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Abstract
When program verification tools fail to verify a program, either the
program is buggy or the report is a false alarm. In this situation, the
burden is on the user to manually classify the report, but this task
is time-consuming, error-prone, and does not utilize facts already
proven by the analysis. We present a new technique for assisting
users in classifying error reports. Our technique computes small,
relevant queries presented to a user that capture exactly the infor-
mation the analysis is missing to either discharge or validate the er-
ror. Our insight is that identifying these missing facts is an instance
of the abductive inference problem in logic, and we present a new
algorithm for computing the smallest and most general abductions
in this setting. We perform the first user study to rigorously evaluate
the accuracy and effort involved in manual classification of error re-
ports. Our study demonstrates that our new technique is very useful
for improving both the speed and accuracy of error report classifi-
cation. Specifically, our approach improves classification accuracy
from 33% to 90% and reduces the time programmers take to clas-
sify error reports from approximately 5 minutes to under 1 minute.

Categories and Subject Descriptors F.3.1 [Logics and Meaning
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Languages, Verification, Algorithms, Experimen-
tation

Keywords Error diagnosis, abductive inference, static analysis

1. Introduction
Automated software verification systems perform sophisticated
reasoning to prove the correctness of program properties, such as
validity of assertions, memory safety, and lack of run-time excep-
tions. If the tool concludes that the program satisfies the property,
then all is well. On the other hand, if the tool claims that the pro-
gram may violate the property, there are two possibilities:

• either the program is indeed buggy, or
• the report generated by the tool is a false alarm
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Since program verification is, in general, undecidable, false alarms
are inevitable no matter how sophisticated the reasoning performed
by the analysis tool. Thus, when a static analysis fails to verify
the correctness of a program, the burden is on the user to decide
whether the report generated by the tool is a genuine bug or a false
alarm. This situation is undesirable for multiple reasons:

• Manual report classification is a very time-consuming task that
requires expertise, patience, and understanding of the program.
• Even if the cause of the report is very simple (e.g., the analysis

could not establish a single, local fact), there is no bound on
the amount of work the user must do to discover this cause.
Effectively, the user must repeat all of the successful reasoning
the tool performed just to discover where it became stuck.
• Manual classification of error reports is error-prone: As corrob-

orated by our experimental results, users often misclassify false
alarms as genuine bugs, or much more problematically, genuine
bugs as false alarms.

We believe that the difficulty of manual report classification
is a major remaining impediment to the wide-spread adoption of
even the most precise and state-of-the-art static analysis tools. As
reported in a recent article by Bessey et al., the overwhelming
experience in the field is that users who do not understand error
reports become frustrated and ignore those reports [1].

In this paper, we propose a new technique for assisting users
in classifying error reports when automated static analyses fail to
verify a program. Our technique allows verification tools to interact
with users by computing small, relevant queries that capture exactly
the facts that the analysis is missing to either verify the program or
prove the existence of a real error. These queries are then presented
to a user who decides whether the answer to the query is yes or no.

The first kind of query we compute is a proof obligation query,
which asks the user whether a property P is a program invariant.
These queries have the key characteristic that, if P is indeed an
invariant, then the program is error-free. Furthermore, proof obli-
gation queries are as simple and as general as possible: they capture
exactly, and only, the information the analysis is missing to verify
the program. Our analysis also computes a second kind of query,
called a failure witness query, which asks the user whether a prop-
erty P can arise in some execution. The key feature of a witness
query is that, if P can indeed occur in some execution, the program
must have an error. Furthermore, our technique computes simplest
and most general failure witness queries: they capture precisely the
facts the analysis is missing to be certain that the program is buggy.

Our approach to error report classification is semi-automatic: It
computes simple and relevant queries to resolve the error report,
but trusts a user to correctly answer them. Since this technique
is only useful when an automated analysis has been unable to
verify the program, it is inevitable to ask the user for some help.
In fact, the current best practice asks the user to do all the work,



as manual report classification is 100% trusted user information.
Our approach minimizes -in a precise sense- the amount of trusted
information the user must supply, both simplifying and speeding up
her job while also increasing the accuracy of the classification.

There are four salient features underlying our approach:

• We describe a static analysis algorithm that makes explicit all
possible sources of incompleteness in static analyzers and uses
facts inferred by any other program analysis technique.
• This representation allows the analysis to not only prove the

absence of errors but also to prove their presence, i.e., in some
cases, the analysis can decide that the program must be buggy.
• When the analysis can neither discharge nor validate a potential

error, it computes small, relevant queries to be presented to
the user, called proof obligations and failure witnesses, that
ultimately allow the analysis to discharge or validate an error.
• If the user’s answer to a proof obligation query is “yes”, the

analysis can discharge the potential error. Similarly, if the user’s
answer to a failure witness query is “yes”, the analysis can
prove the existence of an error. Otherwise, our technique com-
putes new proof obligation and failure witness queries, until the
error can either be discharged or validated. Queries are posed
to the user in order of increasing cost, meaning that the user is
asked the questions that should be the easiest to answer first.
Since state-of-the-art static analyzers typically lose information
in few places, it is easier for the user to answer simple queries
about a handful of missing analysis facts than to manually in-
spect and understand an entire program.

1.1 Informal Overview
We illustrate key features of our approach with a simple example:

void foo(int flag, unsigned int n)
{
1: int k = 1;
2: if(flag) k = n*n;

3: int i = 0, j = 0;
4: while(i <= n) {
5: i++;
6: j+=i;
7: }
8: int z = k + i + j;
9: assert(z > 2*n);
}

This code snippet contains an assertion at line 9 which is guar-
anteed to hold 1. Assume that a static analysis fails to verify this
program and reports a potential assertion failure for line 9. Of
course, just because the tool reports a false alarm does not mean it
has inferred no useful information about the program. For instance,
the analysis may have inferred that k’s value after line 2 is at least
0 (as n*n is always non-negative), and that the value of i after the
loop is at least 0 and greater than n. Our goal is to utilize these facts
inferred by the analysis to assist the user in classifying this report.

The first key idea underlying our technique is to model poten-
tial sources of incompleteness in static analyses using abstraction
variables. In this example, since the exact values of i and j are
unknown after the loop, our technique introduces abstraction vari-
ables αi and αj to model the unknown values of i and j at line
7. Similarly, assuming the analysis does not reason precisely about
non-linear arithmetic, our technique introduces abstraction variable
αn∗n to model the unknown result of the multiplication at line 2.

Next, our technique utilizes invariants obtained by any static
analysis to infer restrictions on abstraction variables. For example,

1 In this example, we assume there are no integer overflows.

since an existing static analyzer has inferred that n*n is always non-
negative, we have the side condition:

αn∗n ≥ 0

Similarly, since we know that the value of i after the loop is greater
than n and at least 0, the abstraction variable αi must satisfy:

αi ≥ 0 ∧ αi > n

Thus, for line 9, our technique obtains the following invariant I:

I = (αn∗n ≥ 0 ∧ αi ≥ 0 ∧ αi > n ∧ n ≥ 0)

Here, the first three predicates in I express invariants obtained from
an existing static analysis, and the last predicate n ≥ 0 expresses
that unsigned variables are non-negative.

