
Memory Management with Explicit RegionsDavid Gay� and Alex Aiken�EECS DepartmentUniversity of California, Berkeleyfdgay,aikeng@cs.berkeley.eduAbstractMuch research has been devoted to studies of and algo-rithms for memory management based on garbage col-lection or explicit allocation and deallocation. An al-ternative approach, region-based memory management,has been known for decades, but has not been well-studied. In a region-based system each allocation spec-i�es a region, and memory is reclaimed by destroyinga region, freeing all the storage allocated therein. Weshow that on a suite of allocation-intensive C programs,regions are competitive with malloc/free and sometimessubstantially faster. We also show that regions sup-port safe memory management with low overhead. Ex-perience with our benchmarks suggests that modifyingmany existing programs to use regions is not di�cult.1 IntroductionThe two most popular memory management tech-niques are explicit allocation and deallocation, asin C's malloc/free, and various forms of garbage-collection [Wil92]. Both have well-known advantagesand disadvantages, discussed further below. A third al-ternative is region-based memory allocation, which hasbeen widely used as an implementation technique formany years under a variety of names, e.g., zones [Ros67],groups [IY90], or arenas [Han90]. Regions have also re-cently attracted research attention as a target for staticinference of memory management [TT97] and for im-proving locality of dynamically allocated data [Sto97].In a region-based memory allocation scheme each al-located object is placed in a program-speci�ed region.Memory is reclaimed by destroying a region, freeingall the objects allocated therein. A simple example isshown in Figure 1. Each iteration of the loop allocatesa small array. The call to deleteregion frees all arrays.�This material is based in part upon work supported by NSFYoung Investigator Award No. CCR-9457812, DARPA contractF30602-95-C-0136 and a Microsoft graduate fellowship.

void f(){ Region r = newregion();for (i = 0; i < 10; i++) {int *x = ralloc(r, (i + 1) * sizeof(int));work(i, x);}deleteregion(r);} Figure 1: An example of region-based allocation.In the commonly used version of region-based program-ming, regions are explicit in the program and entirelyunder programmer control. To our knowledge, the per-formance of this popular implementation technique hasnever been studied. Our �rst contribution is a detailedcomparison of the performance of regions with mal-loc/free libraries and conservative garbage collection ona set of benchmark programs. Our conclusion is thatexplicit regions are, for our benchmarks, faster than ei-ther malloc/free or conservative garbage collection, andsometimes signi�cantly so (up to 16%). Memory con-sumption is good in our experiments: regions use from9% less to 19% more memory than the best alternativeand always rank either �rst or second (see Section 5).While our study supports the use of regions on perfor-mance grounds, the common implementation of regionsis unsafe, as a region r can be deleted even if otherregions have accessible pointers to objects in r. Oursecond contribution is the study of a safe region imple-mentation in which a region r can be deleted only ifthere are no external references to objects in r (a refer-ence external to r is any pointer not stored within r).We enforce this rule by keeping a reference count foreach region; deleteregion is a no-op when this refer-ence count is nonzero. Note that by reference count-ing regions instead of individual objects two commonproblems with reference counting are ameliorated: min-imal space is devoted to storing reference counts, andcyclic structures can be collected so long as they are al-located within a single region. The overhead of safetyvaries from negligible to 17% on our benchmarks, butthe comparative performance remains almost the same:regions are still faster (up to 9%) than the alternatives

in all but a few cases, and in those cases regions are onlyslightly slower (up to 5%).A third contribution is an assessment of how di�cult itis to program with explicit regions. Our metric is thenumber and type of changes required to modify an appli-cation to use regions. All of our benchmarks requiredonly modest recoding to use regions, and the neededregion organization was straightforward to derive (seeSection 5.1).We also found that explicit regions have some partic-ular strengths. First, regions bring structure to mem-ory management, making programs clearer and, in oursubjective assessment, easier to write compared to us-ing malloc/free. For example, it is not necessary towalk through a complex data structure to deallocateit. Second, we found some evidence that regions canbe used to provide signi�cantly improved data local-ity, as posited by Stoutamire [Sto97]. The executiontime of one benchmark was improved 24% simply byreorganizing allocation so that the most frequently ac-cessed objects are allocated in a single region. Nei-ther malloc/free nor garbage-collected systems provideany mechanism for expressing locality. Third, regionsare useful for building software with predictable perfor-mance, as the cost of every operation is easily bounded,at least for unsafe regions and in [TT97] for compiler-inferred safe regions (see Section 2). Our safe imple-mentation uses a moderately sophisticated scheme fore�ciency; we show that the overhead of this scheme isamortized constant time per instruction executed, as-suming that the size of stack frames is bounded by aconstant (see Section 4.3).Another advantage of region-based memory manage-ment is that it can be used nearly unchanged in anexplicitly-parallel programming language. The only op-erations that require synchronization amongst all pro-cesses are region creation and deletion. Each processkeeps a local reference count for each region whichcounts the references created or deleted by that process.A region can be deleted if the sum of all its local refer-ence counts is zero. Writes of references to regions mustbe done with an atomic exchange (rather than a simplewrite) to prevent incorrect behaviour in the presence ofdata races, however the local reference counts can beadjusted without synchronization or communication.There are situations where regions are not a goodmodel, particularly when the programmer does notknow enough about the lifetime of objects at allocation-time to place them in appropriate regions. One examplewe encountered is a game where objects are allocatedand deallocated as the result of the player's actions;there is no way to place objects with similar lifetimes ina common region. Our purpose here is to study the costsand bene�ts of regions as they are normally used. Weleave generalizations of explicit regions as future work.We conclude this section with a high-level comparisonof our region scheme with malloc/free and garbage col-lection. Our region model is reminiscent of malloc/freebut allocation is about twice as fast and deallocation ismuch faster. In the safe version of our scheme, thereis additional overhead for maintaining region referencecounts. Garbage collection is easier to use than re-

