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1 Introduction 

Parallelizing compilers promise to exploit the 
parallelism available in a given program, partic- 
ularly parallelism that is too low-level or irreg- 
ular to be expressed by hand in an algorithm. 
However, existing parallelization techniques do 
not handle loops in a satisfactory manner. 
Fine-grain (instruction level) parallelization, or 
compaction, captures irregular parallelism in- 
side a loop body but does not exploit paral- 
lelism acfoss loop iterations.’ Coarser meth- 

ods, such as doacross [9], sacrifice irregular 
forms of parallelism in favor of pipelining iter- 
ations (software pipelining). Both of these ap- 
proaches often yield suboptimal speedups even 
under the best conditions-when resources are 
plentiful and processors are synchronous. 

In this paper we present a new technique 
bridging the gap between fine- and coarse-grain 
loop parallelization, allowing the exploitation 
of parallelism inside and across loop iterations. 
Furthermore, we show that, given a loop and 

‘This work was supported in part by NSF grant 
CCR-8704367 and the Cornell NSF Supercomputing 
Center. 

‘While partial unwinding may alleviate this prob- 
lem, it cannot eliminate it. 

a set of dependencies between its statements, 
the execution schedule obtained by out trans- 
formation is time optimal: no transformation of 
the loop based on the given data-dependencies 
can yield a shorter running time for that loop. 

Our optimality results hold for synchronous 
parallel machines, such as horizontally mi- 

crocoded engines, RISC architectures, the 
Mars-432, FPS-164/264, Multiflow’s Trace se- 
ries, Cydrome’s Cydra, and Chopp. In ad- 
dition, any multiprocessor supporting efficient 
synchronization and communication between 
processors (e.g., Alliant, Burton Smith’s Hori- 
zon) will also benefit from our techniques. If 
the cost of synchronization and communica- 
tion is low, then our method still produces code 
provably close to optimal. 

The code generated by our algorithm makes 
efficient use of resources. In practice, a loop 
with n statements can be scheduled using less 
than n processors, depending on the paral- 
lelism available in the loop. If fewer resources 
are available than out algorithm requires for 
optima1 speedup, optima&y may no longer 
be achieved. (Scheduling with resource con- 

straints is known to be NP-hard 1121.) How- 
ever, when compiling for very parallrl machines 
(e.g., Multiflow’s Trace-28, Smith’s Horizon) 
the problem is often to find enough paral- 
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2 Motivation 

Much attention has been devoted to the par- 
allebzation of doacross loops [9,16,17]. A 
doacross loop expresses some recurrence pre- 
venting the iterations of the loop from execut- 
ing independently. In this paper we consider 
only doacross loops; a variation on our tech- 
nique generates optimal code for loops with 
data independent iterations in the presence of 
resource constraints. 

The most general problem can be summa- 
rized as: given a loop and its dependency graph, 
what is the best parallel schedule for the loop? 
The nodes of the dependency graph are the 
statements in the loop; the edges connect nodes 
that may access the same memory locations 
[13]. In general, the paradigm for approaching 
this problem has been to execute the iterations 
of a loop on separate processors, subject to the 
constraint that data dependencies between the 
loop iterations (loop-carried dependencies [4]) 
are not violated. A delay, d, is calculated to 
satisfy the following condition: if iteration it 1 
is started d steps after iteration i, then all loop- 
carried dependencies are preserved. 

A somewhat more general approach has also 
been studied: determining the optimal delay if 
dependency-preserving reorderings of the state- 
ments in the loop body are considered [IS]. 
Computing the loop body with the optimal de- 
lay is NP-hard [8], so it would appear that a 
polynomial-time algorithm to compute optimal 
code is impossible. However, the intractability 
of the problem lies in the difficulty of finding 
the best ordering of statements in an iteration; 

this only shows that the general problem re- 
stricted to the case where iterations are sched- 
uled as indivisible units is NP-hard. 

A loop which illustrates this point is pre- 
sented in Figure la; the dependency graph is 

given in Figure lb. The loop-carried depen- 
dencies are shown as broken edges. A best 
doacross schedule is shown in Figure lc; in- 
terchanging statements B and C is also a best 
doacross schedule. There is another schedule, 
shown in Id, that is better. This schedule is- 
sues a statement on the critical chain of depen- 
dencies at every step, and is therefore optimal 
with respect to the dependency graph. The al- 
gorithm we present computes this schedule. 