Now that we can explicitly name each potential source of im-
precision, our technique computes an exact symbolic value set for
each expression in the program. For instance, the value of variable
k at line 2 is represented by the symbolic value set:

{(1,¬flag), (αn∗n, flag)}
meaning that k has value 1 under constraint ¬flag and the unknown
value represented by αn∗n under condition flag. Similarly, the
values of variables i and j at line 7 after the loop are represented
by the singleton value sets {(αi, true)} and {(αj , true)}. Since z
is obtained by adding k, i, and j, we can use symbolic value sets
of k, i, and j to compute the symbolic value of z, given by:

{(1 + αi + αj ,¬flag), (αn∗n + αi + αj , flag)}
Since the assertion at line 9 succeeds if the value of z is greater

than 2*n, we can use the symbolic value set for z to compute the
condition φ under which the assertion holds:

φ = (1+αi+αj > 2∗n∧¬flag)∨ (αn∗n+αi+αj > 2∗n∧ flag)

Observe that the assertion is verified if the invariants I entail
the success condition φ of the assertion, i.e.,:

I |= φ

Similarly, we know that the assertion is guaranteed to fail if:

I |= ¬φ
In this example, since neither I |= φ nor I |= ¬φ, the analysis
cannot discharge or validate the potential assertion failure.

Thus, our goal is to identify the possible facts the analysis is
missing to either discharge or validate the error and ask the user
whether these facts indeed hold. Our insight is that this problem is
an instance of the abductive inference problem in logic, where the
goal is to find an explanatory hypothesis for a desired outcome. For-
mally, given known facts F and a desired outcome O, an abductive
inference problem is to find an explanation E such that:

F ∧ E |= O and SAT(F ∧ E)

In other words, the abduction E is consistent with known facts F ,
and together with F , is sufficient to explain O.

In our setting, the desired outcome is to either prove the absence
of an error or to validate its existence. Thus, we solve two abductive
inference problems, one to infer the missing information necessary
to verify the program, and one to find the missing facts to validate
the presence of an error. Specifically, to prove the absence of an
error, we compute a proof obligation Γ by solving the following
abductive inference problem:

I ∧ Γ |= φ and SAT(I ∧ Γ)

In other words, a proof obligation Γ is consistent with program
invariants I and, along with I, is sufficient to discharge the error.
Furthermore, we are not interested in just any solution to the abduc-
tive inference problem; what we want is a weakest minimum proof



obligation so that the queries presented to the user are as small and
as general as possible. In this example, using the techniques of Sec-
tion 4, we compute a weakest minimum proof obligation as:

αj ≥ n
Thus, if the user can show that j >= n always holds at line 7, the
analysis can discharge the potential error.

Dually, to prove the presence of an error, we compute a failure
witness Υ by solving a second abductive inference problem:

I ∧Υ |= ¬φ and SAT(I ∧Υ)

In other words, a failure witness is also consistent with program
invariants, and if Υ holds in some execution, we know that the
program must have an error. Again, we are not interested in any
solution to the abductive inference problem; instead, we want to
find a weakest minimum failure witness to ensure that the queries
we compute are as small and as general as possible. For our running
example, techniques described in Section 4 yield the following
weakest minimum failure witness:

¬flag ∧ αi + αj < 0

Thus, if the user can show that i+j < 0 is possible at line 7 in an
execution where !flag holds, the analysis can validate the error.

After computing weakest minimum proof obligations and fail-
ure witnesses, our technique then decides whether it is more
promising to try to discharge the error or to validate it by com-
paring the costs of the proof obligation and failure witness. In this
example, our technique decides that it is more promising to try to
discharge the error and therefore queries the user whether j>=n is
a program invariant at line 7.

Since it is easy to show that j >= n always holds at line 7,
the analysis can immediately discharge the error. Observe that,
although the assertion condition in this example requires reasoning
about values of multiple variables i, j, k, and z, our technique
can take advantage of facts already established by the analysis to
compute a simple and intuitive query involving only variable j.

1.2 Organization and Contributions
The rest of this paper is organized as follows: Section 2 defines a
simple language in which we formalize our technique. Section 3
describes a static analysis that makes explicit potential sources of
imprecision and performs symbolic value propagation. Section 4
defines weakest minimum proof obligations and failure witnesses,
describes a technique for computing them, and presents an itera-
tive algorithm for validating or discharging error reports. Section 5
describes our implementation; Section 6 presents experimental re-
sults. Finally, Section 7 surveys related work, and Section 8 con-
cludes. In summary, this paper makes the following contributions:

• We present a new technique for semi-automatic report classifi-
cation when static analyzers are unable to verify the program.
• We define weakest minimum proof obligations and failure wit-

nesses as a technical characterization of simple, relevant facts
useful for resolving error reports.
• We present the problem of computing proof obligations and

failure witnesses as an abductive inference problem and give
a new algorithm for computing abductions in this setting.
• We show how proof obligations and failure witnesses can be

used to interact with users until a potential error is resolved.
• We perform a user study to evaluate our technique. Our results

show that the new technique is very useful both for improving
the time required to classify error reports as well as for dramat-
ically improving the accuracy of report classification. Specifi-
cally, our approach improves classification accuracy from 33%

S ` v : S(v) S ` c : c

⊕ ∈ {+,−, ∗}
S ` e1 : c1 S ` e2 : c2

S ` e1 ⊕ e2 : c1 ⊕ c2

S ` e1 : c1 S ` e2 : c2

b =

{
true if c1 � c2
false otherwise

S ` e1 � e2 : b

lop ∈ {∧,∨}
S ` p1 : b1 S ` p2 : b2

S ` p1 lop p2 : b1 lop b2

S ` p : b

S ` ¬p : ¬b
S ` e : c

S ` v = e : S[c/v] S ` skip : S

S ` p : true S ` s1 : S1

S ` if(p) then s1 else s2 : S1

S ` p : false S ` s2 : S2

S ` if(p) then s1 else s2 : S2

S ` s1 : S1 S1 ` s2 : S2

S ` s1; s2 : S2

S ` p : true S ` s : S′

S′ ` loopρ(p){s} : S′′

S ` loopρ(p){s} : S′′

S ` loopρ(p){s} : S′ S′ ` p′ : true
S ` whileρ(p){s}[@p′] : S′

S ` p : false
S ` loopρ(p){s} : S

S = [c1/a1, . . . , ck/ak][0/v1, . . . , 0/vn]
S ` s : S′ S′ ` p : b

` λ~a.(let ~v in (s; check(p)))(c1, . . . ck) : b

Figure 1. Operational semantics of the language from Section 2

to 90% and reduces the time programmers take to classify error
reports from approximately 5 minutes to under 1 minute.

2. Language
In this section, we present a simple programming language that we
use to formalize our technique:

Program P := λ~a. (let ~v in (s; check(p)))
Statement s := v = e | skip | s1; s2

| if(p) then s1 else s2

| whileρ(p){s}[@p′]?
Expression e := v | c | c ∗ e | e1 ⊕ e2 (⊕ ∈ {+,−})
Predicate p := e1 � e2 (� ∈ {<,>,=})

| p1 ∧ p2 | p1 ∨ p2 | ¬p

In this language, a program with inputs ~a and local variables ~v
consists of a statement s and a check(p) statement, which checks
whether predicate p evaluates to true. The program evaluates to
true if predicate p holds, and to false otherwise. We say that an
execution of a program P is error-free if P evaluates to true in this
execution, and buggy otherwise. Similarly, we say that program P
is error-free if P evaluates to true in all possible executions, and
buggy if P evaluates to false in some execution.

Statements in this language consist of assignments (v = e,
where v is bound in the let statement) , skip statements, sequenc-
ing (s1; s2), if statements, and while loops labeled with unique
identifiers ρ. Observe that while loops can be optionally tagged
with annotations of the form @p′, where predicate p′ corresponds
to invariants that hold after the loop. For the purposes of this paper,
these invariants may be obtained from any automatic sound static
analysis technique, such as abstract interpretation or predicate ab-
straction. We say that a program P is analyzed if all while loops
are annotated with sound post-conditions using a static analyzer.

