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1 INTRODUCTION

We consider the problem of synthesizing recursive programs from input-output examples. Following
previous work, we consider functional programs over algebraic data types such as the natural
numbers, lists, and trees [Kneuss et al. 2013; Lubin et al. 2020; Osera and Zdancewic 2015]. For
example, consider a program that appends two lists:

append Nil ; = ;

append (Cons ℎ C) ; = Cons ℎ (append C ;)

This program uses general recursion, that is, the function append is explicitly recursively de�ned,
with calls to append within its de�nition. Depending on what other language features are present,
unrestricted general recursion is di�cult to reason about; for example, proving termination of
general recursive programs is normally non-trivial.
In practice many iterative/recursive programs, including append, can be expressed using more

restricted primitive recursive constructs. The essence of primitive recursion is that the number of
iterations or recursive invocations is known when the function is �rst called. For example, the
fold combinator captures a typical primitive recursive pattern where the number of recursive calls
is the length of the list argument. A standard (general recursive) de�nition of fold is:

fold Nil = 5 = =

fold (Cons ℎ C) = 5 = 5 ℎ (fold C = 5 )

We can use fold to write a well-known alternative de�nition of append:

append ;1 ;2 = fold ;2 ;1 Cons
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151:2 Qiantan Hong and Alex Aiken

Consider the two de�nitions of append above. From the point of view of program synthesis, the
version using fold has obvious advantages: There is no need to discover where to place recursive
calls to “tie the knot”, and termination is trivially guaranteed. The main disadvantage of the fold
version is that it appears quite restrictive: fold only works for lists, and there are list programs for
which a single fold is insu�cient.

Our main contribution is a program synthesis algorithm based on paramorphisms [Meijer et al.
1991]. Paramorphisms generalize the fold operator to more recursion patterns as well as other
algebraic data types. The paramorphism combinator on lists is:

para Nil 6Nil 6Cons = 6Nil
para (Cons ℎ C) 6Nil 6Cons = 6Cons ℎ (C , para C 6Nil 6Cons)

Compare the de�nition of fold to the de�nition of para in the Cons case, where fold applies the
function 5 to the head of the list ℎ and the result of the recursive call on C and para applies 5 to
the head ℎ, the tail C , and the result of the recursive call on C . Thus the para combinator gives the
function f more information (all of the original list argument) as well as the recursively processed
tail. (The seemingly unnecessary formation of a pair of C and the result of the recursive call is
convenient for the generalization to other data types presented in Section 2.) Here is the append
function written with para for lists:

append ;1 ;2 = para ;1 6Nil 6Cons where

6Nil = ;2

6Cons ℎ (C ,B) = Cons ℎ B

Our synthesis algorithm produces programs with one or more uses of para; this last de�nition of
append is one synthesized by our implementation. Our algorithm splits the synthesis problem into
two parts:

(1) We select a template, which is an incomplete program using para with multiple holes.
(2) We synthesize non-recursive program fragments to �ll the holes.

The motivation for (1) is that, in practice, there are relatively few programming patterns that
account for most forms of recursion and looping, and so with a relatively small number of primitive
recursive templates we can capture a large fraction of natural loops and recursive functions. The
template that leads to successful synthesis of the append function is

append ;1:ListNat ;2:ListNat =

para [ ]ListNat1 6Nil 6Cons where

6Nil = [ ]ListNat2

6Cons ℎ (C, B) = [ ]ListNat3

Note that templates are typed, and in particular the holes can only be �lled with terms of a particular
type. Thus, for each template, we also consider multiple possible variations where the holes are
assumed to have di�erent speci�c types. We discuss templates in detail in Section 3.2.

Themotivation for (2) is that once the recursive structure is �xed, the synthesis problem reduces to
the simpler problem of synthesizing non-recursive code. For (2) we use stochastic search techniques
inspired by [Schkufza et al. 2013]. In this approach, an initial program (which is the chosen template
�lled with some default program fragments) is incrementally changed with randomly chosen
modi�cations guided by a cost function. The cost function evaluates how “close” the program
is to satisfying all of the input-output pairs that form the speci�cation of the desired program;
programs that have fewer di�erences in the required output have better scores than programs that
produce more di�erences. In [Schkufza et al. 2013] the cost is based on the number of bits of output
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Recursive Program Synthesis using Paramorphisms 151:3

3 ≡ (data) = �CA ) · · · | · · · ) (Type Declaration)
g ≡ g → g | ) (Type)
C ≡ E | _E : g . C | C C | �CA C · · · |

para C 61 · · ·6< where

61 E · · · (E, E) · · · = C

· · ·

6< E · · · (E, E) · · · = C (Term)

Fig. 1. The Para language

that di�er. Because we work on algebraic data types that have more structure than collections of
machine words, we require a di�erent measure of cost; see Section 3.1.2.
We have implemented our synthesis algorithm in a tool Para, which we have applied to 59

benchmarks, including the benchmarks of [Lubin et al. 2020] collected from previous papers
on synthesizing recursive programs and a number of new benchmarks we have written. In our
experiments Para solves 55/59 benchmarks, while Smyth [Lubin et al. 2020], _2 and Trio [Lee
and Cho 2023], three state-of-the-art recursive synthesis systems, solve 33/59, 31/54 and 41/59
benchmarks respectively (�ve benchmarks require higher-order input, which _2 does not support).
All systems run in similar time for the problems they successfully solve, requiring fractions of a
second to less than a minute on conventional hardware. See Section 5 for a more in-depth discussion
of the experiments. We note that other systems are designed to handle synthesis of general recursive
functions. However, none of the benchmark programs that appear in previous papers actually
require general recursion—all previously reported results are on programs that are in fact primitive
recursive. The fact that Para is able to solve almost all benchmarks even though those benchmarks
were not originally intended to be primitive recursive shows that appropriately chosen primitive
recursive forms are quite expressive.
To summarize, we make the following contributions:

• We develop an approach to synthesis of primitive recursive programs over algebraic data
types based on paramorphisms.
• We decompose the synthesis problem into a set of multi-hole paramorphic templates and a
stochastic search to �ll the holes with non-recursive program fragments.
• We show that this simple algorithm, with appropriately chosen templates, is able to solve
all of the benchmarks from previous work plus a number of new and more challenging
benchmarks.

The rest of the paper is organized as follows. Section 2 introduces the simply-typed functional
language we use as the target of synthesis. Section 3 de�nes templates and our synthesis algorithm.
Section 4 describes the implementation of Para, Section 5 presents the experimental results,
Section 6 discusses related work, and Section 7 concludes.

2 PROGRAMMING LANGUAGE

Our target language Para, shown in Figure 1, is a simply-typed functional language with paramor-
phisms. A Para program consists of a list of type declarations typedecls and a program term C .
Type declarations in Para are standard, potentially recursive, algebraic data types [Milner et al.
1997]. We will refer to the :-th constructor of a type ) as �CA)

:
.