We make several standard assumptions 
about the loops to be scheduled. For simplicity, 
we assume that statements execute in a single 
machine cycle; there are straightforward exten- 
sions of our method for multi-cycle statements 
121. We assume that loop-carried dependencies 
are from one iteration to the next; Munshi and 
Simons have abserved that loops encountered 
in practice can be converted to this form by 
unrolling [16]. An algorithm to perform this 
transformation automatically appears in [I]. 
Our algorithm applies to innermost loops; tech- 
niques for unrolling nested loops can be used to 

handle outer loops [1,7]. 
Our major restriction is that the loop body 

should contain no If-statements other than exit 
tests. There are techniques which essentially 
eliminate tests from a loop. If-conversion can 
be used to transform any loop into a seman- 
tically equivalent loop without tests [5]. An- 
other method is to make assumptions about 
the branching behavior of tests and apply a 
transformation to the most important path(s) 
[S,ll]. Recently, software pipelining techniques 
have been developed that handle tests directly 
[3,10,14]. It is an open problem whether the op- 
timality results of this paper can be extended 
to loops with arbitrary flow of control. 

3 The Approach 

This work is based on results in compaction- 
based software pipelining (31. To make this 
paper self-contained, we recast the general re- 
sults of [3] in the special context of this pa- 
per. A program is represented by its depen- 
dency graph. For simplicity, we consider only 
true dependencies [13]; there is a true depen- 
dency between two statements if one statement 
writes a value that the other reads. Other types 
of dependencies (so-called anti- and output de- 
pendencies) present no additional problems. 

The basic strategy behind our method is very 
simple. We examine a partial execution history 
of a loop, say the first i iterations, and schedule 
the statements of those i iterations as early as 
possible. We call this a greedy schedule. If the 
longest chain of dependencies on which a state- 
ment 2 depends has length i, then 2 is sched- 
uled at time j. A loop’s dependencies have 
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for i t 1 to N do 
A: A[i] + fl (B[i]); 
B: B[i] - fi(A[i],D[i - I]); 
C: C(i] +- G(A(i], D[i - I]); 
D: D[i] +- f,(B[i],C[i]); 

(a) A sample loop. 
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(c) An optimal Doacross schedule. 

(b) The dependency graph. 
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l 

Figure 1: An example. 

some regularity, specified by the dependency 
graph. Thus, scheduling a large enough portion 
of a loop’s execution history should reveal some 
repeating behavior, which (intuitively) can be 
used to obtain a good schedule for the loop. 
Informally, we refer to this repeating behav- 
ior as the pattern of the loop. We show that 
the portion of the execution history that must 
be examined to compute optimal schedules is 
small. This yields a polynomial time algorithm 
for computing optimal parallel schedules for a 
large class of loops and parallel machines. 

4 Computing Patterns for 

Statements 

We first show that the occurrences of an indi- 
vidual statement exhibit a pattern once a suf- 
ficient number of iterations are scheduled. In 
what follows, L is an innermost loop contain- 
ing R. statements. A reference to the depen- 
dency graph indicates the dependency graph of 
L. The occurrence of statement z in iteration i 
is denoted zi; superscripts distinguish distinct 
statements. 

Definition 4.1 A dependency chain is a se- 
quence of statements zk, zi, . .2;, such that 

(2i, 2i+‘) is an edge in the dependency graph. 

Definition 4.2 Let C = zkl . zi, be a de- 
pendency chain. 

(d) An optimal schedule. 

l C is a cycle if zr = 2k. 

l The length of C, written ICI, is k. 

l C’ is a subchain of C if C’ = 2i.. . zj where 
l<i<j<k. 

l The span of C is the number of iterations 
hL - hl. 

a C reaches statement y if 21 is scheduled 
at time i, y is scheduled at t;me k + 1, and 
(2”) y) is an edge in the dependency graph. 

