaries express a function’s

behavior in terms of its input/output interface, abstracting away
its internal details. We show experimentally that our function
summaries do not grow with program size; thus, an implemen-
tation strategy that analyzes a single function at a time, requir-
ing only one function and its callee’s summaries to be in mem-
ory, should scale to arbitrarily large programs.
• Parallelizability: In modular analysis, any two functions that

do not have a caller/callee relationship can be analyzed in paral-
lel. Thus, such analyses naturally exploit multi-core machines.

Figure 1. Summary associated with function f

To illustrate our approach, consider the following simple func-
tion f along with its three callers g1, g2, and g3:

void f(int** a, int** b, int* p, int* q) {
*a = p; *b = q; **a = 3; **b = 4; }

void g1() {
int** a, int** b;
a = new int*;
b = new int*;
int p = 0, q=0;
f(a, b, &p, &q);
assert(p == 3); }

void g2() {
int** a, int** b;
a = new int*;
b = new int*;
int p = 0;
f(a, b, &p, &p);
assert(p == 4); }

void g3() {
int** a, int** b;
a = new int*;
b = a;
int p = 0, q=0;
f(a, b, &p, &q);
assert(p == 0); }

Here, although the body of f is conditional- and loop-free, the value
of *p after the call to f may be either 3, 4, or remain its initial value.
In particular, in contexts where p and q are aliases (e.g., g2), *p is
set to 4; in contexts where neither a and b nor p and q are aliases
(e.g., g1), *p is set to 3, and in contexts where a and b are aliases
but p and q are not (e.g., g3), the value of *p is unchanged after
a call to f. Furthermore, to discharge the assertions in g1, g2, and
g3, we need to perform strong updates to all the memory locations.

To give the reader a flavor of our technique, the function sum-
mary of f computed by our analysis is shown in Figure 1, which
shows the points-to graph on exit from f (i.e., the heap when f
returns). Here, points-to edges between locations are qualified by
constraints, indicating the condition under which this points-to re-
lation holds. The meaning of a constraint such as ∗p = ∗q is that
the location pointed to by p and the location pointed to by q are the
same, i.e., p and q are aliases. Observe that Figure 1 encodes all
possible updates to *p precisely: In particular, this summary indi-
cates that *p has value 3 under constraint ∗a 6= ∗b ∧ ∗p 6= ∗q (i.e.,
neither a and b nor p and q are aliases); *p has value 4 if p and q
are aliases, and *p retains its initial value (**p) otherwise.

There are three main insights underlying our approach:

• First, we observe that a heap abstraction H at any call site of f
can be overapproximated as the finite union of some structurally
distinct skeletal points-to graphs Ĥ1, . . . Ĥm where each ab-
stract location points-to at most one location. This observation
yields a naive, but sound, way of performing summary-based
analysis where the heap state after a call to function f is condi-
tioned upon the skeletal graph at the call site.
• Second, we symbolically encode all possible skeletal heaps on

entry to f in a single symbolic heap where points-to edges
are qualified by constraints. This insight allows us to obtain a
single, polymorphic heap summary valid at any call site.
• Third, we observe that using summaries to apply strong updates

at call sites requires a negation operation on constraints. Since
these constraints may be approximations, simultaneous reason-
ing about may and must information on points-to relations is
necessary for applying strong updates when safe. To solve this
difficulty, we use bracketing constraints [4].

The first insight, developed in Section 2, forms the basic frame-
work for reasoning about the correctness and precision of our ap-
proach. The second and third insights, exploited in Section 4, yield
a symbolic and efficient encoding of the basic approach. To sum-
marize, this paper makes the following contributions:

• We develop a theory of abstract heap decompositions that elu-
cidates the basic principle underlying modular heap analyses.
This theory shows that a summary-based analysis must lose ex-
tra precision over a non-summary based analysis in some cir-
cumstances and also sheds light on the correctness of earlier
work on modular alias analyses, such as [5–7].
• We present a full algorithm for performing modular heap analy-

sis in a symbolic and efficient way. While our algorithm builds
on the work of [7] in predicating summaries on aliasing pat-
terns, our approach is much more precise and is capable of per-
forming strong updates to heap locations at call sites.
• We demonstrate experimentally that our approach is both scal-

able and precise for verifying properties about real C and C++
applications up to 100,000 lines of code.

2. Foundations of Modular Heap Analysis
As mentioned in Section 1, our goal is to analyze a function f
independently of its callers and generate a summary valid in any
context. The main difficulty for such an analysis is that f ’s heap
fragment (the portion of the program’s heap reachable through f ’s
arguments and global variables on entry to f) is unknown and may
be arbitrarily complex, but a modular analysis must model this
unknown heap fragment in a conservative way.

Our technique models f ’s heap fragment using abstractions
H1, . . . , Hk such that (i) in each Hi, every location points to ex-
actly one location variable representing the unknown points-to tar-
gets of that location on function entry, (ii) each Hi represents a
distinct aliasing pattern that may arise in some calling context, and
(iii) the heap fragment reachable in f at any call site is overapprox-
imated by combining a subset of the heaps in H1, . . . , Hk.

As the above discussion illustrates, our approach requires rep-
resenting the heap abstraction at any call site as the finite union of
heap abstractions where each pointer location has exactly one tar-
get. We observe that every known modular heap analysis, including
ours, has this this one-target property. In principle, one could allow
the unknown locations in a function’s initial heap fragment to point
to 2, 3, or any number of other unknown heap locations, but it is
unclear how to pick the number or take advantage of the potential
extra precision.

In this section, we present canonical decompositions, through
which the heap is decomposed into a set of heaps with the one-
target property, and structural decompositions, which coalesce iso-
morphic canonical heaps. We then show how these decompositions
can be used for summary-based heap analysis.

2.1 Preliminaries
We describe the basic ideas on a standard may points-to graph,
which we usually call a heap for brevity. A labeled node A rep-
resents one or more concrete memory locations ζ(A).

DEFINITION 1. (Summary Location) An abstract location that
may represent multiple concrete locations is a summary location
(e.g., modeling elements in an array/list). An abstract location rep-
resenting exactly one concrete location is a non-summary location.

For any two distinct abstract locations A and A′, we require
ζ(A) ∩ ζ(A′) = ∅, and that |ζ(A)| = 1 if A is a non-summary
node. An edge (A,B) in the points-to graph denotes a partial
function ζ(A,B) from pointer locations in ζ(A) to locations in

A

C

B

D

A

C

B

D

A

C

B

D

A

C

B

D

A

C

B

D

Figure 2. A heap H and its canonical decomposition H1, . . . , H4

ζ(B), with the requirement that for every pointer location l ∈ ζ(A)
there is exactly one nodeB such that ζ(A,B)(l) is defined (i.e., each
pointer location has a unique target in a concrete heap). Finally,
each possible choice of ζ and compatible edge functions ζ(A,B) for
each edge (A,B) maps a points-to graph H to one concrete heap.
We write γ(H) for the set of all such possible concrete heaps for
the points-to graphH . We also writeH1 w H2 if γ(H1) ⊇ γ(H2),
and H1 tH2 for the heap that is the union of all nodes and edges
in H1 and H2. We define a semantic judgment H |= S : H ′ as:

H |= S : H ′ ⇔ ∀h ∈ γ(H). ∃h′ ∈ γ(H ′). eval(h, S) = h′

where eval(h, S) is the result of executing code fragment S starting
with concrete heap h. Now, we write H `a S : H ′ to indicate that,
given a points-to graph H and a program fragment S, H ′ is the
new heap obtained after analyzing S using pointer analysis a. The
pointer analysis a is sound if for all program fragments S:

H `a S : H ′ ⇒ H |= S : H ′

2.2 Canonical Decomposition
In this section, we describe how to express a points-to graph H as
the union of a set of points-to graphs H1, . . . , Hk where in each
Hi, every abstract location points to at most one location.

