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Abstract
We consider the problem of program synthesis from input-
output examples via stochastic search. We identify a robust
feature of stochastic synthesis: The search often progresses
through a series of discrete plateaus. We observe that the dis-
tribution of synthesis times is often heavy-tailed and analyze
how these distributions arise. Based on these insights, we
present an algorithm that speeds up synthesis by an order
of magnitude over the naive algorithm currently used in
practice. Our experimental results are obtained in part using
a new program synthesis benchmark for superoptimization
distilled from widely used production code.
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1 Introduction
The problem of program synthesis by example is simple to
state but difficult to solve generally. Given a set of (input, out-
put) pairs, the test cases, the task is to synthesize a program
that produces the specified output for each input. We are
interested in stochastic synthesis, which conducts an explicit
randomized search over programs. In each iteration of the
search loop the current search state is a concrete program 𝑝 ,
and the next state 𝑝 ′ is chosen by making random changes
to 𝑝 in the hope of finding a 𝑝 ′ that is closer to correct on the
test cases, as measured by a decrease in a cost function. The
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Figure 1. Plateau chart for an example drawn from our
benchmark, showing the cost plotted against the logarithm
of the number of iterations for a number of independent
synthesis runs. Darker lines indicate more searches have
those cost(s) for the relevant span of iterations. Dots indicate
the successful end of a synthesis run.

program is repeatedly modified until it produces the correct
output for every given input. Stochastic search is a popular
synthesis technique because it is general, easy to implement,
and is complementary to other synthesis approaches, work-
ing well in some situations where other techniques do not
[1, 8, 12, 14, 18, 19]. This paper focuses on the foundations of
stochastic synthesis: its characteristic behaviors, why those
behaviors arise, and how to exploit these observations to
design more efficient synthesis algorithms. We first discuss
the behavior of stochastic synthesis (Section 4), and while
these observations motivate our new algorithm (Section 5),
they are not required to understand it.

Stochastic search is a Markovian process where the proba-
bility to transition between states depends on the test cases,
distribution of random changes, cost function, and a parame-
ter 𝛽 that controls the probability of allowing a cost increase
(Section 3). When we plot the cost over the course of many
independent runs of the same synthesis problem in Figure 1,
we see that the searches are dominated by plateaus, which
we define as periods of a search that fluctuate around a fixed
cost. We use a simplified model of stochastic search with a
much smaller set of states to study plateaus, which allows us
to visualize the search space (Section 4). We explain how the
number and connectivity of the plateaus can give rise to dif-
ferent heavy-tailed distributions of search times, including
gamma and log-normal distributions, as well as geometric
distributions that are not heavy tailed. We explain how the
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shape of the search space changes with 𝛽 : a larger 𝛽 increases
the connectivity of the space and brings the search closer to
a pure random walk, while a smaller 𝛽 makes the search be-
have increasingly like greedy hill climbing. In a pure random
walk, the cost function is ignored: all programs effectively
have the same cost and the search time will be geometrically
distributed. As 𝛽 becomes smaller, the search increasingly
prefers to maintain or decrease the cost.
For our purposes, a heavy-tailed distribution is one in

which the mean value is much greater than the median.
Thus, for a synthesis problem with a heavy-tailed distri-
bution of search times, while some runs of synthesis may
succeed relatively quickly, it is also possible for the search
to “get lost” and take orders of magnitude longer. A natural
approach to dealing with heavy-tailed searches is to restart
from the beginning if a search takes longer than a certain
cutoff, which can be fixed or vary according to some strategy
(Section 5). We discuss existing strategies for varying when
to restart from other domains including SAT solvers (Sec-
tion 5.1). While restarting has a benefit if the distribution
of search times is heavy-tailed, our experiments also show
that when the distribution of search times is not heavy-tailed
(e.g., is a geometric distribution), classical restart algorithms
can actually harm performance.
Classical restart strategies assume the search is a black-

box, i.e. no information about the state of the search is avail-
able other than whether it has finished. We develop an even
more effective adaptive restart algorithm (Section 5.2) by re-
laxing this black-box assumption. This algorithm is inspired
by the existing Luby restart strategy [15] and prioritizes
search runs that have low cost, using the cost function as a
proxy for identifying runs expected to finish quickly. Our
experiments show this algorithm performs well for problems
both with and without heavy-tailed distributions of synthe-
sis times and that it significantly outperforms the classic
Luby algorithm.

To evaluate these algorithms (Section 7), we present exper-
iments using two separate benchmarks: the SyGuS Competi-
tion 2017 Programming by Example Bitvector problems and
a new superoptimization benchmark collected from straight-
line program fragments from the executables of a common
Linux distribution (Section 6). We show the the search algo-
rithms perform their best with different values for 𝛽 , with
the restart algorithms using generally lower 𝛽 . Our adap-
tive algorithm synthesizes programs from 1.7x to more than
10x faster than the naive algorithm depending on the cost
function and benchmark, and up to 5.5x faster than the Luby
restart strategy. Some programs synthesized too rarely to
reliably compute the expected time, but overall the adap-
tive algorithm synthesized 97% of the benchmark problems
at least once in 50 trials. We give an analysis of why the
remaining 3% of synthesis problems remain unsolved.

This work makes the following contributions:

1. We observe stochastic synthesis progresses via a se-
ries of plateaus. We analyze how plateaus arise with
geometric and, when 𝛽 is low, heavy-tailed log-normal
distributions of search times.

2. We present new superoptimization synthesis problems
collected from straight-line program fragments from
the executables of a common Linux distribution.

3. We present a new algorithm that exploits both the
wide variance of synthesis times and the extra infor-
mation given by the cost function by focusing on the
most promising searches. We show that this algorithm
outperforms existing approaches on both benchmarks
and across the range of possible values for 𝛽 .