Without loss of generality, we require that the declaration of a type ) (the �rst line of Figure 1)
list all non-recursive arguments of type constructors (i.e., constructor arguments of types other than
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) ) before any recursive arguments (i.e. constructor arguments of type ) ). This ordering simpli�es
notation in our algorithms for generating templates in Section 3.2. For example, the de�nitions of
the natural numbers and the booleans

data Nat = Zero | Succ Nat

data Bool = False | True

have only constructors that take zero or one type arguments, so the ordering requirement imposes
no constraint. Now consider lists of natural numbers and binary trees that store natural numbers
at interior nodes:

data ListNat = Nil | Cons Nat ListNat

data TreeNat = Leaf | Node Nat TreeNat TreeNat

In the de�nition of the Cons constructor of ListNat the argument of type ListNat is last. Similarly,
in the Node constructor of TreeNat the two recursive constructor arguments of type TreeNat are
also listed last. We use the notation �CA)

:
)1 · · ·) · · · for pattern matching, where )1 · · · should

be understood to match the non-recursive constructor arguments of �CA)
:
and ) · · · matches the

recursive constructor arguments. For simplicity we consider only monomorphic algebraic data
types. Our implementation supports polymorphic type declarations by instantiating them with
monomorphic types during type checking.
The standard terms of the language are variables, _-abstractions, function applications and

applications of constructors. para terms support primitive recursive computation via paramor-

phisms; for a detailed review of paramorphisms from a formal perspective, see [Meertens 1992].
Section 1 gives an overview of paramorphisms and an example list computation. Figure 1 gen-
eralizes this example to an arbitrary algebraic datatype ) . The para combinator uses the locally
de�ned functions 61 · · ·6< in a case analysis on the base functor datatype of ) . Each case takes
a number of arguments equal to the arity of the constructor; the �rst arguments (of types other
than ) ) are the corresponding non-recursive constructor arguments, and the remaining arguments
(corresponding to constructor arguments of type ) ) are pairs consisting of the original recursive
constructor arguments and the result of a recursive call. Using pairs here allows us to have a single
value corresponding to each constructor argument even though paramorphisms treat recursive
constructor arguments of type ) itself di�erently from other types. The monomorphic typing rules
for Para are straightforward and given in Figure 2.

The evaluation rules for Para are given in Figure 3. The V-reduction of _-terms is standard. The
rule for para terms applies when the �rst argument to para is a constructed term with constructor
�CA)

:
. The reduction is carried out by selecting the corresponding :th function supplied to para:

6: E:1 · · · (E:8 , E
′
:8 ) · · · = C ′

then substituting each actual constructor argument C8 for E:8 in C ′. Furthermore, if the 8th constructor
argument is recursive (i.e., of type ) ), the result of a recursive call to para on argument C8 is
substituted for E ′

:8
.

We conclude this section with two additional programs written in Para. The �rst example uses a
provided library multiplication function mul of type Nat→ Nat→ Nat to de�ne factorial. Factorial
is an example of a primitive recursive function that uses the expressiveness of paramorphisms—note
that in the Succ case both the original constructor argument ?A43 and the recursively computed
value BC0C4 are used to compute the result:

factorial = _ = : Nat .

para = 6Zero 6Succ where

6Zero = 1
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Γ, E : g ⊢ E : g (Tvar)
Γ, E : g ⊢ C : g ′

Γ ⊢ (_E : g . C) : g → g ′
(Tabs)

Γ ⊢ C1 : g → g ′, C2 : g

Γ ⊢ C1 C2 : g
′

(Tapp)

(data) = · · · | �CA)
:
)1 · · ·) · · · | · · · ) ∈ typedecls Γ ⊢ C1 : )1 · · · Γ ⊢ C8 : ) · · ·

Γ ⊢ �CA)
:
C1 · · · C8 · · · : )

(Tctr)

(data) = �CA)1 )11 · · ·) · · · | · · · | �CA
)
< )<1 · · ·) · · · ) ∈ typedecls

Γ ⊢ C : ) Γ, E11 : )11 · · · E18 : ), E
′
18 : f · · · ⊢ C1 : f

· · · Γ, E<1 : )<1 · · · E<8 : ), E
′
<8 : f · · · ⊢ C< : f

©­­­­
«

para C 61 · · ·6< where

61 E11 · · · (E18 , E
′
18 ) · · · = C1

· · ·

6< E<1 · · · (E<8 , E
′
<8 ) · · · = C<

ª®®®®
¬
: f

(Tpara)

Fig. 2. Types

(_G.C) C ′ → C [C ′/G]

©­­­­«

para (�CA)
:
C1 · · · C8 · · · ) 61 · · ·6< where

· · ·

6: E:1 · · · (E:8 , E
′
:8
) · · · = C ′

· · ·

ª®®®®
¬
→

C ′ [C1/E:1] · · · [C8/E:8 ] [(para C8 61 · · ·6< where · · · ) /E ′
:8
] · · ·

Fig. 3. Semantics

6Succ (?A43, BC0C4) = mul (Succ ?A43) BC0C4

Factorial is one of our synthesis benchmarks. In our experiments, however, we synthesize the
entire program, including multiplication and its required building block, addition, from scratch; see
Section 5.
The second example maps a function over a tree of natural numbers. Note that this program

does not use the full power of paramorphisms; the BD1CA44 arguments in the Node case are not
needed to rebuild the tree:

tree -map = _ 5 : Nat→Nat . _ CA44 : TreeNat .

para CA44 6Leaf 6Node where

6Leaf = Leaf

6Node = (BD1CA441, BC0C41) (BD1CA442, BC0C42) = Node (5 =) BC0C41 BC0C42

tree-map is also one of our synthesis benchmarks.

3 SYNTHESIS ALGORITHM

Given a set of input-output examples, our goal is to synthesize a Para program that returns the
correct output for every input in the example set.
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D = E | �CA) D1 · · ·D=

B = [ ])
;
| _E : g . B

| para CB 61 · · ·6= where

61 E · · · (E, E) · · · = B

· · ·

6< E · · · (E, E) · · · = B

Fig. 4. Stratified grammar ParaD and Para
B

Problem 3.1. Given a set of # input-output examples {(�8 ,$8 )}, �nd the smallest Para term C

satisfying all examples, i.e.
∧#

8=0 C �8
∗
→ $8 is true, where

∗
→ is the re�exive transitive closure of the

reduction relation in Figure 3.

We stratify Para into a non-recursive fragment ParaD and a template fragment ParaB . Non-
recursive terms are a syntactic subset of Para terms, and templates are multi-hole contexts that
yield full Para terms when all holes are substituted with non-recursive terms. We denote the result
of substituting a sequence of non-recursive terms D into corresponding holes in a template B by
B [D].

The strati�ed grammar only generates a subset of the full Para grammar, as it disallows occur-
rences of ParaB terms inside constructor terms. Nevertheless, it still preserves the full expressiveness
of Para. Note that a Para program that has ParaB terms inside constructor terms can always be
rewritten into one without such occurrences by hoisting the ParaB terms out of the constructor
term and introducing a variable, e.g.

Cons (para · · · where · · · ) ~ = (_I.Cons I ~) (para · · · where · · · )

By stratifying Para’s grammar, we can decompose synthesis problems into two subproblems:

(1) Find a template, such that some sequence of non-recursive terms solves the synthesis problem
when substituted into the template;

(2) Given a template, �nd a sequence of non-recursive terms that solves the synthesis problem
when substituted into the template, if possible.