Expressions include integer variables v, integer constants c,
and arithmetic operations. This language has an expressive family
of predicates which include comparisons between expressions, as
well as conjunction, disjunction, and negation. The operational
semantics is given in Figure 1. We omit function calls from this



θ1 = {(π1, φ1), . . . , (πk, φk)}
θ2 = {(π′1, φ′1), . . . , (π′n, φ

′
n)}

θ =
⋃
ij((πi ⊕ π′j), (φi ∧ φ′j))
` θ1 ⊕ θ2 : θ

θ1 = {(π1, φ1), . . . , (πk, φk)}
θ2 = {(π′1, φ′1), . . . , (π′n, φ

′
n)}

φ =
∨
ij((πi � π′j) ∧ φi ∧ φ′j)
` θ1 � θ2 : φ

θ′ =
⋃

(πi,φi)∈θ (πi, (φi ∧ φ))

` θ ∧ φ : θ′

Figure 2. Operations on symbolic value sets

S ` v : S(v) S ` c : (c, true)

⊕ ∈ {+,−, ∗}
S ` e1 : θ1 S ` e2 : θ2

S ` e1 ⊕ e2 : θ1 ⊕ θ2

Figure 3. Symbolic evaluation rules for expressions

language, as the issues raised by function calls are orthogonal
and not necessary for understanding our technique. However, our
implementation is an interprocedural analysis (see Section 5).

3. Analysis
In this section, we describe a static analysis that is performed after
a verification tool already analyzed the program, inferring the @p′

annotations on while loops and reporting a potential error. Our
analysis, which is a prerequisite for computing relevant queries to
classify the error report, has the following key characteristics:

• Values of program variables are represented by symbolic ex-
pressions consisting of constants and analysis variables.
• There are two kinds of analysis variables: input variables ν rep-

resent unknown values of program inputs, and abstraction vari-
ables α model unknown values of variables due to an impreci-
sion in the analysis. For instance, abstraction variables represent
values that may be unknown after loops.
• The analysis uses facts inferred by other analyzers, which are

annotated using the @p′ construct on loops. These invariants
are used to constrain values of abstraction variables.
• The only source of imprecision in this analysis is loops; it

performs exact symbolic value propagation on loop-free code.

Our static analysis is described in Figures 2, 3, 4, and 5. Values
of program variables are represented as symbolic expressions π:

π := ν | α | c | π1 + π2 | π1 − π2 | c ∗ π

Besides input variables ν and abstraction variables α, symbolic ex-
pressions are integer constants c, addition or subtraction of sym-
bolic expressions, and linear multiplication. Since the only impre-
cision of the static analysis for the simple language from Section 2
is due to loops, abstraction variables are only used to model the
(potentially) unknown values of program variables after loops.

In the analysis, environment S maps program variables to sym-
bolic value sets θ:

θ := 2(π,φ)

where π is a symbolic expression and φ is a constraint. Since
variables may have different symbolic values on different program
paths, the constraint φ allows the analysis to keep values on differ-
ent paths separate. For concreteness, constraints in this paper are in
the theory of of linear arithmetic over integers.

S ` e1 : θ1
S ` e2 : θ2

S ` e1 � e2 : θ1 � θ2

lop ∈ {∧,∨}
S ` p1 : φ1

S ` p2 : φ2

S ` p1 lop p2 : φ1 lop φ2

S ` p : φ

S ` ¬p : ¬φ

Figure 4. Symbolic evaluation rules for predicates

S ` e : θ
S′ = S[θ/v]

S, I ` v = e : S′, I S, I ` skip : S, I

S, I ` s1 : S1, I1
S1, I1 ` s2 : S2, I2
S, I ` s1; s2 : S2, I2

S ` p : φ
S, I ` s1 : S1, I1 S, I ` s2 : S2, I2

S′ = (S1 ∧ φ) t (S2 ∧ ¬φ)
I′ = ((φ⇒ I1) ∧ (¬φ⇒ I2))

S, I ` if(p) then s1 else s2 : S′, I′

S′ = S[(αρ1, true)/v1, . . . , (α
ρ
k, true)/vk])(~v modified in s)

S, I ` loopρ(p){s} : S′, I

S, I ` loopρ(p){s} : S′, I S′ ` p′ : φ

S, I ` whileρ(p){s}[@p′] : S′, I ∧ φ

S = [(ν1, true)/a1, . . . , (νk, true)/ak]
S′ = S[(0, true)/v1, . . . , (0, true)/vn]
S′, true ` s : S′′, I S′′ ` p : φ

` λ~a.(let ~v in (s; check(p))) : I, φ

Figure 5. Transformers for the static analysis

Figure 2 defines some useful operations on symbolic value
sets. The first rule θ1 ⊕ θ2 describes how to perform arithmetic
operations on symbolic value sets, where ⊕ ranges over +,−, ∗
and where θ is the symbolic value set representing the result of the
arithmetic operation. The second rule θ1� θ2 (where� is <,>, or
=) describes how to compare value sets θ1 and θ2. The result is a
constraint φ, which describes the condition under which θ1 is less
than, greater than, or equal to θ2. Finally, the last rule in this figure
defines what it means to conjoin a constraint φ with a value set θ.

Figures 3 and 4 describe symbolic evaluation of expressions
and predicates, and are direct analogues of the corresponding oper-
ational semantics rules in Figure 1, with integer constants replaced
by symbolic value sets and boolean constants with constraints.

The first six rules in Figure 5 describe the transformers for
statements and derive judgements of the form:

S, I ` s : S′, I′

Since statements may modify values of program variables, each
statement may modify S and produce a new symbolic store S′. The
constraints I and I′ describe invariants about abstraction variables
obtained from annotations on while loops.

The first three rules in Figure 5 are self-explanatory and are
straightforward analogues of their concrete counterparts from Fig-
ure 1. In the rule for if statements, facts that are obtained by ana-
lyzing the then branch s1 (resp. else branch s2) only hold under
the conditional p (resp. ¬p). Therefore, we first compute the sym-
bolic evaluation of conditional p as φ and conjoin φ to all facts
obtained in the then branch and ¬φ to facts obtained in the else
branch. In this rule, conjunction on symbolic stores is defined as:

∀v ∈ dom(S). (S ∧ φ)(v) = {(πj , φj ∧ φ) | (πj , φj) ∈ S(v)}

This rule also uses an (exact) join operation t on symbolic stores,
defined as:

(π, φ) ∈ S1(v) ∧ (π, φ′) ∈ S2(v)⇒ (π, φ ∨ φ′) ∈ (S1 t S2)(v)
(π, φ) ∈ Si(v) ∧ (π, ) 6∈ Sj(v)⇒ (π, φ) ∈ (S1 t S2)(v)



Thus, in the rule for if statements, the symbolic store S′ is
obtained by conjoining φ to all bindings in S1, ¬φ to all bindings
in S2, and then combining the resulting symbolic stores. Similarly,
observe that a new invariant I′ is obtained as:

(φ⇒ I1) ∧ (¬φ⇒ I2)

because invariants obtained from the then branch only hold under
φ, while invariants obtained in the else branch hold under ¬φ.

The rule for while loops does not infer any loop invariants, but
instead uses loop postconditions already inferred by other analyses
annotated using the @p′ construct. For this reason, we first bind the
values of all variables v1, . . . , vk modified in the loop body to fresh
abstraction variables αρ1, . . . , α

ρ
k in the loopρ(p){s} helper rule.