Definition 4.3 Let C = zl.. .2’2’ be a 
cycle. Let p be the number of loop- 
carried dependencies-including the depen- 
dency (z~, z’)-in the cycle. The slope of C 
is the ratio k/p. 

The slope of a cycle establishes a bound on 
the rate that statements in the cycle can be 
executed. Using C from Definition 4.3, state- 

ment 23+p cannot be executed sooner than k 

steps after 2;. (This notion of the slope of a 
cycle is due to Callahan, Cocke, and Kennedy 
[7].) In a greedy schedule, the two statements 
must be scheduled at least k steps apart. We 
write dist(z,y) for the number of steps sep- 
arating 2 and y in a greedy schedule. Let 
slope(z) = k,/p, be th e maximum slope of any 
cycle on which 2 depends. If 2 is not dependent 
on any cycle, then slope(z) = O/l. We show 
that, in a greedy schedule, after scheduling 
O(n2) iterations, any subsequent occurrences 
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of a statement z are scheduled exactly k, steps 
after the occurrence of z p, iterations before. 
Thus, a pattern for each statement can be in- 

ferred from a greedy schedule of at most O(n’) 
iterations. The following lemmas are required 
to prove this theorem. 

Lemma 4.4 Let C be a chain with ICI 2 
(i + 1)n for some positive i. Then there are 
at least i disjoint subchains of C that are cy- 
cles . 

Proof: Partition C into subchains Ci, 
c2,. . . , C;, where lCj/ > n. Each Cj must con- 
tain a cycle, as there are only n distinct state- 
ments. 0 

Lemma 4.5 Given p integers al . . . a,,, then 
there is a subset S of the ai such that 

c a; z 0 mod p 
a.ES 

Proof: Let si = (ai + . . + a;) mod p. If all 
of the 8i are distinct, then one must be zero, 
as there are only p distinct numbers. If si and 
si+j are equal, then 0 mod p E si+j - si = 
CZi + . . . + ai+j. 0 

Theorem 4.6 Let 2 be a statement with slope 
k/p, and let the loop body contain n state- 
ments. In a greedy schedule, in any iteration i 
greater than 2np + 4p, dist(zi-,, 2;) = k. 

Proof: For brevity, we prove the theorem 
only for statments 2 which are members of 
the cycle of maximum slope on which they 
depend. Assume for some i > np + 2p that 
dist(zi-p, Zi) > k. Let C be a chain reaching 
2;. There are two cases: 

l Span(C) 5 np + p iterations. Let C’ 
be a chain reaching 2i-p. Because de- 

pendencies are regular, a chain of depen- 
dencies identical to C reaches 2i-p. But 
IC’/ + A 2 ICI, a contradiction. 

0 Span(C) > np + p iterations. BY 
Lemma 4.4, there are at least p dis- 
joint subchains of C that are cycles. By 
Lemma 4.5, there is a subset of these cy- 
cles {C,} such that Ch ]C’hl = jp for some 

j > 0. Deleting the cycles {Ch} from 
C produces a chain C’ which reaches zy, 

where y = i - jp. By assumption, there 
is a chain of length jk from zy to 2;. 

But C,, l&l 5 jk, or else some Ch has 

slope greater than k/p, a contradiction. 
Therefore (C’( -t jk > [Cl, implying that 
dist(z,,zi) = jk. Since dist(z,,2i-,) > 
(j - l)k, dist(zi. p, zi) 5 k. 

0 

Theorem 4.6 shows that after scheduling 
O(np,) iterations, occurrences of 2 are schrd- 
uled at a constant (and optimal) rate. Thus, 
a sufficiently large greedy schedule exhibits a 
pattern for each statement. 

Corollary 4.7 After scheduling O(n’) itera- 
tions every statement is scheduled at the opti- 
mal rate. Furthermore, if p, 2 1 for all 2, then 
O(n) iterations are sufficient. 

Corollary 4.7 follows from Theorem 4.6 since 
p, 5 n for any z. The special case where y 5 
1 is important in practice: we have examined 
the inner loops of the Eispack routines [18] and 
the Livermore Loops [ 151 and have not found a 
single example where p > 1. 