DEFINITION 2. (Canonical points-to graph) We say a points-to
graph is canonical if every abstract memory location has an edge
to at most one abstract memory location.

DEFINITION 3. (Canonical decomposition) The canonical de-
composition of heapH is obtained by applying these steps in order:

1. If a summary node A points to multiple locations T1, . . . , Tk,
replace T1, . . . , Tk with a single summary node T such that any
edge to/from any Ti is replaced with an edge to/from T .

2. Let B be a location with multiple edges to T1, . . . , Tk. Split the
heap into H1, . . . , Hk where in each Hi, B has exactly one
edge to Ti, and recursively apply this rule to each Hi.

LEMMA 1. Let H1, . . . , Hk be the canonical decomposition of H .
Then (H1 t . . . tHk) w H .

PROOF 1. Let H ′ be the heap obtained from step 1 of Defini-
tion 3. To show H ′ w H we must show γ(H ′) ⊇ γ(H). Let
h ∈ γ(H) and let ζH by the corresponding mapping. We choose
ζH

′
(T) = ζH(T1) ∪ ... ∪ ζH(Tk) and ζH

′
(X) = ζH(X) other-

wise, and construct the edge mappings ζH(A,B) from ζH
′

(A,B) analo-
gously. Thus, h ∈ γ(H ′) and we have γ(H ′) ⊇ γ(H). In step 2,
observe that any locationB with multiple edges to T1, . . . , Tk must
be a non-summary location. Hence, the only concrete location rep-
resented by B must point to exactly one Ti in any execution. Thus,
in this step, (H1 t . . . tHk) = H ′ w H . �

EXAMPLE 1. Figure 2 shows a heap H with only non-summary
locations. The canonical decomposition of H is H1, H2, H3, H4,
representing four different concrete heaps encoded by H .

A

C

B

D

A

CD

B

Figure 3. A heap H and its canonical decomposition H1

X YX Y X Y

Figure 4. Two isomorphic canonical heaps and their skeleton

EXAMPLE 2. Figure 3 shows another heap H with summary node
A (indicated by double circles) and its canonical decomposition
H1. HeapH1 is obtained fromH by collapsing locations C andD
into a summary location CD. Observe that we cannot split H into
two heaps H1 and H2 where A points to C in H1 and to D in H2:
Such a decomposition would incorrectly state that all elements inA
must point to the same location, whereasH allows distinct concrete
elements in A to point to distinct locations.

COROLLARY 1. If H has no summary nodes with multiple edges,
then its canonical decomposition is exact, i.e.,

⊔
1≤i≤kHi = H .

PROOF 2. This follows immediately from the proof of Lemma 1. �

LEMMA 2. Consider a sound pointer analysis “a” and a heap H
with canonical decomposition H1, . . . , Hk such that:

H1 `a S : H ′1 . . . Hk `a S : H ′k

Then, H |= S : H ′1 t . . . tH ′k.

PROOF 3. This follows directly from Lemma 1. �

According to this lemma, we can conservatively analyze a pro-
gram fragment S by first decomposing a heap H into canonical
heaps H1, . . . , Hk, then analyzing S using each initial heap Hi,
and finally combining the resulting heaps H ′1, . . . , H ′k.

Recall that in a modular heap analysis, we require each node
in a function f ’s initial heap abstraction to have the single-target
property. Corollary 1 implies that if a call site of f has no summary
nodes with multiple targets, then this assumption results in no loss
of information, because we can use multiple distinct heaps for f
that, in combination, are an exact representation of the call site’s
heap. However, if a summary location has multiple targets and there
is aliasing involving that summary node, as illustrated in Figure 3,
the modular analysis may strictly overapproximate the heap after
a call to f . In this case, the requirement that f ’s initial heap have
the single-target property means that f can only represent the call-
site’s heap (shown on the left of Figure 3) by an overapproximating
heap that merges the target nodes (shown on the right of Figure 3).

2.3 Structural Decomposition
Consider the result of analyzing a program fragment S starting with
initial canonical heaps H1 and H2 shown in Figure 4. Here, nodes
labeledX and Y represent memory locations of x and y, which are
the only variables in scope in S. Since the only difference between
H1 and H2 is the label of the node pointed to by x and y, the heaps
H ′1 and H ′2 obtained after analyzing S will be identical except

A B A B

Figure 5. Structural decomposition of heap H from Figure 2

for the label of a single node. Thus, S can be analyzed only once
starting with heap Ĥ in Figure 4, and H ′1 and H ′2 can be obtained
from the resulting heap by renaming ν to loc1 and loc2 respectively.
The rest of this section makes this discussion precise.

DEFINITION 4. (Skeleton) Given a set of nodes N , let ξN (H) be
the heap obtained by erasing the labels of all nodes inH except for
those in N . Now ξN defines an equivalence relation H ≡N H ′ if
ξN (H) = ξN (H ′). We select one heap in each equivalence class
of ≡N as the class’ unique skeleton.

Note that nodes of skeletons are labeled—label erasure is only used
to determine equivalence class membership.

EXAMPLE 3. In Figure 4, H1 and H2 have the same skeleton Ĥ .

In other words, if heaps H1, . . . , Hk have the same aliasing
patterns with respect to a set of root locationsN , then Ĥ is a unique
points-to graph which represents their common aliasing structure.
Skeletons are useful because, if N represents formals and globals
in a function f , all possible aliasing patterns at call sites of f can
be expressed using a finite number of skeletons.

DEFINITION 5. (Π) LetH be a heap and let Ĥ be its skeleton w.r.t.
nodes N . The mapping ΠH,Ĥ maps every node label in Ĥ to the
label of the corresponding node in H and any other node to itself.

DEFINITION 6. (Structural Decomposition) Given heap H and
nodes N , the structural decomposition of H w.r.t. N is a set of
heaps D such that for every Hi in the canonical decomposition of
H , the sketelon Ĥ of Hi w.r.t. N is in D.

Observe that the cardinality of the structural decomposition ofH is
never larger than the cardinality of H’s canonical decomposition.

DEFINITION 7. (Instances of skeleton) Let Ĥ be a skeleton in
the structural decomposition of H . The instances of Ĥ , written
IH(Ĥ), are the canonical heaps of H with skeleton Ĥ .

EXAMPLE 4. Consider heap H from Figure 2 and the root set
{A,B}. The structural decomposition Ĥ1, Ĥ2 of H is shown in
Figure 5. Observe that canonical heaps H1 and H4 from Figure 2
have the same skeleton Ĥ1, and H2 and H3 have skeleton Ĥ2.
Thus, IH(Ĥ1) = {H1, H4} and IH(Ĥ2) = {H2, H3}. Also:

ΠH1,Ĥ1
= [ν1 7→ C, ν2 7→ D] ΠH4,Ĥ1

= [ν1 7→ D, ν2, 7→ C]
ΠH2,Ĥ2

= [ν 7→ D] ΠH3,Ĥ2
= [ν 7→ C]

LEMMA 3. Consider program fragment S and nodes N represent-
ing variables in scope at S. Let HN be the heap fragment reach-
able through N before analyzing S and let Ĥ1, . . . , Ĥm be the
structural decomposition of HN w.r.t. N . If

Ĥ1 `a S : Ĥ ′1 . . . Ĥm `a S : Ĥ ′m

and if Ĥ ′N is the heap defined as:

Ĥ ′N =
⊔

1≤i≤m

(⊔
Hij∈IHN

(Ĥi)
ΠHij ,Ĥi

(Ĥ ′i)
)

then HN |= S : Ĥ ′N .