gions and can be very e�cient if the application onlyuses a fraction of available memory. When an appli-cation needs most of the available memory, however,performance degrades. Also garbage collection preventslocal reasoning about performance by introducing un-predictable pauses. Real-time collectors [Bak78, WJ93]eliminate this last problem at the cost of higher over-head. From these considerations, we believe regions arebest suited for high-performance applications that usea large fraction of machine memory and where the life-times of values can be statically predicted. Regions arealso useful for writing software with more predictableperformance than garbage-collection-based systems.The rest of this paper begins with a more detailed surveyof related work (Section 2). We then introduce our safe,region-based memory management system (Section 3)and its implementation (Section 4). Section 5 detailsthe costs of safe regions and compares their performanceon six C applications with three malloc/free implemen-tations and the Boehm-Weiser conservative garbage col-lector [BW88].2 Related WorkThe literature on memory management is vast. Sur-veys can be found in [Wil92] for garbage collectionand [WJNB95] for explicit allocation and deallocation.Regions have been used for decades. Ross [Ros67]presents a storage package that allows objects to be al-located in speci�c zones. Each zone can have a di�erentallocation policy, but deallocation is done on an object-by-object basis. Vo's [Vo96] Vmalloc package is similar:allocations are done in regions with speci�c allocationpolicies. Some regions allow object-by-object dealloca-tion, some regions can only be freed all at once. Hansonpresents arenas in [Han90], but does not measure theirperformance. Barrett and Zorn [BZ93] use pro�ling todetermine allocations that are short-lived, then placethese allocations in �xed-size regions. A new region iscreated when the previous one �lls up, and regions aredeleted when all objects they contain are freed. Thisprovides some of the performance advantages of regionswithout programmer intervention, but does not workfor all programs. None of these proposals attempt toprovide safe memory management.Stoutamire [Sto97] adds zones, which are garbage-collected regions, to Sather [SO96] to allow explicit pro-gramming for locality. His benchmarks compare zoneswith Sather's standard garbage collector. Reclamationis still on an object-by-object basis.The only published empirical studies on regions are forthe region inference system of Tofte and Talpin [TT97],which automatically infers for ML programs how manyregions should be allocated, where these regions shouldbe freed, and to which region each allocation site shouldwrite. Although very sophisticated, the Tofte/Talpinsystem relies critically on the fact that regions, regionallocation, and region deallocation are introduced bythe compiler and not by the programmer. Besides be-ing fully automatic, the Tofte/Talpin system has the ad-vantage that the runtime overhead for memory manage-

ment is reduced to an absolute minimum while also be-ing safe. Unfortunately, region inference is not perfect.To avoid leaking a great deal of memory it is necessaryfor the programmer to understand the regions inferredby the compiler and to adjust the program so that thecompiler infers better region assignments. Second, op-timizations beyond the basic inference procedure makean enormous di�erence in memory management perfor-mance [AFL95, BTV96]. Both of these properties sug-gest that explicit �rst-class regions may be appropriate,but combining explicit programmer-controlled regionswith region inference appears to be a very di�cult prob-lem.Bobrow [Bob80] is the �rst to propose the use of regionsto make reference counting tolerant of cycles. This ideais taken up by Ichisugi and Yonezawa in [IY90] for use indistributed systems. Neither of these papers considersthe use of regions for enhancing locality, nor do theyinclude any performance measurements.Grunwald and Zorn [GZ93] and Detlefs, Dosser andZorn [DDZ94] study the performance of various allo-cators. Vo's paper on regions [Vo96] also comparesthe performance of the malloc/free-like allocator of theVmalloc package with other malloc/free implementa-tions. Grunwald, Zorn and Henderson compare theperformance and cache locality of di�erent allocatorsin [GZH93]. None of these studies consider region-basedallocation.3 Programming ModelWe have implemented a prototype safe region-basedmemory management system as an extension of C,C@. Using C allows us to compare existing allocation-intensive programs with versions of these applicationsmodi�ed to use regions. Our prototype requires lan-guage and compiler support for two reasons. First, itis much easier for the compiler to generate the refer-ence counting code than to insert reference counts byhand. Second, our implementation must locate all livelocal variables containing pointers; this information isonly available in the compiler. An added advantage ofmodifying the language is that we can enforce some ofthe requirements on pointers to objects in regions atcompile-time. The rest of this section presents C@, theregion allocation library, and gives a simple example.3.1 The Language C@C@ distinguishes two kinds of pointers: normal pointersand region pointers, i.e., pointers to objects in regions.Region pointers are de�ned with `@' instead of `*,' e.g.,int @x. The types T@ and T� are di�erent types, andno implicit conversion exists between them although ex-plicit casts are allowed. These casts are unsafe, but arenecessary for our experiments because the standard Clibraries are not aware of region pointers. In particulardeleteregion does not account for region pointers castto normal pointers.When a region pointer r is updated it is potentiallynecessary to adjust two reference counts, one for the old

