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Abstract
The aggressive optimization of floating-point computations is an
important problem in high-performance computing. Unfortunately,
floating-point instruction sets have complicated semantics that of-
ten force compilers to preserve programs as written. We present a
method that treats floating-point optimization as a stochastic search
problem. We demonstrate the ability to generate reduced precision
implementations of Intel’s handwritten C numeric library which
are up to 6 times faster than the original code, and achieve end-
to-end speedups of over 30% on a direct numeric simulation and
a ray tracer by optimizing kernels that can tolerate a loss of preci-
sion while still remaining correct. Because these optimizations are
mostly not amenable to formal verification using the current state of
the art, we present a stochastic search technique for characterizing
maximum error. The technique comes with an asymptotic guaran-
tee and provides strong evidence of correctness.

Categories and Subject Descriptors D.1.2 [Automatic Program-
ming]: Program Transformation; D.3.4 [Processors]: Optimiza-
tion

General Terms Performance

Keywords 64-bit; x86; x86-64, Binary; Markov Chain Monte
Carlo; MCMC; Stochastic Search; SMT; Floating-Point; Precision

1. Introduction
The aggressive optimization of floating-point computations is an
important problem in high-performance computing. For many ap-
plications, there is considerable value in being able to remove even
a single instruction from a heavily used kernel. Unfortunately, both
programming languages and compilers are limited in their ability
to produce such optimizations, which in many cases can only be
obtained by carefully sacrificing precision. Because most program-
ming languages lack the appropriate mechanisms for a programmer
to communicate precision requirements to the compiler, there is of-
ten little opportunity for optimization.
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Floating-point instruction sets have complicated semantics. The
ability to represent an enormous range of values in a small number
of bits comes at the cost of precision. Constants must be rounded
to the nearest representable floating-point value, basic arithmetic
operations such as addition and multiplication often introduce ad-
ditional rounding error, and as a result, even simple arithmetic prop-
erties such as associativity do not hold. Because reordering instruc-
tions can produce wildly different results, compilers are forced to
preserve floating point programs almost as written at the expense
of efficiency.

In most cases a programmer’s only mechanism for communi-
cating precision requirements to the compiler is through the choice
of data-type (for example, float or double). This is, at best,
a coarse approximation, and at worst wholly inadequate for de-
scribing the subtleties of many high-performance numeric com-
putations. Consider the typical task of building a customized im-
plementation of the exponential function, which must be correct
only to 48-bits of precision and defined only for positive inputs less
than 100. An expert could certainly craft this kernel at the assem-
bly level, however the process is tedious and error prone and well
beyond the abilities of the average programmer.

We present a method for overcoming these issues by treating
floating-point optimization as a stochastic search problem. Begin-
ning from floating-point binaries produced either by a production
compiler or written by hand, we show that through repeated ap-
plication of random transformations it is possible to produce high-
performance optimizations that are specialized both to the range
of live-inputs of a code sequence and the desired precision of its
live-outputs. While any one random transformation is unlikely to
produce an optimization that is also correct, the combined result
of tens of millions of such transformations is sufficient to produce
novel and often non-obvious optimizations which very likely would
otherwise be missed.

We have implemented our method as an extension to STOKE,
a stochastic optimizer for loop-free sequences of fixed-point x86-
64 programs (note that the original implementation of STOKE did
not handle floating-point optimizations) [29]. Our system is the first
implementation of a stochastic optimizer to take advantage of a JIT-
assembler for the full 64-bit x86 instruction set and is capable of
achieving a search throughput which outperforms the original im-
plementation of STOKE by up to two orders of magnitude. Using
our system we are able to generate custom implementations of the
trigonometric and exponential kernels in Intel’s handwritten imple-
mentation of the C numeric library math.h, which are specialized
to between 1- and 64-bits of floating-point precision, and are up to
6 times faster than the original code. Our system is also the first im-
plementation of a stochastic optimizer to demonstrate the optimiza-



tion of full programs. We show that for real world programs such as
a massively parallel direct numeric simulation of heat transfer and
a ray tracer, we are able to obtain 30% full-program speedups by
aggressively optimizing floating-point kernels which can tolerate a
loss of precision while retaining end-to-end correctness.

The aggressive nature of the optimizations produced by our
method creates a difficulty in checking the correctness of the re-
sulting codes. There are two possible approaches using currently
known static verification techniques. Unfortunately neither is capa-
ble of verifying some of the kernels that arise in our applications.
Existing decision procedures for floating-point arithmetic that are
based on bit-blasting could, in principle, be used to prove equiva-
lence of an original and an optimized code within a specified er-
ror tolerance. However in practice these techniques can only han-
dle instruction sequences on the order of five lines long, which is
two orders of magnitude too small for our benchmarks. Abstract
interpretation is the alternative, but no static analysis has even at-
tempted to deal with the complexity of high-performance floating-
point kernels. In particular, no existing analysis is capable of rea-
soning about mixed floating- and fixed-point code, and yet many
floating-point computations include non-trivial sections of fixed-
point computation that affect floating-point outputs in non-obvious
ways.

Randomized testing is a possible alternative, but the guarantees
offered by randomized testing are only empirical. Although passing
any reasonable set of test cases, random or not, is encouraging
and for many real code bases represents a de facto definition of
correctness, random testing offers no formal guarantees beyond the
inputs used in the tests. Several researchers have attempted to give
statistical guarantees based on the absence of errors following the
observation of a very large number of tests. However, in the absence
of a formal characterization of the distribution of errors relative to
program inputs these guarantees are statistically unsound and offer
no stronger guarantees than plain random testing.

We present a novel randomized method which does not suffer
from these shortcomings and can be used to establish strong evi-
dence for the correctness of floating-point optimizations. We treat
the difference in outputs produced by a floating-point kernel, f , and
an optimization, f ′ as an error function, E(x) = |f(x) − f ′(x)|,
and use a robust randomized search technique to attempt to find
the largest value of E(y) for some input y. In the limit, the search
is theoretically guaranteed to find the maximum value in the range
of E. However, well before that limiting behavior is observed, we
show that it is possible to use a statistical measure to establish confi-
dence that the search has converged and that an optimization is cor-
rect to within the specified error tolerance. Borrowing a term from
the computational science community, we refer to this as a tech-
nique for validating optimizations to distinguish it from the stricter
standard of formal verification. Although our technique provides
evidence of correctness, we stress that it does not guarantee cor-
rectness.

Using our technique, we are able to establish upper bounds on
the imprecision of an optimization which are tighter than those pro-
duced by either sound decision procedures or abstract interpretation
techniques for benchmarks where these techniques are applicable.
For benchmarks not amenable to either static technique we are able
to produce upper bounds that either cannot be refuted, or are within
a small margin of those exposed by successive random testing that
is orders of magnitude more intensive than the effort expended on
validation. Although there exist optimizations that we do not expect
our technique to perform adequately on, we believe that the results
we obtain are representative of the potential for a considerable im-
provement over current practice.