The intuition behind the strati�cation of the grammar is that relatively few recursion patterns
account for most of what is written in practical programming, and thus most programs of interest
should be expressible by a relatively small set of templates. For algebraic data types in particular,
paramorphisms capture common patterns of recursion and allow us to focus the synthesis procedure
on the easier problem of �nding non-recursive terms to �ll the holes.
Our synthesis algorithm combines an outer loop that enumerates an expressive but relatively

small set of templates and an inner loop that solves for non-recursive terms given a �xed template.
The inner loop problem is simpler than searching for a whole program directly because it need not
invent recursion patterns. The synthesis algorithm does not terminate until a solution is found or
the total time budget is exceeded. As mentioned in Section 1, we address the problem of �nding
the non-recursive terms by leveraging stochastic program synthesis techniques [Schkufza et al.
2013]. We outline the synthesis algorithm in Figure 5. We write normalize(t) for the normalization

of a term t under
∗
→. The functions stochastic-synthesis and template-set are discussed in

Sections 3.1 and 3.2, respectively.
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Input: Algebraic data type declarations 3 , library function declarations Γ,
expected program type signature g8 → g> , input-output examples
{(�8 ,$8 )}

Output: A Para program C of type g8 → g> that satis�es all input-output
examples

( ← template-set

(
3, Γ, g8 → g>

)
while true

foreach template B ∈ (
D, success← stochastic-synthesis(B, {(�8 ,$8 )})

if success then

return normalize(B [D])

Fig. 5. Outline of the synthesis algorithm

3.1 Synthesizing Non-Recursive Terms

3.1.1 Rewriting Terms. Given a template B , we initialize each hole of type ) in the template with
the default candidate of its type, denoted by � () ):

(data) = · · · | �CA)min)1 · · · | · · · ) ∈ typedecls

� () ) = �CA)min � ()1) · · ·

where �CA)
min

is a non-recursive constructor of ) with the smallest arity. When multiple such
constructors exist, we choose one arbitrarily.
Our synthesizer searches for non-recursive terms by beginning with a default candidate and

randomly applying a set of rewrite rules⇝Γ parameterized by the typing context Γ for the hole:

(data) = · · · | �CA)
:
)1 · · ·) · · · | · · · ) ∈ typedecls Γ ⊢ D : )

D ⇝Γ �CA
)
:
� ()1) · · ·D · · ·

(Construction)

(data) = · · · | �CA)
:
)1 · · ·) · · · | · · · ) ∈ typedecls

�CA)
:
D1 · · ·D8 · · ·⇝Γ D8

(Projection)
Γ ⊢ C : ), E : )

Γ ⊢ C ⇝Γ E
(Variable)

The Construction rule creates a new constructor application (by using the term D in a fresh con-
structor of the same type where all other positions of the constructor are �lled with default terms),
the Projection rule replaces a constructor application with one of its (same-typed) arguments,
and Variable replaces a term with a variable of the same type. We omit subscript Γ when it is
clear from context. We can reach any well-typed non-recursive term starting from an arbitrary
well-typed non-recursive term by rewriting under⇝Γ :

Theorem 3.2. If Γ ⊢ D1, D2 : ) , then there exists a rewrite sequence A ∈
∗
⇝Γ such that A (D1) = D2.

Proof. First, observe that one step of Construction rewrites any well-typed term to � () ) by
substituting �CA)

:
with �CA)

min
(this is a degenerate application of Construction where D does not

appear on right-hand side, because �CA)
min

must be non-recursive). This gives a rewrite sequence
A1 such that A1 (D1) = � () ). We then de�ne a rewrite sequence A2 such that A2 (� () )) = D2 by
induction on a well-typed derivation of D2. 1) If D2 is a variable, then one step of Variable rewrites
any term to D2. 2) If D2 is a constructor application of �CA)

:
, for each argument D′8 we de�ne a

rewriting sequence A ′8 such that A ′8 (� ()8 )) = D′8 by induction. Then, one step of Construction
rewrites � () ) to �CA)

:
� ()1) · · · , and we then apply each rewriting sequence A ′8 to each argument
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151:8 Qiantan Hong and Alex Aiken

sub-term, which rewrites �CA)
:
� ()1) · · · to �CA): D

′
1 · · · · · · = D2. The concatenation of A1 and A2 is

the desired sequence A . □

Thus, if some sequence of non-recursive termsD1 · · ·D= solves a synthesis problem by substituting
that sequence into the holes of the template B , then it is always possible to obtain that solution by
applying some⇝ rewrite sequence to the default candidates � ()1) · · ·� ()=).

3.1.2 Cost Function. Naive breadth-�rst search of rewrite sequences gives us a semi-decision
procedure for decidingwhether there exists a sequence of non-recursive terms that solves a synthesis
problem. However, as we show in our experiments, searching for a solution by enumerating all
such possible rewrites is very expensive. Instead, we use a stochastic search procedure where the
synthesis problem is recast as a cost minimization problem, and we apply⇝ rewrites stochastically
guided by the cost function.
Our cost function �>BC consists of two terms: �>BCsize penalizes program size, and �>BCerror

penalizes incorrect outputs. A constant U adjusts the weight of the two terms:

�>BC (D) = �>BCsize (D) + U ·�>BCerror =

∑
D∈D

log size(D) + U ·
#∑
8=0

log error(normalize (B [D] �8 ) ,$8 )

The cost minimization procedure minimizes �>BC and reports any candidate sequence of non-
recursive terms D encountered during the search such that �>BCerror (D) = 0. Given a large enough
U , solutions to Problem 3.1, if any exist within the subset of programs de�ned by the template, are
global minima of �>BC . In practice, setting U = 1 usually allows us to visit good candidates with
correct behavior and small sizes when searching near minima of �>BC .
Both size(·) and error(·, ·) are de�ned as the minimal length of rewrite sequences satisfying

some property. For size(D), the rewrite sequence must rewrite the default candidate term � () ) into
current candidate term D. For error(� ,$), the rewrite sequence must rewrite the program output
$ ′ = normalize (B [D] �8 ) to the desired output $ :

size(D) = min
A ∈⇝∗

Γ

length(A ) s.t. B (� () )) = D

error($ ′,$) = min
A ∈⇝∗

Γ

length(A ) s.t. B ($ ′) = $

For our choice of� () ), the exact value of size(·) is computed by the following recursive procedure

size(E) = 1

size(�CA)min D1 · · ·D=) =

=∑
8=1

size(D8 )

size(�CA)
:
D1 · · ·D=) = 1 +

=∑
8=1

size(D8 )
(
�CA)

:
≠ �CA)min

)

The exact value of error(·, ·) is di�cult to compute e�ciently, so we approximate it using a tree
edit-distance algorithm in our implementation.
To minimize �>BC , we employ a stochastic Monte Carlo search procedure inspired by Metrop-

olis–Hastings sampling [Hastings 1970]. Our sampling procedure works as follows: at each step

we maintain a current candidate D and its cost �>BC (D) and create a modi�ed candidate D′, called
the proposal, by uniformly sampling and applying one⇝ rewrite among all possible⇝ rewrites
to any non-recursive term in D. We then compute �>BC (D′). The proposal is accepted, meaning it
becomes the new current candidate, with the following probability, otherwise the current candidate
is retained to the next step:

�(D′, D) = min
(
1, exp(−V (�>BC (D′) −�>BC (D)))

)
Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 151. Publication date: June 2024.
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where V is a constant. The proposal is always accepted if its cost is lower than the current candidate,
otherwise the proposal is accepted with a probability that depends on the di�erence in cost between
the proposal and the current candidate, with more expensive proposals having lower probability of
acceptance. We repeat this procedure, proposing and possibly accepting one new candidate per
step, until a solution is found or the computation budget is exhausted.