2 Related Work
Program synthesis is an old problem, dating back at least to
the work of Waldinger [25] and Green [9]. Current work in
program synthesis tends to fall into one of four categories:

1. Some approaches systematically enumerate programs
until a program with the desired functionality is found
[4, 16].

2. SMT-based methods express the synthesis problem as
a system of constraints [23].

3. Stochastic synthesis was introduced in the STOKE
project [19].

4. Some approaches usemachine learning techniques (e.g.
neural networks) to predict the structure of a solution
program from input/output examples [3, 17].

As discussed in Section 1, stochastic search has been used
in multiple domains because it is general and straightfor-
ward to implement. Besides a variety of applications based
directly on STOKE [6, 11, 20–22], stochastic search has been
used in the Mimic project [12] and as the core search loop in
[18]. Related techniques have been used in finding compiler
bugs [14] and in synthesizing program repairs [8]. Alur et.
al. [1] compare multiple approaches to program synthesis,
including stochastic synthesis. None of these works has in-
vestigated the underlying nature of stochastic synthesis, or
considered restart strategies for stochastic synthesis.

2.1 Prior Datasets
Most synthesis benchmarks, such as [10] or the evaluation
dataset used for Morpheus [7] are relatively small, with 25-80
examples, because they are manually curated. We use the
larger set of 600 bit manipulation problems from the SyGuS
competition [2]; these are all the problems in the SyGuS
benchmark that use input-output pairs and so these are all
the SyGuS problems amenable to stochastic synthesis. Our
new superoptimization benchmark, discussed in Section 6, is
automatically generated, selecting a set of 1000 straight-line
code sequences that are representative of hundreds of thou-
sands of code sequences found in a release of the Ubuntu
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Inputs: x = %rdi, y = %rcx, z = %rax
andq %rdi, %rcx
notq %rdi
andq %rdi, %rax
orq %rax, %rcx

Output: %rcx

(a)

andq notq

andq

orq

x y z

(b)

Figure 2. Example x86 program and equivalent graph

Linux distribution. With a combined total of 1600 bench-
mark programs, our experiments represent one of the largest
synthesis studies to date.

2.2 Restart Strategies
When the distribution of stochastic synthesis times is heavy-
tailed, there is value in periodically restarting the search.
Because the time to synthesize is a random variable, stochas-
tic synthesis methods are Las Vegas algorithms, which have
been analyzed in the general case in [15]. Restart strategies
are standard in SAT solvers [13]. Solvers usually preserve
some information (learned clauses, etc.) between restarts,
while we consider restarts as entirely independent searches.

3 Synthesis Algorithm
We present a stochastic synthesis algorithm designed to be
representative of existing algorithms while allowing us to
consider synthesis problems derived from real code.

3.1 Program Representation
Programs are rooted, directed, acyclic dataflow graphs, where
nodes are instructions, constants, or inputs and edges repre-
sent the use by the source node of a value produced by the
destination node, as in Figure 2b. The root node is the pro-
gram’s result.
Motivated by our desire to represent low-level machine

code programs, intermediate values and constants are 64-bit
integers, and we define operations like orq and addq for
bitwise OR and integer addition. Each instruction node has
an opcode specifying a deterministic operation of fixed arity
with no side effects.1 We do not allow dead code, i.e. all nodes
must be connected to the root node. This representation is
chosen because it is general, simple to understand, and avoids
unnecessarily making the order of operations significant.
An example of a program fragment (here written in x86

assembly) that we might want to synthesize along with its
graph equivalent is given in Figure 2, where x, y, and z are the
inputs. We can also represent this program as an expression:

1Operations such as division and modulus that would trap at runtime for
undefined results instead produce zero.

1 𝑝 ← zero_program
2 𝑛 ← 0
3 𝑐 ← cost_of(𝑝)
4 while 𝑛 < 𝑁 ∧ 𝑐 > 0 do
5 𝑝 ′← propose_change(𝑝)
6 if is_valid(𝑝 ′) then
7 𝑐 ′← cost_of(𝑝 ′)
8 if 𝑐 ′ ≤ 𝑐 − 𝛽 ln(random(0, 1)) then
9 𝑝, 𝑐 ← 𝑝 ′, 𝑐 ′

10 𝑛 ← 𝑛 + 1

Figure 3. The main loop of stochastic synthesis.

orq(andq(x, y), andq(notq(x), z)),2 which we use as
a convenient textual notation.

3.2 Stochastic Synthesis Algorithm
A synthesis problem is a set of input-output pairs, or test cases,
specifying the behavior of a program we wish to synthesize.
For the purposes of this paper, we consider any program that
matches the input-output specification to be a solution.
A stochastic synthesis algorithm in the style of [19] main-

tains a current program 𝑝 , and in each iteration proposes a
possible new program 𝑝 ′ via one of several kinds of moves,
evaluates the new cost and accepts 𝑝 ′ if the cost has decreased
or only increased by at most a small random margin. Pseu-
docode is given in Figure 3. If 𝑝 ′ is accepted, it becomes
the current program, otherwise 𝑝 is retained as the current
program, and the process repeats until the cost is zero. The
initial program is the constant zero. The ability to sometimes
accept programs that are worse than the current state is
needed to escape local minima of the search.

The cost function measures progress towards a solution of
a given synthesis problem 𝑞. All of the cost functions we con-
sider will be zero exactly when the candidate output equals
the testcase output. In addition to the cost function intro-
duced in [19], Hamming, we also consider two additional
cost functions for our experiments in Section 7:

1. Hamming. Total number of incorrect bits across all
test cases, i.e., the Hamming weight of the XOR of the
desired results and the candidate output.

2. Incorrect test cases. The cost is the number of test
cases that are not entirely correct, i.e. that differ in at
least one bit from the correct value. This cost function
can avoid artifacts caused by the Hamming cost but
produces less signal for the synthesis algorithm.

3. Log-difference. For each testcase, we interpret the
candidate output and desired result as 64-bit signed
integers 𝑎 and 𝑏. If they differ, the cost for that testcase

2We can express sharing of intermediate nodes via variables as in a =
notq(x); addq(a, a).
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is 1+ log2 ( |𝑎−𝑏 |); otherwise the cost is zero. This cost
function is most useful when the output is numeric.