The remainder of this paper is structured around the primary
contributions of our work. Section 2 provides essential background

and terminology, Section 3 describes the theory necessary to extend
STOKE to the optimization of floating-point programs, Section 4
describes our novel validation technique for checking the equiva-
lence of two loop-free floating point programs with respect to an
upper bound on loss of precision, Section 5 discusses some of the
novel implementation details of our extensions to STOKE, Sec-
tion 6 summarizes experiments with real-world high-performance
floating-point codes and explores the potential for alternate imple-
mentations of STOKE, and Section 7 includes a discussion of re-
lated work. We conclude with directions for future research.

2. Background
We begin with a high-level overview of MCMC sampling and
the design of STOKE. Unfortunately, a complete treatment of
either is beyond the scope of this paper, and the reader is referred
to [1, 29, 30] for more information.

2.1 MCMC Sampling
MCMC sampling is a randomized technique for drawing samples
from distributions for which a closed-form representation is either
complex or unavailable. In fact, for many distributions, MCMC is
the only known general sampling method which is also tractable.
We make heavy use of one of its most important theoretical prop-
erties.

Theorem 1. In the limit, MCMC sampling is guaranteed to take
samples from a distribution in proportion to its value.

A useful corollary of this theorem is that regions of high
probability are sampled more often than regions of low proba-
bility. A common mechanism for constructing Markov chains with
this property is the Metropolis-Hastings algorithm. The algorithm
maintains a current sample, x, and proposes a modified sample x∗

as the next step in the chain. The proposal is then either accepted or
rejected. If x∗ is accepted, it becomes the current sample, otherwise
it is discarded and a new proposal is generated from x.

We say that proposals are ergodic if every point in the search
space can be transformed into any other point by some sequence of
proposals; that is, the search space is connected. If the distribution
of interest is p(x), and q(x → x∗) is the probability of proposing
x∗ when x is the current sample, then if the proposals are ergodic,
the Metropolis-Hastings probability of accepting a proposal is de-
fined as

α(x→ x∗) = min

(
1,
p(x∗) · q(x∗ → x)

p(x) · q(x→ x∗)

)
(1)

Although many distributions q(·) satisfy this property, the best
results are obtained for distributions with variance that is neither
too high, nor too low. Intuitively, p(·) is best explored by propos-
als that strike a balance between local proposals that make small
changes to x and global proposals that make large changes to x. Al-
though MCMC sampling has been successfully applied to a num-
ber of otherwise intractable problem domains, in practice the wrong
choice of proposal distribution can lead to convergence rates that
may only be slightly better than pure random search. As a result,
identifying an effective proposal distribution often requires experi-
mentation and is typically a critical precondition for success.

Because for many functions it is difficult to compute q(x→ x∗)
given q(x∗ → x), q(·) is often chosen to be symmetric (such that
q(x→ x∗) and q(x∗ → x) are equal). In this case, the probability
of acceptance can be reduced to the much simpler Metropolis ratio
by dropping q(·) from Equation 1.



2.2 STOKE
STOKE [29, 30] is a stochastic optimizer for fixed-point x86-64 bi-
naries. It is capable of producing optimizations which either match
or outperform the code produced by gcc and icc with full opti-
mizations enabled, and in some cases, expert hand-written assem-
bly. STOKE is an application of MCMC sampling to a combina-
torial optimization problem. Given an input program (the target),
T , STOKE defines a cost function over potential optimizations
(rewrites)R.

c(R; T ) = eq(R; T ) + k · perf(R; T ) (2)

The notation f(x; y) is read “f is a function that takes x as an
argument and is parameterized (that is, defined in terms of) y”.
eq(·) encodes the fact that R should be functionally equivalent
to T , perf(·) is a measure of the performance difference between
R and T , and the non-negative constant, k, is used to weight the
relative importance of the terms. In the special case where k = 0,
STOKE is said to run in synthesis mode, as the elimination of the
perf(·) term renders it insensitive to the performance properties
of a rewrite. For all other values of k, STOKE is said to run in
optimization mode.

The cost function c(·) is transformed into a probability density
function p(·), using the following equation, where β is a chosen
annealing constant and Z normalizes the distribution.

p(R; T ) =
1

Z
exp

(
− β · c(R; T )

)
(3)

Given this transformation, samples from p(·) correspond to
rewrites. Proposals are then generated using the following defini-
tion of q(·) as a random choice of any of the following transforma-
tions, which are both ergodic and symmetric.

• Opcode. An instruction is randomly selected, and its opcode is
replaced by a random valid opcode.

• Operand. An instruction is randomly selected and one of its
operands is replaced by a random valid operand.

• Swap. Two lines of code are randomly selected and inter-
changed.

• Instruction. An instruction is randomly selected and replaced
either by a random instruction or the UNUSED token. Propos-
ing UNUSED corresponds to deleting an instruction, and re-
placing UNUSED by an instruction corresponds to inserting
an instruction.

Combining Equations 1 and 3 yields the acceptance probability
used by STOKE when considering a potential rewrite

α(R→ R∗; T ) = min (1, exp(−k))

where k = β ·
(
c(R∗; T )− c(R; T )

) (4)

STOKE begins with either the target or a random rewrite and
forms a Markov chain of samples from p(·) by repeatedly propos-
ing modifications using q(·) and evaluating α(·) to compute the
probability that the proposal should be accepted. By Theorem 1, in
the limit most of these samples are guaranteed to be taken from
rewrites that correspond to the lowest cost, best optimizations.
However well before that limiting behavior is observed, STOKE
takes advantage of the fact that MCMC sampling also functions as
an efficient hill-climbing method which is robust against local max-
ima; all rewrites, R∗, no matter how poor the ratio p(R∗)/p(R)
is, have some chance of being accepted. In fact, it is precisely this
property that makes STOKE effective. STOKE is often able to
discover novel, high quality rewrites, which other compilers miss,
by temporarily experimenting with shortcuts through code that is
either non-performant or incorrect.

Type exponent (e) fraction (f) Value

Zero 0 0 (−1)s · 0
Denormal 0 6= 0 (−1)s · 2−1022 · 0.f
Normal [1, 2046] dc (−1)s · 2e−1023 · 1.f
Infinity 2047 0 (−1)s · ∞

NaN 2047 6= 0 (−1)s · ⊥

Figure 1. IEEE-754 double-precision floating-point format. Bit
patterns marked dc (don’t care) are unconstrained.