Now, to utilize any known invariants on the values of v1, . . . , vk,
we symbolically evaluate the annotated invariant @p′ as constraint
φ and obtain a new invariant I ∧ φ after analyzing the while loop.
Observe that since the annotation @p′ is symbolically evaluated
under store S′ and since loop modified variables are bound to their
corresponding abstraction variables α in S′, the new invariant φ
constrains values of abstraction variables introduced in this loop.

The last rule in Figure 5 describes the analysis of the whole
program. The initial store is obtained by binding the arguments
a1, . . . , ak to analysis variables ν1, . . . , νk and initializing local
variables to 0, as specified by the concrete semantics. The result
of the analysis is a pair of constraints I, φ where I represents all
known invariants on the abstraction variables and φ represents the
condition under which the program evaluates to true.

LEMMA 1. Let P be any program such that ` P : I, φ. If I |= φ,
then P is error-free (i.e., evaluates to true in all executions).

PROOF 1. Given in the extended version of this paper [2].

LEMMA 2. LetP be any program such that ` P : I, φ. If I |= ¬φ,
then P must be buggy.

PROOF 2. Given in the extended version of this paper [2].

At first glance, the condition in Lemma 2 may seem too strong
as the satisfiability of the formula I ∧ ¬φ is sufficient to establish
that the program may be buggy. However, here, we are interested
in proving that the program must be buggy, which we can only
guarantee if I |= ¬φ.

EXAMPLE 1. Consider the following program with annotated in-
variants obtained from a static analysis:

λa1, a2.(let k, i, j, z in (
if(a2 > 0) then k = a2 else k = 1;
while1(i < a2 + 1){
i = i+ 1;
j = j + i;
}@[i > −1 ∧ i > a2]
if(a1 > 0) then z = k + i+ j else z = 2 ∗ a2 + 1;
check(z > 2 ∗ a2)

))

Applying the analysis rules described in this section, we obtain:

I = α1
i ≥ 0 ∧ α1

i > ν2

and success condition φ:

(ν2 + α1
i + α1

j > 2ν2 ∧ ν2 > 0 ∧ ν1 > 0)
∨ (1 + α1

i + α1
j > 2ν2 ∧ ν2 ≤ 0 ∧ ν1 > 0)

∨ (2ν2 + 1 > 2ν2 ∧ ν1 ≤ 0)

Since neither I |= φ nor I |= ¬φ, the potential error can neither
be discharged nor validated.

4. Query Guided Error Diagnosis
As Lemmas 1 and 2 from Section 3 show, our analysis can some-
times prove that a program is error-free or definitely buggy. Unfor-
tunately, in many cases, the outcome of the analysis is not definite:
It can neither discharge the potential error nor prove that the pro-
gram is buggy. In this case, the error report must be inspected by
a human who classifies the report as a genuine bug or false alarm.
As mentioned in Section 1, this situation is problematic because
manual classification is time-consuming, difficult, and error-prone.

In this section, we describe a novel technique for computing
small, relevant queries that systematically allow definite classifica-
tion of error reports. More technically, our goal is to identify rele-
vant facts such that, along with these facts, either Lemma 1 applies
(in which case, the report is definitely a false alarm) or Lemma 2
holds (in which case the report is confirmed to be a genuine bug).

4.1 Weakest Minimum Queries to Discharge Error
Suppose that, for a given program P , the analysis from Section 3
derives the judgment

` P : I, φ
but neither Lemma 1 nor Lemma 2 applies. To be able to discharge
the error, what we need to do is to find a formula Γ such that, along
with I, Γ implies the success condition φ. Specifically, we need to
solve the following abductive inference problem:

DEFINITION 1. (Proof Obligation) Given known facts I and suc-
cess condition φ, a proof obligation is a formula Γ such that:

Γ ∧ I |= φ and SAT(Γ ∧ I)

Thus, a proof obligation Γ is consistent with known program
invariants I, and together with I allows us to prove the success
condition φ. Observe that there is always a trivial proof obligation,
namely Γ = φ. In other words, a trivial way to discharge the error
is simply to ask the user to show the success condition φ itself!
Therefore, we are not interested in just any proof obligation, but
simple, intuitive proof obligations that are local and easy for the
user to decide. To make precise what we mean by simple proof
obligations, it is necessary to assign a cost to each formula Γ. In
this paper, we assign costs to proof obligations as follows:

DEFINITION 2. (Cost of Proof Obligation) Let Γ be a proof obli-
gation query for I, φ, and let Πp be a mapping from variables
to costs such that Πp(α) = 1 for abstraction variable α and
Πp(ν) = |Vars(φ) ∪ Vars(I)| for input variable ν. Then:

Cost(Γ) =
∑

v∈Vars(Γ)

Πp(v)

The above cost function assigns cost 1 to each abstraction vari-
able α and cost |Vars(φ) ∪ Vars(I)| to each input variable ν. Of
course, it is impossible to exactly capture the intuitiveness of a pro-
gram fact with a mathematical formula, and any definition of query
cost necessarily approximates the human effort required to decide
that query. We choose to approximate the simplicity of a query as
given by Definition 2 because it captures the following intuitions:

• Local facts are generally easier to decide for humans: Our cost
function assigns a lower cost to formulas with fewer abstraction
variables, because queries involving fewer variables require the
user to reason about fewer sources of analysis imprecision.
• In general, it is undesirable to make assumptions about the pro-

gram’s execution environment (i.e., inputs in our language): For
this reason, the cost function assigns a higher cost to formulas
containing input variables ν. In fact, the intuition behind assign-
ing cost |Vars(φ)∪Vars(I)| to input variables ν is to ensure that
it is more expensive to constrain a single input vs. all sources



of imprecision. In other words, if there is any way to discharge
the error without constraining the program’s execution environ-
ment, the analysis will ask those queries first.

While this cost definition could be refined, we found it to cap-
ture simplicity well in practice (see Section 6). Furthermore, the
techniques we describe are agnostic to the definition of query cost;
we only require that cost is a function of variables in the formula.
Given a function that assigns costs to queries, we can now define a
special kind of proof obligation that we are interested in computing:

DEFINITION 3. (Weakest Minimum Proof Obligation) Given
facts I and success condition φ, a weakest minimum proof obliga-
tion is a formula Γ such that:

1. Γ ∧ I |= φ and SAT(Γ ∧ I)
2. For any other Γ′ that satisfies (1), either Cost(Γ) < Cost(Γ′)

or Cost(Γ) = Cost(Γ′) ∧ (Γ 6⇒ Γ′ ∨ Γ⇔ Γ′)

Thus, a weakest minimum proof obligation Γ has cost less than
or equal to any other proof obligation, and Γ is no stronger than
other proof obligations with the same minimum cost as Γ. As
argued earlier, the condition of minimality captures the intuitive
notion of simplicity. Furthermore, the requirement that Γ is no
stronger than other proof obligations with the same cost expresses
generality. In particular, we do not want to ask the user about
invariants that are stronger than necessary to discharge the error.

4.1.1 Computing Weakest Minimum Proof Obligations
We now turn to the problem of how to compute weakest minimum
proof obligations. First, observe that we can rewrite Γ∧ I |= φ as:

Γ |= I ⇒ φ

Thus, Γ is a formula with minimum cost that entails I ⇒ φ. Our
insight is that we can make use of a minimum partial satisfying
assignment of I ⇒ φ to compute the weakest Γ with minimum
cost.