Each move makes a small syntactic change to the current
program, such as redirecting an edge or altering a node’s
operation. For the baseline algorithm, there are three moves:

1. Instruction. Pick a random argument to an opera-
tion, or the slot for the root node. Generate a random
opcode, and fill its arguments with random existing
nodes (without creating cycles) or random constants.
Point the selected argument to the new instruction.

2. Opcode. Pick a random instruction node. Replace its
opcode with a random opcode of the same arity.

3. Operand. Pick a random argument or the root slot.
Pick a random node that does not create a cycle and
point the argument to that node.

Instruction moves introduce new components and opcode
and operandmoves re-wire existing parts of the graph. These
operations are standard and their analogues appear in ev-
ery approach to using stochastic search. Each move selects
among valid options for each choice (opcodes, operand slots,
etc.) with uniform probability.
The distribution of −𝛽 · ln(random(0, 1)) is exponential

and is motivated by MCMC theory [19].3 The probability of
accepting a new program just 3 bits higher in cost has a prob-
ability of only about 5% per iteration with 𝛽 = 1, and at 6 bits
the probability falls to 0.25%. If a new program has the same
or a lower cost, then the new program is always accepted.
The parameter 𝛽 controls the permissiveness of the search:
a larger 𝛽 results in accepting more cost increasing moves,
while a smaller 𝛽 brings the search closer to only allowing
moves that preserve or decrease the cost. The parameter 𝛽 is
expressed in the units of the cost function (such as bits, num-
ber of test cases, numerical difference, etc.) and thus must
be tuned separately for each cost function. Because the cost
function depends on the number of test cases, we normalize
𝛽 to that of a synthesis problem with 100 test cases:

𝛽 ′ = 𝛽
|test cases|

100

Finally, we place a maximum size limit of 16 nodes on
programs, rejecting any change that would bring the count
above this number. This limit prevents the time to evaluate
the program on the test cases, which is the dominant cost
in the synthesis algorithm, from growing arbitrarily. In our
experiments the search achieves a mean of 339K iterations
per second of the loop in Figure 3 on a single CPU core. In
our discussions and evaluation we use iteration count as a
measure to compare algorithms independently of the speed
of the underlying hardware.

3The assumptions of ergodicity and reciprocity required to apply the theory
are not met by our system.
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Figure 4. Synthesis times for or(shl(x),x), measured
(solid) against predicted (dashed). Note the apparent left
skew.

3.3 Markov Representation
For a given synthesis problem, stochastic search is described
by a Markov chain where states are programs 𝑝𝑖 . The proba-
bility of moving to a new state is the product of the chance
of proposing that state and the chance of accepting it, which
for 𝑝𝑖 ≠ 𝑝 𝑗 is:

Pr[𝑝𝑖 → 𝑝 𝑗 ] = Pr[𝑝𝑖 prop. 𝑝 𝑗 ] · Pr
𝑋∼Exp(𝛽)

[𝐶 (𝑝𝑖 ) ≤ 𝐶 (𝑝 𝑗 )+𝑋 ]

The remaining probability is the chance of a self-loop, i.e. the
probability that the search remains in the current state. Note
the structure of the Markov chain depends on the move
proposal distribution, the cost function, the specific test cases
used, and 𝛽 . Any zero cost state is absorbing because the
search finishes when that state is reached.

4 Behavior of Stochastic Synthesis
To investigate the plateau structure observed in Figure 1 and
motivate the algorithm we present in Section 5, we first build
a simplified model of stochastic synthesis that allows us to
visualize the search space. We reduce the set of operations
to: and, or, xor, not, shr, shl, zero, and ones. The bitwise
operations behave as expected, while shr and shl shift by
one bit and shift in zero on either end. The constants zero
and ones are all zero and all one bits respectively. We also
add a fourth move type that canonicalizes programs, which
further reduces the search space:

4. Redundancy. Merge a random pair of instruction
nodes that have the same output values for a randomly
chosen subset of test cases, by redirecting incoming
edges from one node to the other.

This set of operations is complex enough to have inter-
esting behavior while being simple enough to analyze fully
for the synthesis of the program: or(shl(x), x). We start
the search in the zero state. We can now identify where the
search spends its time because there are not many frequently
visited states. We run many synthesis trials and track the 35
most frequently visited states. We build the transition matrix
of this Markov chain by sampling the probability of transi-
tioning from one state to another, conditioned on staying
within this set of popular states. The imprecision of ignoring
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Figure 5. The state transition diagram for or(shl(x), x). Nodes are states, with transitions between them according to
weight. The search starts on the leftmost node and ends on the node in the lower right corner.

rarer states is small because their aggregate probability is
low, something that is not true for real search spaces.
We sample the traversal time of this Markov chain and

compare this distribution to that of the original synthesis
problem in Figure 4. We see that the distributions agree
closely, and also note that the distribution appears to be
skewed to the left when plotted logarithmically.
A diagram of this search space is given in Figure 5. We

show a node for each popular state. Edge thickness is propor-
tional to the frequency the edge is traversed; edges leading
to the final state are dotted. Nodes are scaled to show their
significance and labeled with the programs that they repre-
sent. Nodes are positioned to show two important quantities:
the cost, decreasing left to right, and the empirically deter-
mined expected time for the search to complete from that
state, plotted from low on the bottom to high on top. The
final node is thus at the lower right corner. These locations

are not precise because drawing the diagram to scale would
result in the nodes overlapping.

4.1 Plateaus
There are several interesting observations from Figure 5,
which we later generalize to realistic stochastic synthesis.
First, there is a strongly connected component in the center
of the diagram around x and the transition probabilities
ensure the search spends most of its time in this component.
There are many different ways to write the identity program,
including x, or(x, x), or(x, zero()), and(x, x), etc.
Due to the redundancy move, these have frequently taken
transitions back to the x node. All of these highly connected
nodes have the same cost. They have similar expected times
to reach the final state, but the states that involve an or have
slightly smaller times than those that lack an or, because the
or state typically has a transition directly to the goal state by
replacing one argument with shl(x). The other states must
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use two moves: one to introduce or and another to produce
shl. However, this difference is negligible relative to the time
to reach the final state from each of the two groups.