Randomized sampling techniques are generally effective only
if they are able to maintain a high throughput rate of proposals.
STOKE addresses this issue by using a two-tiered equality check
in its cost function. A fast, unsound equality check based on test
cases, τ , is used to rapidly identify incorrect rewrites, whereas a
slower, sound equality check is reserved for those which pass the
fast check.

eq(R; T , τ) =

{
eqslow(R; T ) eqfast(R; T , τ) = 0

eqfast(R; T , τ) otherwise
(5)

For floating-point, these equality checks are inappropriate, and
we develop suitable fast and slow equality checks in the following
two sections. We use the following notation. We say a test case,
t, is a function from live-in hardware locations to values. ρ(·) is
a function which returns the set of registers which are live-out in
T , µ(·) is defined similarly for memory locations, and `(T ) =
ρ(T ) ∪ µ(T ). We say that eval(l,P, t) is a function which returns
the value stored in register or memory location l after executing
a program P (target or rewrite) on a test case, t. And, finally, we
define the indicator function, 1{·}, over boolean variables which
returns 1 for true, and 0 for false.

3. Search
The primary complication in adapting STOKE to floating-point
programs is identifying an appropriate notion of correctness. The
floating-point design goal of being able to represent both extremely
large and small values in a compact bit-wise representation is fun-
damentally at odds with the ability to maintain uniform precision
within that range.

Figure 1 shows the IEEE-754 standard for double-precision
floating-point values. The standard is capable of representing mag-
nitudes between 10−324 and 10308 as well as symbolic constants
such as infinity and “not a number”, but cannot precisely repre-
sent the value 0.1. Additionally, values are distributed extremely
non-uniformly, with exactly half of all floating-point values lo-
cated between −1.0 and 1.0. The inability to precisely represent
real values is further complicated by the rounding error introduced
by basic arithmetic operations. Most calculations on floating point
numbers produce results which must be rounded back to a repre-
sentable value. Furthermore, many operations are implemented in
a way that requires their operands to be normalized to the same ex-
ponent. For operands that vary greatly in magnitude, many digits
of precision are discarded in the normalization process. Although
the IEEE standard places strict bounds on these errors, they are
nonetheless quite difficult to reason about, as even basic arithmetic
identities such as associativity do not hold in general. As a result,
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values. Absolute error diverges for large inputs; relative error for
sub-normal inputs. Neither are defined for infinity or NaN.

floating-point optimizers are often forced to preserve programs as
written, and abandon aggressive optimization.

Given two floating-point programs, we say that an optimization
is correct if the results it produces are all within a rounding error
η of the result placed in the corresponding location by the original
program. Two simple methods for representing rounding error are
the absolute and relative error functions. These functions are de-
fined over the real numbers R, of which the representable floating-
point numbers F are a subset.

abs(r1, r2) : R× R→ R = |r1 − r2|

rel(r1, r2) : R× R→ R =
∣∣∣r1 − r2

r1

∣∣∣ (6)

It turns out that there are serious problems with using either ab-
solute or relative error. Figure 2 shows the results obtained when
abs(·) is computed over adjacent floating-point values. Errors be-
tween large values are weighted more heavily than errors between
small values. A similar phenomenon occurs for the relative error
function, which diverges for denormal and zero values. In both
cases, these inconsistencies are only magnified when applied to
non-adjacent values. For these reasons, rounding error is typically
measured in terms of uncertainty in the last place (ULPs), which
measures the difference between a real number and the closest rep-
resentable floating point value.

ULP(f, r) : F× R→ R =
∣∣∣d1.d2 . . . dp − r

βe

∣∣∣βp−1

where f ≡ d1.d2 . . . dp · βe
(7)

Compared to absolute and relative error, this measure has the
advantage of representing error uniformly across the entire range of
representable floating-point values (including infinity and NaNs).
Furthermore, it can be shown [35] that for normal values the rela-
tionship between ULPs and relative error is well-behaved and fol-
lows the relation shown below where the upper and lower bounds
correspond to the maximum and minimum values in the right half
of Figure 2(b). Intuitively, ULPs can be thought of as a uniform
measure of rounding error which for most representable floating-
point inputs is an approximation of relative error that is correct to
within an order of magnitude.

∀r∃f.

(
1

2
β−p ≤ 1

2
ULP(f, r) ≤ β

2
β−p

)
(8)

We use this definition of rounding error to extend STOKE’s fast
correctness check as follows. STOKE defines testcase error with
respect to the weighted sum of three terms, which respectively rep-
resent errors appearing in registers, errors appearing in memory,
and divergent signal behavior. The last term is effectively an indi-
cator function which returns 1 if the rewrite raises a signal and the
target either returns normally or raises a different signal. Intuitively,

smaller values are indicative of rewrites that are “more correct”.
errfast(R; T , t, η) = wr · reg(R; T , t, η) +

wm ·mem(R; T , t, η) +

ws · sig(R; T , t)
(9)

Of these three, we leave the last unmodified, and only describe
our new definition of register error. Our definition of memory
error is analogous and it is a straightforward extension to combine
these definitions with the original fixed-point definitions in a way
which is sensitive to the type (fixed- or floating-point) of the value
stored in a particular location. We define the error in a register to
be the difference in ULPs between the value it contains, and the
value placed in that same register by the target. This function can
be parameterized by a user-defined constant η which defines the
minimum unacceptable ULP rounding error. All values in excess
of this bound are scaled down toward zero, and all values below
this bound are discarded.

reg(R; T , t, η) =
∑

r∈ρ(T )

max
(

0,ULP
(
fR, fT )

)
− η
)

where fR = eval(R, t, r), fT = eval(T , t, r)
(10)

We lift the definition of test case correctness to sets using a
reduction operator ⊕. Although the original implementation of
STOKE defined this operation to be summation, nothing prevents
the use of other functions. We note briefly that because the sig(·)
term in Equation 9 is not parameterized by η, this function is
guaranteed to return positive values for any set of test cases that
exposes divergent signal behavior.

eqfast(R; T , τ, η) =
⊕
t∈τ

errfast(R; T , t, η) (11)

We discuss the reduction operator used in our implementation in
Section 5.2.

As with STOKE’s fixed-point error function, this function pro-
vides a useful measure of partial correctness, which has the effect
of smoothing the search space and guiding STOKE gradually to-
wards optimizations. Additionally, it also provides STOKE with
a robust mechanism for ignoring errors which the user considers
insignificant and not worth penalizing.

4. Verification and Validation
STOKE defines slow, formal correctness, with respect to a sound
routine for checking the equality of the target and rewrite. In gen-
eral, proving program equivalence is a very hard problem, and as
such there is no requirement that the routine be complete.

eqslow(R; T , η) = 1−
(

1
{

verif(R; T , η)
})

(12)

The original implementation of STOKE defines this routine in
terms of the invocation of a sound decision procedure for fixed-
point operations over bit vectors. Having redefined test case cor-
rectness for floating-point programs in terms of a minimum accept-
able ULP rounding error, η, it is straightforward to redefine the
design constraints of a verification routine as well. We say that a
target and rewrite are equal if there does not exist a test case, t,
which exposes an ULP error in excess of η. We define >η to be
larger than all η to ensure that divergent signal behavior is always
exposed.

err(R; T , t) =
∑
l∈`(T )

ULP
(

eval(R, t, l), eval(T , t, l)
)

+

>η · sig(R; T , t)
(13)

verif(R; T , η) = ¬∃t.
(

err(R; T , t) > η
)

(14)



The complexity of floating-point programs precludes the use
of the most obvious implementations of this routine for many op-
timizations of interest. In general, neither sound decision proce-
dures, nor abstract interpretation techniques are currently practical
for non-trivial programs.