When the sampling procedure converges, more samples will be taken for which�>BC (D) is small,
giving us high probability of �nding the global minima or su�ciently good candidates. Even before
the sampling converges, this approach e�ectively hill climbs to nearby locally good solutions, but
always has some probability of jumping to other parts of the search space.

3.1.3 Example. To illustrate how stochastic rewrites guided by the cost function synthesize non-
recursive terms, we show several steps of an execution trace of the Para synthesizer synthesizing
an append function for ListNat.

At the beginning of the search, each hole is initialized with its default candidate. In this example,
every hole has type ListNat and is initialized to Nil:

candidateA = _ ;1 :ListNat _ ;2 :ListNat .

para [Nil]ListNat1 6Nil 6Cons where

6Nil = [Nil]ListNat2

6Cons ℎ (C, B) = [Nil]ListNat3

This initial function always returns Nil, regardless of the input. Figure 6 plots the cost of a search
beginning with this program, labelled A in the �gure.

The �rst signi�cant decrease in the cost function occurs after fewer than ten accepted proposals
when the term in the second hole is rewritten from Nil to ;2, which can be done by one step of
Variable:

candidateB = _ ;1 :ListNat _ ;2 :ListNat .

para [Nil]ListNat1 6Nil 6Cons where

6Nil = [;2]
ListNat
2

6Cons ℎ (C, B) = [Nil]ListNat3

We now have a function that always returns its second list argument. This function has lower cost
because the second list is more similar to the desired output (the concatenation of the two lists).
The search discovers this function at point B in Figure 6.

The next signi�cantly better function is not found until point C, after the 50th accepted proposal
and close to the end of the search. This program iterates over ;1 and adds a constant 0 to the head
of the result list for every iteration:

candidateC = _ ;1 :ListNat _ ;2 :ListNat .

para [;1]
ListNat
1 6Nil 6Cons where

6Nil = [;2]
ListNat
2

6Cons ℎ (C, B) = [Cons 0 B]ListNat3

The function has lower cost because its output is even closer to the desired output, with the correct
length but potentially incorrect elements in the �nal list. The term in the �rst hole is rewritten
from Nil to ;1, which is achievable via one step of Variable. The term in the second hole has not
changed. The term in the third hole is rewritten from Nil to Cons 0 B , which can be achieved by
�rst rewriting to B via one step of Variable and then to Cons 0 B via one step of Construction.

Finally, one step of Variable rewrites the subterm 0 inside Cons 0 B to ℎ which results in a correct
append function, discovered at point D in Figure 6:
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Fig. 6. Cost landscape of synthesizing list-append

append = _ ;1 :ListNat _ ;2 :ListNat .

para [;1]
ListNat
1 6Nil 6Cons where

6Nil = [;2]
ListNat
2

6Cons ℎ (C, B) = [Cons ℎ B]ListNat3

We note that while only the Variable and Construction rewrites are strictly necessary for
this example, the Projection rule is important in practice because it allows the search to undo
decisions that end up leading nowhere. While there is a very short path from the initial program
to a correct solution, the actual search trajectory explores many more programs, which is typical
behavior for stochastic search. The long plateau in Figure 6 occurs because multiple changes must
be present simultaneously for the cost to improve signi�cantly from point B to point C, and even
with a good cost function many trials are needed to discover the right combination of modi�cations.

3.2 Enumerating Templates

3.2.1 Proper Recursion Nests. In this paper we focus on templates representing a single proper
recursion nest of one or more calls to para, which we will show is expressive enough to solve our
benchmarks. It is possible to extend the set of templates to include several sequentially chained
proper recursion nests, but we do not consider this possibility in this paper.

We de�ne a template generator proper-nest in Figure 7. Because proper-nest is a code gener-
ator, its function body is a mix of code to be executed as part of proper-nest itself and code that
is the output of proper-nest. We color-code what is part of the output of proper-nest in blue;
code in black is part of proper-nest’s own logic.

All variables in the generated code are implicitly renamed to distinct fresh variables unless explic-
itly labeled by subscripts. All holes are implicitly given distinct labels. The function proper-nest

generates a template term given a state type and a recursion type list. The state type is the return
type of all para terms in the template. The recursion type list speci�es the maximal depth of
the recursion nest and the types on which para terms recurse: A para term at recursion nesting
depth = consumes a structure with the type speci�ed by the =-th element of the recursion type
list. We use Haskell syntax (ℎ403 :: C08;) and [] to pattern match on the meta-level recursion type
list, to distinguish it from object-level lists denoted by constructor syntax Consℎ403 C08; and Nil.
When we write patterns of the form 6 9 E · · · (E, E) · · · , the E · · · should be understood to match

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 151. Publication date: June 2024.



Recursive Program Synthesis using Paramorphisms 151:11

proper-nest ( ) :: ) =

if ) is recursive then

para [ ]) 61 · · · 6< where

· · ·
68 E · · · = (proper-nest ( [])

· · ·

69 E · · · (E, E) · · · = (proper-nest ( ) )

· · ·
else

para [ ]) 61 · · · 6< where

· · ·

68 E · · · = (proper-nest ( ) )

· · ·

proper-nest ( [ ] = [ ](

(a) Algebraic data type as state type

proper-nest f1 → f2 ) =

_ G : f1 . (proper-nest-func f1 → f2 ) )

(proper-nest f1 [])

proper-nest-func f1 → f2 ) :: ) =

if ) is recursive then

para [ ]) 61 · · · 6< where

· · ·
68 E · · · = (proper-nest f1 → f2 [])

· · ·

69 E · · · (E, E) · · · = (proper-nest f1 → f2 ) )

· · ·
else

para [ ]) 61 · · · 6< where

· · ·

68 E · · · = (proper-nest f1 → f2 ) )

· · ·
proper-nest-func f1 → f2 [ ] =

_ G : f1 . (proper-nest f2 [])

(b) Function type as state type

Fig. 7. Template generator proper-nest

the non-recursive arguments to 6 9 and (E, E) · · · matches the recursive arguments, similar to our
convention of writing non-recursive constructor arguments before recursive constructor arguments
introduced in Section 2.
There are two cases for proper-nest, depending on state type argument ( . The case for when

( is an algebraic data type is de�ned in Figure 7a. For para terms consuming a recursive type,
proper-nest only generates para subterms for cases where the constructor has some recursive
arguments. For para terms that consume non-recursive types (which degenerates into a pattern
match), we generate para subterms for all cases.
The template for append given in Section 1 is generated by the call proper-nest ListNat

[ListNat]. As a more involved example, proper-nest ListNat [Boolean,TreeNat] generates
the following template:

para [ ]Boolean1 6True 6False where

6True = para [ ]TreeNat2 6Leaf 6Node where

6Leaf = [ ]ListNat3

6Node = (BD1CA441, BC0C41) (BD1CA442, BC0C42) = [ ]ListNat4

6False = para [ ]TreeNat5 6Leaf 6Node where

6Leaf = [ ]ListNat6

6Node = (BD1CA443, BC0C43) (BD1CA444, BC0C44) = [ ]ListNat7

It turns out that it is useful to allow state types to be not just algebraic data types but also
functions. Function types can encode top-down recursion via continuation-passing style in addition
to the bottom-up recursion expressed “natively” by paramorphisms. For example, one way to reverse
a list is to traverse the list from head to tail and add the visited element to the head of the result list
during traversal. This algorithm can be expressed with para by using NatList→ NatList as the
state type, even though para traverses the list from tail to head:

reverse = _ ; :ListNat . # List reversal via top-down traversal

(para ; 6Nil 6Cons where

6Nil = _;1:NatList . ;1

6Cons ℎ (C, B) = _;2:NatList . B (Cons ℎ ;2)) Nil
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Figure 7b de�nes how proper-nest handles function types as state types using an auxiliary
function proper-nest-func. The de�nition of proper-nest-func is similar to the algebraic data
type case of proper-nest. The base case is adjusted to keep the generated term syntactically
well-formed. We wrap a pair of a _-abstraction and an application around the term generated by
proper-nest-func so that the input to the state (which is a function) can be varied.