The key property is the existence of a strongly connected
component of the search space where all the states have
equal, or nearly equal, costs; for brevity we call such regions
strong components. It is easy to see that strong components
give rise to plateaus. First, because of the large number of
ways to write a functionally equivalent program in different
ways, strong components are always present in stochastic
synthesis problems. When a strong component has few exits
(transitions out with a significant drop in cost) relative to
the number of transitions connecting states of the compo-
nent, then the time to transition among the states of the
component will be small compared to the time to leave the
component, resulting in a plateau. The cost function provides
no guidance in finding an exit from the plateau as the search
becomes a random walk among states of nearly equal cost.
Because the time to transition between states in the plateau
is small relative to the time spent on the whole plateau, we
can ignore the internal structure and consider the probabil-
ity of leaving as a constant 𝑝 . Thus we can summarize the
plateau as one node in the Markov chain with a self loop
with probability 1 − 𝑝 . Under this approximation the time to
leave a plateau is a geometric random variable.
Another observation is that there are nodes in the upper

right corner, corresponding to a different strong component
with low cost but much higher expected remaining synthesis
time than the initial state or the x component. These states
produce almost the correct output except they have an extra
right shift followed by a left shift that unnecessarily loses
information in the lowest bit. Intuitively, these states repre-
sent a situation where the cost function is unhelpful, because
while the output is almost correct substantial changes are
required to reach a correct program. These states show one
way a search can get stuck: the paths out of these states
are rare as indicated by a high expected time to synthesize
starting from that state. The low cost relative to the main
component means that the search is unlikely to return to the
main plateau and must find another path to the final state.
We can now explain the left skewed distribution from

Figure 4. For this example, the probability of reaching the
upper strong component at all from the start state is very
small, so these states do not have a large influence on the
expected time to synthesize. The search reaches the central
plateau very quickly relative to the time spent there, and so
synthesis time is dominated by the time to leave the central
plateau. This is a geometric distribution, which is a good fit
for the shape of Figure 4 and explains the left skew.
A final key point is that the connectivity of the search

space is strongly influenced by the value of 𝛽 . When 𝛽 is
very large the cost function becomes irrelevant, all states
become part of the same strong component, and the search
time will therefore be geometrically distributed. To see this,

10 100 1K 10K 1M100K 10M 100M

Figure 6. Distributions of finishing times for ten random
examples from our benchmark, showing the prevalence of
log-normal-like distributions.

observe that at any point the search can return to the start
state in one step by proposing an instruction move with
zero() for the root slot. In general it is desirable to set 𝛽
much lower, where the cost function provides guidance and
much faster search times.

4.2 Multiple Plateaus
A Markov chain with one dominant strong component is de-
scribed by a geometric distribution, but stochastic synthesis
problems can have more complicated structure.
Some searches travel along a path with more than one

plateau. For a path of plateaus in sequence, the distribution
of search times is equal to a sum of geometric variables, one
for each plateau. If the one of the geometrics dominates, then
the overall distribution will still be close to a geometric, but
if the geometric variables are all approximately the same the
result will be what is known as a gamma distribution. When
there is only a single path restarts are actually detrimental,
as any progress along the single path to the goal is sacrificed
and must be redone from the beginning.

We have already seen how a synthesis problem can have
more than one path, where each path has very different
expected times and probability of occurrence. If the distri-
bution is a mixture of multiple alternate paths through the
search space, then it can have virtually any shape. How-
ever, we might expect that if many paths have uncorrelated
means and variances, the mixture distribution converges to
a normal or bell-curve like distribution. When the means of
individual paths vary over orders of magnitude, the mixture
will converge to a log-normal, as seen in Figure 6. We expect
this variance in means because small absolute changes in a
typically small probability 𝑝 of leaving a strong component
has a large multiplicative effect on the mean time to leave
(∼1/𝑝).

Intuitively, restarts can help when there are both short
and long paths to the goal, as a restart while on a long path
has some chance to take a short path instead. Figure 7 gives
an example of a plateau chart of a heavy-tailed synthesis
problem with multiple paths that is a mixture of a tight
distribution and a much higher variance distribution. Note
the skew of finishing times to the right: the median run
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Figure 7. Plateau chart for a benchmark example.

completes orders of magnitude faster than the average time
over all synthesis runs.
Just because the search space is complex with multiple

paths does not imply that search times will be heavy-tailed.
Recall Figure 1, where there are three distinct plateaus. This
example is actually best fit by a geometric distribution, be-
cause the final plateau dominates the runtime with a much
higher time to traverse than the others (extending from 10K
to 10M iterations).

5 Improving Stochastic Synthesis with
Restart Strategies

As we saw in the previous section, heavy-tailed distributions
imply most synthesis runs are much shorter than a tail of
searches that take orders of magnitude longer. For heavy-
tailed search problems it therefore makes sense to abandon
a search and begin a fresh one if we think the current search
may be long-running, which is called restarting. The baseline
naive algorithm is one that never restarts (i.e. it runs one
search until it completes or times out), and thusmay get stuck
in a long search. We discuss existing restart strategies and
then develop an algorithm that goes beyond classic restart
strategies by exploiting the information given by the cost
function.

5.1 Restart Strategies
The question for restarts is when should the search be re-
started? As observed in [15], if no information about the
search is available, this question can be answered by a (possi-
bly infinite) sequence of cutoffs called a restart strategy. For
a particular synthesis problem there is a fixed distribution
𝐷 of finishing times which depends on the structure of the
Markov chain, and the optimal strategy for that distribution
is to always use a particular fixed cutoff 𝑡∗, which induces
an expected time to complete of 𝑇 ∗.