typedef struct region @Region;typedef size_t(*cleanup_t)(/* struct ??? @x */);typedef size_t(*cleanuparray_t)(/*size_t n,struct ??? @x */);Region newregion(void);int deleteregion(Region *r);void @ralloc(Region r, size_t size,cleanup_t cleanup);void @rarrayalloc(Region r,size_t n, size_t size,cleanuparray_t cleanup);void @rstralloc(Region r, size_t size);Region regionof(void @x);Figure 2: Region allocation interface.region r points to (a decrement) and one for the new re-gion r points to (an increment). This implies that regionpointers must always be initialized, which is enforced byrequiring initialization of all local variables that are, orcontain, region pointers, and by clearing (writing 0's in)all objects allocated in regions. Because C@ must recog-nise all writes of region pointers, copying structs con-taining region pointers is forbidden|C's unions make itimpossible to know which parts of a structure actuallycontain region pointers. Region pointers behave oth-erwise like normal ANSI C pointers and in particularaddress arithmetic is allowed.While these restrictions on regions pointers in C@ arenot onerous, it is worth noting that explicit regionscould be integrated into more modern languages withfewer modi�cations. For example, in Java [GJS96]pointers (i.e., references) are always initialized andunion does not exist.3.2 The Region LibraryFigure 2 shows the region interface. A new region iscreated with newregion. Objects are allocated withralloc, arrays with rarrayalloc. Objects or arraysthat do not contain any region pointers can be allocatedwith rstralloc; the cleanup arguments to ralloc andrarrayalloc are discussed in Section 4. The mem-ory returned by ralloc and rarrayalloc, but notrstralloc, is cleared. An object's region is returnedby regionof.An attempt to delete a region is made by callingdeleteregion(x). The deletion succeeds if there areno references (excepting *x) to the region in live vari-ables or in other regions. On success, *x is set to NULL,and 1 is returned. On failure *x is unchanged, and 0 isreturned.Figure 3 shows a simple example that copies a listinto a region, then later deletes that region. Thecleanup list function is presented in Section 4.

struct list {int i;struct list @next;};struct list @cons(Region r, int x,struct list @l){ struct list @p =ralloc(r, sizeof(struct list),cleanup_list);p->i = x; p->next = l;return p;}struct list @copy_list(Region r,struct list @l){ if (l == NULL) return NULL;else return cons(r, l->i,copy_list(r, l->next));}void work(struct list @l){ Region tmp = newregion();l = copy_list(tmp, l);... do something with l ...deleteregion(&tmp);} Figure 3: List copy using regions.4 ImplementationOur implementation of safe regions is based on thelcc [FH95] C compiler and a runtime library implement-ing our region interface. The modi�ed lcc handles thelanguage extensions of Section 3 and cooperates withthe runtime library to maintain region reference counts.The target machine is a Sun UltraSparc-I. This sec-tion discusses how our implementation manages regions(Section 4.1) and reference counts (Section 4.2). Wealso have a modi�ed version of our implementation thatsupports unsafe regions: it is identical to the safe ver-sion, except that all support for maintaining referencecounts is disabled. The section concludes with a ar-gument that the overhead of memory management isamortized constant time per instruction executed.4.1 Managing RegionsThe goal of the region library is to provide cheap objectallocation and region deletion. It must also maintaina mapping from memory addresses to regions for thereference counting code.The region data structure is shown in Figure 4. A re-gion contains a reference count and two allocators, onefor normal allocations (ralloc and rarrayalloc) andone for region-pointer-free data (rstralloc). Each al-

struct allocator {char *firstpage;/* offset at which to allocate */int allocfrom;};struct region {int rc;struct allocator normal;struct allocator string;}; Figure 4: Region structure.locator maintains a list of 4K byte pages, with allocationoccurring only on the �rst page of the list.1Allocation is very simple: If the allocation �ts on the�rst page just return firstpage+allocfrom and incre-ment allocfrom, if not allocate a new page and tryagain. The ralloc and rarrayalloc functions mustalso save the cleanup function at the start of the allo-cated object (see below) and clear the rest of the allo-cated memory. Finally, rarrayallocmust save the sizeof the array. The allocators maintain an array mappingpage addresses (i.e., memory addresses / 4K) to regions.The space overheads of this scheme are low: eight bytesper page for the map of pages to regions and the list ofallocated pages. If an object does not �t in the spaceremaining at the end of a page that space is wasted.2Each allocation needs zero (for strings) to twelve (forarrays) bytes of bookkeeping information.The region itself is stored in the �rst page allocated forthat region. To reduce cache conicts between regionstructures, successive regions are o�set by 64 bytes (the2nd level cache line size) in their �rst page, up to amaximum o�set of 512.4.2 Managing Reference CountsWhile an object is allocated and deallocated only once,references to an object may change an arbitrary num-ber of times. Thus, while object allocation and regiondeallocation are inexpensive in our system, maintain-ing reference counts is potentially very expensive. Itis useful to distinguish between references in local vari-ables, which change frequently, from references in theheap, which are updated more rarely. The main aimof our reference counting scheme is to avoid the largeoverhead that would be incurred by reference countinglocal variables exactly. There are four components toour scheme: maintaining approximate reference countsfor local variables, maintaining exact reference countsfor pointers in the heap, performing a scan of the stack,and scanning deleted regions.1Our prototype only handles allocations of less than onepage|our benchmarks did not use any larger objects. This re-striction could be lifted without a�ecting the cost of small allo-cations.2Also the last byte of a page cannot be used if pointers to theend of objects are supported.