DEFINITION 4. (Cost of Partial Assignment) Let σ be a partial
assignment for a formula φ and let Π be a mapping from variables
in φ to non-negative integers. The cost of partial assignment σ,
written Cost(σ) is

∑
v∈Vars(σ) Π(v)

DEFINITION 5. (Minimum Satisfying Assignment) Given map-
ping Π from variables to costs, a minimum satisfying assignment
of formula ϕ is a partial assignment σ to a subset of the variables
in ϕ such that:

• σ(ϕ) ≡ true
• ∀σ′ such that σ′(ϕ) ≡ true, Cost(σ) ≤ Cost(σ′)

In this paper, we do not address the problem of computing
minimum satisfying assignments for formulas. An algorithm for
computing minimum satisfying assignments in theories that admit
quantifier elimination is described in [3]. Since the theory of linear
arithmetic over integers used in this paper admits quantifier elimi-
nation, the algorithm of [3] is directly applicable.

Minimum satisfying assignments are useful because they allow
us to determine the minimum set of variables that any proof obli-
gation Γ must contain. However, we are not interested in any min-
imum satisfying assignment to I ⇒ φ since some minimum satis-
fying assignments make I ⇒ φ true by falsifying I. Such assign-
ments are not interesting in this context because they violate known
invariants I about the program. Thus, what we want is a minimum
satisfying assignment to I ⇒ φ that is consistent with I.

DEFINITION 6. (Consistent Minimum Satisfying Assignment) A
minimum satisfying assignment σ of ϕ is consistent with ϕ′ if σ(ϕ′)
is satisfiable.

Suppose σ is a minimum satisfying assignment of I ⇒ φ
consistent with I. Now, if we interpret σ as a logical formula Fσ
(i.e., a conjunction of equalities between variables and constants),
Fσ is in fact a proof obligation, since, by definition:

Fσ |= I ⇒ φ and SAT(Fσ ∧ I)

Furthermore, Fσ also has minimum cost, but, it is not the weakest
proof obligation. More specifically, since Fσ assigns each variable
to a concrete value, it is in fact a strongest proof obligation with
minimum cost and is not very likely to be a valid program invariant.

What we are really after, then, is a formula Γ containing only
the variables in σ but that is also the weakest formula containing
these variables that still entails I ⇒ φ. In other words, what we
want is the weakest sufficient condition of I ⇒ φ containing only
the variables in σ.

LEMMA 3. Let V be the set of variables in a minimum satisfying
assignment of I ⇒ φ consistent with I, and let V be the set of
variables in I ⇒ φ but not in V . We can obtain a weakest minimum
proof obligation by eliminating the quantifiers from the formula:

∀V . (I ⇒ φ)

PROOF 3. The fact that this formula is a minimum proof obligation
follows from Definition 6. The fact that this formula is the weakest
such one follows from the well-known result that the weakest suffi-
cient condition of a formula φ containing only variables V is given
by ∀V .φ and from the fact that linear integer arithmetic admits
quantifier elimination.

Remark: While the formula computed as described in Lemma 3
yields a weakest minimum proof obligation, this formula may be
redundant. In other words, parts of this formula may already be
implied by the known invariants I. Thus, to avoid unnecessary
queries, we simplify the formula computed as in Lemma 3 with
respect to I. This can be achieved, for instance, by using the sim-
plification algorithm of [4], with I as the initial critical constraint.

EXAMPLE 2. We now illustrate the computation of the proof obli-
gation Γ on Example 1, where we already computed I and φ. Here,
a minimum satisfying assignment to I ⇒ φ that is consistent with
I is α1

j = 0. Now, we eliminate the quantifiers from the formula:

∀ν1, ν2, α
1
i . (I ⇒ φ)

which, after simplification, yields α1
j ≥ 0. Thus, the assertion in

Example 1 can be proven if the user shows that j ≥ 0 after the
loop, which is indeed the case. Observe that the query we pose to
the user is much simpler compared to φ.

4.1.2 Deciding Proof Obligation Queries
As discussed earlier, a proof obligation Γ is a query presented to
a user, and, if true, proves the absence of an error in the program.
Formally, we define a valid answer to a proof obligation query:

DEFINITION 7. (Valid Answer to Proof Obligation Query) We
say that the answer to a proof obligation query Γ is valid iff:

• The answer is either yes or no
• If the answer if yes, then Γ holds on all program executions (i.e.,

Γ is a program invariant)
• If the answer is no, then there is at least one execution in which

Γ is violated

In practice, a user may not always be able to give a definite
yes/no answer to a proof obligation query; thus it is reasonable to
accept “I don’t know” as an answer. We discuss how to extend our
technique to handle “I don’t know” answers to queries in Section 5.



In this paper, we do not address the problem of verifying that
the user’s answer to a query is correct. Since our technique only
applies in cases where automated verification fails, it is difficult,
and sometimes even impossible, to completely eliminate trusted
user information. Thus, our goal is to minimize the amount of
trusted user information required to verify the program, making the
job of the user much easier and improving classification accuracy.

LEMMA 4. Let Γ be a proof obligation query, and suppose “yes”
is a valid answer to this query. Then, the program is error-free.

PROOF 4. This follows immediately from the definition of proof
obligation and validity of answer to the query.

4.2 Weakest Minimum Queries to Validate An Error
In this section, we now turn to the complementary problem of
validating the existence of a real error in the program. Recall from
Lemma 2 that the condition

I |= ¬φ
guarantees that the program must contain a real error.

Now, to validate the existence of an error, we need to solve the
same kind of abductive inference problem we considered in the
previous section. More specifically, we need to find a formula Υ,
called a failure witness, defined as follows:

DEFINITION 8. (Failure Witness) Given facts I and success con-
dition φ of a program, a failure witness is a formula Υ such that:

I ∧Υ |= ¬φ and SAT(Υ ∧ I)

As in the case of proof obligations, we are not interested in any
failure witness, as some witnesses may be more complicated than
necessary or overly restrictive. Thus, to be able to ask the user
simple and general witness queries, we want to obtain a weakest
minimum failure witness. For this purpose, we define cost of failure
witnesses as follows:

DEFINITION 9. (Cost of Failure Witness) Let Υ be a failure wit-
ness for I, φ, and let Πw be a mapping from variables to costs such
that Πw(ν) = 1 for input variable ν and Πw(α) = |Vars(φ) ∪
Vars(I)| for abstraction variable α. Then:

Cost(Υ) =
∑

v∈Vars(Υ)

Πw(v)

Similar to that for proof obligations, this cost function is bi-
ased in favor of queries involving local facts, as it penalizes wit-
ness queries involving more abstraction variables. But in contrast
to proof obligations, we prefer witness queries involving only in-
puts to those involving abstraction variables. Since it is in general
undesirable to make assumptions about the program’s inputs, it is
likely that witness queries involving input variables are easy to an-
swer affirmatively, and are thus assigned a lower cost. While this
cost definition merely approximates the simplicity and usefulness
of a witness query, we found it to work well in practice.

We can now define weakest minimum failure witness:

DEFINITION 10. (Weakest Minimum Failure Witness) Given
known facts I about a program P and success condition φ, a
weakest minimum failure witness of P is a formula Υ such that:

1. Υ ∧ I |= ¬φ and SAT(Υ ∧ I)
2. For any other Υ′ that satisfies (1), either Cost(Υ) < Cost(Υ′)

or Cost(Υ) = Cost(Υ′)∧ (Υ 6⇒ Υ′ ∨Υ⇔ Υ′) where Cost is
defined according to Definition 9.