PROOF 4. First, by Definitions 4 and 2, we have:

⊔
1≤i≤m

(⊔
Hij∈IHN

(Ĥi)
Hij
)
w HN

Second, using Lemma 2, this implies:

HN |= S :
⊔

1≤i≤m

(⊔
Hij∈IHN

(Ĥi)
H′ij

)
(∗)

where Hij `a S : H ′ij . From Definition 7, since Hij and Ĥi are
equivalent up to renaming, thenH ′ij and Ĥ ′i are also equivalent up
to this renaming, given by ΠHij ,Ĥi

. Together with (*), this implies

HN |= S :
⊔

1≤i≤m

(⊔
Hij∈IHN

(Ĥi)
ΠHij ,Ĥi

(Ĥ ′i)
)

. �

In other words, the heap defined as Ĥ ′N in Lemma 3 gives us a
sound abstraction of the heap after analyzing program fragment S.
Furthermore, Ĥ ′N is precise in the sense defined below:

LEMMA 4. Let Ĥ ′N be the heap defined in Lemma 3, and let
H1, . . . , Hk be the canonical decomposition of the heap fragment
reachable from N before analyzing S. If Hj `a H ′j , then:

Ĥ ′N =
⊔

1≤j≤kH
′
j

PROOF 5. This follows from Corollary 1 and Definition 6. �

The following corollary states a stronger precision result:

COROLLARY 2. Let HN and Ĥ ′N be the heap abstractions from
Lemma 3, and let HN `a S : H ′N . If HN does not contain
summary locations with multiple points-to targets, then

Ĥ ′N v H ′N

PROOF 6. This follows from Lemma 4 and Corollary 1.

2.4 From Decompositions to Modular Heap Analysis
We now show how the ideas described so far yield a basic modular
heap analysis. In the remainder of this section, we assume there is
a fixed bound on the total number of memory locations used by a
program analysis. (In practice, this is achieved by, e.g., collapsing
recursive fields of data structures to a single summary location.)

LEMMA 5. Consider a function f , and let N denote the abstract
memory locations associated with the formals and globals of f .
Then, there is a finite set Q of skeletons such that the structural
decomposition D w.r.t. N of the heap fragment reachable from N
in any of f ’s call sites satisfies D ⊆ Q.

PROOF 7. Recall that in any canonical heap, every location has
exactly one target. Second, observe that when there is bound b on
the total number of locations in any heap, any canonical heap must
have at most b locations. Thus, using a fixed set of nodes, we can
only construct a finite set Q of structurally distinct graphs. �

Since there are a bounded number of skeletons that can arise in
any context, this suggests the following strategy for computing a
complete summary of function f : LetN be the set of root locations
(i.e., formals and globals) on entry to f , and let Ĥ1, . . . , Ĥk be the
set of all skeletons that can be constructed from root set N . We
analyze f ’s body for each initial skeleton Ĥi, obtaining a new heap
Ĥ ′i . Now, let C be a call site of f and let R be the subset of the
skeletons Ĥ1, . . . , Ĥk that occur in the structural decomposition of

heapH in contextC. Then, following Lemma 3, the heap fragment
after the call to f can be obtained as:

⊔
Ĥi∈R

(⊔
Hij∈IH (Ĥi))

ΠHij ,Ĥi
(Ĥ ′i)

)
This strategy yields a fully context-sensitive analysis because

f ’s body is analyzed for any possible entry aliasing pattern Ĥi, and
at a given call site C, we only use the resulting heap Ĥi if Ĥi is
part of the structural decomposition of the heap at C.

Furthermore, as indicated by Corollary 2, this strategy is as
precise as analyzing the inlined body of the function if there are
no summary locations with multiple points-to targets at this call
site; otherwise, the precision guarantee is stated in Lemma 4.

2.5 Discussion
While the decompositions described here are useful for understand-
ing the principle underlying modular heap analyses, the naive algo-
rithm sketched in Section 2.4 is completely impractical for two rea-
sons: First, since the number of skeletons may be exponential in the
number of abstract locations reachable through arguments, such an
algorithm requires analyzing a function body exponentially many
times. Second, although two initial skeletons may be different, the
resulting heaps after analyzing the function body may still be iden-
tical. In the rest of this paper, we describe a symbolic encoding of
the basic algorithm that does not analyze a function more than once
unless cycles are present in the callgraph (see Section 4). Then, in
Section 5, we show how to identify only those initial skeletons that
may affect the heap abstraction after the function call.

3. Language
To formalize our symbolic algorithm for modular heap analysis, we
use the following typed, call-by-value imperative language:

Program P := F+

Function F := define f(a1 : τ1, . . . , an : τn) = S;
Statement S := v1 ← ∗v2 | ∗ v1 ← v2 | v ← allocρ(τ)

| fρ(v1, . . . , vk) | assert(v1 = v2)
| letρ v : τ in S end | S1;S2 | choose(S1, S2)

Type τ := int | ptr(τ)

A program P consists of one or more (possibly recursive) func-
tions F . Statements in this language are loads, stores, memory al-
locations, function calls, assertions, let bindings, sequencing, and
the choose statement, which non-deterministically executes either
S1 or S2 (i.e., a simplified conditional). Allocations, function calls,
and let bindings are labeled with globally unique program points ρ.

Since this language is standard, we omit its operational seman-
tics and highlight a few important assumptions: Execution starts at
the first function defined, and an assertion failure aborts execution.
Also, all bindings in the concrete store have initial value nil.

4. Modular & Symbolic Heap Analysis
In this section, we formally describe our symbolic algorithm for
modular heap analysis. In Section 4.1, we first decribe the abstract
domain used in our analysis. Section 4.2 formally defines function
summaries, and Section 4.3 presents a full algorithm for summary-
based heap analysis for the language defined in Section 3.

4.1 Abstract Domain
Abstract locations π represent a set of concrete locations:

Abstract Locations π := α | l
Location Variables α := νi | ∗ α
Location Constants l := loc~ρ | nil

An abstract location π in function f is either a location variable
α or a location constant l. Location constants represent stack or
heap allocations in f and its transitive callees as well as nil. In con-
trast, location variables represent the unknown memory locations
reachable from f ’s arguments at call sites, similar to access paths
in [5]. Informally, location variables correspond to the node labels
of a skeleton from Section 2.3. Recall from Section 2 that, in any
canonical points-to graph, every abstract memory location points to
at most one other abstract memory location; hence, location vari-
able ∗νi describes the unknown, but unique, points-to target of f ’s
i’th argument in some canonical heap at a call site of f .

Abstract environment E maps program variables v to abstract
locations π, and abstract store S maps each abstract location π to
an abstract value set θ of (abstract location, constraint) pairs:

Abstract value set θ := 2(π,φ)

The abstract store defines the edges of the points-to graph from
Section 2. A mapping from abstract location π to abstract value set
{(π1, φ1), . . . , (πk, φk)} in S indicates that the heap abstraction
contains a points-to edge from node labeled π to nodes labeled
π1, . . . , πk. Observe that, unlike the simple may points-to graph
we considered in Section 2, points-to edges in the abstract store are
qualified by constraints, which we utilize to symbolically encode
all possible skeletons in one symbolic heap (see Section 4.3).