SMT float [27] is a new standard for decision procedures which
contains support for floating-point operations, however it is only
now beginning to be widely adopted. Z3’s implementation [10],
for example, is based on bit-blasting and does not scale beyond
programs containing a very small number of instructions [8]. Other
approaches to deciding floating-point formulas are unable to handle
code sequences that interleave fixed-point bit-vector and floating-
point arithmetic [15, 17]. Because bit-wise operations, such as
the extraction of exponent bits, are quite common in performance
critical code, these procedures are currently incapable of verifying
many interesting x86-64 optimizations. And although it is possible
to replace floating-point instructions by uninterpreted functions,
this abstraction cannot bound the error between two codes that are
not bit-wise equivalent. As a result, the application of symbolic
execution based approaches such as [6] is limited.

The abstract domains used for floating-point reasoning in meth-
ods based on abstract interpretation, such as those in [11], are also
unable to handle the presence of fixed-point bit-wise operations.
Furthermore, even in cases where the target and rewrite are in fact
bit-wise equivalent, the approximations made by these abstractions
render them unable to prove bit-wise equivalence in situations that
commonly arise in practice. Nonetheless, we note that for programs
which perform exclusively floating-point computations it is possi-
ble to bound, if coarsely, the absolute error between two floating-
point programs [8].

Where neither of these approaches are appropriate, some work
has been done in providing guarantees based on randomized test-
ing [24]. Unfortunately, in the absence of any knowledge of how
errors are distributed relative to program inputs, these guarantees
are extremely weak. Essentially, they are no stronger than those
obtained by a test suite and apply only to correctness with respect
to the tests in that suite. As a simple example, consider a program
f(x) and an optimization f ′(x) for which the magnitude of the er-
ror function E(x) = |f ′(x) − f(x)| is distributed non-uniformly
as the function | sin(x)|. Pure randomized testing is unlikely to un-
cover the values of x for which E(x) is maximized.

In contrast to the methods described above, we propose using
MCMC sampling to draw values from the err(·) function. The
idea is simple: our goal is to identify a test case, t, that will cause
err(·) to produce a value greater than η. Although, in general, we
cannot produce a closed form representation of err(·), sampling
from it is straightforward: we simply evaluate T and R on t and
compare the results. By Theorem 1, in the limit MCMC sampling
will draw test cases in proportion to the value of the error function.
Not only will this expose the maximum value of the function, but it
will do so more often than for any other value.

Using the Metropolis-Hastings algorithm, we define a modified
version of Equation 14, which is based on the iterative evaluation of
the samples taken from the sequence of proposals t0, t1, . . . , t∞.

validate(R; T , η) = max
(

err(R; T , ti)
)∞
i=0
≤ η (15)

where the proposal distribution, q(·), is defined as follows. Recall
that a test case contains values for each of a function’s live inputs.
As a result, our definition applies to functions which take an ar-
bitrary number of arguments. For every test case, ti, we define its
successor, ti+1 by modifying each of the live-in register locations
in ti by a value sampled from a normal distribution. In generating
these values, we discard proposals for the value in location l which
are outside the range of valid inputs, [lmin, lmax] specified by the
user. Doing so is sufficient to guarantee that we never propose a

test case which results in a computation that produces erroneously
divergent behavior. A floating-point function might, for example,
take two arguments: a floating-point value and a pointer to a loca-
tion in which to write the result. In proposing test cases, it is crucial
that the latter not be modified to point to an undefined address. Dis-
carding values outside a user-defined range also allows a user to
customize the rewrites discovered by STOKE to a particular range
of desired inputs. Both the ergodicity and symmetry of q(·) follow
from the properties of a normal distribution.

ti+1 =
{

(l, v) | l ∈ Dom(ti), v = v′
}

where v′ =


v ti(l) + x < lmin
v ti(l) + x > lmax
ti(l) + x otherwise

and x ∼ N (µ, σ)

(16)

A remaining issue is the definition of a termination condition
that can be used to determine when we can stop generating steps
in the Markov chain. Effectively, we must define a criterion under
which we can be reasonably confident that an observed sequence of
samples contains the maximum value of the error function. A com-
mon method is to check whether the chain of samples has mixed
well. Mixing well implies that the chain has reached a point where
it represents a stationary distribution and contains samples which
result from a uniform distribution over the test cases in the domain
of the error function. Under these conditions, we can be confident
that the chain has sampled from the regions which contain all local
maxima, and as a result, contains the global maximum. Metrics for
determining whether a chain has mixed well are well known and
available in many statistical computing packages [25]. We present
the particular statistical test that we use in our implementation in
Section 5.3.

As discussed in Section 1, we call our MCMC-based random-
ized testing method validation to distinguish it from formal veri-
fication. While our method comes with a mathematical, if asymp-
totic, guarantee and provides strong evidence of correctness, we
stress that this is not the same level of assurance that formal verifi-
cation provides. In particular, the sig(·) term in Equation 13 has the
potential to introduce discontinuities that may be very difficult to
discover. Thus, validate(·) is not an appropriate test of correctness
for, say, optimizations applied to safety-critical code. Nonetheless,
for many real world performance-critical applications where cor-
rectness is already defined entirely with respect to confidence in the
compiler writer and behavior on regression test suites, this defini-
tion represents a considerable improvement over current practice.

5. Implementation
Our implementation of STOKE is based on the notes in [29, 30]
and uses all of the optimizations described therein. We discuss only
the most relevant details of our extensions below.

5.1 JIT Assembler
Our implementation of STOKE evaluates rewrites using a JIT as-
sembler which supports the entire x86-64 instruction set available
on Intel’s Haswell processors: over 4000 variants of 400 distinct
opcodes including Intel’s newest fused multiply-add, AVX, and
advanced bit manipulation instructions. Our test case evaluation
framework supports full sandboxing for instructions which derefer-
ence memory and is two orders of magnitude faster that the imple-
mentation of STOKE described in [29], which relies on an x86-64
emulator. At peak throughput, our implementation is able to dis-
patch test cases at a rate of almost 1 million per second on a sin-
gle core. This performance improvement allows us to duplicate the



synthesis results reported in [29] in at most 5 minutes on a single
four core machine as opposed to a half hour on 80 cores.