The efficiency of our algorithm is dependent 
on the cost of computing a greedy schedule. 
This is easily done using a modified topolog- 
ical sort of the dependency graph. The cost 
is proportional to the number of statements 
scheduled; thus, to schedule O(n2) iterations 
of n statements requires O(n3) time; if p 5 1 

then only O(n) iterations must be scheduled, 
requiring O(n2) time. 

5 Computing an Overall 
Pattern 

We illustrate Theorem 4.6 with an example 
due to Cytron 181. The loop is shown in Fig- 
ure 2; the dependency graph is given in Fig- 
ure 3a. Figure 3b shows the greedy schedule 
of five iterations. Iterations have been listed 
separately, side by side. The vertical axis is 
time; all statements on a horizontal line of the 
figure are executed simultaneously. For sim- 
plicity, the loop control code has been omitted. 
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for i + 1 to N do 
A: Al(i] t B(i]; 
B: A?(i] t Ad(i - l]; 
C: A3[i] t Aki[i - 1); 
D: A4(i] t A3(i] +A7[; - 11; 
E: A5(i] t AZ[i]; 
F: A6[i] t Al[i] +A13[i - 1); 
G: A7[i] t A4[i]; 
II: A@] e A4[i] + AS[i] +A17[i - 11; 
I: A9[i] + Al [i]; 
J: AlO[i] t A9[i] +Al5[i - 11; 
K: All[i) tm A9[i]; 
L: AlZ[i] t- A9[i]; 
M: A13[i] - Al’L[iJ; 
N: Al4[i) - Al3(i]; 
P: AlS(i] t A14[i]; 
Q: AlG[i] t A14[i]; 
R: A17[i] t A14[i); 

Figure 2: A sample loop. 

In this example, the cycle B, E, H has the 
greatest slope (three). Statements C, D, and G 
are dependent on this cycle and thus have the 
same slope. All other statements have slope 
O/l. In Figure 3b, the code is split into two 
groups that repeat every iteration, one with a 
slope of three, the other with a slope of zero. 

There are two drawbacks to the simple 
greedy scheduling algorithm. First, to be as- 
sured that the pattern has been detected, it 
is necessary to run for O(n3) time. As ob- 
served above, in practice the pattern emerges 
much earlier, in O(n2) time or less. Second, 
the information greedy scheduling provides is 
not immediately useful for generating practical 
code. On a synchronous multiprocessor, each 
processor could be assigned a single statement 
z, which it would execute every pz steps. (A 
minor modification allows statments with slope 
O/l to be handled smoothly.) For example, us- 

ing the information in Figure 3b, statement G 
could be assigned to a processor which would 
execute thy occurrence of G in iteration i at 
time 3i. This is terribly inefficient, requiring 
O(n2) processors in the worst case. 

In this section we present a modification of 
greedy scheduling that detects a pattern for the 
entire loop body as soon as possible. The re- 
sulting code is much more efficient, using at 
most U(n) processors. The idea is to resched- 
ule statements not on the critical path so that 
they have the same slope as statements on the 

critical path. This results in a very compact 
pattern for the entire loop. 

In Figure 3b, note that the statements with 
slope O/l in iterations four and five could be de- 
layed without affectjng the length of the sched- 
ule. Eliminating the “gaps” in the iterations---- 
intervals of time steps with no statements from 
that iteration-produces the schedule in Fig- 
ure 4. The boxed area is the pattern for the 
loop; scheduling additional iterations (without 
gaps) reproduces these three time steps. Note 
that no statement on the critical path has been 
delayed as a result of rescheduling statements. 
In what follows, we derive a method for deter- 
mining when statements can be delayed with- 
out affecting the optimality of the final sched- 
ule. 

When an iteration is scheduled, it is spread 
across some interval of time steps ir ..i!k. As iII 
Figure 3b, statements from an iteration tend 

to cluster into groups of mutually dependent 
statements with gaps between the groups. 

Definition 5.1 A region of a scheduled iter- 
ation iS an interval Of tinle StepS A = tl..tk 
such that some statement from the iteration is 
scheduled at every tj. 