The computation of weakest minimum failure witnesses is anal-
ogous to the computation of weakest minimum proof obligations:

LEMMA 5. Let V be the set of variables in a minimum satisfying
assignment of I ⇒ ¬φ consistent with I, and let V be the set
of variables in I ⇒ ¬φ but not in V . Then, a weakest minimum
failure witness is obtained by eliminating the quantifiers from the
formula:

∀V . (I ⇒ ¬φ)

4.2.1 Deciding Failure Witness Queries
A failure witness is a query such that if the user answers “yes”, then
there exists at least one execution in which the program fails. Thus,
a valid answer to a witness query is defined as follows:

DEFINITION 11. (Valid Answer to Witness Query) We say that
the answer to a failure witness query Υ is valid iff:

• The answer is either yes or no
• If the answer is yes, then there exists at least one program

execution where Υ holds
• If the answer is no, then there is no execution in which Υ holds,

i.e. ¬Υ is a program invariant.

Observe that answering “yes” to a witness query has very different
semantics than answering “yes” to a proof obligation query: In the
former case, Υ needs to hold in only one execution (existential se-
mantics), whereas in the latter case, Γ must hold in all executions
(universal semantics). Furthermore, observe that answering “no” to
a witness query Υ is equivalent to answering “yes” to a proof obli-
gation query ¬Υ. Similarly, answering “no” to a proof obligation
query Γ is equivalent to answering “yes” to a witness query ¬Γ.

LEMMA 6. Let Υ be a failure witness query, and suppose “yes” is
a valid answer to this query. Then, the program exhibits an error in
at least one execution.

PROOF 5. This follows from the definition of failure witness and
validity of answer to the witness query.

4.3 The Full Algorithm
We now describe the algorithm, presented in Figure 6, for system-
atically generating a sequence of queries until the error report is
resolved. This algorithm takes as input the known program invari-
ants I and the success condition φ. The setW is a set of witnesses,
i.e., conditions known to hold in some execution of the program.

In lines 5-6 of the algorithm, we first compute proof obligation
Γ as described in Section 4.1. Here, compute msa(ϕ, S,Πp) com-
putes the set of variables in the minimum satisfying assignment of
ϕ consistent with the set of formulas given by S with respect to
cost mapping Πp (recall Definition 2). As discussed in Section 4.1,
the minimum satisfying assignment needs to be consistent with I,
since we do not want to issue queries about facts that violate known
program invariants. Furthermore, we want the minimum satisfying
assignment to be consistent with all learned witnesses in W , since
we do not want to ask the user queries about facts for whose viola-
tion we already have witnesses. In line 4, the notation V1 denotes
the set of variables that are in I ⇒ φ but that are not part of the
minimum satisfying assignment. As stated by Lemma 3, we can
compute the weakest minimum proof obligation Γ by eliminating
the universal quantifiers from the formula ∀V1. I ⇒ φ.

Dually, lines 7-8 compute a weakest minimum failure witness
Υ as described in Section 4.2: We first compute the minimum
satisfying assignment of I ⇒ ¬φ consistent with I with respect
to cost function Πw (recall Definition 9). Again, it is important that
the minimum satisfying assignment is consistent with I, as we do
not want to ask queries that we know cannot hold in any execution.
However, in this case, it is not necessary that the assignment is
consistent with W since the failure witness needs to hold for only



function diagnose error(I, φ) :

1 : setW = ∅;

2 : while(true){

3 : if(VALID(I ⇒ φ)) return ERROR DISCHARGED
4 : if(∃ψ ∈W. UNSAT(I ∧ ψ ∧ φ)) return ERROR VALIDATED

5 : V1 = compute msa(I ⇒ φ,W ∪ I,Πp)
6 : Γ = elim quantifier(∀V1.(I ⇒ φ))

7 : V2 = compute msa(I ⇒ ¬φ, I,Πw)
8 : Υ = elim quantifier(∀V2.(I ⇒ ¬φ))

9 : if(Cost(Γ) ≤ Cost(Υ)){
10 : Q1 = form invariant query(Γ)
11 : if(answer toQ1= YES) return ERROR DISCHARGED
12 : W := W ∪ (¬Γ)
13 : }

14 : else{
15 : Q2 = form witness query(Υ)
16 : if(answer toQ2= YES) return ERROR VALIDATED
17 : I := I ∧ (¬Υ)
18 : }
19 : }

Figure 6. Algorithm for Diagnosing Error Reports

one, rather than for all, executions. Finally, as shown by Lemma 5,
we compute the weakest minimum failure witness by eliminating
quantifiers from the formula ∀V2. I ⇒ ¬φ, where V2 is the set of
variables in I ⇒ ¬φ, but not in V2.

At line 9, we compare the costs of the proof obligation Γ and the
failure witness Υ to decide whether it is more promising to try to
discharge the error or to validate it. If the cost of Γ is cheaper, then
at line 10, we formulate the proof obligation Γ as an invariant query
(discussed further in Section 4.4). If the user answers the invariant
query positively, we have discharged the error. On the other hand,
if the user decides that Γ is not an invariant, then we have learned
a new witness: We now know there exists at least one execution
where Γ is violated; thus we add ¬Γ to the set of witness formulas.

On the other hand, if the error validation strategy has lower
cost than the error discharge strategy (lines 14-18), we formulate
Υ as a witness query (again, see Section 4.4). If the answer to this
query is “yes”, we have validated the error. On the other hand, if
the answer to the witness query is “no”, this means there is no
execution in which Υ holds. In this case, we have learned that ¬Υ
is an invariant, and we conjoin it with the existing invariants I.

Observe that at lines 3-4, we check whether the error can be
discharged or validated with the current invariants I and witnesses
W . This check is necessary because even when the user answers
“no” to a query, we still learn additional facts as a result.

Also, observe that the queries computed by our algorithm may
increasingly become more difficult over time. As the analysis pro-
gresses, I becomes stronger and more witnesses are acquired; thus,
the minimum satisfying assignment needs to be consistent with
more facts and may therefore contain more variables. In fact, in
the unlikely case where the user answers “no” to all queries, the
final query may degenerate into the success condition itself.

4.4 From Formulas to Queries
So far, we focused on computing small, relevant formulas that are
useful for classifying error reports. We now discuss how to present
these formulas in a way that can be easily understood by humans.

The first challenge is to translate analysis variables into program
expressions that can be understood without knowledge of internal
analysis details. This problem is easily solved in our representation
since there is a straightforward mapping between analysis variables
and program expressions: Input variables νi used in the analysis
represent values of program inputs ai, and abstraction variables αρi
represent values of program variables vi at program point ρ.

The second challenge is that query formulas presented to the
user may be arbitrary boolean combinations of program expres-
sions. Since it is unrealistic to expect programmers not well-versed
in logic to easily reason about complicated boolean expressions,
we need to decompose queries with complex boolean structure to
a series of simpler queries. To achieve this goal, we observe that
invariant queries distribute over conjuncts, while witness queries
distribute over disjuncts. More specifically, if φ1 ∧ φ2 is an invari-
ant, it is necessary that φ1 and φ2 are independently also invariants.
Similarly, if φ1 ∨ φ2 is a witness, it is necessary that φ1 is possible
in some execution or φ2 is possible in some execution. Thus, we
first convert invariant queries to conjunctive normal form (CNF)
and treat each clause as a separate, independent query. Dually, we
convert witness queries to disjunctive normal form (DNF) and rea-
son about each clause independently.