5.2 Cost Function
The computation of ULP rounding error shown in Equation 7,
which is defined in terms of the comparison between a real num-
ber and a floating-point number, is unnecessarily complicated when
applied to the comparison of two floating-point values. In compar-
ing the live outputs of two programs, we instead use the simpler
version shown below, which simply counts the number of floating-
point numbers between two values. In particular, we note that this
function has the advantage of producing only integer results which
greatly simplifies the program logic associated with cost manipula-
tion.

ULP′(f1, f2) : F× F→ N =
∣∣∣{x ∈ F | f1 < x ≤ f2

}∣∣∣ (17)

Figure 3 shows the C implementation of this function for
double-precision values. The floating-point representation shown
in Figure 1 has the interesting property that when reinterpreted as
signed integers, iterating from LLONG MIN to 0 corresponds to
iterating in descending order from negative zero to negative NaN,
and iterating from 0 to LLONG MAX corresponds to iterating in
ascending order from positive zero to positive NaN. The compar-
ison against LLONG MIN inverts the relative ordering of negative
values so that the entire set of floating-point values is arranged in
ascending order and ULPs can be computed using simple signed
subtraction.

In contrast to the original implementation of STOKE, our defi-
nition of test case correctness defines ⊕ using the max(·) operator
in place of summation. For large test case sets, the repeated summa-
tion of very large ULP errors has the potential to produce integer
overflow. Using max(·) guarantees that regardless of the number
of test cases used correctness costs never exceed ULLONG MAX.

5.3 Validation
Many techniques are known for checking whether a Markov chain
is well mixed. We use the Geweke diagnostic test [12], which
is appropriate for measuring the convergence of single chains.
The Geweke diagnostic divides a chain into two windows, and
compares the means of the two chains, which should be equal if
the chain is stationary. If we define the two chains of samples as

θ1 = {err(R; T , ti) : i = 1, . . . , n1}
θ2 = {err(R; T , ti) : i = na, . . . , n}

where 1 < n1 < na < n and n2 = n− na + 1

(18)

then we can compute the following statistic, where ŝ1(0) and ŝ2(0)
are spectral density estimates at zero frequency for the two chains.

Zn =
θ̄1 − θ̄2√

ŝ1(0)
n1

+ ŝ2(0)
n2

where θ̄1 =
1

n1

∑
θ1 and θ̄2 =

1

n2

∑
θ2

(19)

If the ratios n1/n and n2/n are fixed, (n1 + n2)/n < 1
and the chain is stationary, then Zn will converge to a standard
normal distribution as n→∞. Intuitively, computing this statistic
for a poorly mixed chain will produce a large absolute value of
Zn. Should this occur, we simply continue to sample from err(·),
and recompute Zn as necessary. Once Zn achieves a sufficiently
small value, we conclude that the chain it approximately equal to a
stationary distribution, and return the largest observed sample as a
bound on ULP rounding error between the target and rewrite.

uint64_t ULP(double x, double y) {
int64_t xx = *((int64_t*)&x);
xx = xx < 0 ? LLONG_MIN - xx : xx;

int64_t yy = *((int64_t*)&y);
yy = yy < 0 ? LLONG_MIN - yy : yy;

return xx >= yy ? xx - yy : yy - xx;
}

Figure 3. Platform dependent C code for computing ULP distance
between two double-precision values. Note the reordering of nega-
tive values.

6. Evaluation
We evaluate our implementation of STOKE with support for
floating-point optimizations on three high performance bench-
marks: Intel’s implementation of the C numerics library, math.h,
a three dimensional direct numeric simulation solver for HCCI
combustion, and a full featured ray tracer. Each benchmark con-
tains a mixture of kernels, some of which require bit-wise correct-
ness and some of which can tolerate a loss of precision while still
being able to produce useful results. As we demonstrate below, a
large performance improvement is obtained by aggressively opti-
mizing the latter. We close with a case study that compares the
MCMC search kernel used by STOKE against several alternate
implementations.

All experiments were run on a four core Intel i7 with support for
the full Haswell instruction set. For benchmarks where handwrit-
ten assembly was unavailable, targets were generated using gcc
with full optimizations enabled (icc produced essentially identical
code). STOKE was run in optimization mode with k set to 1.0, us-
ing 16 search threads, 1024 test cases, and a timeout of 10 million
proposals. The annealing constant, β, was set to 1.0, and moves
were proposed with equal probability. For estimating a bound on
optimization error, test case modifications were proposed using the
standard normal distribution,N (0, 1).

For every benchmark, STOKE search threads typically ran to
completion in 30 minutes, and memory consumption never ex-
ceeded one gigabyte. MCMC validation reached convergence after
fewer than 100 million proposals, and runtimes never exceeded one
minute. Some benchmarks were amenable to formal verification;
we compare the results against our validation method whenever it
is possible to do so.

6.1 libimf
libimf is Intel’s implementation of the C numerics library,
math.h. It contains hand-coded implementations of the standard
trigonometric, exponential, and logarithmic functions. In addition
to taking advantage of many non-obvious properties of polynomial
approximation and floating-point algebra, these implementations
are able to dynamically configure their behavior to use the most ef-
ficient hardware instructions available on a user’s machine. The li-
brary is many times faster than GNU’s implementation of math.h
and able to produce results within 1 ULP of the true mathematical
answer.

Figure 4(a-c) shows the results obtained by running STOKE on
three representative kernels: a bounded periodic function (sin()),
a continuous unbounded function (log()), and a discontinuous
unbounded function (tan()). For brevity, we have omitted results
for cos() and exp(), which are similar. The library approx-
imates the true mathematical functions using an implementation
based on polynomials. Although there is a direct relationship be-
tween the number of terms in those polynomials and the precision
of a kernel, the details are quite complex at the binary level. Simply
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Figure 4. Representative kernels from Intel’s implementation of math.h. Increasing η produces rewrites which interpolate between double-
single- and half-precision (vertical bars, shown for reference) (a-c). Errors introduced by reduced precision are well-behaved (d-f) and
amenable to MCMC sampling.

deleting an instruction does not correspond to deleting a term and
will usually produce wildly inaccurate results.

Reference points are given on the far left of each plot in Fig-
ure 4. The original kernels range in length from 66 to 107 lines of
code (LOC), and represent a baseline speedup of 1x. Figures 4(a-c)
show the results of varying η between 1 and 1018, approximately
the number of representable double-precision floating point values.
For reference, we have highlighted η = 5 ·109, and 4 ·1012, which
correspond respectively to the ULP rounding error between the
single- and half-, and double-precision representations of equiv-
alent floating-point values. Setting η to either value and provid-
ing STOKE with a double-precision target corresponds to asking
STOKE to produce a single- or half-precision version of a double-
precision algorithm.