4.2.1 Local VariablesThe exact reference count for a region is the numberof pointers to objects of that region from other regions,global storage (including global and static variables andany memory returned by malloc if used) and the livevariables in all active call frames. We need the exactreference count only when deleteregion is called; at allother times we need only maintain enough informationto compute this reference count (this is the principlebehind deferred reference counting [DB76]).The actual reference count stored with a region reectsthe number of pointers to objects of that region from allother regions, global storage, and the live variables inall active call frames above the high water mark on thestack (note the stack grows downward on the SPARC).The high water mark is just a location on the stack,with some frames above and some below. Our systemmaintains the following invariant:(�) The number of frames below the high-watermark is always at least one.Thus writes to local variables never update referencecounts.Invariant (�) is maintained by a procedure call, butsome work may be required on procedure return. Ifcontrol returns to a call frame at the high-water mark,then the region reference counts attributable to localvariables are decremented and the high water mark isadjusted above the call frame. We describe this unscanfunction in further detail below.When deleteregion(r) requires the exact referencecount of r it scans the portion of the stack belowthe high water mark and updates the region referencecounts. At that point the actual and exact referencecounts are equal. The stack scan sets the high watermark above the frame of deleteregion, which is notitself scanned.4.2.2 Global and Region ReferencesThe compiler generates code to update reference countson writes of region pointers in global storage and to ob-jects within regions. Reference counting is di�erent forwrites to global storage and for writes within regions.When a pointer to region r is written in region r, thereference count for r is not incremented. We call suchpointers sameregion pointers. As global storage doesnot belong to any region, it cannot contain sameregionpointers. Figure 5 shows pseudo-code for both kindsof reference count updates. The instruction counts re-ect the number of SPARC instructions required by ourimplementation for each kind of write.Our compiler attempts to distinguish writes to localvariables, global storage and regions at compile-time,but this is not always possible in C because writes vianormal pointers can be writes to global storage or tovariables on the stack. Writes to the stack should onlybe reference counted if that variable is above the highwater mark. For writes that cannot be statically dis-

Global writes - 16 instructionst = *a;if (regionof(t) != regionof(b)) fregionof(t)->rc--;regionof(b)->rc++;gRegion writes - 23 instructionst = *aif (regionof(t) != regionof(b)) fif (regionof(t) != regionof(a))regionof(t)->rc--;if (regionof(b) != regionof(a))regionof(b)->rc++;gFigure 5: Reference count methods for *a=b.tinguished, a more expensive runtime routine is used todetermine which case applies.4.2.3 Stack ScanTo allow the stack to be scanned at runtime, the com-piler records at each function call site the set of registersand o�sets in the current call frame that contain live re-gion pointers. Because our implementation is based onlcc, which does not have liveness information available,our prototype considers all variables in scope to be live.The liveness information is static data whose locationis recorded in the unused bits of a NOP instruction atthe call site. (A more complex implementation wouldavoid this extra instruction.) After the scan of a callframe increments the region reference counts for all livevariables, the high water mark is placed just below thatcall frame.A call frame that was scanned is unscanned automat-ically when control returns to that frame. This isachieved by modifying return addresses during the scanto point to a special unscan function that decrementsthe region reference counts, adjusts the high water markabove the call frame, and then jumps to the original re-turn address.4.2.4 Region ScanA deleted region r may contain pointers to objects inother regions. To adjust the reference counts of otherregions we examine all the region pointers in objectsallocated in r. The user supplies the function that per-forms this task as the cleanup argument to ralloc andrarrayalloc. This function must call destroy on ev-ery region pointer in the allocated object and returnthe size of the object. We require the user to providethis function for the same reason that we forbid copyingstructures that contain region pointers: the presence ofC's unions makes it impossible for the compiler to lo-cate every region pointer. For cases without union, andin higher-level languages, the cleanup function could begenerated automatically by the compiler. The cleanup

function also allows object �nalization. Figure 6 showsthe cleanup list function for the list type of Figure 3.The pseudo-code for scanning deleted regions is in Fig-ure 7.size_t cleanup_list(struct list @x){ destroy(x->next);return sizeof *x;} Figure 6: Example of cleanup function.for all pages p of region:deleting = p;end = p + PAGESIZE;while (deleting < end)cleanup_t cln = *(cleanup_t *)deleting;/* the end of unfilled pages is markedwith a NULL */if (!cln) break;deleting += sizeof(cleanup_t);s = cln(deleting);deleting += ALIGN(s, ALIGNMENT);Figure 7: Region cleanup.4.3 Amortized Cost of Safe RegionsThe primary justi�cation for our reference countingscheme is that it both solves the engineering problemof avoiding maintaining all reference counts all the timewhile still bounding the cost of memory management.We make two assumptions. First, we assume that thesize of the largest stack frame is bounded by a constantc.3 Second, we assume that every allocated word is ac-tually referenced by some program instruction. We canthen argue that the amortized cost of memory manage-ment is a constant per instruction executed.The costs in our region system are incurred on regionallocation, object allocation, updates (reference count-ing), region deletion (scanning regions and the stack),and on procedure return (unscanning). To show ourbound we distribute these costs over all memory refer-ences and procedure calls in such a way that the maxi-mum cost associated with any operation is bounded bya constant.Allocating a new region is a constant time operation.The cost of allocating an object o is at worst propor-tional to the size of o plus the cost of acquiring a newpage. The latter cost is constant, the former is dis-tributed to the program references to o. Scanning adeleted region simply scans each object o in the region,the cost of which can also be assigned to program ref-erences to o. A reference count operation is charged tothe assignment.The analysis of the stack scan and unscan requires a bitof care. Every scan of a frame is eventually paired with3Actually, it is su�cient if the number of live region pointersin a frame is bounded by a constant.