We are interested in the maximal regions of 
an iteration. Between any two adjacent max- 
imal regions there must be at least one step 
with no statement from that iteration. These 
gaps play a critical role in detecting a pattern. 
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(a) The dependency graph. 

time 
iteration 

1 2 3 4 5 
ABC A A A A 1 

2 DEFI I I I I 
3 GHJKL CKL KL KL KL 
4 M BDM M M M 
5 N EFGN FN FN FN 
Li PQR PQR CPQR PQH PQH. 
7 HJ DJ J J 
n; BG - - 
9 E - -- 

10 H c 
11 BD - 
12 EG - 
13 H C 

I :; 
BD 
EC 

16 11 

(b) The code after five phases. 

Figure 3: Greedy scheduling. 

In Figure 3b, there are two maximal regions for 
the last iteration: times 1..7 and 13..16. 

Definition 5.2 Let Al,. . , Aj be the maxi- 
mal regions of an iteration, where Ai = ti..ti, 
and 1: ~< li+ 1 for all i. Then gnp(.A,, Ai+,) = 
ti+1 - 1:. 

In Figure Sb, iterations four and fivr have 

the same maximal regions; the only difference 
between the iterations is the size of the gap. 
In this sense, iteration five is a “stretched-out” 
version of iteration four. We say that two 
scheduled iterations i and i + c are alike if they 

have the same maximal regions and the inter- 

region gaps in iteration i f c are as large or 
larger than in iteration i. We present condi- 
tions under which the gaps in the larger itcr- 
ation can be shrunk to the size of the gaps in 

the smaller iteration without affecting the op- 
timality of the final code. 

Theorem 5.3 Consider i $ c scheduled itera- 
tions, where iteration i and i+c are alike, with j 
maximal regions. Assume there is no unbroken 
chain of dependent statements from a statr- 
ment in Ak of iteration i (le / j) to a statement 
in Aj of iteration i $ c. Then the inter-region 
gaps in iteration i+c can be reduced to the size 
of the corresponding gaps in iteration i and for 
any additional (greedily) scheduled iterations 
the resulting schedule is optimal. 

Proof: We outline the complete proof. Af- 
ter shrinking the gaps iteration i+c is identical 
to iteration i. Then (greedily) scheduled iter- 
ations i + c to i t- 2c in the new schedule are 
identical to iterations i to i + c in the original 
schedule. We claim there is no shorter schedule 
for i + 2c iterations. For iterations i to i + c, 
the critical chain of dependencies is between 
the regions Aj of iteration i and Aj of iteration 
i + c, By symmetry, the critical chain of itera- 
tions i + c to i $2~ is between the regions Aj of 
iteration i + c and Aj of iteration i -t 2c. This 
implies no statement in Aj of iteration i + 2c is 
delayed by shrinking the gaps in iteration i + c. 
Applying this argument inductively shows that 
any larger greedy schedule is also time optimal. 
0 

In Figure 3b, iterations four and five are alike 
and no chain from the first region of iteration 
four reaches to the second region of iteration 
five. Thus it is safe to shrink the gap in it- 
eration live to the size of the gap in iteration 
four. There is also a simple test to determine 
when it is safe to completely close the gaps be- 
tween regions; in this case, the gaps can be 
rlimir,ated.2 Figure 4 shows the schedule of 
Figure 3b extended with a few additional iter- 

‘It is not always safe tu completely close the gaps 
in an iteration; examples can be exhibited where no 
scheduling strategy that does not introduce gaps can 

achieve an optimal schedule. 

313 



/ 
1 
1 
i 2 

3 
4 
5 
6 
7 

8 

I 9 
10 

i E 
I 13 

1 14 
! 15 

16 
~ 17 

18 

19 
20 

/ 21 
22 

iteration 

1 2 3 4 5 6 7 

ABC A A 
DEFI I 1 - 

GHJKL CKL KL A - - - 

M BDM M I 

N EFGN FN KL - - - 

PQR PQR CPQR M A - 
HJ DJ FN I 

BG PQR KL - - 
E J M A 
H C FN I - 

BD PQR KL - 
EG J M A 
H C 

FpNQR 
I 

BD KL 

EG J M 

H C FN 
BD PQR 
EG J 

H C 
BD 

EG 
H 

Figure 4: The pattern 

ations and with the gaps completely closed. 
The conditions of Theorem 5.3 require a 