By increasing η, STOKE is able to experiment with modifi-
cations to the code which meet the desired bounds on precision.
The result is a set of implementations that interpolate between dou-
ble, single-, half-precision and beyond. For very large η, STOKE
is able to remove nearly all instructions (for η = ULLONG MAX,
not shown, STOKE produces the empty rewrite), and produce
speedups of up to 6x over the original implementations. How-
ever performance improvements grow smoothly and are still sig-
nificant for reasonable precisions. Although no longer available,
Intel at one point offered a variable-precision implementation of
libimf, which allowed the user to trade performance for higher
quality results. Using only the full double-precision implemen-
tation, STOKE is effectively able to automatically generate the
equivalent library.

Two factors complicate the verification of the rewrites discov-
ered by STOKE for libimf: code length and the mixture of fixed-
and floating-point computation. At over 100 instructions in length,
verifying a rewrite against the kernels in libimf is well beyond
the capabilities of current floating-point decision procedures. Addi-
tionally, the kernels in libimf use hardware-dependent bit-wise
arithmetic to extract the fields from a floating-point value for use as
indices into a table of constants. Although an abstract interpretation
based on ranges might be able to deal with the primarily polynomial
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Figure 5. The diffusion leaf task from the S3D direct numeric sim-
ulation solver. Increasing η allows STOKE to discover rewrites
for the exp() kernel which trade precision for shorter code and
higher performance (a). The diffusion leaf task can tolerate a less-
than-double-precision implementation (vertical bar, shown for ref-
erence), which produces a a 27% overall speedup. Errors are well-
behaved (b).

operations of those kernels, without an appropriate set of invariants
for the values contained in those tables, any sound results of the
analysis would be uselessly imprecise.



float dot(V& v1, V& v2) {
// v1 = [xmm0[63:32], xmm0[31:0], xmm1[31:0]]
// v2 = [(rdi), 4(rdi), 8(rdi) ]
// ret = [xmm0[63:32], xmm0[31:0], xmm1[31:0]]

return v1.x*v2.x + v1.y*v2.y + v1.z*v2.z;
}

1 # gcc -O3 1 # STOKE
2 2
3 movq xmm0, -16(rsp) 3 vpshuflw -2, xmm0, xmm2
4 mulss 8(rdi), xmm1 4 mulss 8(rdi), xmm1
5 movss (rdi), xmm0 5 mulss (rdi), xmm0
6 movss 4(rdi), xmm2 6 mulss 4(rdi), xmm2
7 mulss -16(rsp), xmm0 7 vaddss xmm0, xmm2, xmm5
8 mulss -12(rsp), xmm2 8 vaddss xmm5, xmm1, xmm0
9 addss xmm2, xmm0
10 addss xmm1, xmm0

Figure 6. Vector dot-product. STOKE is unable to make full use
of vector intrinsics due to the program-wide data structure lay-
out chosen by gcc. The resulting code is nonetheless faster, and
amenable to verification using uninterpreted functions.

Our MCMC sampling method for characterizing maximum
error works well on these kernels. Figure 4(d-f) shows the error
function for each of 20 rewrites depicted in Figure 4(a-c) for a
representative range of inputs. Although an exhaustive enumeration
of these functions is intractable, they are reasonably well-behaved
and MCMC sampling is quickly able to determine their maximum
values.

6.2 S3D
S3D is a three dimensional direct numeric simulation solver for
HCCI combustion. It is one of the primary applications used by
the U.S Department of Energy for investigating combustion mech-
anisms as potential replacements for gasoline-based engines. S3D
is designed to scale on large supercomputers and relies on a sig-
nificant amount of parallelism to achieve high performance. Com-
putation in S3D is split into parallel and sequential phases known
as tasks. Despite the enormous amounts of data that these tasks
consume, they are orchestrated in such a way that the time spent
in inter-node data communication between tasks is kept to a min-
imum. In fact for some kernels, this orchestration is so effective
that the resulting runtimes have been made compute bound. As a
result, substantial performance gains can be made by optimizing
these computations.

We applied our implementation of STOKE to a CPU imple-
mentation of S3D. Specifically, we considered the diffusion task
which computes coefficients based on temperature, pressure, and
molar-mass fractions of various chemical species, and is represen-
tative of many high-performance numerical simulations in that its
compute time is dominated by calls to the exp() function. The
performance of this function is so important that the developers
ship a hand-coded implementation which approximates the func-
tion using a Taylor series polynomial and deliberately omits error
handling for irregular values such as infinity or NaN. As in the pre-
vious section, Figure 5 shows the result of varying η between 1 and
1018. By decreasing precision, STOKE is able to discover rewrites
which are both faster and shorter than the original implementa-
tion. Despite its heavy use of the exp() kernel, the diffusion leaf
task loses precision elsewhere, and does not require full double-
precision to maintain correctness. The vertical bar in Figure 5(a)
shows the maximum precision loss that the diffusion kernel is able
to tolerate. Using the rewrite discovered when η = 107, which cor-

V delta(V& v1, V& v2, float r1, float r2) {
// v1 = [(rdi), 4(rdi), 8(rdi) ]
// v2 = [(rsi), 4(rsi), 8(rsi) ]
// ret = [xmm0[63:32], xmm0[31:0], xmm1[31:0]]

assert(0.0 <= r1 <= 1.0 && 0.0 <= r2 <= 1.0);

// gcc -O3:
return V(99*(v1.x*(r1-0.5))+99*(v2.x*(r2-0.5)),

99*(v1.y*(r1-0.5))+99*(v2.y*(r2-0.5)),
99*(v1.z*(r1-.05))+99*(v2.z*(r2-0.5)));

// STOKE:
return V(99*(v1.x*(r1-0.5)),

99*(v1.y*(r1-0.5)),
v2.z*(99*(r2-0.5)));

}

1 # gcc -O3 1 # STOKE
2 2
3 movl 0.5, eax 3 movl 0.5 eax
4 movd eax, xmm2 4 movd eax, xmm2
5 subss xmm2, xmm0 5 subps xmm2, xmm0
6 movss 8(rdi), xmm3 6 movl 99.0, eax
7 subss xmm2, xmm1 7 subps xmm2, xmm1
8 movss 4(rdi), xmm5 8 movd eax, xmm4
9 movss 8(rsi), xmm2 9 mulss xmm4, xmm1
10 movss 4(rsi), xmm6 10 lddqu 4(rdi), xmm5
11 mulss xmm0, xmm3 11 mulss xmm0, xmm5
12 movl 99.0, eax 12 mulss (rdi), xmm0
13 movd eax, xmm4 13 mulss xmm4, xmm0
14 mulss xmm1, xmm2 14 mulps xmm4, xmm5
15 mulss xmm0, xmm5 15 punpckldq xmm5, xmm0
16 mulss xmm1, xmm6 16 mulss 8(rsi), xmm1
17 mulss (rdi), xmm0
18 mulss (rsi), xmm1
19 mulss xmm4, xmm5
20 mulss xmm4, xmm6
21 mulss xmm4, xmm3
22 mulss xmm4, xmm2
23 mulss xmm4, xmm0
24 mulss xmm4, xmm1
25 addss xmm6, xmm5
26 addss xmm1, xmm0
27 movss xmm5, -20(rsp)
28 movaps xmm3, xmm1
29 addss xmm2, xmm1
30 movss xmm0, -24(rsp)
31 movq -24(rsp), xmm0

Figure 7. Random camera perturbation. STOKE takes advantage
of the bit-imprecise associativity of floating point multiplication,
and the negligibly small values of some terms due to program-
wide constants to produce a rewrite which is 7 cycles faster than
the original code.

responds to a 2x performance improvement for the exp() kernel,
produces a full leaf task performance improvement of 27%.