3.2.2 Library Functions and Tuples. It can be useful to supply a set of library functions to be used
as additional primitives in the synthesis of non-recursive terms. We support �rst-order library
functions by amending production rules to the grammar of non-recursive terms and adding the
corresponding typing rules and rewrite rules, similar to the approach described in [Alur et al.
2013]. These terms representing library function applications can then be used in any holes in
the template, including the data to be pattern-matched by the para combinators. For example, to
include the library function + : Nat × Nat→ Nat, we add a new production:

D = · · · | D + D

and the corresponding typing rule:

Γ ⊢ D1 : Nat, D2 : Nat

Γ ⊢ D1 + D2 : Nat

We add the following rewrite rules so that the search procedure can construct and remove non-
recursive terms representing addition:

Γ ⊢ D : Nat

D ⇝ D + D
D1 + D2 ⇝ D1 D1 + D2 ⇝ D2

As another example, for the library function =: Nat × Nat→ Bool, the following rewrite rule is
added:

Γ ⊢ D : Bool

D ⇝ � (Nat) = � (Nat)

where the default candidate � (Nat) = Zero. Note that because the return type Bool does not occur
in the argument types of the function =, there is no dedicated rewrite rule to remove terms of
the form D = D while retaining some subterm(s). Instead, the search procedure can remove such
terms by invoking the Construction rule, which rewrites any of them to the default candidate
� (Bool) = False.

We also support using tuple types as state types. Tuple types can encode recursion over multiple
state components by packaging them as a tuple. For a sequence of types g1 · · · g= , we generate the
type declaration of their tuple type if used, denoted by g1 × · · · × g= , as follows:

data g1 × · · · × g= = Tuple g1 · · · g=

We then introduce the projections c1 · · · c= for this tuple type as library functions. Projection c8 is:

c8 (Tuple C1 · · · C8 · · · C=) = C8

3.2.3 Template Set. We generate a set of templates by applying the generator proper-nest to
di�erent plausible combinations of state type and recursion type list. Currently, we use the following
strategy to generate the template set:

template-set = {proper-nest ( [)1 · · ·)� ] | (,)1 · · ·)� ∈ {)in}}

∪ {proper-nest (1 → (2 [)1 · · ·)� ] | (1, (2,)1 · · ·)� ∈ {)in}}

∪ {proper-nest (1 × (2 [)1 · · ·)� ] | (1, (2,)1 · · ·)� ∈ {)in}}
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where � is a parameter specifying the recursion depth of the templates and {)in} is the set of
algebraic data types appearing in the type signatures of the target program and library functions.

We then wrap the generated templates appropriately to provide the correct top-level type. For a
template B generated with state type f and expected output type g1 → · · · → g= → ) , we wrap the
template inside _ G1 : g1 . · · · _ G= : g= . ((_ G : f . [ ]) ) B), where G1, · · · , G= and G are fresh variables.

3.3 Normalization

In many cases our synthesizer �nds a solution using a template larger than what is strictly necessary.
Such solutions typically contain trivial calls to para that do not perform any substantial recursive
computation. To eliminate those trivial terms and improve the readability of the programs, we
normalize the output of the synthesizer according to the rewriting semantics presented in Figure 3.

4 IMPLEMENTATION

We have implemented our synthesis algorithm in a tool also called Para in approximately 700 lines
of Common Lisp, excluding the experimental setup. Our prototype supports a prede�ned set of
polymorphic algebraic data types, including List0, Tree0 and Tuple0 1 as well as Boolean and
Nat. As mentioned previously, before performing synthesis all polymporphic types are resolved to
concrete types—synthesis is done on terms with monomorphic types.

Compiling Templates. Because each template will likely be executed with many instantiations of
non-recursive terms during the synthesis process, it is bene�cial to compile a specialized interpreter
for each template that executes its candidate non-recursive term sequences. We generate type-
annotated Lisp source of a specialized interpreter given a template term and compile it to native
code using the SBCL compiler [Rhodes 2008] with high optimization settings (optimize (speed

3)). Compilation results are cached and reused if the same template term is used in multiple
problems. We run compilation of di�erent templates in parallel when preparing the template set
for a problem.

Restart Strategy. We have observed that the distribution of search times for a synthesis problem
can be extremely wide. Since there are generally short search paths to a solution, a couple of good
guesses early in a search can lead to rapid convergence to a solution, while a couple of bad initial
guesses can result in searches taking orders of magnitude longer. As suggested in [Koenig et al.
2021], we periodically restart the search to improve the chances of a short successful search. We
use a simple strategy that restarts the search when either of the following conditions are met:

(1) After #restart states are explored, but no solution is found.
(2) If the wall-clock time for the current search takes a factor of :restart times longer than the

average time of all previous searches. The �rst search is initialized with a timeout of C0.

#restart, :restart and C0 are �xed parameters. The second condition also guards against search paths
that contain programs of very high time complexity, which can consume signi�cant computation
budget while making little progress.

Parallel Search. Our synthesis technique is embarrassingly parallel. The search process for
di�erent templates can be run simultaneously, and any single template can be accelerated by
running multiple stochastic searches in parallel with independent random number generators.
Currently, our prototype supports single-node shared-memory parallelism via multi-threading.

5 EVALUATION

This section presents experiments designed to answer the following questions:

(1) Is Para able to solve di�cult synthesis problems with complex recursive patterns?
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(2) How does Para’s ability to solve synthesis problems compare with state-of-the-art Program-
by-Example systems?

(3) How does Para’s stochastic search procedure compare with enumeration-based search?
(4) How does the ability of state-of-the-art Program-by-Example systems to utilize primitive

recursive combinators and automatically-generated templates compare with Para?

Experiments used a 2017 iMac Pro with a 3.2 GHz 8-Core Intel Xeon W CPU and 32 GB of RAM.

5.1 Benchmarks and Setup

We have assembled a suite of 59 synthesis benchmarks for functional programs from previous
Smyth benchmarks [Lubin et al. 2020], the Haskell Prelude library and the Haskell Data.List
library [Marlow et al. 2010]. Each benchmark problem is de�ned by the expected monomorphic
type of the top-level program, library functions which the synthesizer may use, and 10 sets of
input-output examples, each of which has 16 input-output pairs. The input-output example sets are
automatically generated by calling a reference implementation with randomly-sampled inputs. The
inputs are generated by reinterpreting algebraic data type de�nitions as probabilistic context-free
grammars [Booth and Thompson 1973], with equal probabilities assigned to each constructor
case. We discard any examples that exceed a maximum size (we use 50 nodes as the limit in our
experiments). For higher-order problems, inputs of function type are instead uniformly sampled
from a set of handwritten functions collected from the Smyth benchmarks.

