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Abstra
tWe des
ribe a framework for adding type quali�ers to a lan-guage. Type quali�ers en
ode a simple but highly usefulform of subtyping. Our framework extends standard typerules to model the 
ow of quali�ers through a program,where ea
h quali�er or set of quali�ers 
omes with addi-tional rules that 
apture its semanti
s. Our framework al-lows types to be polymorphi
 in the type quali�ers. Wepresent a 
onst-inferen
e system for C as an example appli-
ation of the framework. We show that for a set of real Cprograms, many more 
onsts 
an be used than are a
tuallypresent in the original 
ode.1 Introdu
tionProgrammers know strong invariants about their programs,and it is widely a

epted by pra
titioners that su
h invari-ants should be automati
ally, stati
ally 
he
ked to the ex-tent possible [Mag93℄. However, ex
ept for stati
 type sys-tems, modern programming languages provide little or nosupport for expressing su
h invariants. In our view, theproblem is not a la
k of proposals for expressing invariants;the resear
h 
ommunity, and espe
ially the veri�
ation 
om-munity, has proposed many me
hanisms for spe
ifying andproving properties of programs. Rather, the problem lies ingaining widespread a

eptan
e in pra
ti
e. A 
entral issueis what sort of invariants programmers would be willing towrite down.In this paper we 
ons
iously seek a 
onservative frame-work that minimizes the unfamiliar ma
hinery programmersmust learn while still allowing interesting program invariantsto be expressed and 
he
ked. One kind of programming an-notation that is widely used is a type quali�er.Type quali�ers are easy to understand, yet they 
an ex-press strong invariants. The type system guarantees that inevery program exe
ution the semanti
 properties 
apturedby the quali�er annotations are maintained. This is in 
on-trast to dynami
 invariant 
he
king (e.g., assert ma
ros or�This resear
h was supported in part by the National S
ien
eFoundation Young Investigator Award No. CCR-9457812, NASAContra
t No. NAG2-1210, and an NDSEG fellowship.To appear in the Pro
eedings of the ACM SIG-PLAN '99 Conferen
e on Programming Language De-sign and Implementation (PLDI), Atlanta, Georgia,May 1999.

Purify [Pur℄), whi
h test for properties in a parti
ular pro-gram exe
ution.A 
anoni
al example of a type quali�er from the C worldis the ANSI C quali�er 
onst. A variable with a type an-notated with 
onst 
an be initialized but not updated.1 Aprimary use of 
onst is annotating pointer-valued fun
tionparameters as not being updated by the fun
tion. Not onlyis this information useful to a 
aller of the fun
tion, but itis automati
ally veri�ed by the 
ompiler (up to 
asting).Another example is Evans's l
lint [Eva96℄, whi
h intro-du
es a large number of additional quali�er-like annotationsto C as an aid to debugging memory usage errors. Onesu
h annotation is nonnull, whi
h indi
ates that a pointervalue must not be null. Evans found that adding su
h an-notations greatly in
reased 
ompile-time dete
tion of nullpointer dereferen
es [Eva96℄. Although it is not a type-based system, we believe that annotations like l
lint's 
anbe expressed naturally as type quali�ers in our framework.Yet another example of type quali�ers 
omes frombinding-time analysis, whi
h is used in partial evaluationsystems [Hen91, DHM95℄. Binding-time analysis inferswhether values are known at 
ompile time (the quali�erstati
) or may not be known until run time (the quali-�er dynami
) by spe
ializing the program with respe
t to aninitial input.There are also many other examples of type quali�ers inthe literature. Ea
h of the 
ited examples adds parti
ulartype quali�ers for a spe
i�
 appli
ation. This paper presentsa framework for adding new, user-spe
i�ed type quali�ers toa language in a general way. Our framework also extends thestandard type system to perform quali�er inferen
e, whi
hpropagates programmer-supplied annotations through theprogram and 
he
ks them. Su
h a system gives the pro-grammer more 
omplete information about quali�ers andmakes quali�ers more 
onvenient to use than a pure 
he
k-ing system.The main 
ontributions of the paper are� We show that it is straightforward to parameterize alanguage by a set of type quali�ers and inferen
e rulesfor 
he
king 
onditions on those quali�ers. In parti
u-lar, the 
hanges to the lexing, parsing, and type 
he
k-ing (see below) phases of a 
ompiler are minimal. Webelieve it would be realisti
 to in
orporate our proposalinto software engineering tools for any typed language.1C allows type 
asts to remove 
onstness, but the result is imple-mentation dependent [KR88℄.1