As in the previous section, Figure 5(b) shows the error function
for each of the 20 rewrites shown in Figure 5(a). For reference, we
have highlighted the error curve which corresponds to the most ag-
gressive rewrite that the diffusion leaf task was able to tolerate. The
functions are well-behaved, and a global maximum of 1, 730, 391
ULPs is discovered quickly. Bit-shifts, bit-extraction, and kernel
length prevented the application of current sound symbolic tech-
niques to this example.



Latency LOC Total Bit-wise
Kernel T R T R Speedup Correct OK

k · v̄ 13 13 8 6 3.7% yes yes
〈v̄1, v̄2〉 20 18 8 6 5.6% yes yes
v̄1 + v̄2 13 10 9 4 30.2% yes yes

∆(v̄1, v̄2) 26 19 29 14 36.6% no yes
∆′(v̄1, v̄2) 26 13 29 10 n/a no no

Figure 8. Speedups for aek. Bit-wise correct optimizations pro-
duce a cumulative speedup of 30.2%. Lower precision optimiza-
tion to the camera perturbation kernel, ∆(·), produces an additional
6.4% speedup. More aggressive optimization, ∆′(·), produces fur-
ther latency reduction, but is unusable.

6.3 aek
aek is an extremely compact implementation of a ray tracer writ-
ten in response to Paul Heckbert’s famous challenge that an author
be able to fit the entire source program on the back of a business
card [16]. Despite its compactness the program is quite complex
and is capable of generating scenes with textured surfaces, gradi-
ents, reflections, soft shadows and depth of field blur. The appli-
cation is typical of ray tracers in that it spends the majority of its
compute time performing vector arithmetic. The core loop of the
algorithm computes the path and intersection of light rays with ob-
jects in the environment in order to determine the color deposited
on each pixel of the resulting image.

aek is unique among the benchmarks shown so far in that its ker-
nels all operate on compound data structures: vectors represented
as triplets of floats. An unfortunate consequence of this fact is that
STOKE is forced to obey the program-wide data structure layout
chosen by gcc. Consider the vector dot product kernel shown in
Figure 6, in particular the fact that gcc has chosen to split the lay-
out of vectors between two sse registers (xmm0 and xmm1), when it
could easily have fit into just one. This decision precludes STOKE
from producing the obvious optimization of performing all three
multiplications using a single vector instruction; the overhead re-
quired to move the data back and forth into the appropriate con-
figuration is too great. Nonetheless, STOKE is able to discover an
optimization which performs less data movement, eliminates stack
traffic, and is 2 cycles faster than the original. The resulting code is
additionally amenable to verification using uninterpreted functions
and can be shown using Z3 to be bit-wise correct for all inputs. For
brevity, we omit discussion of the remaining vector kernels which
have similar properties and produce the performance improvements
summarized in Figure 8.

By focusing only on vector kernels, STOKE is able to produce
a cumulative improvement of just over 30% in total program run-
time. However by identifying portions of the program where bit-
wise correctness is unnecessary, even further improvements can be
made. aek uses randomness to induce depth of field blur by perturb-
ing the camera angle in its inner-most loop. So long as the impre-
cision introduced by STOKE rewrites are at or below the order of
magnitude of the noise injected by that randomness, the difference
in results is imperceptible to the application as a whole.

Figure 7 shows the result of applying STOKE to the kernel
which perturbs the camera angle. STOKE is able to discover a
rewrite that takes advantage of the bit-imprecise associativity of
multiplication and drops terms which take negligibly small values
due to the values of program-wide constants. The optimized kernel
results in an additional 6.4% overall performance improvement for
the application as a whole. Because this kernel was generated us-
ing a general purpose compiler as opposed to having been written
by an expert, it does not perform bit-fiddling on the internal rep-

(a) Bit-wise correct (30.2%)

(b) Valid lower precision (36.6%) (c) Error pixels (shown white)

(d) Invalid lower precision (e) Error pixels (shown white)

Figure 9. Images generated using bit-wise correct (a) and lower
precision (b) optimizations. The results appear identical, but are in
fact different (c). Further optimization is possible but incorrectly
eliminates depth of field blur (d,e). In particular, notice the sharp
horizon.

resentation of floating-point values and is amenable to verification
using an abstract interpretation based on ranges. The resulting static
bound of 1363.5 ULPs is considerably weaker than the maximum
5 ULP error discovered using MCMC sampling.

Figure 9 summarizes the cumulative effects of optimizations
discovered by STOKE. Figure 9(a) shows the image which is
generated using only bit-wise correct optimizations, whereas Fig-
ure 9(b) shows the image which is generated using imprecise opti-
mizations as well. Although the images appear identical they are in
fact different as show in Figure 9(c). Further optimizations to the
kernel which perturbs camera angle are possible, and result in a la-
tency reduction of 50% compared to the code produced by gcc, but
at the price of unintended program behavior. For values of η which
exceed the noise introduced by randomness, STOKE removes the
code which produces the camera perturbation altogether. The re-
sult is an image without depth of field blur which is depicted in
Figure 9(d). As shown in Figure 9(e), the image differs dramati-
cally from the original. (This effect may be difficult to observe in
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(c) anneal() optimization
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(d) mcmc() optimization
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(e) rand() validation
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(f) hill() validation
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(g) anneal() validation
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(h) mcmc() validation

Figure 10. Comparison of alternate implemenatations of the search procedure used by STOKE for optimization and validation: random
search (rand()), greedy hill-climbing (hill()), simulated annealing (anneal()) and the MCMC sampling procedure described above
(mcmc()). MCMC sampling outperforms the alternatives for optimization, but is not clearly better-suited to validation.

printed copy; note in particular the absence of depth of field blur on
the horizon.)

6.4 Alternate Search Implementations
Although MCMC has been successfully applied to many other-
wise intractable application domains, it is not the only stochastic
search procedure that could have been used in the implementation
of STOKE. We modified both the optimization and validation pro-
cedures used by our implementation to use three alternate algo-
rithms, pure random search, greedy hill-climbing, and simulated
annealing, and for each variant reran a subset of the experiments
described in Section 6.1.