We also further decompose clauses into simpler queries. For
witness queries, observe that if φ1 and φ2 are individually wit-
nesses, this does not mean φ1 ∧ φ2 is also a witness, since φ1 and
φ2 may be possible in distinct executions, but never possible in the
same execution. In this case, we decompose a conjunct φ1 ∧ φ2 by
first querying whether φ1 is possible in some execution and then
ask whether φ2 is also possible in an execution where φ1 holds.

For invariant queries, clauses contain disjunctions, which hu-
mans typically find difficult to reason about. Thus, for an invariant
query φ1 ∨ φ2, we first ask whether either φ1 or φ2 are indepen-
dently invariants, which is often the case. In cases where a truly
disjunctive invariant is required, observe that for φ1 ∨ φ2 to be an
invariant, ¬φ1 ∧ ¬φ2 should not be a witness. Thus, to avoid dis-
junctions, we convert the invariant query φ1 ∨ φ2 into the witness
query ¬φ1 ∧¬φ2 and use the same technique described in the pre-
vious paragraph to decompose conjunctive witness queries.

In addition to making queries more understandable, decompos-
ing queries into simpler, independent subqueries also has another
advantage: We can learn additional facts for every subquery even
when the entire query may not be shown. For example, although
φ1∧φ2 is not an invariant, φ1 could still be an invariant. It is easy to
integrate this additional information learned from subqueries into
the algorithm, and our implementation uses this optimization.

5. Implementation
We have implemented the proposed technique on top of the Com-
pass analysis framework for C programs [5–7]. While the simple
language from Section 2 contains only integer variables and no
function calls, our implementation extends the technique to deal
with other features of the C language supported in Compass, such
as pointers, arrays, and function calls. In particular, Compass rea-
sons about heap objects and arrays using the techniques described
in [5, 6] and uses a summary-based technique for interprocedural
analysis [7]. Besides imprecise loop invariants, Compass also has
other sources of imprecision, such as non-linear arithmetic or in-
line assembly, which are also modeled using abstraction variables.
In addition, side effects of library functions that we choose not to
analyze or whose source code is unavailable are also modeled using
abstraction variables.

In the algorithm from Section 4.3, we require users to give only
yes/no answers to queries, but, in practice, this requirement is un-
realistic, as programmers cannot always answer a query. Thus, we
allow users to answer “I don’t know” and extend the algorithm



Manual classification New technique
LOC Kind Classification % correct % wrong % ? Avg. time % correct % wrong % ? Avg. time

Problem 1 88 synthetic false alarm 43.5 % 34.8 % 21.7% 297 s 92.3 % 3.9% 3.9 % 57 s
Problem 2 352 real false alarm 30.8 % 50.0 % 19.2 % 269 s 87.0 % 8.7% 4.4 % 40 s
Problem 3 66 synthetic false alarm 46.2 % 38.5 % 15.4 % 266 s 79.2 % 20.8% 0.0% 58 s
Problem 4 278 real real bug 37.5 % 45.8 % 16.7 % 265 s 92.3 % 7.7 % 0.0% 53 s
Problem 5 363 real false alarm 32.0 % 48.0 % 20.0 % 289 s 100.0 % 0.0 % 0.0 % 46 s
Problem 6 173 real false alarm 25.0% 54.2 % 20.8% 339 s 92.0 % 8.0 % 0.0 % 54 s
Problem 7 326 real real bug 40.0 % 56.0 % 4.0% 233 s 79.2 % 8.3 % 12.5 % 55 s
Problem 8 97 synthetic false alarm 16.7 % 70.8 % 12.5 % 271 s 92.0% 8.0% 0.0% 58 s
Problem 9 116 synthetic real bug 25.0 % 58.3 % 16.7 % 308 s 92.0 % 4.0% 4.0% 62 s
Problem 10 72 synthetic real bug 24.0 % 60.0 % 16.0 % 455 s 95.8 % 4.2% 0.0 % 68 s
Problem 11 118 synthetic real bug 41.7 % 45.8% 12.5% 235 s 84.0 % 16.0% 0.0% 50 s
Average 186 n/a n/a 32.9 % 51.1 % 16.0 % 293 s 89.6 % 7.3 % 2.3 % 55 s

Figure 7. Results from our user study

from Section 4.3 to deal with such uncertainty. Specifically, our
algorithm maintains a set of potential witnesses and potential in-
variants. If Γ is an invariant query that the user cannot answer, we
add Γ as a potential invariant and ¬Γ as a potential witness. Sim-
ilarly, if Υ is a witness query that the user cannot decide, we add
Υ as a potential witness and ¬Υ as a potential invariant. To avoid
repeating the same queries, these potential witnesses and invari-
ants are taken into account when computing minimum satisfying
assignments: Minimum satisfying assignments in the proof obli-
gation case must be consistent with potential invariants and wit-
nesses, while the minimum satisfying assignments for the witness
case must be consistent with potential invariants.

Our technique utilizes minimum satisfying assignments for
computing abductions, but no off-the-shelf SMT solver we know of
provides this functionality. Thus, we have integrated the required
functionality for providing minimum satisfying assignments into
our own Mistral SMT solver; the algorithm we implemented for
this purpose is described in [3].

6. Experiments
To evaluate the proposed technique, we performed a user study
in which we asked professional programmers to classify error
reports as genuine bugs or false alarms. Our study consists of
11 problems, five of which are code fragments taken directly or
slightly modified from real open source C programs (e.g., Unix
coreutils, OpenSSH), and six of which are benchmarks from
our program analysis test suite. These benchmarks are available
from http://www.cs.wm.edu/˜tdillig/pldi12-benchmarks.tar.gz. All
benchmarks contain between 66-363 lines of code and one asser-
tion. For examples drawn from real applications, we only included
those parts of the code that are relevant to deciding the validity of
the assertion (i.e., a manual slice). Five of our benchmark prob-
lems contain real errors while the remaining six are error-free. The
analysis we performed initially reports potential, but not certain,
errors on all eleven benchmarks. The causes of these uncertain er-
ror reports are diverse, including imprecise loop invariants, missing
annotations on library functions, non-linear arithmetic, and missing
facts about the program’s execution environment (e.g., relationship
between argc and argv).

For a given problem, each participant was randomly assigned to
classify an error report either manually or using the proposed tech-
nique. Therefore, each participant classified approximately half the
benchmarks manually and half of them using the new technique. In
the manual classification case, the participants were asked to decide
whether the report is a false alarm, a real bug, or whether they can-
not decide. When using our new technique, the participants were
asked to give a “Yes”, “No”, or “I don’t know” answer to a se-

ries of questions generated by our tool, ranging from one to three
questions on these benchmarks. The time for query computation is
negligible; in all cases, the computation time is below 0.1s.

For our user study, we recruited 56 professional programmers
through ODesk and paid them $40 each for participating in the
study. Each participant was required to have at least one year of C
programming experience and to have ODesk’s “systems program-
ming certification”. In addition to our eleven benchmark problems,
the study also included three simple diagnostic questions that were
not identified as such to the participants. We excluded participants
who gave the wrong answer to any of the diagnostic questions, re-
sulting in 49 valid participants for our study. Thus, each benchmark
problem was classified manually by about 24 people and classified
using our technique by approximately the same number of people.

Figure 7 summarizes the results of our user study. The first
three columns in the table give details about each benchmark.
The column labeled “LOC” gives the lines of code presented to
participants; the column “Kind” identifies whether the benchmark
is taken from a real application or from our program analysis test
suite (i.e., synthetic). Finally, the column “Classification” indicates
the correct classification of the report (false alarm or real bug).