a corresponding unscan of the same frame. Except forthe frame for deleteregion (which is at the bottom ofthe downward-growing stack), the cost of scanning andunscanning a frame f is charged to the call that createsthe frame immediately below f on the stack. Becausethe high-water mark moves up only on procedure re-turn, it follows that every function call is charged forthe scan and unscan of at most one frame. Assumingstack frames have at most size c, every call is thereforecharged a constant cost.5 ResultsWe describe our benchmarks and the changes requiredto adapt them to use regions in Section 5.1. Weuse these benchmarks to compare the performance ofregions with three malloc/free implementations (de-scribed in Section 5.2) and the Boehm-Weiser conser-vative garbage collector. We �nd that the safe region-based programs use from 9% less to 19% more memory(Section 5.4) than the allocator that uses least memory,and are from 5% slower to 9% faster than the fastestallocator. Unsafe regions are never slower than otherallocators and are up to 16% faster (Section 5.5). Onone benchmark, we use regions to group frequently ac-cessed data structures and obtain a 24% performanceimprovement. We measure the overhead of safe regionsand �nd that it does not exceed 17% and is generallymuch lower (Section 5.6).5.1 BenchmarksWe compared the performance of our safe, region-basedmemory management on six allocation-intensive C pro-grams. These programs and the inputs we used for ourmeasurements are� cfrac: A program to factor large integersusing the continued fraction method. Theoriginal application uses explicit referencecounting to reclaim storage. We factor4175764634412486014593803028771.� gr�obner : Find the Gr�obner's basis of a set of poly-nomials. The input is nine nine-variable polynomi-als.� mudlle: A byte-code compiler for a scheme-likelanguage. The original version of this program usesunsafe regions. The same 500-line �le is compiled100 times.� lcc: Our modi�ed version of the lcc C compiler.The original program also uses unsafe regions(Hanson's arenas [Han90]). The input is a 6000-line C �le.� tile: Automatically partitions a set of text �les intosubsections based on frequency and grouping ofwords in the text. This program uses malloc/free.Twenty copies of a 14K text are given as input.� moss: A software plagiarism detection system,written originally using malloc/free. The input is180 student compiler projects (about 10MB).

Wemodi�ed these programs to use our safe regions. Our�rst step was to choose appropriate regions for thoseapplications that were not already region-based. Allthe applications have a simple region structure, evenwhen the data structures stored in the regions are verycomplex. For instance, our region-based `cfrac' createsa region for temporary computations for every few it-erations of the main algorithm. Partial solutions arecopied from this region to a solution region so that oldtemporary regions can be deleted. In `mudlle,' one re-gion holds the abstract syntax tree of the �le beingcompiled and one region is created to hold the datastructures needed to compile each function. The otherprograms have similarly simple region structures. Ingeneral, we found it fairly easy to modify these bench-marks to use regions. The di�culty lay not so muchin selecting where to create and delete regions, but inthe tedious process of changing types, writing cleanupfunctions, etc. As pointed out above, most of this workwould not be necessary in a higher-level language. Theother di�culty is �nding stale pointers that prevent aregion from being deleted; an environment for debug-ging regions would be helpful here.Once the region structure is selected, the following ba-sic modi�cations are made: calls to malloc and freeare replaced with appropriate region operations, nor-mal pointers are changed to region pointers, the cleanupfunctions are written and initializations are added for alllocal region pointers. Each application has some furtherchanges:� For cfrac we disable the explicit reference countingand allocate some static objects in regions. We alsoadd the copies of partial solutions to the solutionregion.� For mudlle it is necessary to clear some global vari-ables with stale pointers in the original code; oth-erwise these pointers prevent region deletion.� In gr�obner we must replace some bulk copies (viaassignment) with explicit copies, statically allocatesome structures that were originally on the stack,and add copies of the polynomials that form thebasis to a result region. Many frees are replacedby clearing the corresponding pointer, a number ofother pointers must also be explicitly cleared.� For lcc we replace bulk copies (via assignment ormemcpy) with calls to hand-written copy functionsand replace some uses of memset with explicit NULLwrites. Information is added to some types so thatcleanup functions can be written. Some static andstack objects are allocated in regions and someglobal variables and region-allocated objects arecleared. Memory for strings is allocated individu-ally rather than in blocks. To improve `lcc's perfor-mance, we create a region for every hundred state-ments compiled rather than for every statement.� For tile, one local variable must be cleared to al-low a region to be deleted. In addition, numerousmemory management bugs present in the originalcode are repaired.� moss allocates some large static arrays in a region.