All four systems Para, Smyth, _2 and Trio support supplying library functions, and some of the
benchmarks from the literature that we incorporate require library functions to be provided. For
these benchmarks, we also include variants where no library functions are provided, which we
expect to be a harder problem to solve. We show the list of provided library functions (if any) in
parentheses after the name of a benchmark problem.
To answer research questions 1 and 2, we ran Para, Smyth and Trio on each input-output

example set for all 59 benchmarks. We ran _2 on a subset of 54 of our benchmarks that excludes
benchmarks with high-order inputs, because _2 does not support them. By default Para uses all 8
cores of the experiment machine and is given a 1-minute time limit for each synthesis task. Smyth
and _2 do not support parallelism and are given an 8-minute computation budget on a single core
for each synthesis task. To control for any bene�ts of the parallel search and enable a more direct
comparison to the sequential systems, we also run Para on a single core with the same settings and
an 8-minute computation budget, with results labelled by Para (Serial). _2 requires a component
library to be provided and we use its standard component library for all runs of _2. This standard
library already contains the library functions required by some of our benchmark problems; for
these problems, the variants with and without library function become the same for _2, therefore
we run _2 on such benchmarks only once and duplicate the resulting entry.

Synthesized programs are validated against an independently generated set of 20 random input-
output test cases and then manually inspected for correctness. We report the number of correct
synthesis results among 10 runs and the average time of successful runs in seconds. If no synthesis
runs are successful, we report the most common reason for failure among the 10 runs: “time” for
timeout, “mem” for out of memory, “wrong” for a result with di�erent semantics from the reference
implementation, and “fail” for other conditions.
We set parameters V = 5.0, #restart = 50000, :restart = 1.5 and C0 = 1s for Para. We have veri�ed

that Para’s performance is insensitive to small changes of these parameters. We varied the value
of the recursion depth parameter � = 1, 2, 3, and report the depth that yields the highest number of
successful runs, with the smaller depth reported in the case of a tie. Because searches with di�erent
recursion depth can be run in parallel, performance in practice is determined by searches that
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are more likely to �nd a solution; moreover, the required recursion depth to e�ectively solve a
synthesis problem serves as a quantitative measurement of the di�culty of that problem.

An alternative to stochastic search is deterministic enumeration-based search, which can either be
brute force (literally enumerate all programs as in [Bansal and Aiken 2006; Massalin 1987]) or guided
by a cost function, where a current frontier of candidates are ranked and only the most promising
are considered for further exploration (_2 incorporates this strategy). To evaluate the e�ectiveness
of our stochastic search algorithm described in Section 3.1 compared to enumeration-based search,
we implement a complete best-�rst-search bottom-up synthesis procedure for Para guided by our
cost function. We ran Para under the same settings using this deterministic enumeration procedure
instead of the stochastic one on all of our benchmarks, with results labelled by Para (BFS).

To address question 4, we translate the templates Para used in successful solutions to the input
format of Smyth, and ask Smyth to solve the same problem using that translated template. As _2

supports higher-order library procedures, we supply a library of paramorphic combinators to _2

with example-passing axioms and run _2 on the 54 benchmarks with 1) this paramorphism library,
and 2) the standard component library and the paramorphism library. Trio’s interface does not
provide a way to perform this experiment.

5.2 Results

Detailed experimental results are in Tables 1 and 2 and cactus plots summarizing the running times
of all problems solved for each system are in Figure 8. We normalize the CPU time in the cactus
plot by multiplying wall-clock time by the number of cores used by each system. Para solved all
but 4 out of the 59 benchmarks reliably, signi�cantly outperforming Smyth and Trio, which did
not solve 26 and 18 benchmarks, respectively. Among the 54 benchmarks that we ported to _2, _2

solves 31 while Para solves 50. When running Para on a single core, the system solves all but 1
benchmark that it solves with 8 cores, with typically an order of magnitude longer time. This shows
that our embarrassingly parallel algorithm can lead to super-linear speedup on multi-core systems.
Among the more di�cult problems for which we provided two variants with and without library
functions, Para is able to synthesize complex recursion patterns without the aid of any library
functions, while Smyth, _2 and Trio are only able to solve some of the problems when provided
with library functions. For benchmarks that are solved by all systems, Smyth generally takes less
time to �nd a solution, while Trio solves more problems than any system other than Para.

When using deterministic best-�rst-search enumeration, Para solves 38 of 59 benchmarks. While
a more sophisticated deterministic search algorithm could potentially do better than Para, our
enumeration-based search solves more problems than _2, which is also enumeration-based—thus it
is likely not easy to �nd an enumeration-based search comparable to stochastic search. We also
note that the stochastic search has the added bene�t of requiring only O(1) space for bookkeeping.
Figure 9 gives a partial explanation for the strong performance of stochastic search: The number
of needed changes to the template to �nd a solution is almost always less than 15. Previous work
on synthesizing straight-line assembly programs has been successful up to 10-15 instructions
[Massalin 1987; Schkufza et al. 2013], which requires roughly 50 changes to opcodes, registers
and constants starting from an empty program. We likely need harder benchmarks to observe
the limits of stochastic search in Para. Figure 10 gives a whisker plot showing min, max, and
distribution by quartile of runtimes of Para for the problems it solves. The wide distribution and
small minimum search times motivate the use of parallelism and restarts to bias Para towards
�nding short successful runs.
Smyth did not solve any of the benchmarks using the automatically generated templates Para

used in successful solutions. We note that Smyth implements the program sketching [Solar-Lezama
2013] synthesis methodology, which is a promising method to express high-level insights from
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the programmer and utilize them in synthesis process. However, it is not well-studied whether
systematically generated, rather than programmer provided, sets of sketches enhances the problem-
solving ability of such systems, and our experiments show no such evidence. _2, when provided
with the paramorphism library, solves 30 out of the 54 benchmarks. When given both its default
library functions and paramorphism combinators, _2 does not solve any additional benchmarks
besides the ones it already solves using only the default library functions.
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Table 1. Results with first-order inputs
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We observed a signi�cant negative correlation between the required recursion depth of the
templates (see Section 3.2.3) for Para to e�ectively solve a synthesis problem using stochastic search
and the ability of other systems to solve such problems. To quantify this �nding, we categorize
the problems that Para solves in Table 1 by the required recursion depth for Para and plot the
percentage of problems solved by each system in each category. The results are shown in Figure 11.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 151. Publication date: June 2024.



151:18 Qiantan Hong and Alex Aiken

Table 2. Results with higher-order inputs

Problem
Para Para (BFS) Para (Serial) Smyth Trio

Depth Time #Success Depth Time #Success Depth Time #Success Time #Success Time #Success

list-partition 3 25.840 4 3 time - 3 381.041 7 time - time -
list-�lter 2 4.645 10 2 12.621 6 2 16.334 9 4.162 10 6.028 8
list-fold 1 0.134 9 1 0.129 10 1 2.578 8 0.970 10 11.204 10
list-map 1 0.315 10 1 0.233 10 1 1.535 10 0.059 10 0.538 10
tree-map 1 26.408 8 1 11.679 8 1 197.351 10 0.068 10 1.156 1

Para Para (BFS) Para (Serial) Smyth _2 (stdlib) _2 (paramorphism) Trio

0%

50%

100%
Depth=1 Depth=2 Depth=3

Fig. 11. Success rate by required recursion depth for Para

For Para (BFS), Para (Serial), Smyth, _2 (paramorphism) and Trio, the percentage of problems
solved decreases monotonically when the required recursion depth for Para increases (Trio very
slightly improves at depth 3 over depth 2, but is essentially a tie). The negative correlation is less
pronounced for _2 (stdlib), which can be attributed to the fact that the _2 standard library contains
many recursive library functions, thus the actual recursion depth _2 needs to successfully synthesize
a solution is shallower. In fact, we observed that _2 did not synthesize any nested recursions when
used with just its own standard library.
We postulate that the following factors contribute to this observed negative correlation. First,

the required recursion depth is a measure of a problem’s di�culty, so we expect any system to
perform better on easy problems (low depth) versus hard problems (high depth). Second, during
synthesis of a program with higher required recursion depth, more holes are present, which limits
the e�ectiveness of static analysis to propagate information. _2, for example, uses a deductive
procedure to discover constraints on the solution, but too many holes can render the analysis
ine�ective. Third, Smyth synthesizes top-level general recursion, which in principle expresses a
larger set of programs than the properly-nested paramorphisms synthesized by Para. However,
this extra generality incurs a larger search space and potentially less e�cient search algorithms,
while Para’s smaller and more structured search space contains solutions to all benchmarks.