Constraints in our abstract domain are defined as follows:

φ := 〈ϕmay, ϕmust〉
ϕ := T | F | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | t1 = t2

Here, φ is a bracketing constraint 〈ϕmay, ϕmust〉 as in [4], represent-
ing the condition under which a property may and must hold. Recall
from Section 1 that the simultaneous use of may and must informa-
tion is necessary for applying strong updates whenever safe. In par-
ticular, updates to heap locations require negation (see Section 4.3).
Since the negation of an overapproximation is an underapproxima-
tion, the use of bracketing constraints allows a sound negation op-
eration, defined as ¬〈ϕmay, ϕmust〉 = 〈¬ϕmust,¬ϕmay〉. Conjunction
and disjunction are defined on these constraints as expected:

〈ϕmay, ϕmust〉 ? 〈ϕ′may, ϕ
′
must〉 = 〈ϕmay ? ϕ

′
may, ϕmust ? ϕ

′
must〉

where ? ∈ {∧,∨}. In this paper, any constraint φ is a bracketing
constraint unless stated otherwise. To make this clear, any time we
do not use a bracketing constraint, we use the letter ϕ instead of
φ. Furthermore, if the may and must conditions of a bracketing
constraint are the same, we write a single constraint instead of
a pair. Finally, for a bracketing constraint φ = 〈ϕmay, ϕmust〉, we
define dφe = ϕmay and bφc = ϕmust.

In the definition of constraint ϕ, T and F represent the boolean
constants true and false, and a term t is defined as:

Term t := v | drf(t) | alloc(~ρ) | nil

Here, v represents a variable, drf is an uninterpreted function, and
alloc is an invertible uninterpreted function applied to a vector of
constants ~ρ. Thus, constraints ϕ belong to the theory of equality
with uninterpreted functions. Our analysis requires converting be-
tween abstract locations and terms in the constraint language; we
therefore define a lift operation, written π, for this purpose:

νi = νi ∗α = drf(α) nil = nil loc~ρ = alloc(~ρ)

Observe that a location constant locρ is converted to a term alloc(~ρ),
which effectively behaves as a constant in the constraint language:
Since alloc is an invertible function, alloc(~ρ) = alloc(~ρ′) exactly
when ρ = ρ′. A location variable ν is converted to a constraint vari-
able of the same name, and the location variable ∗ν is represented
by the term drf(ν) which represents the unknown points-to target

Figure 6. A symbolic heap representing two skeletons

Figure 7. The abstract store in f ’s summary

of ν on function entry. We write lift−1(t) to denote the conversion
of a term to an abstract location.

EXAMPLE 5. In Figure 6, a symbolic heapH represents two skele-
tons Ĥ1 and Ĥ2. In H , the constraint drf(ν1) = drf(ν2) describes
contexts where the first and second arguments are aliases. Ob-
serve that, at call sites where the first and second arguments alias,
drf(ν1) = drf(ν2) instantiates to true and drf(ν1) 6= drf(ν2) is
false; thus at this call site, H instantiates exactly to Ĥ2. Similarly,
if the first and second arguments do not alias,H instantiates to Ĥ1.

4.2 Function Summaries
A summary ∆ for a function f is a pair ∆ = 〈φ, S〉 where φ is
a constraint describing the precondition for f to succeed (i.e., not
abort), and S is a symbolic heap representing the heap abstraction
after f returns. More specifically, let Ĥ1, . . . , Ĥk be the set of all
skeletons for any possible call site of f , and let Ĥi ` S : Ĥ ′i where
S is the body of f . Then, the abstract store S symbolically encodes
that in contexts where the constraints in S are satisfied by initial
heap Ĥi, the resulting heap is Ĥ ′i .

Observe that a summary can also be viewed as the Hoare triple
{φ} f {S}. Thus, the computation of a summary for f is equivalent
to the inference of sound pre- and post-conditions for f.

EXAMPLE 6. Consider the function:

define f(a1 : ptr(ptr(int)), a2 : ptr(ptr(int))) =
1 : ∗a1 ← alloc1(int);
2 : ∗a2 ← alloc2(int);
3 : let t1 : ptr(int) in t1 ← ∗a1; ∗t1 ← 7 end;
4 : let t2 : ptr(int) in t2 ← ∗a2; ∗t2 ← 8 end;
5 : let t3 : ptr(int) in t3 ← ∗a1;
6 : let t4 : int in t4 ← ∗t3; assert(t4 == 7) end;
7 : end

The summary for f is 〈 drf(ν1) 6= drf(ν2), S 〉 where S is shown
in Figure 7. The pre-condition drf(ν1) 6= drf(ν2) indicates that the
assertion fails in those contexts where arguments of f are aliases.
Also, in symbolic heap S, the abstract location reached by deref-
erencing a1 (whose location is ν1) is either loc1, corresponding to
the allocation at line 1, or loc2, associated with the allocation at
line 2, depending on whether a1 and a2 are aliases.

A global summary environment G is a mapping from each
function f in the program to a summary ∆f.

E = [a1 ← ν1, . . . , ak ← νk]
∀ αi ∈ dom(A).
S(αi)← ∪k≤i(∗αk, (

∧
j<k ∗αi 6= ∗αj) ∧ ∗αi = ∗αk)

A ` init heap(a1, . . . , ak) : E, S

Figure 8. Local Heap Initialization

4.3 The Analysis
We now present the full algorithm for the language of Section 3.
Section 4.3.1 describes the symbolic initialization of the local heap
to account for all possible aliasing relations on function entry. Sec-
tion 4.3.2 gives abstract transformers for all statements except func-
tion calls, which is described in Section 4.3.3. Finally, Section 4.3.4
describes the generation of function summaries.

4.3.1 Local Heap Initialization
To analyze a function f independent of its callers, we initialize f ’s
abstract store to account for all possible relevant aliasing relation-
ships at function entry. To perform this local heap initialization, we
utilize an alias partition environment A with the signature α→ 2α.
This environment maps each location variable α to an ordered set
of location variables, called α’s alias partition set. If α′ ∈ A(α),
then f’s summary may differ in contexts where α and α′ are aliases.
Since aliasing is a symmetric property, any alias partition environ-
ment A has the property α′ ∈ A(α) ⇔ α ∈ A(α′). Any location
aliases itself, and so A is also reflexive: α ∈ A(α). A correct alias
partition environment A can be trivially computed by stipulating
that α′ ∈ A(α) if α and α′ have the same type. We discuss how to
compute a more precise alias partition environment A in Section 5.

A key component of the modular analysis is the init heap rule
in Figure 8. Given formal parameters a1, . . . , ak to function f , this
rule initializes the abstract environment and store on entry to f .
The environment E is initialized by binding a location variable
νi to each argument ai. The initialization of the abstract store
S, however, is more involved because we need to account for all
possible entry aliasing relationships permitted by A.

Intuitively, if A indicates that α1 and α2 may alias on function
entry, we need to analyze f ’s body with two skeletal heaps, one
where α1 and α2 point to the same location, and one where α1

and α2 point to different locations. To encode this symbolically,
one obvious solution is to introduce three location variables, ∗α1,
∗α2, and ∗α12 such that α1 (resp. α2) points to ∗α1 (resp. ∗α2)
if they do not alias (i.e., under constraint drf(α1) 6= drf(α2)) and
point to a common location named ∗α12 if they alias (i.e., under
drf(α1) = drf(α2)). While this encoding correctly describes both
skeletal heaps, it unfortunately introduces an exponential number
of locations, one for each subset of entry alias relations in A.

To avoid this exponential blow-up, we impose a total order on
abstract locations such that if αi and αj are aliases, they both point
to a common location ∗αk such that αk is the least element in the
alias partition class of αi and αj . Thus, in the init heap rule of
Figure 8, αi points to ∗αk where k ≤ i under constraint:

(
∧
j<k

∗αi 6= ∗αj) ∧ ∗αi = ∗αk

This condition ensures that αi points to a location named ∗αk only
if it does not alias any other location αj ∈ A(αi) with j < k.

EXAMPLE 7. Consider the function defined in Example 6. Suppose
the alias partition environment A contains the following mappings:

ν1 7→ {ν1, ν2}, ν2 7→ {ν1, ν2}, ∗ν1 7→ {∗ν1}, ∗ν2 7→ {∗ν2},
∗∗ ν1 7→ {∗∗ ν1}, ∗∗ ν2 7→ {∗∗ ν2}

Figure 9. The initial heap abstraction for function from Example 6

Figure 9 shows the initial heap abstraction using A and the order-
ing ν1 < ν2. Since A includes ν1 and ν2 in the same alias partition
set, ν2 points to ∗ν1 under drf(ν1) = drf(ν2) and to ∗ν2 under its
negation. But ν1 only points to ∗ν1 since ν2 6< ν1.