Calculating the optimal cutoff for a given synthesis prob-
lem requires knowing the distribution of synthesis times.
Alternatively, we can create a restart strategy that varies
the cutoff each time the search is restarted. In [15], a
strategy based on the recursively defined Luby sequence
⟨1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, . . . ⟩ is given. Any prefix of

this sequence causes the search to spend approximately equal
total search time on an exponentially increasing set of cut-
offs. This algorithm runs in expected time 𝑂 (𝑇 ∗ln(𝑇 ∗)), and
no algorithm can do better for arbitrary distributions. How-
ever, given prior information about the class of distribu-
tions, it may be possible to design better strategies. The
design of such strategies has previously been considered
in SAT solving, where the search for a satisfying assign-
ment can become stuck by early decisions. These proposed
strategies include exponentially increasing cutoffs 𝑡0𝑧𝑘 for
𝑘 = 0, 1, 2, . . . , and an inner-outer geometric strategy where
𝑘 = 0, 1, 0, 1, 2, 0, 1, 2, 3, . . . [5].

5.2 Adaptive Algorithm
Restarts can be used to avoid long searches and conse-
quently speed up stochastic synthesis, but these approaches
assume that no information about a search is available except
whether it has completed. If we exploit a program’s cost as an
estimate of how close the search is to succeeding, we can do
better than the best restart algorithms. Instead of restarting
searches, we run searches in parallel but focus search time
on the searches with low cost. Spending some iterations on
searches that are not the current best is beneficial because
the best cost search may be stuck in a long plateau that other
searches might avoid (recall Section 4). As a heuristic for
distributing iterations between the searches of varying costs,
we use the Luby sequence. We develop the algorithm in two
steps: first we show how the Luby restart strategy works
and can be modified to run searches in parallel, and then we
show how to prioritize searches with low cost.
The Luby sequence can be defined as the limit of the se-

quence recurrence 𝐿0 = ⟨1⟩ and 𝐿𝑖 = 𝐿𝑖−1 | | 𝐿𝑖−1 | | ⟨2𝑖⟩. The
full Luby sequence is then the limit 𝐿∞, which is well defined
because every 𝐿𝑖 is a prefix of 𝐿 𝑗 for 𝑗 > 𝑖 . This definition
can also be seen as defining a series of trees as shown in
Fig 8(a) and (c), for 𝐿2 and 𝐿3 respectively. The sequence is
then recovered as the depth-first post-order traversal of such
trees. Whenever the root of one tree is reached, the next
tree can be constructed by duplicating the tree and attaching
both under a new root with double the label of the old root.
The classic Luby restart algorithm is in effect traversing this
series of trees and running a search for each node with an
iteration limit equal to the base limit 𝑡0 times the node’s label,
stopping if a search finishes and otherwise moving to the
next node.
There is another way to construct the same sequence,

which runs searches in parallel rather than sequentially. We
repeatedly traverse the tree in depth-first post-order, dou-
bling the labels of all existing nodes and adding a new pair
of 1-labeled leaves to each existing leaf node. We show a
snapshot of this process in Fig 8(b), where the current point
is marked with a ∗. Rather than duplicating the tree and
adding a new root, we make the old tree the top layers of
the new one, with only the leaves as newly added nodes. To
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Figure 8. The adaptive search algorithm at the (a) beginning of one doubling, (b) middle of doubling execution, and (c)
beginning of next doubling. Node labels are the number of iterations search has run assuming no swaps have occurred.

1 𝑛 ← ⊥
2 while not successful do
3 𝑛 ← double(𝑛, ⊥)
4 Function double(𝑛, 𝑝):
5 if 𝑛 = ⊥ then
6 𝑠 ← new search
7 run 𝑠 for 𝑡0 iterations
8 return

{search : 𝑠, height : 0, left : ⊥, right : ⊥}
9 𝑛.left← double(𝑛.left, 𝑛)

10 𝑛.right← double(𝑛.right, 𝑛)
11 run 𝑛.search for 𝑡0 · 2𝑛.height iterations
12 𝑛.height← 𝑛.height + 1
13 if 𝑝 ≠ ⊥ ∧ cost (𝑛.search) < cost (𝑝.search) then
14 swap 𝑛.search↔ 𝑝.search
15 return 𝑛

Figure 9. Pseudocode for adaptive search algorithm.

turn this into a restart algorithm, we associate a search state
with each node, and each time we double a node’s label 𝑙 we
run the search for an additional 𝑙 · 𝑡0 iterations. Because the
labels are powers of 2, the cumulative runtime is the same
as if this node had been visited by the sequential algorithm.
Note that unlike the sequential method, we must retain par-
tially executed searches which can increase memory usage.
After 𝑛 doublings, we have run the same number of searches
with the same distribution of runtimes as the sequential al-
gorithm, so this parallel algorithm has the same guarantees
on expected total runtime.
To construct the adaptive search algorithm, we drop the

black-box assumption on the search state. In the context
of stochastic synthesis, the cost is a reasonable proxy to
determine which searches are likely to complete quickly.
Nodes closer to the root run more iterations, so it makes
sense to ensure that the most promising runs, i.e. the lowest
cost ones, are near the root. The adaptive search algorithm
is the same as the parallel Luby algorithm except whenever
we finish visiting a non-root node, we swap it with its parent
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Figure 10. Example of Markov chains for which adaptive
search works (a) well and (b) poorly. Nodes are labeled by
cost and the non-self loop probabilities are given on each
transition edge.

if the parent has a higher cost. Pseudocode for the adaptive
search algorithm is given in Figure 9. We traverse the tree in
depth first post-order, which means that if a search achieves
a sufficiently low cost it may move up multiple levels of the
tree in a single doubling. Because of the swapping, the label
of a node does not necessarily indicate how many iterations
a search has run so far, only how many future iterations it
will be allocated. Because this algorithm exploits the costs
of individual searches, it can potentially do better than the
theoretically optimal Luby restart sequence. We evaluate
the adaptive algorithm experimentally in Section 7, but here
we give examples of when this algorithm performs well or
poorly compared to classic Luby.