As a �nal experiment, we compare how example-e�cient Para is compared to Smyth—how few
examples are needed to synthesize a solution to a problem? Figure 10, column 1 of [Lubin et al.
2020] shows the minimal number of examples that Smyth needed to synthesize 34 problems. Using
the same input examples, Para successfully synthesizes 24 of these problems. In fact Para found
solutions for 32 problems that satis�ed the input-output examples within the time limit, but 8 were
not the intended program. With no bias towards anything other than short solutions and guided
purely by observed input/output behavior, it is not surprising Para requires more examples than
other systems to fully constrain the result. We have also shown an upper bound of 16 examples for
all the problems in our benchmark suite that Para successfully solves.
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We show some notable synthesis output from Para to illustrate its ability to synthesize programs
with complex recursion patterns. The variables are renamed to improve readability. The following is
a solution to the nat-factorial problem found by Para in 0.172 seconds without library functions:

factorial = _ = : Nat .

para = 6Zero 6Succ where

6Zero = 1

6Succ (?1, B1) = para ?1 6Zero 6Succ where

6Zero = B1

6Succ (?2, B2) = para B2 6Zero 6Succ where

6Zero = B1

6Succ (?3, B3) = Succ B3

The program consists of three nested loops: the innermost loop computes B1 + B2, the inner two
loops compute B1 × ?1 + B1, and the full loop nest computes =!.
Para discovered several interesting solutions to the list-rev (list reversal) benchmark. First,

Para �nds a solution similar to the list reversal example given in Section 3.2.1 in 2.206 seconds at
depth � = 1, using function types to encode top-down traversal of the input list. At depth � = 2,
Para �nds a solution that uses two nested loops, with the inner loop appending an element to the
end of an accumulated list, in 0.747 seconds:

reverse = _ ; :ListNat . # List reversal via appending

para ; 6Nil 6Cons where

6Nil = Nil

6Cons ℎ1 (C1, B1) = para B1 6Nil 6Cons where

6Nil = Cons ℎ1 Nil

6Cons ℎ2 (C2, B2) = Cons ℎ2 B2

Para also �nds another solution that uses a tuple of two lists as state in 0.711 seconds:

reverse = _ ; :ListNat . # List reversal via two stacks

c1 (para ; 6Nil 6Cons where

6Nil = Tuple Nil ;

6Cons ℎ1 (C1, B1) = para (c2 B1) 6Nil 6Cons where

6Nil = Tuple (Cons 0 C1) C1

6Cons ℎ2 (C2, B2) = Tuple (Cons ℎ2 (c1 B1)) C2

This program treats the two lists as two stacks, initializing them to an empty list and the input list.
The program pops elements from the second stack and pushes them onto the �rst stack, which
eventually becomes the reversal of the input list. Although this program has two nested paras, the
inner one is degenerate: the Nil branch is dead code, and the Cons branch extracts the top of the
second stack and binds it to ℎ2, which is pushed onto the �rst stack.

6 RELATED WORK

Programming-by-example (PBE) for Domain-Speci�c Languages. Input-output examples are a simple
and accessible way of specifying program behavior. Programming-by-example techniques have
been developed to automate domain-speci�c tasks such as string transformations [Gulwani 2011;
Singh and Gulwani 2016], tabular and hierarchical data processing [Chasins et al. 2018; Feng
et al. 2017; Wang et al. 2017; Yaghmazadeh et al. 2016], and graphics and visualization [Hempel
et al. 2019; Wang et al. 2019]. Some domain-speci�c PBE approaches support processing speci�c
recursive algebraic data types or their equivalent using a corpus of �rst-order primitives, such as
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list-processing [Feng et al. 2018]. Those approaches synthesize non-recursive programs that use a
prede�ned set of recursive primitives and are fundamentally more domain-speci�c than our work.

PBE for Recursive Functional Programs. Two early systems, Escher [Albarghouthi et al. 2013] and
Myth [Osera and Zdancewic 2015], synthesize recursive functional programs from input-output
examples. Escher [Albarghouthi et al. 2013] is a bottom-up synthesis procedure for an untyped �rst-
order language with general recursion. Available data types are restricted to a prede�ned set of base
types. Myth [Osera and Zdancewic 2015] is a top-down deductive synthesis procedure for a typed
higher-order language with user-de�ned algebraic data types. It performs proof search to produce
terms that satisfy a given set of input-output examples. Both Escher andMyth require input-output
examples to be trace-complete, i.e. the input-output examples must include the input/output pairs
of all recursive calls. Writing trace-complete examples is cumbersome and requires some intuition
for the internal computations of the program to be synthesized.
Burst [Miltner et al. 2022] uses bottom-up synthesis that handles general recursion without

requiring trace-completeness by using angelic execution, executing unknown recursive calls under
angelic semantics during synthesis and then re�ning the speci�cation if the synthesized program
is incorrect under normal semantics. The procedure repeats until a correct program is found.
All of the above-mentioned systems synthesize a single recursive function with recursive calls

to the top-level function itself. In practice, however, solutions to many problems are more naturally
expressed with mutually recursive functions. Even though a single general recursion at top-level
is in theory capable of encoding arbitrary mutually recursive functions, currently such complex
general recursive functions are not practically synthesized by these systems, which poses di�culties
in applying these approaches to more challenging problems.

PBE for data structure transformations. _2 [Feser et al. 2015] synthesizes functional programs that
transform data structures using higher-order combinators such as fold, map and filter. Similar
to templates used by Para, _2 generates multi-hole hypotheses using these combinators. It then
infers the input-output examples for the holes via deductive reasoning. _2 is notable for its ability
to synthesize nested recursive transformations. In practice, we �nd that _2’s approach is limited
to deducing examples one-hole-at-a-time. When there are multiple holes in a hypothesis but no
example adequately constrains any single hole, _2 falls back to exhaustive enumeration. There are
also speci�c requirements on the provided input-output examples for the deduction procedure to
be e�ective. For example, while _2 is generally able to propagate input-output examples of a map
hypothesis into its functional argument, the same is possible for a fold hypothesis only if there are
pairs of examples that di�er by only appending or prepending one element to the input sequence.
In our experiments using randomly-generated examples, we �nd that _2 often only propagates
only the base case example for fold-like combinators including fold and our paramorphism
combinators. Para on the other hand can take advantage of simultaneous constraints on multiple
holes by probabilistically making multiple changes, even if each of the changes individually does
not decrease the cost. Para also uses fold-like combinators e�ectively with fewer restrictions on
the input-output examples.
Program Sketching. Sketching [Solar-Lezama 2013] is a synthesis methodology that synthe-