Name Lines Changed linescfrac 4203 149 / 18gr�obner 3219 282 / 111mudlle 5078 402 / 22lcc 12430 1223 / 349tile 926 159 / 10moss 2675 88 / 4Table 1: Complexity of benchmark changes.The size of these changes is summarized in Table 1.The `Lines' columns counts the number of lines in theoriginal source code. The �rst number under `Changedlines' represents the number of changed or extra lines ofcode in the region-based version, based on the resultsof diff -f; the second number counts only those linesthat are not part of the basic modi�cations.5.2 AllocatorsWe compare the performance of regions with the follow-ing allocators:� Sun: This is the default allocator supplied withSolaris 2.5.1. It provides an interesting point forcomparison as it will likely be used by default.� BSD: The version of the BSD memory allocatorsupplied by Sun. It rounds allocations up to thenearest power of two. It features fast allocation anddeallocation but has a very large memory overhead.� Lea: Doug Lea's implementation of malloc,v2.6.4.4 This is an improved version of the allo-cator used in some previous surveys of memory al-location costs [DDZ94, Vo96]. In those surveys thisallocator exhibited good performance overall.� GC : The Boehm-Weiser conservative garbage col-lector [BW88] v4.12. We disable all free's whencompiling with this collector, thus guaranteeingsafe memory management.We use three di�erent region libraries in these measure-ments:� safe: the safe region-based memory managementdescribed in Section 4. This library is used forthe region-based measurements (the `Reg' bars inFigures 8, 9 and 10).� unsafe: the same as safe, but with all operationsthat maintain or test reference counts disabled.This library is used for the unsafe region measure-ments in Figure 9 (bar `unsafe').� emulation: a region library that uses mallocand free to allocate and free each individual ob-ject. This library approximates the performancea region-based application would have if it werewritten with malloc/free. In our experiments this4Available at ftp://g.oswego.edu/pub/misc/malloc.c

Name Total Total kbytes Max. kbytes Total Max. Max. kbytes Avg. kbytes Avg allocsallocs allocated allocated regions regions in region per region per regioncfrac 3812425 60107 106.0 23383 5 83.6 2.57 163gr�obner 805321 28454 43.6 11452 4 13.0 2.48 70mudlle 737850 10661 240.0 4648 13 141.0 2.29 159lcc 177816 8711 4567.0 1249 3 4125.0 6.97 142tile 40699 1347 88.4 81 5 41.9 12.50 502moss 552240 7778 2212.0 1899 7 1246.0 3.49 291Table 2: Allocation behaviour with regions.Name Total Total kbytes Max. kbytesallocs allocated allocatedcfrac 3809160 66879 84.8gr�obner 804956 28449 46.2mudlle 742495 13578 324.0(w/o overhead) 10678 239.0lcc 166495 9102 4683.0(w/o overhead) 8452 4375.0tile 40678 1330 84.0moss 552240 7778 2203.0Table 3: Allocation behaviour with malloc.library is used to measure the performance of the`mudlle' and `lcc' with malloc/free allocators.Using this library imposes a small space overhead:the objects allocated in a region must be kept in alinked list so they can be freed when deleteregionis called. Table 3 and Figure 8 include additionalentries estimating memory usage without this over-head.The C library sometimes calls malloc, and thus C appli-cations using regions inevitably include a mix of mem-ory allocated with regions and with malloc. The region-based programs are linked with the default `Sun' allo-cator; our results for regions include the time and spacecost of these calls to malloc.5.3 Allocation CharacteristicsTables 2 and 3 give the memory allocation character-istics of the region-based and malloc/free versions ofthe applications. `Total allocs' is the total number ofmemory allocations performed by the program and `To-tal kbytes allocated' is the total number of kilobytesallocated, with allocation sizes rounded to the nearestmultiple of four. The `Max. kbytes allocated' columncontains the maximum amount of memory allocated atany time. The remaining columns concern only regions:`Total regions' is the number of regions created, `Max.regions' is the maximum number of regions present atany time, `Max. kbytes in region' is the size of the ap-plication's largest region, `Avg. kbytes per region' is theaverage size of the regions and `Avg. allocs per region'is the average number of objects allocated per region.The discrepancies in Tables 3 and 2 in the number ofallocations and the amount of memory allocated are

generally small and attributable to the small changesneeded to convert the applications to use regions. The�rst exception is `cfrac', where the region-based versiondoes not need to allocate space for reference counts, butdoes need to allocate some extra copies of the results.The second exception is `lcc' where the region-based ver-sion does more than 10,000 extra allocations becausestrings are allocated individually and some stack allo-cated structures are converted to region allocated struc-tures.Because a region can only be deleted all at once,the region-based versions of the applications tend tofree memory later than the malloc/free-based versions.Thus the maximum amount of memory allocated at anytime tends to be slightly larger in Table 2 than in Ta-ble 3.5.4 Memory UsageFigure 8 compares the amount of memory requestedfrom the operating system (bar `OS') by the di�erentallocators with the memory actually requested by theprogrammer (bar `requested,' see Tables 3 and 2). Thegraphs for `cfrac' and `tile' are clipped: the Boehm-Weiser garbage collector used 832 and 664 kbytes re-spectively. For `lcc' and `mudlle,' the �rst bar is theraw memory usage, the second bar has the region-emulation overhead removed. The `cfrac'/Boehm-Weiser garbage collector pair requests less memory thanthe malloc/free-based versions because it does not needreference counts.Regions use from from 9% less to 19% more memorythan Doug Lea's allocator. Regions use less memorythan all other allocators in all other cases, except onthe `tile' benchmark where regions use 1% more thanSun's allocator. The BSD allocator and the Boehm-Weiser garbage collector use a lot of memory, whichmakes them unsuitable for some applications.5.5 PerformanceFor each application/allocator combination we measurewall-clock execution time (`base+memory' in Figure 9),including the portion of time spent in memory man-agement (`memory' only). Figure 10 reports processorcycles lost to read (waiting for the result of a load in-struction) and write (store bu�er full) stalls. An alloca-tor that uses the memory hierarchy more e�ciently losesfewer cycles to read and write stalls. All measurements