check that iterations i and i + c are alike, and 
that no chain of dependencies from a region in 
iteration i (except the last) reaches the last re- 
gion of iteration i + c. For efficiency, we would 
like to minimize c, because implementing the 

dependency chain check is expensive relative 
to the cost of greedy scheduling. It can be 
shown that if p, < 1 for all statements 2, then 
checking consecutive iterations (c = 1) is suf- 
ficient. Checking if consecutive iterations are 
alike can be implemented without increasing 
the asymptotic complexity of the algorithm. 
Because p 5 1 in practice, this yields an al- 

gorithm that runs in O(n2) in most cases. 
In theory, there are loops for which this strat- 

egy of making iterations “look alike” cannot 
succeed in polynomial time. Let the denomina- 
tor of slope(z) be the period of 2. The length 
of a pattern based on this approach is at least 
the least common multiple of the statement pe- 
riods. If many statements in a loop body have 

large and relatively prime periods, this is po- 
tentially exponential in n. We believe that such 
loops are extremely unlikely to be written. As 
mentioned above, in practice p, for a state- 

ment 2 is zero or one. Even if there are “real” 
loops where p, > 1, one would not expect such 
loops to have many different, arbitrarily large, 
and prime statement periods. Recall that af- 
ter O(n3) time the slopes (and therefore peri- 
ods) of all statements are known; thus loops for 
which the pattern involves more than adjacent 
iterations can be detected and handled at that 
point and the size of the pattern resulting from 
delaying statements can be computed exactly. 

6 Mapping Optimal Sched- 

ules to Processors 

The transformed loop consists of a pre-loop 
(everything before the pattern), the pattern 
(with a backedge from the last step in the pat- 
tern to the first step in the pattern), and a post- 
loop (everything after the pattern). The.final 
loop for the example is shown in Figure 5a.3 
The subscripts indicate the increment to the 
induction variable i. 

If the number of processors available for ex- 
ecution of the loop is at least the maximum 

31ncluding the postloop requires some adjustment of 
the loop bounds. This is easily computed for DO loops. 
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(a) The final program-graph. 
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(b) Schedule for a synchronous machine. 

width of the pattern discovered by our algo- 
rithm, then the loop can be run in this raw 
form. Simple heuristics can reduce the width 
of the pattern without increasing its length. 
For example, in Figure 3a statement L has no 
dependents, and so can be delayed until the 
third node of the loop in Figure 5a, reducing 
the width from seven to six. 

If the target machine is a wide-word architec- 
ture with a single flow of control, then the fi- 
nal program-graph can run directly on the ma- 
chine, subject to including the loop overhead. 
If the target machine is a synchronous muiti- 
processor, the transformed loop can be verti- 
cally “sliced” , with one statement from each 
node assigned to a processor. If the machine is 
not synchronous, then the exact strategy for 
code generation is heavily dependent on the 

machine’s topology and the cost of communica- 
tion. In general, though, the critical cycles of 
dependencies should be scheduled entirely on 
a single processor, with dependent statements 
scheduled on neighboring processors. 

The only remaining detail is to include the 
loop overhead-the statements to increment 
the loop induction variable, to test for exit, and 
to jump. We outline a scheme for including 
the loop overhead on synchronous multiproces- 
sors. The loop overhead is duplicated at the 
end of the loop body assigned to each proces- 
sor. Each processor keeps its own copy of the 
induction variable in local storage, so the over- 
head computation is completely independent 
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A5 L4 
inc inc 
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jmp .iv 

Figure 5: An optimal schedule. 

of any other processor. These statements can 
be masked by pipelining multiple occurrences 
of the pattern on different sets of processors- 
while one group is computing part of the pat- 
tern, another is computing loop overhead. As- 
suming that the overhead consists of an incre- 
ment, test, and jump, an optimal schedule for 
the example for a synchronous multiprocessor 
is given in Figure 5b. 