� We show that the handling of type quali�ers 
an beseparated from the standard type system of the lan-guage. That is, while the augmented type system in-
ludes rules for manipulating and 
he
king quali�ers,in fa
t the 
omputation of quali�ers 
an be isolated ina separate phase after standard type
he
king has beenperformed. This fa
torization is similar to that of re-gion inferen
e [TT94℄.� We introdu
e a natural notion of quali�er polymor-phism that allows types to be polymorphi
 in theirquali�ers. We present examples from existing C pro-grams to show that quali�er polymorphism is usefuland in fa
t ne
essary in some situations.� We present experimental eviden
e from a prototypequali�er inferen
e system. For this study, we exam-ine the use of the quali�er 
onst on a set of C ben
h-marks. We show that even in 
ases where programmershave apparently tried to systemati
ally mark variablesas 
onst, monomorphi
 quali�er inferen
e is able to in-fer many additional variables as 
onst. Furthermore,polymorphi
 quali�er inferen
e �nds more 
onst vari-ables than monomorphi
 inferen
e. This study showsboth that quali�er inferen
e is pra
ti
al and useful,even for existing quali�ers and programs.The te
hni
al observation behind our framework is that atype quali�er q introdu
es a simple form of subtyping: Forall types � , either � � q � or q � � � . Here, as throughthe rest of the paper, we write quali�ers in pre�x notation,so q � represents standard type � quali�ed by q. We illus-trate the subtyping relationship using the examples givenabove. In C, non-
onst l-values 
an be promoted to 
onstl-values, but not vi
e-versa. We 
apture this formally bysaying that � � 
onst � for any type � . In Evans's system,the set of non-null pointers is a subset of the set of all point-ers, whi
h is expressed as nonnull � � � . In binding timeanalysis values may be promoted from stati
 to dynami
.Sin
e stati
 and dynami
 are dual notions, we 
an 
hooseto write stati
 � � � or � � dynami
 � , depending onwhi
h quali�er name we regard as the 
anoni
al one.Our framework extends a language with a set of standardtypes and standard type rules to a quali�ed type system asfollows.2 The user de�nes a set of n type quali�ers q1; : : : ; qnand indi
ates the subtyping relation for ea
h (whether qi � �� or � � qi � for any standard type � ). Ea
h level of astandard type may be annotated with a set of quali�ers,e.g., if ref (int) is a standard type, then q1 ref (q2 int) is aquali�ed type, where q1 quali�es the ref and q2 quali�es theint. We extend the standard type system to infer quali�edtypes.The polymorphi
 version of our system requires polymor-phi
 
onstrained types to 
apture bounds on polymorphi
quali�er variables. This form of polymorphi
 types involvesonly relatively simple 
onstraints that 
an be solved withvery eÆ
ient algorithms [HR97℄.Ea
h quali�er 
omes with rules that des
ribe well-formedtypes and how quali�ers intera
t with the operations inthe language. These rules are supplied by the user andmay be nearly arbitrary (see Se
tion 2.4). For example,a rule for 
onst adds a quali�er test to require that the left-hand side of an assignment is non-
onst. An example of a2Apologies to Mark P. Jones for overloading the term quali�edtypes [Jon92℄.