Sun BSD Lea GC Reg
0

20

40

60

80

100

120

140

160

180

200
cfrac

83
2

m
em

or
y

(k
ilo

by
te

s)

Sun BSD Lea GC Reg
0

20

40

60

80

100

120

140

160

180

200
grobner

Sun BSD Lea GC Reg
0

100

200

300

400

500

600

700

800

900
mudlle

Sun BSD Lea GC Reg
0

1000

2000

3000

4000

5000

6000

7000

8000
lcc

Sun BSD Lea GC Reg
0

20

40

60

80

100

120

140

160

180

200
tile

66
4

Sun BSD Lea GC Reg
0

500

1000

1500

2000

2500

3000

3500

4000

4500
moss

requested
OS Figure 8: Memory overhead.

Sun BSD Lea GC Reg
0

5

10

15

20

25

30
cfrac

tim
e

(s
)

Sun BSD Lea GC Reg
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
grobner

Sun BSD Lea GC Reg
0

1

2

3

4

5

6

7
mudlle

Sun BSD Lea GC Reg
0

0.5

1

1.5

2

2.5

lcc

Sun BSD Lea GC Reg
0

1

2

3

4

5

6
tile

Sun BSDLea GC Reg
0

5

10

15

20

25
moss

base
memory
unsafe
slow Figure 9: Execution time and memory management overhead.are performed on 167Mhz UltraSparc-I workstation anduse the UltraSparc's internal counters for precision.All applications are compiled with lcc, a non-optimizingcompiler. The time spent in the actual application isrepresented by the `base' part of the execution time inFigure 9. The allocation libraries are compiled withoptimization by the GNU C compiler or are suppliedby Sun. The portion of time spent in these libraries(and in reference counting for region-based allocation)is the `memory' part of the execution time, again inFigure 9. Compiling the applications with an optimiz-ing compiler will not change the time spent in memorymanagement and will reduce the `base' part of execu-tion time uniformly for all allocators. Thus using anoptimizing compiler would not change the results of ourcomparison.On these benchmarks, unsafe regions (bar `unsafe' inFigure 9) are faster (up to 16%) than all the other al-locators. Safe regions are as fast or faster (up to 9%)than the other allocators on `cfrac', `tile', and `moss' andonly slightly slower than the BSD allocator (5% slower)and Boehm-Weiser garbage collector (3% slower) on`mudlle'. On `lcc' safe regions are slower than the BSDallocator (5% slower) and competitive with Doug Lea'sallocator|this application has the highest overhead forsafe regions.The graph for `moss' in Figure 9 includes the time for an

optimised version (`base+memory' bar) and our origi-nal region version (`slow' bar). The memory allocationpattern of `moss' is to alternately allocate a small, fre-quently accessed object and a large, infrequently ac-cessed object. This pattern reduces memory localityamong the small objects. The 24% improvement in ex-ecution time in `moss' is obtained by using two regions:one for the small objects and one for the large objects.This improvement is also reected in Figure 10: thegraph for `moss' shows that the optimized region ver-sion (`Reg' column) has approximately half the stalls ofthe original version (`Slow' column). It is interesting tonote that the BSD memory allocator (which automat-ically segregates objects by size) tends to have fewerstalls than the other explicit allocators; the resultingperformance advantage is most visible with `moss.'5.6 Cost of SafetyThe costs for safe regions can be divided into three partsthat mirror the implementation: the cost of calling thecleanup functions when regions are deleted, the cost ofscanning the stack when deleteregion is called, andthe cost of maintaining the reference counts on regionpointer writes. Figure 11 gives the breakdown of thesecosts for our six applications.

SunBSDLea GC Reg
0

50

100

150

200

250
cfrac

pr
oc

es
so

r
st

al
l c

yc
le

s
(m

ill
io

ns
)

SunBSDLea GC Reg
0

20

40

60

80

100

120
grobner

SunBSDLea GC Reg
0

20

40

60

80

100

120
mudlle

SunBSDLea GC Reg
0

10

20

30

40

50

60

70
lcc

SunBSDLea GC Reg
0

50

100

150

200

250

300

350

400
tile

SunBSDLeaGC RegSlow
0

100

200

300

400

500

600

700

800

900

1000

moss

read stalls
write stallsFigure 10: Processor cycles lost to stalls.The cost of safety varies from negligible (`tile') to 17%(`lcc'). For less allocation and pointer intensive pro-grams, we expect results similar to `tile.' We have con-sidered various methods of reducing the cost of safety,such as recognizing sameregion pointers at compile-time, and various schemes for optimizing the cleanupof regions. We plan to implement some of these ideas inanother version of region-based memory management.

cfrac grobner mudlle lcc tile moss
80

82

84

86

88

90

92

94

96

98

100
Cost of safety

%
 o

f e
xe

cu
tio

n
tim

e

base
RC
stack scan
region cleanupFigure 11: Region costs.6 ConclusionWe have presented a new region-based memory man-agement technique that combines e�ciency with safety.We have shown that this technique often uses less mem-ory and is as fast or faster than traditional malloc/free-based memory management. Safe regions are also fasterthan conservative garbage collection in most cases anduse much less memory. The programmer can use regionsto explicitly take advantage of the locality of dynami-cally allocated data structures. This can lead to muchbetter performance, as the `moss' example shows.Our style of region-based memory management re-quires extensions to be useful for all applications. Weplan to address this issue as part of providing region-based memory management in Titanium [YSP+98],an explicitly-parallel, Java-based [GJS96] programminglanguage.