5.2.1 Model Markov Chains. Two Markov chains repre-
senting models of stochastic searches are given in Fig 10.
Here we show the transition probability on each edge, and
label the nodes with their costs, with the leftmost node as
the initial state. For this model, all transitions except self-
loops are depicted, i.e. there is zero probability of the system
transitioning from a middle node to the start or between
middle nodes. The model is symmetric except for the costs
and probability of finishing from each of the middle nodes.
In example (a) the costs align with the probabilities: the
lower cost state is 10 times more likely to reach the goal
state than the high cost state. In (b), the opposite is the case,
in that low cost does not predict which state is “closer” to
the goal. The situation in (b) is similar to the upper right
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Figure 11. Example plateau charts for an example using the
incorrect test cases cost function and 𝛽 = 1.

plateau from Fig 5, where the low cost did not predict a short
time to synthesize. These differences make all the difference
for the adaptive algorithm: while simulations of the classic
Luby restart algorithm perform the same on both models,
the adaptive algorithm is 31% faster than Luby on (a) and 46%
slower on (b). Thus we expect the adaptive algorithm to do
well when there is a correlation between the cost of a partial
search and its time to finish. If that correlation is reversed,
then the adaptive search will spend more time on searches
that will take longer. Section 7 shows that the adaptive algo-
rithm is over twice as fast as the classical Luby algorithm on
benchmarks, but this speedup is not a limit on the difference
in performance.

5.2.2 Effect of 𝛽 on Search Space. As another example
of when adaptive restarts are affected by the structure of the
search space, we give the plateau charts for an example from
our benchmark using the incorrect test cases cost function
and 𝛽 = 1 in Figure 11. The relatively high value of 𝛽 means
the search frequently returns to a higher cost, so frequently
that the individual moves blur together. A high value of 𝛽
increases the connectivity of the search space, making the
search closer to a random walk, and the overall time to syn-
thesize is dominated by a geometric distribution for the time
to leave this initial plateau. Because the geometric distribu-
tion is not heavy tailed, restarts are actually detrimental in
this example, because the restarts spend more time on the ini-
tial plateau at cost 100 instead of the minimum cost plateau
that can reach the solution. The naive algorithm, which does
not restart, actually outperforms the classic Luby algorithm,
as the Luby algorithm spends time on short searches which
do not reach the lower plateau before the next restart. Our
adaptive restart algorithm has the same performance as the
naive algorithm, because it can detect searches on the lower
plateau and allocate almost all search time to those searches.

In general, a high 𝛽 increases the likelihood that the search
space is dominated by a geometric distribution, where tradi-
tional restart algorithms can incur a penalty but our adaptive
restart algorithm is unaffected. Conversely, lowering 𝛽 can in-
crease the ability of the search to stay in a particular plateau.

*addl %r14d, %ebp
pxor %xmm1, %xmm1
*addl %ebp, %eax
movsd 0x2f251(%rip), %xmm2
*leal (%rax,%rax,4), %edx
leal (%r14,%r14,4), %eax
movsd 0x2f24a(%rip), %xmm0
shll $0x3, %eax
*shll $0x3, %edx

Figure 12. Example showing identification of dataflow-
related instructions for output register %edx.

If that plateau represents meaningful progress towards a
solution, then this focus is desirable. However, if the plateau
is on a very long path, such as the upper-right plateau of
Figure 5, then requiring the search to find a lower cost state
to exit the plateau can cause the search to take significantly
longer. A primary advantage of our adaptive restart strategy
is the ability to use restarts with search prioritization to gain
the benefits of a low 𝛽 without paying the cost of the search
getting stuck on long paths through the search space.

6 Superoptimization Synthesis Benchmark
Because superoptimization is one of the standard applica-
tions for stochastic search, we wanted to test our algorithm
on a large set of superoptimization problems drawn from
real code in addition to the existing SyGuS benchmark. We
constructed a new benchmark of synthesis problems from
dataflow-related subsequences of the basic blocks of bina-
ries. “Dataflow-related” means that the instructions selected
all influence the result, i.e. we remove instructions that are
irrelevant to computing a particular output. For example,
the basic block in Figure 12 has the set of dataflow instruc-
tions for the %edx register highlighted. We focus on binaries
because large amounts of production binary code are read-
ily available, allowing us to automate the construction of a
comprehensive benchmark.
The source for our synthesis problems is the x86_64 ELF

binaries from the default packages of the Ubuntu 16.04 op-
erating system. For each basic block in each function in the
distribution, we consider each register 𝑟 that is live-out at
the end of the block and compute the backwards slice of all
instructions that contribute to 𝑟 ’s value. Any memory reads
included in the slice are replaced by moves from registers
that are not otherwise used. If the resulting code fragment
had at least two non-trivial instructions, we retained it as a
potential synthesis problem.

There are a number limitations to this process of scraping
synthesis problems from binaries:
• We do not generate problems with memory operations,
which simplifies the calculation of dataflow and is
consistent with much of the state of the art of program
synthesis at the assembly level.
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• Our synthesis problems are all straight line code—no
branches or loops—which is again largely consistent
with the current state of the art. Excluding control
flow makes the automatic generation of high coverage
test cases more reliable. We also excluded programs
containing the conditional move instruction (cmov).
• Our scraping process is imperfect and at each stage po-
tential synthesis problems are lost. For example, some
basic blocks contain instructions our disassembler does
not support.

6.1 Generating the Standard Benchmark
Following the procedure outlined above for every basic block
in the Ubuntu 16.04 distribution produces 187,077 program
fragments. Many of these program fragments are closely
related, such as variations on 𝑎𝑥 + 𝑏. To generate a set of
problems with distinct behaviors, we first group problems by
their instruction signature, i.e. the sequence of instructions
ignoring registers and arguments. Additionally we ignore
simple data-movement instructions such as movq and movl.
We sampled one example from each instruction signature
equivalence class, yielding 9,719 synthesis problems ranging
in size from 2 to 15 instructions, with about 74% being 3-6
instructions.
One remaining problem is that some of the programs in

this set could be unsynthesizable, meaning that no program
in our program syntax could express the functionality (e.g.,
due to instructions that our reduced language lacks). For
each program fragment, we attempted to synthesize each
prefix of length 𝑛 given the solution to synthesizing the pre-
fix of length 𝑛−1 as a starting point, effectively synthesizing
the problem one instruction at a time. This process elimi-
nated the few percent of the dataset that are not likely to
be expressible with the instructions we have implemented.
We took a random sample of 1000 synthesizable programs
as our standard benchmark. This benchmark is available in
our artifact.4
Finally, we also generated test cases for each synthesis

problem. We generated inputs that include important cor-
ner cases (0, 1, -1), uniformly random bit patterns, and bit
patterns with high and low Hamming weight.