Figure 10(a-d) shows the results of running STOKE’s optimiza-
tion routine on each of the three libimif kernels for η = 106.
Each curve corresponds to a different kernel and represents the best
cost discovered over time. In all cases, one million iterations was
sufficient for each search procedure to reach a point where no fur-
ther progress was made. For all three kernels, random search was
unable to improve on the original input. Without a mechanism for
measuring correctness even a small number of random moves are
likely sufficient to guarantee that a random walk never returns to a
correct implementation. Greedy hill-climbing performed compara-
bly to MCMC sampling but produced slightly larger final costs and
simulated annealing performed comparably to greedy hill-climbing
but took longer to do so. Intuitively, simulated annealing can be
thought of as a hybrid method that behaves similarly to random
search initially, and then tends towards the behavior of greedy hill-
climbing. As random search seems ill-suited to the optimization

task, the longer convergence times for simulated annealing can be
attributed to time spent initially on wasted effort.

Figure 10(e-h) shows the results of running STOKE’s valida-
tion routine on an identical representative result for each of the
three libimf kernels produced for η = 106. As above, each
curve corresponds to a different kernel and represents the largest
error discovered over time. In all cases, ten million iterations was
sufficient for each search procedure to reach convergence. Both
MCMC sampling and greedy hill-climbing were able to produce
nearly identical results and differed from each other by no more
than 2 ULPs, though neither was able to produce a consistently
larger result. Random search performed similarly for some kernels,
but poorly for others. This result is likely due to the shape of the
error functions shown in Figure 4(d-f) which are dense with sharp
peaks. Without a mechamism for tracking towards local maxima,
we do not expect that a purely random search procedure should
be able to produce consistently good results. Finally, we note that
as above, the performance of simulated annealing appears to be
something of a mix between that of random search and greedy hill-
climbing.

Overall it is difficult to assess the performance of stochastic op-
timization algorithms. Different application domains can be more
or less amenable to one technique than another and parameter set-
tings can make the difference between a successful implementa-
tion and one that is indistinguishable from pure random search. The
results shown above suggest that MCMC sampling is well-suited
to the program optimization task and perhaps less uniquely so to
the validation task. Nonetheless, this observation may be an arti-
ficat of the relative complexity of the two. The space of all 64-bit



x86 programs is considerably larger and higher dimensional than
that of inputs to the primarily unary floating-point kernels used by
our benchmarks. Comparing the relative performance of different
search strategies on the validation of higher arity kernels remains a
direction for future work.

7. Related Work
We are not the first to propose program transformations which sac-
rifice bit-wise precision in favor of performance. Loop perfora-
tion dynamically removes loop iterations to balance an efficiency-
precision trade-off [31]. Given an input distribution, some perfora-
tions can be statistically guaranteed [22]. However, such guarantees
are statistically unsound for any other input distribution. Green [2]
and other systems for performing approximate computation [36] al-
low a programmer to provide multiple implementations of the same
algorithm, each of which represent different precision/power trade-
offs. These compilers emit runtime code which switches between
implementations based on power consumption. Our approach pro-
vides a method for generating a range of implementations auto-
matically instead of relying on an expert to provide them. Program
synthesis techniques such as [14, 32] are currently inapplicable to
this task as they rely on decision procedures which do not scale to
non-trivial floating-point programs.

Techniques that can be extended to bounding the error of
floating-point optimizations are not limited to those described in
Section 4. A method for proving robustness and continuity of pro-
grams is presented in [4] and a black box testing approach for es-
tablishing Lipschitz continuity is described in [18]. Unfortunately,
many high-performance kernels such as exp(·) are not Lipschitz
continuous, and functions such as tan(·) are not even continuous.
Thus the applicability to STOKE is limited. Interactive theorem
provers such as [9] may be applicable to the non-trivial optimiza-
tions discovered by STOKE, but the result would be far from a
fully automatic system.

Random interpretations [23] can provide strong statistical guar-
antees of program behavior. However, the number of samples re-
quired to produce these guarantees depends crucially on the par-
ticular operators used by a program. Unfortunately, bit-extraction
operators for example, require an intractable number of samples.
Additional testing infrastructures for floating-point code that have
no statistical guarantees include [3, 20]. Monte Carlo testing ap-
proaches for checking numerical stability, which is a concern or-
thogonal to the correctness of optimizations, include [19, 33, 34].
MCMC sampling has also been applied to a related program anal-
ysis task, the generation of test cases which obtain good program
coverage [28].

The application of search techniques to the optimization and
verification of floating-point code has recently attracted consider-
able attention. A search procedure for producing inputs that max-
imize the relative error between two floating-point kernels which
is similar to simulated annealing appears in [5]. A brute-force ap-
proach to replacing double-precision instructions with their single-
precision equivalents appears in [21], and a randomized technique
for producing floating-point narrowing conversions at the source
code level is discussed in [26]. Both tools preserve semantics as
written and are incapable of producing the aggresive optimizations
discovered by STOKE.

Examples of how unsound compiler optimizations can nega-
tively affect the stability of numerical algorithms are described
in [13] and a critique of using execution time for measuring im-
provement in performance is discussed in [7]. The architecture
of STOKE addresses both of these concerns. Although it is true
that different memory layouts can result in inconsistent speedups,
STOKE produces multiple rewrites by design and hence can pro-
duce a suitable rewrite for each such layout. For STOKE, execu-

tion time is a suitable optimization metric. With respect to correct-
ness, STOKE uses test case data to generate customized optimiza-
tions which are specialized to user-specified input ranges. These
optimizations may be incorrect in general, but perfectly acceptable
given the constraints on inputs described by the user or generated
by a technique such as [5].

8. Conclusion and Future Work
We have described a new approach to the optimization of high-
performance floating-point kernels that is based on random search.
Floating-point instruction sets have complicated semantics, and our
technique both eliminates the dependence on expert-written opti-
mization rules and allows a user to customize the extent to which
precision is sacrificed in favor of performance. The general purpose
verification of loop-free kernels containing floating-point computa-
tions remains a hard problem, and we are unaware of any existing
systems which can be applied to the verification of all of the opti-
mizations produced by the prototype implementation of our system.
To address this limitation, we show a general-purpose randomized
validation technique which can be used to establish strong evidence
for the correctness of floating-point programs. Although our tech-
nique is not applicable to application domains which require formal
verification, for many high-performance applications it is a large
improvement over the state of the art, which relies on nothing more
than confidence in the compiler writer and regression test suites.

Our system is the first implementation of a stochastic optimizer
which has been successfully applied to full programs. Our system
achieves significant speedups on both Intel’s handwritten imple-
mentation of the C numerics library and full end-to-end perfor-
mance improvements on a direct numeric simulation solver and a
ray tracer. Nonetheless, further opportunities for optimization still
remain, including extensions which allow for optimizations based
on the reorganization of program-wide data structures.
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