The next four columns in the table (“Manual classification”)
give statistics about accuracy and speed of manual classification.
The column “% correct” indicates the percentage of participants
who correctly classified the report; the column “% wrong” gives
the percentage of participants who chose the wrong classification.
The column labeled “% ?” gives the percentage of participants who
answered “I don’t know”. Finally, the column “Avg. time” shows
the average time participants took to classify the report.

The next four columns in the table (marked “New Technique”)
give the same statistics about accuracy of classification and timing
using the new technique presented in this paper.

As the results in Figure 7 demonstrate, the average accuracy of
manual report classification is surprisingly low: On average, 32.9%
of the participants are able to classify an error report correctly,
while 51.1% of the participants incorrectly classify a real bug as a
false alarm or a false alarm as a real bug. Also, observe that 16% of
participants are unable to classify the error report despite spending
significant time. (Our instructions specifically mentioned that par-
ticipants should only choose “I don’t know” after spending at least
8 minutes on each benchmark.) Finally, observe that programmers
take an average of approximately 5 minutes to manually classify
error reports despite the fact that their classification is often wrong.

These results indicate that manual classification is extremely
unreliable and time-consuming even on our small benchmark ex-
amples. In fact, the group of programmers who participated in our
study do not seem to outperform randomly assigning a classifica-
tion to each report. We believe this is strong evidence that the use-



fulness of static analysis techniques can be greatly improved by as-
sisting programmers in classifying and understanding error reports.

As the results in Figure 7 also demonstrate, the accuracy and
speed of report classification dramatically improve when program-
mers use our new technique. While only 32.9% of participants cor-
rectly classify an error report using manual classification, 89.6% of
participants give the correct answer using our technique. Similarly,
the percentage of participants who give the wrong answer drops
from 51.1% to 7.3%. In addition to dramatically improving classi-
fication accuracy, our technique also substantially reduces the time
programmers need to classify reports: The average classification
time drops from approximately 5 minutes to under 1 minute.

As standard in user studies, we performed a t-test to evaluate the
statistical significance of our results. The p-value of a two-tailed
t-test (assuming potentially unequal variance) comparing manual
classification accuracy vs. our technique is 5 × 10−8. This means
the probability that our technique has no influence on classification
accuracy is less than 1 in 10,000,000. Similarly, the p-value for a
t-test comparing classification times is 1.2× 10−28, indicating our
results are statistically significant.

To give the reader a flavor of how our technique makes report
classification much easier, we briefly describe the reasoning re-
quired to classify Problem 6, based on the chroot utility from the
Unix coreutils. In this program, the value of variable optind is cor-
related with four different return values of function getopt long.
To prove the assertion in this example, we have to remember all
four return values of getopt long along with the intricate path
conditions associated with each of these return points and mentally
evaluate several conditionals, all of which are relevant to proving
the assertion. In fact, an author of this submission spent approxi-
mately half an hour to decide that the report is indeed a false alarm.
In contrast, if we use the technique proposed in this paper, the user
only needs to answer one simple query asking whether the value of
optind is always greater than zero after a while loop. This query
is easy to decide by inspecting only three lines of code immediately
preceding the program point associated with the query.

7. Related Work
Explaining Error Traces in Model Checking Several papers fo-
cus on explaining error traces identified by model checkers [8–13].
Ball et al. describe an algorithm for localizing the likely cause of
an error given a trace produced by a model checker [8]. Groce
et al. present an error localization technique that computes the
minimum distance between an error trace and a successful execu-
tion [9]. Ravi and Somenzi present an algorithm for giving succinct
explanations for error traces, and like our technique, they employ
minimum satisfying assignments to derive these explanations [13].
Jose and Majumdar give an algorithm for fault localization using
maximum satisfiability [10]. This technique computes the maxi-
mum satisfiable set of clauses in an extended trace formula, and
the complement of this set is identified as a potential cause of the
error. In this work, we share the goal of making error reports eas-
ier to understand for programmers. However, our technique does
not require a counterexample produced by model checkers and can
be gainfully combined with any static analysis. Furthermore, our
technique is useful for classifying and understanding false alarms,
which are not addressed by these techniques.

Counterexample-Guided Abstraction Refinement (CEGAR)
Our technique is similar to CEGAR in that both approaches in-
fer relevant conditions that are useful for eliminating false alarms
[14–16]. The main difference is that CEGAR-based approaches
learn new predicates from one concrete counterexample trace.
Thus, while the learned predicate may be sufficient to prevent this
particular counterexample trace, it may not be sufficient to elimi-

nate other spurious traces reaching the same error. In contrast, proof
obligations we compute are, if valid, guaranteed to rule out the false
alarm entirely. Furthermore, while CEGAR-based approaches have
the advantage of being fully automatic and not requiring assistance
from the user, they are not guaranteed to terminate.

Techniques for Error Report Understanding Manevich at al.
present a post-mortem backwards dataflow analysis for construct-
ing failing execution traces from a failure point [17]. This tech-
nique can sometimes show that the report is a false alarm. Le and
Soffa describe a fault correlation technique that can be helpful for
diagnosing error reports [18]. Their technique groups error reports
according to their root cause, which may aid in understanding these
reports. The approach of [19] computes a patch, which is a modi-
fied version of the program not containing the error, and this patch
is included in the bug report. While these techniques may some-
times be insightful for understanding a report, they do not allow the
classification of an error report as a real bug or false alarm.

Program slicing [20–22] is useful for identifying statements in
the source code that may be relevant to the potential failure. How-
ever, program slices are typically large and do not take advantage
of facts already shown by the analysis. Unlike our technique, a slice
also does not provide any semantic clues about whether the report
corresponds to a genuine bug or false alarm.

Explaining Type Errors There has been much work on explain-
ing errors that arise in type inference [23–26]. Since errors during
polymorphic type checking result from unification failure, the lo-
cation associated with a report is often not useful for understanding
its cause. The techniques of [23–25] augment type inference with
information useful for explaining the chain of inferences that led to
the error. The algorithm described in [26] does not modify the orig-
inal compiler, but searches for a program close to the original one
that does type check. We share the goal of making static reason-
ing transparent to users; however, the afore-mentioned approaches
specialize in explaining type inference errors while our technique
assists users in classifying reports generated by verification tools.

Combining May and Must Information There has been recent
work on combining may and must information to prove both the
presence and absence of errors. Must information has been har-
vested both from dynamic analysis [27–29] and computed purely
statically [30]. While these approaches are useful for showing the
presence of errors, they do not help when errors can neither be dis-
charged nor proven, which is our focus. However, we believe must
information obtained from dynamic analysis could be useful for
automatically deciding some of our failure witness queries.

8. Conclusion and Future Work
We have presented a new technique for assisting users with classi-
fying error reports generated by static analyses. Our technique can
be gainfully combined with any static analysis to make their results
more understandable for users. We have evaluated this technique
with a user study; our results indicate that the new technique im-
proves both the time and accuracy of report classification.

We believe that the approach described in this paper can be fur-
ther improved by making use of underapproximations. In particu-
lar, the analysis described in Section 3 can only prove the program
is buggy if I |= ¬φ. However, since I is an invariant (i.e., an over-
approximation of program behavior), I |= ¬φ indicates that every
execution of the program must be buggy. By making use of under-
approximations obtained through static or dynamic techniques, the
analysis can prove that some executions of the program must be
buggy without requiring the user’s help. We believe dynamic anal-
ysis could also be very useful for automatically discharging some
of the failure witness queries.
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