7 Evaluation
The main goal of our evaluation is to compare the perfor-
mance of the naive, Luby, and adaptive restart algorithms
using multiple cost functions on the SyGuS and superopti-
mization benchmarks. To perform this comparison we first
need to (1) ensure the algorithms are compared fairly by find-
ing the best 𝛽 for each individually, and (2) establish a way
to assign a score for an individual problem in the presence
of time outs. To address (1), we run many synthesis trials
with each cost function and algorithm while varying 𝛽 , and

4Available through the ACM Digital Library.

observe how frequently each combination is successful as a
function of 𝛽 . For this experiment, we are most concerned
with comparing each algorithm against itself as 𝛽 changes.
From this data, we select the best 𝛽 for each combination of
algorithm, cost function, and benchmark.
To address (2), given synthesis times from a set of trials

where somemay have timed out, we define a way to calculate
an estimate of the mean time to synthesize by adding a
penalty for timed out trials to the sample mean (Section 7.2).
With this definition in hand, we perform an experiment by
running many trials of each algorithm and cost function on
all benchmark problems and compute a corrected mean time
for each.We then compare the performance of the algorithms
by summarizing this data in several ways, which shows our
adaptive restart algorithm is superior. Finally, we discuss
qualitatively why some programs failed to synthesize.

7.1 Effect of 𝛽
To fairly compare the restart strategies, we need to tune
the parameter 𝛽 for each algorithm. As we discussed in Sec-
tion 5.2.2, 𝛽 affects the shape of the search space, and we
expect this to have an effect on the performance of the syn-
thesis algorithms. We ran 10 synthesis trials on a randomly
selected 10% of each benchmark, with varying 𝛽 and with
each algorithm and cost function. To compare performance,
we take the overall fraction of trials (across all synthesis
problems for that benchmark) that completed within 100M
iterations. The results are plotted in Figure 13.
There are three trends to note in these plots: (1) all algo-

rithms perform similarly for high beta with Luby sometimes
showing a penalty for restarting, (2) the naive algorithm usu-
ally has a local minimum before getting worse with smaller
𝛽 , and (3) the adaptive algorithm is almost always the best
algorithm. The fact that the algorithms are similar for high
𝛽 is consistent with the search becoming a random walk,
relatively uninformed by the cost function. We can also see
that for high 𝛽 in SyGuS with Hamming and log-difference,
the Luby algorithm does slightly worse than naive, which
is explained by the observations in Section 5.2.2. Except for
SyGuS with incorrect test cases, the naive algorithm has a
minimum in each plot before getting worse as 𝛽 is decreased.
This is explained by the search more easily being caught
in local minima, which the naive algorithm has no way to
escape. The two restart algorithms also exhibit a slight in-
crease as 𝛽 drops below their optimal point, but this increase
is much less pronounced. Finally we note that the adaptive
algorithm is almost always the best algorithm. The adaptive
restart algorithm is thus a good choice if the value of 𝛽 can-
not be tuned in advance, as would be the case with novel
synthesis problems.

From these results, we can tune 𝛽 by computing the mini-
mum for each algorithm, cost function, and benchmark. We
give these results in Table 1, and use these values for the
comparisons in the rest of our evaluation.
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Figure 13. Effect of beta on the performance of the various algorithms. The beta parameter is plotted in logarithmic space,
and has a different range for incorrect test cases due to the different scale of that cost function. The 𝑦-axis is failure rate, and
as such lower curves are better. A “×” gives the performance of 𝛽 = 0, which cannot be plotted directly in logarithmic space.

Table 1. Optimal 𝛽 for various algorithms, benchmarks, and
cost functions. These values are the minimums of the curves
in Figure 13.

Cost Benchmark Naive 𝛽 Luby 𝛽 Adapt. 𝛽
Hamming SyGuS 6.05 2.46 1.82
Hamming Superopt. 6.05 4.48 4.48
Inc. tests SyGuS 0.01 0.0498 0.0498
Inc. tests Superopt. 0.301 0.004 0.006
Log-diff. SyGuS 10.0 0.0398 0.251
Log-diff. Superopt. 6.31 3.98 3.98

7.2 Calculating Mean Time to Synthesize
We run 50 trials for each algorithm with a limit of 100 mil-
lion iterations. To allow us to estimate the mean time to
synthesize even when some trials time out, we add a penalty
𝑃 = ( 1

𝑝𝑠
− 1)𝐶 to the mean of the successful trials where 𝑝𝑠

is the empirical probability of a successful trial. This esti-
mate of the mean is equivalent to a meta-restart strategy that
always completely resets the algorithm after 𝐶 iterations,
because the penalty is the expected number of iterations
spent in failed meta-trials. Because this penalty estimate is

noisy when the number of successes is small, means beyond
𝐶 iterations are increasingly unreliable.

This cutoff and penalty strategy creates an artifact in the
comparison chart: if the optimal cutoff 𝑡∗ for a problem hap-
pens to be around 𝐶 , then the naive algorithm will actually
be optimal among all black-box restart algorithms. In a large
benchmark some problem(s) will coincidentally have a 𝑡∗
close to 𝐶 , and the estimated mean underestimates of the
true cost of the naive algorithm. We see this when the naive
and Luby lines converge near C (e.g., Figure 14).