sizes concrete implementations by completing program sketches, i.e. programmer-provided partial
programs with holes. Sketching is a promising method to express high-level insights from the
programmer and utilize them in synthesis process. We note that it is possible to provide such
systems with a systematically generated set of sketches that describes di�erent recursion shapes, in
hope of improving their ability to solve more di�cult problems. Synapse has applied this approach
to a number of non-recursive synthesis problems[Bornholt et al. 2016]. However, to our knowledge
such an approach has not been well-studied for recursive programs, which are generally more
di�cult to synthesize.
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Sketch [Solar-Lezama 2013] pioneered the sketching approach, synthesizing programs in an
imperative, C-like language by translating input-output examples of the synthesis problem to a
logical formula that constrains admissible hole values and relying on an external SAT or SMT solver
to �nd hole value assignments. Rosette develops a similar approach for the untyped functional
language Racket [Torlak and Bodik 2013]. This approach inherently limits the types of holes to
those that external solvers handle well. In practice, only booleans and integers are supported.
Syntrec [Inala et al. 2017] suggests that it is possible to encode user-de�ned algebraic data types in
such a framework. However, such an encoding is limited to some subset of all possible well-typed
terms for any given hole, such as bounding the number of constructors by a pre-determined limit.

Smyth [Lubin et al. 2020] is a descendant of Myth with support for program sketching, allowing
users to provide a custom template with multiple holes. Smyth also removes the trace-completeness
requirement from Myth via live bidirectional evaluation, which propagates examples backward
through partially evaluated incomplete programs. A key di�erence between Smyth and Para is that
Smyth is design to support general recursion while Para speci�cally targets primitive recursion. As
discussed in Section 5, the extra generality of Smyth is not exploited by any of the benchmarks in
the literature while also likely making it more challenging for Smyth to solve the harder problems.

Leon [Kneuss et al. 2013] and Synqid [Polikarpova et al. 2016] complete program sketches from
logical speci�cations. Leon synthesizes Scala functions given pre-conditions and post-conditions by
combining a term generation system, a veri�er, and a conditional abduction algorithm to generate
recursive program fragments. Synqid accepts logical speci�cations in the form of re�nement

types of the target program. Synqid employs a Myth-like proof search procedure, relying on
an external SMT solver to perform re�nement type checking. These logical speci�cation-based
synthesizers can be applied to PBE tasks by encoding input-output examples as a conjunction of
propositions. However, the underlying techniques are not necessarily tailored to speci�cations
of such structure. For example, Synqid requires the input speci�cation to be inductive, which is
similar to the trace-completeness requirement. See [Lubin et al. 2020] for experiments comparing
the performance of Leon and Synqid applied to PBE tasks versus dedicated PBE synthesizers.
SyRup uses version space algebra to hypothesize pairs of recursive programs and execution

traces, using the consistency of a program with a trace to guide progress [Yuan et al. 2023]. In
testing SyRup, we found that it solves the bool and nat benchmarks but only one list and one tree
benchmark. SyRup relies on having some trace complete examples to do well; with only randomly
generated examples (our scenario), [Yuan et al. 2023] showed that SyRup does not consistently
outperform Smyth. Overall, the di�erent goals of SyRup—minimizing the number of examples
while requiring some trace completeness—makes a fair comparison with Para di�cult.

Stochastic Search. Stoke [Schkufza et al. 2013] applies stochastic MCMC search to the superopti-
mization task for 64-bit x86 instruction sequences. Stoke synthesizes optimized versions of a given
target program under some performance metric. E�ective application of the approach is limited to
loop-free programs. While our cost function is di�erent, we also measure the di�erences between
the output of a candidate program and the desired output.
Genetic Programming (GP) [Koza 1994] stochastically evolves a program to improve its �tness

for a particular task. GP has been applied to evolve general recursive functional expressions that
satisfy given input-output examples [Moraglio et al. 2012; Nishiguchi and Fujimoto 1998; Wong
and Leung 1996]. However, evolving non-trivial general recursive functions using GP has proven
di�cult in practice [Agapitos and Lucas 2006; Agapitos et al. 2017; Alexander and Zacher 2014].

In [Yu 2001; Yu and Clack 1998], typed programs are evolved in primitive-recursive forms for lists
using _-abstractions and a fold operator. In [Binard and Felty 2008] programs in System-F [Girard
1971, 1972; Reynolds 1974], a total (always terminating) functional language with polymorphic types,
are evolved using similar search techniques. System-F includes programs with much higher time
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complexity than primitive recursive functions. Experimental evaluation of the above approaches
is limited and it is unclear how well these approaches apply to a broad class of programming
problems.
In [Swan et al. 2019], GP-based stochastic synthesis of implicitly recursive programs utilizing

recursion schemes is explored by �xing a catamorphism [Meijer et al. 1991] template at top-level.
Ant programming or random search is used to synthesize expressions for each constructor case in
the template. Because only a single catamorphism combinator at top-level is used, we expect this
approach to have similar issues as aforementioned systems with top-level only general recursion
when applied to di�cult problems.

Synthesis of Auxiliary Functions. [Eguchi et al. 2018] extends Synqid to synthesize functional
programs with recursive auxiliary functions. Their approach employs top-level templates with
auxiliary function holes. The re�nement types of the holes are inferred given the top-level re�ne-
ment type of the target program, and then Synqid is used to �nd instantiations of the auxiliary
functions. The templates use a restricted syntax, which is less �exible in terms of where holes
are allowed to appear compared to our template syntax. For example, the argument to a pattern
matching construct is not allowed to contain holes. They employ two prede�ned top-level templates,
a fold-like (catamorphism) template and a divide-conquer-type template, rather than systematically
generated templates. These templates are not nested so at most two levels of recursion are possible
(one from the top-level template and one from auxiliary functions synthesized by Synqid).

Cypress [Itzhaky et al. 2021] synthesizes imperative heap-manipulating programs with auxiliary
recursive procedures. Cypress extends a deductive synthesis framework with cyclic proofs and
uses abduction during proof search to discover potential application of cyclic reasoning. Recursive
auxiliary procedures naturally arise from cyclic derivations, with backlinks in the derivations
corresponding to recursive calls. Because of the very di�erent target programs and synthesis
techniques, the relationship, if any, between Cypress and our work is unclear.

7 CONCLUSIONS AND LIMITATIONS

We have presented a new program synthesis technique for recursive functions over algebraic data
types based on paramorphisms. By splitting the synthesis problem into selecting a skeleton of
nested paramorphisms with holes and synthesizing non-recursive terms to �ll the holes, we are able
to reuse simple and e�ective stochastic search techniques to synthesize complex recursive programs.
We have shown by experiment that an implementation of our approach is able to synthesize all the
problems handled by the current state of the art as well as substantially harder problems.
Our method is not without limitations. Primitive recursion, while well-matched to algebraic

data types, is not as expressive as general recursion. Some programming patterns, such as worklist
algorithms on graphs, would be awkward or even impossible to express with paramorphisms. We
have shown that the benchmark examples used for recursive program synthesis in the literature are
primitive recursive. Thus, it appears that program synthesis methods for problems that truly require
general recursion have yet to be developed, and it is an open question whether practical methods for
synthesizing general recursive programs exist for problems that actually require general recursion.
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