7 Experiments 

We have implemented our scheduling algo- 
rithm, taking into account instruction latencirs 
and processor limitations. Table 1 shows per- 
formance measurements for fourteen Livermore 
Loops [15]. The results are divided into three 
sections. Column two gives the flop rate of the 
original code on one pipelined processor, with- 
out statement reordering. Columns three and 
four give the flop rate of the schedules com- 
puted by our algorithm for limited resources of 
one and two pipelined processors, respectively. 
Columns five through seven show the processor 
requirements, register requirements, and flop 
rate of our algorithm’s ideal schedules. We as- 
sume a machine of pipelined processors, each 
of which can initiate one instruction per cycle. 
Cray-I instruction timings are used. 

As shown in Section 5, our technique pro- 
duces optimal schedules with respect to data 
dependencies. The speedup achieved by our al- 
gorithm, however, can depend on the hardware 
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and the extent to which the original code is 
optimized. In particular, the hardware support 
for indirect addressing used by vector machines 
(auto-increment of index registers) and a rela- 
tively sophisticated compiler optimization (re- 
moving redundant loads across iterations [7]) 
improve the speedups. To reflect this, some en- 
tries in Table 1 give a range. Standard compiler 
optimizations and addressing hardware achieve 
the lower number, while the optimization and 

hardware mentioned above achieve the higher 
number. The figure given for the original code 

is the better of the two approaches; in LL6 

redundant load removal greatly improved the 
performance of the original code. 

The register and processor figures for the 
ideal schedules are upper bounds on the re- 
sources needed to achieve the flop rate in the 
last column. Some of the loops have no loop- 
carried dependencies and thus do not constrain 
parallelization. We have chosen to limit the 
ideal schedules of these loops to the minimum 
parallelism at which the sustained computation 
rate is one iteration per machine cycle. 

The flop rate for the original code is com- 
puted using the pipelining strategy of the Cray- 
1: instructions are issued in order as quickly as 
possible, subject to data dependencies. Even 
for a single processor, the improvement using 
our scheduling algorithm is dramatic. Half of 
the loops triple in performance when the addi- 
tional optimization and hardware is assumed. 

Nd attempt is made to heuristically improve 
the match of the schedules computed by our al- 
gorithm to the resources-instructions are sim- 

ply issued in the order of appearance in the 
pattern. Thus, these numbers are a lower 
bound on the performance achievable with our 
method. 

The results are computed statically from the 
patterns generated by our algorithm. The ef- 
fects of the preloop and postloop are not in- 
cluded, thus these results represent the asymp- 
totic speedup for many iterations of the loop. 

8 Conclusion 

We have presented an algorithm to compute 
time-optimal schedules for doacross loops for 
synchronous parallel machines. If constraints 

are added, such as limited number of proces- 
sors, asynchronous machines, expensive com- 
munication, or non-uniform memory access 
costs, then the general problem becomes NP- 
hard. However, we believe that even in these 
cases our algorithm is useful as a step to gener- 
ating good parallel code. By starting with the 
maximum parallelism in a loop, good heuristic 
schedules can be obtained. 

9 Acknowledgements 

We would like to thank Dexter Kozen for the 
proof of Lemma 4.5. Laurie Hendren and Jen- 
nifer Widom criticized earlier drafts of this pa- 
per. 

References 

Ill 

PI 

PI 

PI 

Fl 

WI 

AIKEN, A., AND NICOLAU, A. Loop 
Quantization: an analysis and algorithm. 
Tech. Rep. 87-821, Cornell Univ., 1987. 

AIKEN, A., AND NI~OLAU, A. A de- 
velopment environment for horizontal mi- 
crocode. IEEE Trans. Sojtw. Eng. (May 
1988). Also available as Cornell Tech. 
Rep. TR 86-785. 

AIKEN, A., AND NICOLAU, A. Per- 
fect Pipelining: A new loop paralleliza- 
tion technique. In Proc. of the 1988 Euro- 
pean Symp. on Programming (Mar. 1988), 
Springer Verlag Lecture Notes in Com- 
puter Science. Also available as Cornell 
Tech. Rep. TR 87-873. 