References[AFL95] Alexander Aiken, Manuel Fahndrich, andRaph Levien. Better static memory man-agement: improving region-based analysisof higher-order languages. In Proceedingsof the ACM SIGPLAN '95 Conference onProgramming Language Design and Imple-mentation (PLDI), pages 174{185, La Jolla,CA, June 1995.[Bak78] Henry G. Baker. List processing in real-timeon a serial computer. Communications ofthe ACM, 21(4):280{94, 1978.[Bob80] Daniel G. Bobrow. Managing re-entrantstructures using reference counts. ACMTransactions on Programming Languagesand Systems, 2(3):269{273, July 1980.[BTV96] Lars Birkedal, Mads Tofte, and Magnus Ve-jlstrup. From region inference to von Neu-mann machines via region representation in-ference. In Proceedings of the 23rd ACMSIGPLAN-SIGACT Symposium on Princi-ples of Programming Languages, St. Peters-burg Beach, FL, January 1996.[BW88] Hans-Juergen Boehm and Mark Weiser.Garbage collection in an uncooperative en-vironment. Software Practice and Experi-ence, 18(9):807{820, 1988.[BZ93] David A. Barrett and Benjamin G. Zorn.Using lifetime predictors to improve mem-ory allocation performance. In Proceed-ings of the ACM SIGPLAN '93 Conferenceon Programming Languages Design and Im-plementation, pages 187{196, Albuquerque,New Mexico, June 1993.[DB76] L. Peter Deutsch and Daniel G. Bobrow.An e�cient incremental automatic garbagecollector. Communications of the ACM,19(9):522{526, September 1976.[DDZ94] David Detlefs, Al Dosser, and BenjaminZorn. Memory allocation costs in large C

and C++ programs. Software Practice andExperience, 24(6), 1994.[FH95] Chris W. Fraser and David R. Hanson. ARetargetable C Compiler: Design and Im-plementation. Benjamin/Cummings Pub.Co., Redwood City, CA, USA, 1995.[GJS96] J. Gosling, B. Joy, and G. Steele. The JavaLanguage Speci�cation. The Java Series.Addison-Wesley, Reading, MA, USA, June1996.[GZ93] Dirk Grunwald and Benjamin Zorn. Cus-tomalloc: E�cient, synthesised memory al-locators. Software Practice and Experience,23:851{869, 1993.[GZH93] Dirk Grunwald, Benjamin Zorn, and RobertHenderson. Improving the cache localityof memory allocation. In Proceedings ofthe ACM SIGPLAN '93 Conference on Pro-gramming Languages Design and Implemen-tation, pages 177{186, Albuquerque, NewMexico, June 1993.[Han90] David R. Hanson. Fast allocation and deal-location of memory based on object life-times. Software Practice and Experience,20(1):5{12, January 1990.[IY90] Yuuji Ichisugi and Akinori Yonezawa. Dis-tributed garbage collection using group ref-erence counting. In OOPSLA/ECOOP '90Workshop on Garbage Collection in Object-Oriented Systems, October 1990.[Ros67] D. T. Ross. The AED free storage package.Communications of the ACM, 10(8):481{492, August 1967.[SO96] David Stoutamire and Stephen Omohun-dro. The Sather 1.1 Speci�cation. Techni-cal Report TR-96-012, International Com-puter Science Institute, Berkeley, CA, Au-gust 1996.[Sto97] D. Stoutamire. Portable, Modular Expres-sion of Locality. PhD thesis, University ofCalifornia at Berkeley, 1997.[TT97] Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Informationand Computation, 132(2):109{176, Febru-ary 1997.[Vo96] Kiem-Phong Vo. Vmalloc: A general ande�cient memory allocator. Software Prac-tice and Experience, 26(3):357{374, March1996.[Wil92] Paul R. Wilson. Uniprocessor garbage col-lection techniques. In Proceedings of In-ternational Workshop on Memory Manage-ment, volume 637 of Lecture Notes in Com-puter Science, St Malo, France, September1992. Springer-Verlag.

[WJ93] Paul R. Wilson and Mark S. Johnstone.Truly real-time non-copying garbage collec-tion. In OOPSLA/ECOOP '93 Workshopon Garbage Collection in Object-OrientedSystems, October 1993.[WJNB95] Paul R. Wilson, Mark S. Johnstone, MichaelNeely, and David Boles. Dynamic storageallocation: A survey and critical review. InProceedings of International Workshop onMemory Management, volume 986 of Lec-ture Notes in Computer Science, Kinross,Scotland, September 1995. Springer-Verlag.[YSP+98] Kathy Yelick, Luigi Semenzato, Geo� Pike,Carleton Miyamoto, Ben Liblit, Arvind Kr-ishnamurthy, Paul Hil�nger, Susan Gra-ham, David Gay, Phil Colella, and AlexAiken. Titanium: A High-Performance JavaDialect. In Proceedings of ACM 1998 Work-shop on Java for High-Performance Net-work Computing, pages 1{14, Palo Alto,CA, February 1998.