7.3 Algorithm Comparisons and Discussion
To compare the algorithms at their optimal 𝛽 in more de-
tail we use cactus plots, which compare the mean time to
synthesize (𝑦-axis) of the individually 𝑛th fastest synthesis
problem (𝑥-axis) for each algorithm. In these plots, verti-
cal lines correspond to a particular ordinal rank, but not
necessarily the same underlying synthesis problem for each
algorithm. Horizontal lines allow comparing the fraction of
the dataset that an algorithm can solve within a limit. These
plots gracefully handle each algorithm timing out on differ-
ent problems, which would otherwise prevent computing a
speedup for those examples. This style of plot has been used
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Figure 14. Cactus plot for the Hamming cost function, log
axis. The horizontal dashed line is the 100M iteration cutoff.
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Figure 15. Cactus plot for the incorrect test cases cost func-
tion.
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Figure 16. Cactus plot for the log-difference cost function.

in e.g. theorem proving competitions to compare solvers that
may time out on different problems [24]. We give the results
for the cost functions in Figures 14, 15, and 16.

The results for the Hamming cost function are given in Fig-
ure 14. The Luby algorithm generally outperforms naive, and
the adaptive restart outperforms both. Because these plots
are in logarithmic space, small gaps represent large speedups.

Table 2. Speedups at various ordinal ranks. Each speedup is
the geometric mean of a small window to reduce noise, and
(-) indicates that time outs prevent calculating a ratio.

SyGuS Rank Superopt. Rank

Cost func. Algo. 300th 400th 500th 700th

Hamming
Naive 11.07 10.63 3.63 4.50
Luby 3.31 5.57 1.45 2.27
Adaptive 1 1 1 1

Inc. tests
Naive 2.99 1.69 4.86 6.35
Luby 3.01 - 1.59 2.32
Adaptive 1 1 1 1

Log-diff.
Naive 8.28 5.84 6.35 9.74
Luby 3.93 4.64 1.48 2.09
Adaptive 1 1 1 1

Table 3. Fraction of problems unsynthesized within 100M
expected iterations.

Cost function Algorithm SyGuS Superopt.

Hamming
Naive 31.3% 16.3%
Luby 28.2% 16.0%
Adaptive 17.3% 12.1%

Incorrect test cases
Naive 44.7% 15.2%
Luby 46.3% 14.5%
Adaptive 39.5% 10.3%

Log-difference
Naive 32.8% 15.3%
Luby 31.8% 11.7%
Adaptive 19.7% 10.3%

We can see that for easier examples (the left of the plots),
there is not very much difference between the algorithms.
We also note that the naive and Luby curves intersecting
near the cutoff of 100M iterations is an artifact of the penalty
method for computing means as noted previously.

The incorrect test cases cost function has a much smaller
difference between the naive and Luby algorithms. This is
due to the low signal from the cost function: because the cost
function only gives one bit of information per test case, and
the SyGuS benchmark has a low average number of test cases,
there are not many distinct values of the cost function, and
thus the problems often only have a single dominant plateau.
We see that for the superoptimization benchmark, where
almost all examples have 100 test cases, the curves are very
similar to Hamming. These results reinforce the intuition
that the cost function needs to have enough signal to guide
the search in order to effectively synthesize programs.
The log-difference cost function shows the same general

trend as the other two, with more separation between the
restart algorithms and the naive algorithm.

We can summarize the results of these experiments in Ta-
ble 2, which gives the speedup of the adaptive algorithm over
the other algorithms at a selection of ordinal ranks. Each
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number is calculated as the ratio of the curves at a specific
vertical lines in the previous charts, and thus compares the
speedup of the 𝑛th fastest synthesis problem for one algo-
rithm against another. We note that the adaptive algorithm is
always the fastest, and usually about twice as fast as the clas-
sic Luby algorithm and up to an order of magnitude faster
than the naive algorithm.
We can summarize these results in a different way by

comparing the fraction of the benchmark unsolved within an
expected 100M iterations. This corresponds to determining
where the curves cross the dashed lines in the figures. Table 3
lets us compare cost functions; observe for example that the
incorrect test cases and log-difference cost functions are
best for the superoptimization benchmark and the Hamming
function is best for the SyGuS benchmark. We also see that
the adaptive restart algorithm is always the most successful
algorithm, which mirrors our results from the 𝛽 comparison.

7.4 Analysis of Unsynthesized Problems
A noticeable fraction of programs do not synthesize with
an expected time less than 100M iterations. For the SyGuS
benchmark, our search considers a significantly different set
of operations than those required for the benchmark. For
the superoptimization benchmark all programs are poten-
tially synthesizable by construction, but using the adaptive
restart algorithm, there were 28 synthesis problems that did
not synthesize in the 150 trials from all three cost functions,
representing 2.8% of the 1,000 problems from the superopti-
mization benchmark (i.e., 97.2% did synthesize at least once).

We manually reviewed these programs and classified why
they never synthesized. The primary issues were non-trivial
constants (16) and using a large number of shifts (7); the
5 remaining programs failed for other reasons. Constants
are difficult to guess and may require generating something
close to the final result to have a good chance of synthesizing.
Shifts cause problems because all of the cost functions are
not smooth when shifts are involved. Not being smooth with
respect to the syntax of the program is not specific to the
these cost functions: all low-complexity cost functions must
have some programs for which they perform poorly.

8 Conclusion
We have analyzed the behavior of stochastic synthesis, show-
ing that searches proceed from plateau to plateau, and these
plateaus dictate the distribution of search times. We also
presented a new superoptimization benchmark of low level
program fragments. In analyzing algorithms for exploiting
heavy-tailed distributions of search times, we found the
strengths of the classic Luby algorithm could be improved by
using the cost of the search in our adaptive restart algorithm.
We also showed that to gain advantage from this adaptive
restart algorithm, the 𝛽 parameter must be tuned to ensure
the search is not a random walk, and we also found that

the adaptive restart algorithm works well for a wide range
of choices of 𝛽 in our benchmarks. Given the performance
improvements over the current standard algorithm and ex-
isting black-box restart strategies, and the simplicity of the
adaptive algorithm, we suggest that the adaptive algorithm
should be employed whenever stochastic search is used.
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