ALLEN, J. R., AND KENNEDY, Ii. Au- 
tomatic loop interchange. In Proc. of the 

1984 SIGPLA N Symp. on Compiler Con- 
struction (June 1984), pp. 233-246. 

ALLEN, J. R., KENNEDY, I(., PORTER- 
FIELD, C., AND WARREN, J. Conversion 
of control dependence to data dependence. 
In Proc. of the 1983 Symp. on Principles 
of Progr~arnnring Languages (Jan. 1983), 
pp. 177-189. 

c. POLYcSRONOPOuLOS, D. KillCK, 
D. I’. Execution of parallel loops on paral- 
lel processor systems. In Proc. of the 1986 

316 



Loop 

LLl 
LL2 
LL3 
LL4 
LL5 
LL6 
LL7 
LL8 

LL9 
LLlO 
LLll 
LL12 
LL13 
LL14 avg 

Average 
Harmonic Mean 

8 20-35 
7 16-20 
6 16 
6 12-15 
8 6-16 
20 36-51 
11 40-55 

17 35-49 
10 18.25 
4 4-9 
4 13-20 
4 11-12 
4 14-18 

8 19-28 
7 13-20 

‘ocessors .e 

2 procs Mflops Mflops 
57-100 400 
40-60 
20-23 

l6 I 105 320 
5 8 27-40 

20 5 i 8 27 
15-16 

; / 
5 16 

6-20 8 6-27 
71-9s 36 ( 243 1280 
so-1 10 60 j 363 2400 

68-97 39 ’ 264 1360 
36-48 40 210 720 
4-11 
27-40 

: 
1 

347 4-13 
80 

22-24 5o I 376 560 
25-31 , 281 161 270 

35-50 534-537 
18-33 25-53 

Table 1: Performance ranges for 14 Livermore Loops. 

Int’1 Conj. on Parallel Processing (Aug. 
1986), pp. 519-27. 

171 c ALLAHAN, D., COCKE, J., AND 

KENNEDY, K. Estimating interlock and 
improving balance for pipelined architec- 
tures. In Proc. of the 1987 Int’l Conj. on 
Parallel Processing (Aug. 1987), pp. 297- 
304. 

[8] CYTRON, R. Compile-time Scheduling 
and Optimization for Asynchronous Ma- 

chines. PhD thesis, Univ. of Illinois at 
Urbana-Champaign, 1984. 

191 CYTRON, R. Doacross: Beyond vector- 
ization for multiprocessors. In Proc. of 
the 1986 Int ‘I Conj. on Parallel Process- 
ing (Aug. 1986), pp. 836-844. 

(101 E BCIOi?LCl, K. A compilation technique 
for software pipelining of loops with con- 
ditional jumps. In Proc. of the 20th 
Annual Workshop on Microprogramming 
(Dec. 1987), pp. 69--79. 

[ll] FISHER, J. A. Trace Scheduling: A tech- 
nique for global microcode compaction. 
IEEE Trans. Comput. C-30, 7 (July 1981), 
478-90. 

[12] GAREY, M. R., AND JOHNSON, D. S. 

Computers and Intractability: A Guide to 
the Theory of NP-Completeness. W. H. 
Freeman and Company, 1979. 

[13] KUCK, D., KUHN, R., PADUA, D., LEA- 

SURE, B., AND WOLFE, M. Dependence 
graphs and compiler optimizations. In 
Proc. of the 1981 Symp. on Principles 
of Programming Languages (Jan. 1981), 
pp. 207-218. 

(141 LAM, M. A Systolic Array Optimizing 
Compiler. PhD thesis, Carnegie Mellon 
Univ., 1987. 

[15] MCMAHON, F. H. Lawrence Livermore 
National Laboratory FORTRAN kernels: 
MFLOPS. Livermore, CA., 1983. 

[IS] MUNSHI, A., AND SIMONS, B. Schedul- 
ing sequential loops on parallel processors. 
Tech. Rep. 5546, IBM, 1987. 

(171 PADUA-HAIEK, D. A. Multiprocessors: 
Discussion of Some Theoretical and Prac- 
tical Problems. PhD thesis, Univ. of Illi- 
nois at Urbana-Champaign, 1979. 

[la] SMITH, B. T., BOYLE, J. M., IKEBE, 

Y:, KLEMA, V. C., AND MOLER, C. B. 
Matrix Eigensystem Routines: BISPA CK 
Guide, 2 ed. Springer-Vrrlag, New York, 
1970. 

317 