The following lemma states that the initial heap abstraction
correctly accounts for all entry aliasing relations permitted by A:

LEMMA 6. Let αi and αj be two abstract locations such that
αj ∈ A(αi). The initial local heap abstraction S constructed in
Figure 8 encodes that αi and αj point to distinct locations exactly
in those contexts where they do not alias.

PROOF 8. Without loss of generality, assume i < j.
⇒ Suppose αi and αj are not aliases in a context C, but S encodes
they may point to the same location ∗αk in context C. Let φ and φ′

be the constraints under which αi and αj point to αk respectively.
By construction, k ≤ i, and φ implies drf(αi) = drf(αk) and
φ′ implies drf(αj) = drf(αk). Thus, we have drf(αi) = drf(αj),
contradicting the fact that αi and αj do not alias in C.
⇐ Suppose αi and αj are aliases in context C, but S allows αi
and αj to point to distinct locations ∗αk and ∗αm. Let φ and φ′

be the constraints under which αi points to ∗αk and αj points to
∗αm respectively. Case (i): Suppose k < m. Then, by construction,
φ implies drf(αi) = drf(αk), and φ′ implies drf(αj) 6= drf(αk).
Hence, we have drf(αj) 6= drf(αi), contradicting the assumption
that αi and αj are aliases in C. Case (ii): k > m. Then, φ′ implies
drf(αj) = drf(αm), and φ implies drf(αi) 6= drf(αm), again
contradicting the fact that αi and αj are aliases in C. �

LEMMA 7. For each alias partition set of size n, the init heap rule
adds n(n+ 1)/2 points-to edges.

As Lemma 7 states, this construction introduces a quadratic
number of edges in the size of each alias partition set to represent
all possible skeletal heaps. Furthermore, the number of abstract
locations in the initial symbolic heap is no larger than the maximum
number of abstract locations in any individual skeleton.

4.3.2 Abstract Transformers for Basic Statements
In this section, we describe the abstract transformers for all state-
ments except function calls, which is the topic of Section 4.3.3.
Statement transformers are given as inference rules of the form

E, S,G, φ ` S : S′, φ′

which states that under abstract environment E, store S, summary
environment G, and precondition φ, statement S produces a new
abstract store S′ and a new precondition φ′ of the current function.
The operation S(θ) looks up the value of each πi in θ:

S({(π1, φ1), . . . , (πk, φk)}) =
⋃

1≤i≤k

S(πi) ∧ φi

where S(πi) ∧ φi is a shorthand defined as follows:

θ ∧ φ = {(πj , φj ∧ φ)|(πj , φj) ∈ θ}

(1)

E(v1) = π1 E(v2) = π2
S(π2) = θ S′ = S[π1 ← S(θ)]
E, S,G, φ ` v1 ← ∗v2 : S′, φ

(2)

E(v1) = π1 E(v2) = π2
S(π1) = θ1 S(π2) = θ2

S′ = S[πi ← ((θ2 ∧ φi) ∪ (S(πi) ∧ ¬φi)) | (πi, φi) ∈ θ1]
E, S,G, φ ` ∗v1 ← v2 : S′, φ

(3)

E(v) = π
S′ = S[π ← {(locρ, T)}, locρ ← {(nil, T)}]

E, S,G, φ ` v ← allocρ(τ) : S′, φ

(4)

E(v1) = π E(v2) = π′

S(π) = {. . . , (πi, φi), . . .}
S(π′) = {. . . , (π′j , φ′j), . . .}
φ′ =

∨
i,j(πi = π′j ∧ φi ∧ φ′j)

E, S,G, φ ` assert(v1 = v2) : S, φ ∧ φ′

(5)

E′ = E[v ← locρ]
S′ = S[∗locρ ← {(nil, T)}]
E′, S′,G, φ ` S : S′′, φ′

E, S,G, φ ` letρ v : τ in S end : S′′\locρ, φ′

(6)

E, S,G, φ ` S1 : S′, φ′
E, S′,G, φ′ ` S2 : S′′, φ′′

E, S,G, φ ` S1;S2 : S′′, φ′′

(7)

E, S,G, φ ` S1 : S1, φ1
E, S,G, φ ` S2 : S2, φ2

E, S,G, φ ` choose (S1, S2) : S1 t S2, φ1 ∧ φ2

Figure 10. Abstract Transformers for Basic Statements

Heap after statement 1 Heap after statement 2

Figure 11. The symbolic heap before and after line 2 in Example 6

In Figure 10, rules (1) and (2) give the transformers for loads
and stores respectively. The rule for loads is self-explanatory; thus,
we focus on the store rule. In the third hypothesis of rule (2), each
πi represents a location that v1 points to under constraint φi, and
θ2 is the value set for v2. Since the write to πi happens under
constraint φi, the new value of πi in S′ is θ2 under constraint φi
and retains its old value set S(πi) under ¬φi. Observe that if φi
is true, this rule performs a standard strong update to πi. On the
other hand, if v1 points to πi under some entry alias assumption,
then there is a strong update to πi exactly in those calling contexts
where this alias assumption holds.

EXAMPLE 8. Figure 11 shows the relevant portion of the heap
abstraction before and after the store at line 2 in Example 6.

Rule (3) processes allocations by introducing a new location
locρ and initializing its value in the store to nil. Rule (4) analyzes
an assertion by computing the condition φ′ for the assertion to hold
such that if φ′ can be proven valid in a calling context, then this
assertion must hold at that call site. In rule (4), φ′ is computed as

S, I ` map loc(ν : int) : I
S, I ` map loc(∗ν : τ) : I′

S, I ` map loc(ν : ptr(τ)) : I′

I′ = I[∗α← S(I(α))]
S, I ` map loc(∗α : int) : I′

I′ = I[∗α← S(I(α))]
I′ ` map loc(∗∗ α : τ) : I′′

S, I ` map loc(∗α : ptr(τ)) : I′′

S, [ν1 ← {(E(v1), T)}] ` map loc(ν1) : I1
. . .

S, Ik−1[νk ← {(E(vk), T)}] ` map loc(νk) : Ik
E, S ` map args(v1 : τ1, . . . , vk : τk) : Ik

Figure 12. Rules for computing instantiation environment I

I, ρ ` inst loc(nil) : {(nil, T)}
θ = {(locρ::

~ρ′ , T)}

I, ρ ` inst loc(loc
~ρ′) : θ

(ρ 6∈ ~ρ′)

I, ρ ` inst loc(α) : I(α)
θ = {(loc

~ρ′ , 〈T, F 〉)}

I, ρ ` inst loc(loc
~ρ′) : θ

(ρ ∈ ~ρ′)

Figure 13. Rules for instantiating locations

the disjunction of all pairwise equalities of the elements in the two
abstract value sets associated with v1 and v2, i.e., a case analysis
of their possible values. Rule (5) describes the abstract semantics
of let statements by binding variable v to a new location locρ in E.
Rule (6) for sequencing is standard, and rule (7) gives the semantics
of the choose construct, which computes the join of two abstract
stores S1 and S2. To define a join operation on abstract stores, we
first define domain extension:

DEFINITION 8. (Domain Extension) Let π be any binding in ab-
stract store S′ and let (πi, φi) be any element of S′(π). We say an
abstract store S′′ = S7→S′ is a domain extention of S with respect
to S′ if the following condition holds:

1. If π ∈ dom(S) ∧ (πi, φ
′
i) ∈ S(π), then (πi, φ

′
i) ∈ S7→S′(π).

2. Otherwise, (πi, false) ∈ S 7→S′(π)

DEFINITION 9. (Join) Let S′1 = S1 7→S2 and let S′2 = S2 7→S1 . If
(π′, 〈ϕ1

may, ϕ
1
must〉) ∈ S′1(π) and (π′, 〈ϕ2

may, ϕ
2
must〉) ∈ S′2(π), then:

(π′, 〈ϕ1
may ∨ ϕ2

may, ϕ
1
must ∧ ϕ2

must〉) ∈ (S1 t S2)(π)

4.3.3 Instantiation of Summaries
The most involved statement transformer is the one for function
calls, which we describe in this subsection. Figure 15 gives the
complete transformer for function calls, making use of the helper
rules defined in Figures 12- 14, which we discuss in order.

Given the actuals v1, . . . , vk for a call to function f , Figure 12
computes the instantiation environment I with signature α → θ
for this call site. This environment I, which serves as the symbolic
equivalent of the mapping Π from Section 2, maps location vari-
ables used in f to their corresponding locations in the current (call-
ing) function. However, since I is symbolic, it produces an abstract
value set {(π1, φ1), . . . , (πk, φk)} for each α such that α instanti-
ates to πi in some canonical heap under constraint φi.

Figure 13 describes the rules for instantiating any location π
used in the summary. If π is a location variable, we use environment
I to look up its instantiation. On the other hand, if π is a location
constant allocated in callee f , we need to rename this constant to
distinguish allocations made at different call sites for full context-
sensitivity. In general, we rename the location constant loc

~ρ′ by
prepending to ~ρ′ the program point ρ associated with the call site.

I, ρ ` inst loc(lift−1(t1)) : {(π1, φ1), . . . , (πk, φk)}
I, ρ ` inst loc(lift−1(t2)) : {(π′1, φ′1), . . . , (π′m, φ′m)}
φ =

∨
i(k = πi ∧ φi) φ′ =

∨
j(k
′ = π′j ∧ φ′j) (k, k′ fresh)

I, ρ ` instϕ(t1 = t2) : k = k′, φ ∧ φ′

b ∈ {T, F}
I, ρ ` instϕ(b) : b, T

I, ρ ` instϕ(ϕ) : ϕ1, φ2

I, ρ ` instϕ(¬ϕ) : ¬ϕ1, φ2

I, ρ ` instϕ(ϕ1) : ϕ, φ I, ρ ` instϕ(ϕ2) : ϕ′, φ′

I, ρ ` instϕ(ϕ1 ? ϕ2) : ϕ ? ϕ′, φ ∧ φ′
(? ∈ {∧,∨})

I, ρ ` instϕ(ϕmay) : ϕ′may, φ
′
may I, ρ ` instϕ(ϕmust) : ϕ′must, φ

′
must

ϕ′′may = dQE(∃~k. (ϕ′may ∧ φ′may))e ϕ′′must = bQE(∃~k. (ϕ′must ∧ φ′must))c
I, ρ ` instφ(〈ϕmay, ϕmust〉) : 〈φ′′may, φ

′′
must〉

Figure 14. Rules for instantiating constraints

However, in the presence of recursion, we need to avoid creating
an unbounded number of location constants; thus, in Figure 13, we
check if this allocation is created on a cyclic path in the callgraph
by testing whether the current program point ρ is already in ~ρ′. In
the latter case, we do not create a new location constant but weaken
the bracketing constraint associated with loc

~ρ′ to 〈T, F 〉, which has
the effect of ensuring that stores into this location only apply weak
updates [4], meaning that loc

~ρ′ behaves as a summary location.
In addition to instantiating locations, we must also instanti-

ate the associated constraints, which is described in Figure 14.
In the last rule of this figure, instφ instantiates a bracketing con-
straint, making use of instϕ to map the constituent may and must
conditions. The instϕ rule derives judgments of the form I, ρ `
instϕ(ϕ) : ϕ′, φ, where ϕ′ preserves the structure of ϕ by substi-
tuting each term t in ϕwith a temporary variable k and φ constrains
the values of k.

The first rule in Figure 14 for instantiating a leaf t1 = t2 is
the most interesting one: Here, we convert t1 and t2 to their cor-
responding memory locations using the lift−1 operation from Sec-
tion 4.1 and instantiate the corresponding locations using inst loc
to obtain abstract value sets θ1 and θ2. We then introduce two tem-
porary variables k and k′ representing θ1 and θ2 respectively, and
introduce constraints φ and φ′, stipulating the equality between k
and θ1 and between k′ and θ2. Observe that in the last rule of Fig-
ure 14, these temporary variables k and k′ are removed using a QE
procedure to eliminate existentially quantified variables.

Figure 15 makes use of all the afore-mentioned rules to instan-
tiate the summary of function f at a given call site ρ. In the last rule
of this figure, we first look up f ’s summary 〈φf , Sf 〉 in the global
summary environment G. The precondition φf is instantiated to φ′f
using instφ. Observe that if φ′f is valid, then the potential assertion
failure in f is discharged at this call site; otherwise, φ′f is conjoined
with the precondition φ of the current function.

Next, we compose the partial heap Sf , representing the heap
fragment reachable in f after the call, with the existing heap S be-
fore the function call. The compose partial heap rule used in com-
pose heap instantiates an entry π 7→ θ in f ’s summary. Observe
that if location π in f ’s summary instantiates to location πi in the
current function under φi, existing values of πi are only preserved
under ¬φi. Hence, if φi is true, this rule applies a strong update
to πi. On the other hand, if π instantiates to πi under some entry
alias condition, then this rule represents a strong update to πi only
in those contexts where the entry aliasing condition holds.

EXAMPLE 9. Consider a call to function f of Example 6:

define g(a1 : ptr(ptr(int))) = f3(a1, a1)

I, ρ ` inst loc(π1) = θ1, . . . inst loc(πk) = θk

I, ρ ` inst theta({(π1, φ1), . . . , (πk, φk)}) :
⋃

1≤i≤k(θi ∧ φi)

I, ρ ` inst loc(π) = θs
I, ρ ` inst theta(θ) = θt

S′ = S[πi ← (θt ∧ φi) ∪ (S(πi) ∧ ¬φi) | (πi, φi) ∈ θs]
S, I, ρ ` compose partial heap(π, θ) : S′

Sf = [(π1 7→ θ1), . . . , (πk 7→ θk)]
S, I, ρ ` compose partial heap(π1, θ1) : S1

. . .
Sk−1, I, ρ ` compose partial heap(πk, θk) : Sk

S, I, ρ ` compose heap(Sf) : Sk

G(f) = 〈φf , Sf 〉
E, S ` map args(v1, . . . , vk) : I
I, ρ ` instφ(φf) : φ′f
S, I, ρ ` compose heap(Sf) : S′

E, S,G, φ ` fρ(v1, . . . , vk) : S′, φ ∧ φ′f

Figure 15. Summary Instantiation rules

Before the call to f , g’s local heap is depicted as:

Recall from Example 6 that f ’s precondition is drf(ν1) 6= drf(ν2),
which instantiates to drf(ν1) 6= drf(ν1) ⇔ false at this call site,
indicating that the assertion is guaranteed to fail. The store in f ’s
summary from Figure 7 is instantiated at the call site to:

Composing initial heap (*) with the instantiated heap (**), we
obtain the final heap after the function call:

Observe that the resulting abstract heap is as precise as analyzing
the inlined body of f .

4.3.4 Summary Generation and Fixed-point Computation
We now conclude this section by describing function summary
generation, given in Figure 16. Before analyzing the body of f , the
local abstract heap S is initialized as described in Section 4.3.1.
Next, f ’s body is analyzed using the abstract transformers from
Section 4.3.2 and 4.3.3, which yields a store S′ and a precondition
φ′. According to the last hypothesis in Figure 16, the summary
〈φf , Sf 〉 is sound if Sf overapproximates S\{ν1, . . . , νk} and φf
implies φ′. Here, S1 v S2 is defined as:

DEFINITION 10. (v) Let S′1 = S1 7→S2 and S′2 = S2 7→S1 . We say
S1 v S2 if for every π ∈ dom(S′1) and for every π′ such that
(π′, 〈ϕ1

may, ϕ
1
must〉) ∈ S′1(π), (π′, 〈ϕ2

may, ϕ
2
must〉) ∈ S′2(π), we have:

ϕ1
may ⇒ ϕ2

may ∧ ϕ2
must ⇒ ϕ1

must

While the rule in Figure 16 verifies that 〈φf , Sf 〉 is a sound sum-
mary, it does not give an algorithmic way of computing it. In the
presence of recursion, we perform a least fixed-point computation
where all entries in G are initially⊥ (i.e., any location points to any
other location under false), and a new summary for f is obtained
by computing the join of f ’s new and old summaries:

〈S1, φ1〉 t 〈S2, φ2〉 = 〈S1 t S2, φ1 ∧ φ2〉

A ` init heap(a1, . . . , ak) : E, S
E, S,G, true ` S : φ′, S′
G ` f : 〈φf , Sf 〉
φf ⇒ φ′ Sf w (S′\{ν1, . . . , νk})

G,A ` define f(a1 : τ1, . . . , ak : τk) = S : 〈φf , Sf 〉

Figure 16. Summary generation rule

A

C

B

D

A

E

B

G

F H

Figure 17. Heaps from Lemma 8

This strategy ensures that the analysis is monotonic by construc-
tion. Furthermore, since the analysis creates a finite number of ab-
stract locations and the constraints are over a finite vocabulary of
predicates, this fixed-point computation is guaranteed to converge.
In fact, for an acyclic callgraph, each function is analyzed only once
if a reverse topological order is used.

5. Computing Alias Partition Sets
In the previous section, we assumed the existence of an alias parti-
tion environment A that is used to query whether aliasing between
locations α and α′ may affect analysis results. One simple way to
compute such an environment is to require that α′ ∈ A(α) if α and
α′ have the same type (at least in a type-safe language). Fortunately,
it is possible to compute a much more precise alias partition envi-
ronment because many aliasing relations at a call site of f do not
affect the state of the heap after a call to f . The following lemma
elucidates when we can safely ignore potential aliasing between
two locations in a code fragment S.

LEMMA 8. LetH1 andH2 be the canonical heap fragments shown
in Figure 17, and let S be a program fragment such that:

• There is either no store to A and no store to B, or
• There is a store to onlyA that is not followed by a load fromB,

or
• There are only stores to both A and B, but the store to A must

happen after the store to B

Let H1 ` S : H ′1 and H2 ` S : H ′2, and let O be a partial
order such that O(B) ≺ O(A) if there must be a write to A after
a write to B in S. Let H ′′2 be the graph obtained by replacing G’s
targets with E’s targets in H ′2 if ΠH2,H1(A) = ΠH2,H1(B) and
O(B) ≺ O(A). Then, H ′1 = ΠH2,H1(H ′′2).

PROOF 9. (sketch) There are three cases: (i) If there is no store to
A or B, then in H ′2, E and G still point to F and H , both of which
are equivalent to D in H ′1. Thus, H ′1 = ΠH2,H1(H ′2). (ii) There
is only a store to A, not followed by a load from B: In H ′1, C will
point to some set of new locations T1, . . . , Tk. In H ′2, E must also
point to T ′1, . . . , T

′
k such that Ti = ΠH2,H1(T ′i) and G must point

to H . First, the result of any load from B (i.e., H) can be correctly
renamed to D, as the read happens before the store to A. Second,

LiteSQL OpenSSH Inkscape Digikam
widget lib.

Lines 16,030 22,615 37,211 128,318
Strong updates at instantiation

Running time (1 CPU) 4.5 min 3.9 min 7.2 min 45.1 min
Running time (8 CPUs) 1.6 min 1.8 min 2.3 min 8.7 min
Memory use 430 MB 230 MB 195 MB 400 MB
Error reports 7 6 7 37
False positives 2 1 3 9

Weak updates at instantiation
Running time (1 CPU) 7.1 min 4.8 min 8.1 min 60.0 min
Running time (8 CPUs) 4 min 3.6 min 2.5 min 10.1 min
Memory use 410 MB 250 MB 200 MB 355 MB
Error reports 312 209 730 1140
False positives 307 204 726 1112

Figure 18. Comparison of strong/weak updates at call sites

H ′′2 is obtained by removing the edge from G to H and adding
edges from G to each T ′i . Thus, ΠH2,H1(G) = ΠH2,H1(E) = C
and G and E’s targets are renamed to T1, . . . , Tk. (iii) Similar to
(ii).

This lemma shows the principle that can be used to reduce
the number of entries in A: Assuming we can impose an order
on the sequence of updates to memory locations and assuming
we instantiate summary edges in this order, then the initial heap
abstraction only needs to account for aliasing between α1 and α2 if
there is a store toα1 followed by a load fromα2, which is necessary
because updates through α1 to a location may now affect locations
that are reachable through α2. On the other hand, if there is no load
after a store and the updates to memory locations can be ordered,
it is possible to “fix up” the summary at the call site by respecting
the order of updates during instantiation.

To allow such an optimization in the analysis described in Sec-
tion 4, we impose a partial order ≺ on points-to relations such that
(π1 7→ θ1) ≺ (π2 7→ θ2) indicates that π1 must be assigned to
θ1 before π2 is assigned to θ2. Then, to respect the order of up-
dates in the callee when instantiating the summary, we ensure that
if πi 7→ θi ≺ πj 7→ θj , the compose partial heap rule is invoked
on πi 7→ θi before πj 7→ θj in the compose heap rule of Figure 15.

Thus, assuming we modify the analysis from Section 4 as de-
scribed above, we can compute a better alias partition environment
A by performing a least fixed-point computation over the current
function f . In particular, A(α) is initialized to {α} for each loca-
tion variableα. Then, if the analysis detects a store toα followed by
a load from α′ of the same type, then α′ ∈ A(α) and α ∈ A(α′).
Similarly, if there is a store s1 to α and a store s2 to α′ (of the same
type) such that there is no happens-before relation between s1 and
s2, then α′ ∈ A(α) and α ∈ A(α′).

6. Experiments
We have implemented the technique described in this paper in our
COMPASS program verification framework for analyzing C and
C++ applications. Our implementation extends the algorithm de-
scribed in this paper in two ways: First, our analysis is fully (i.e.,
interprocedurally) path-sensitive and uses the algorithm of [8] for
this purpose. Second, our implementation improves over the anal-
ysis presented here by employing the technique described in [4],
which uses indexed locations to reason precisely about contents of
arrays and containers. Hence, the algorithm we implemented is sig-
nificantly more precise than a standard may points-to analysis.

Figure 18 summarizes the results of our first experiment, which
involves verifying memory safety properties (buffer overruns, null
dereferences, casting errors, and access to deleted memory) in four
real C and C++ applications ranging from 16,030 to 128,318 lines.
The first part of the table, labeled “Strong Updates at Instantia-

0

50

100

150

200

250

300

350

400

0 2 4 6 8

S
u
m

m
a

ry
 S

iz
e

Maximum depth of transitive callee

OpenSSH

LiteSQL
Inkscape
DigiKam

Figure 19. Callstack depth vs. summary size

hostname chroot rmdir su mv
Lines 304 371 483 1047 1151
Modular analysis
running time 0.53s 0.75s 1.54s 2.3s 2.55s
Whole program
running time 3.1s 6.3s 21.6s 45.9s 30.7s

Figure 20. Comparison of modular and whole program analysis

tion”, reports the results obtained by using the modular heap anal-
ysis described in this paper. Observe that the proposed technique
is both scalable, memory-efficient, and precise. First, the running
times on 8 CPU’s range from 1.6 minutes to 8.7 minutes, and in-
crease roughly linearly with the size of the application. Further-
more, observe that the modular analysis takes advantage of multi-
ple CPUs to significantly reduce its wall-clock running time. Sec-
ond, the maximum memory used by any process does not exceed
430 MB, and, most importantly, the memory usage is not corre-
lated with the application size. Figure 19 sheds some light on the
scalability of the analysis: This figure plots the maximum call stack
depth against summary size, computed as the number of points-to
edges weighted according to the size of the edge constraints plus
the size of the precondition. In this figure, observe that summary
size does not increase with depth of the callstack, confirming our
hypothesis that summaries are useful for exploiting information lo-
cality and therefore enable analyses to scale.

Figure 18 also illustrates that performing strong updates at call
sites is crucial for the precision required by verification tools.
Observe that the analysis using strong updates at instantiation sites
is very precise, reporting only a handful of false positives on all
the applications. In contrast, if we use only weak updates when
applying summaries, the number of false positives ranges from
200 to 1000, confirming that the application of strong updates
interprocedurally is a key requirement for successful verification.

In a second set of experiments on smaller benchmarks, we com-
pare the running times of our verification tool using the modular
analysis described here with the running times of the same tool us-
ing a whole-program analysis. Figure 20 shows a comparison of
the analysis running times of the modular and whole program anal-
ysis on five Unix Coreutils applications. As shown in this figure, the
whole program analysis, which did not report any errors, takes∼50
seconds on a program with only 1000 lines, whereas the modular
analysis, which also did not report any errors, analyzes the same
program in 2.3 seconds. Furthermore, observe that the running time
of the whole program analysis increases much more quickly in the
size of the application than that of the modular analysis.

In a final set of experiments, we plot the size of the alias parti-
tion set vs. the frequency of this set size for the benchmarks from
Figure 18. The solid (red) line shows the size of the alias partition
sets obtained by assuming α′ ∈ A(α) if α and α′ have compati-

1

10

100

1000

10000

1 2 3 4 5 6 7

F
re

q
u

e
n
cy

Size of alias partition

type-based alias partitions
optimized alias partitions

Figure 21. Size of alias partition set vs. Frequency

ble types. In contrast, the dashed (green) line shows the size of the
alias partition sets obtained as described in Section 5. Observe that
these optimizations significantly reduce the size of alias partition
sets and substantially improve running time. In particular, without
these optimizations, the benchmarks take an average of 2.7 times
longer.

7. Related Work
Compositional Alias Analysis Modular alias analysis of a proce-
dure performed by starting with unknown values to all parameters
was also explored in [6] and then in Relevant Context Inference
(RCI) [7]. The technique presented in [6] computes a new par-
tial transfer function as new aliasing patterns are encountered at
call sites and requires reanalysis of functions. In contrast, the tech-
nique in [7] is purely bottom-up, and uses equality and disequal-
ity queries to generate summary transfer functions. Our approach
is similar to [7] in that we perform a strictly bottom-up analysis
where the unknown points-to target of an argument is represented
using one location variable and summary facts are predicated upon
possible aliasing patterns at function entry. In contrast to our tech-
nique, RCI is only able to perform strong updates in very special
cases intraprocedurally, and cannot perform strong updates at call
sites. In fact, the summary computation described in [7] is only
sound under the assumption that no points-to relations are killed
by summary application. In contrast, summaries generated by our
analysis are used to perform strong updates at call sites, and for the
recursion-free fragment of the language from Section 3, applying a
summary is as precise as analyzing the inlined body of the function.

The compositional pointer analysis algorithms given in [9, 10]
assume there is no aliasing on function entry and analyze the
function body under this assumption. However, since summaries
computed in this way may be unsound, the summary is “corrected”
using a fairly involved fixed-point computation at call sites. This
approach is also much less precise than our technique because it
only performs strong updates in a very limited number of situations.

Compositional Shape Analysis Recently, there has also been in-
terest in compositional shape analysis using separation logic [11,
12]. Both of these works use bi-abduction to compute pre- and
post-conditions on the shapes of recursive data structures. How-
ever, neither of these works guarantee precision. While this paper
does not address computing summaries about shapes of recursive
data structures, our technique can handle deep sharing and allows
disjunctive facts.

General Modular Analysis Frameworks Theoretical foundations
for modular program analysis are explored in [13], [14], and [15].
The work in [16] provides a framework for computing precise and
concise summaries for IFDS [17] and IDE [18] dataflow problems.
This framework is mainly specialized for typestate properties and
relies on global points-to information. While it may be possible to
apply this framework to obtain some form of modular heap analysis
in principle, it is unclear how to do so, and the authors of [16] list
this application as a future research direction.

References
[1] Aiken, A., Bugrara, S., Dillig, I., Dillig, T., Hackett, B., Hawkins, P.:

An overview of the saturn project. In: PASTE, ACM (2007) 43–48
[2] Bush, W., Pincus, J., Sielaff, D.: A static analyzer for finding dynamic

programming errors. Software: Practice and Experience 30(7) (2000)
775–802

[3] Reps, T.W., Sagiv, S., Wilhelm, R.: Static program analysis via 3-
valued logic. In: CAV. Volume 3114., Springer (2004) 15–30

[4] Dillig, I., Dillig, T., Aiken, A.: Fluid updates: Beyond strong vs. weak
updates. In: ESOP. (2010)

[5] Landi, W., Ryder, B.G.: A safe approximate algorithm for interproce-
dural aliasing. SIGPLAN Not. 27(7) (1992) 235–248

[6] Wilson, R.P., Lam, M.S.: Efficient context-sensitive pointer analysis
for c programs. In: PLDI. (1995)

[7] Chatterjee, R., Ryder, B., Landi, W.: Relevant context inference. In:
POPL, ACM (1999) 133–146

[8] Dillig, I., Dillig, T., Aiken, A.: Sound, complete and scalable path-
sensitive analysis. In: PLDI, ACM (2008) 270–280

[9] Whaley, J., Rinard, M.: Compositional pointer and escape analysis for
Java programs. In: OOPSLA, ACM (1999) 187–206

[10] Salcinau, A.: Pointer Analysis for Java Programs: Novel Techniques
and Applications. PhD thesis, MIT (2006)

[11] Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional
shape analysis by means of bi-abduction. POPL (2009) 289–300

[12] Gulavani, B., Chakraborty, S., Ramalingam, G., Nori, A.: Bottom-up
shape analysis. SAS (2009) 188–204

[13] Cousot, P., Cousot, R.: Modular static program analysis. In: CC.
(2002) 159–178

[14] Gulwani, S., Tiwari, A.: Computing procedure summaries for inter-
procedural analysis. ESOP (2007) 253–267

[15] Pnueli, M.: Two approaches to interprocedural data flow analysis.
Program Flow Analysis: Theory and Applications (1981) 189–234

[16] Yorsh, G., Yahav, E., Chandra, S.: Generating precise and concise
procedure summaries. POPL 43(1) (2008) 221–234

[17] Reps, T.W., Horwitz, S., Sagiv, S.: Precise interprocedural dataflow
analysis via graph reachability. In: POPL. (1995) 49–61

[18] Sagiv, S., Reps, T.W., Horwitz, S.: Precise interprocedural dataflow
analysis with applications to constant propagation. Theor. Comput.
Sci. 167(1&2) (1996) 131–170