well-formedness 
ondition 
omes from binding time analysis:Nothing dynami
 may appear within a value that is stati
.Thus, a type su
h as stati
 (dynami
 � ! dynami
 �) isnot well-formed.3Be
ause our framework is parameterized by the set ofquali�ers, we must extend not only the types, but alsothe sour
e language. We add both quali�er annotations,whi
h introdu
e quali�ers into types, and quali�er asser-tions, whi
h enfor
e 
he
ks on the quali�ers of a quali�edtype. These extensions allow the programmer to express theinvariants that are to be 
he
ked by the quali�er inferen
erules.We 
on
lude this se
tion with a brief illustration of theneed for quali�er polymorphism. Quali�er polymorphismsolves a problem with 
onst familiar to C and C++ pro-grammers. One of the more awkward 
onsequen
es of thestandard (monomorphi
) C++ type system appears in theStandard Template Library (STL) [MSS96℄ for C++. STLmust always expli
itly provide two sets of operations, onefor 
onstant data stru
tures and one for non-
onstant datastru
tures. For illustration, 
onsider the following pair of Cfun
tions:typedef 
onst int 
i;int *id1(int *x) { return x; }
i *id2(
i *x) { return x; }C programmers would like to have only one 
opy of thisfun
tion, sin
e both versions behave identi
ally and in fa
t
ompile to the same 
ode. Unfortunately we need both. Apointer to a 
onstant 
annot be passed to id1 without a
ast. A pointer to a non-
onstant 
an be passed to id2, butthen the return value will be 
onst. In the language of typetheory, this diÆ
ulty o

urs be
ause the identity fun
tionhas type ��! ��, with quali�er set � appearing both 
o-and 
ontravariantly.In part be
ause of the la
k of 
onst polymorphism inC and C++, 
onst is often either not used, or fun
tionresults are deliberately 
ast to non-
onst. For example, thestandard library fun
tion str
hr takes a 
onst 
har *s asa parameter but returns a 
har * pointing somewhere in s.By adding polymorphism, we allow 
onst to be used moreeasily without resorting to 
asting.The rest of this paper is organized as follows. Se
tion 2des
ribes our framework in detail, in
luding the rules for
onst. Se
tion 3 dis
usses type inferen
e, quali�er poly-morphism, and soundness. Se
tion 4 des
ribes our 
onst-inferen
e system. Se
tion 5 dis
usses related work, Se
tion 6suggests future dire
tions, and Se
tion 7 
on
ludes.2 Quali�ed Type SystemsFor our purposes, types are terms over a set of type 
on-stru
tors � and type variables TVar . Program variables aredenoted by PVar . Ea
h type 
onstru
tor 
 has an arity a(
).We denote the set of types by Typ:Typ ::= � j 
(Typ1; : : : ;Typa(
))where � 2 TVar and 
 2 �. A type environment A is a mapA : PVar ! Typ. We abbreviate the ve
tor (x1; : : : ; xn) by3Many des
riptions of binding-time analysis omit the standardtypes. In su
h a system, this type would be written stati
 (dynami
!dynami
).2



e ::= vj e1 e2j if e1 then e2 else e3 fij let x = e1 in e2 niv ::= x x 2 PVarj n n 2 Zj �x:e� ::= �j intj � ! �Figure 1: Sour
e language
onst dynami

onst 
onst dynami
 nonzero dynami

onst nonzero ; dynami
 nonzerononzero
6������* HHHHHHY������* HHHHHHY6 HHHHHHY 6������*6HHHHHHY ������*Figure 2: Example quali�er latti
e~x. We de�neA[~x 7! ~� ℄(y) = � A(y) y 62 fx1; : : : ; xng�i y = xiwhere the xi are distin
t.We demonstrate our framework by adding type quali�ersto the fun
tional language shown in Figure 1. Using the C
onvention, we interpret 0 in the guard of an if statementas false and any non-zero value as true. Here we distinguishsynta
ti
 values v (whi
h 
an be evaluated without 
ompu-tation) from general expressions e. We use a 
all-by-valuelanguage, though the addition of quali�ers works equallywell for 
all-by-name languages.For this language, � = fint ;!g with arities 0 and 2, re-spe
tively, and the type system is that of the simply-typedlambda 
al
ulus. Although this language is 
onvenient fordemonstrating the type 
he
king system, some quali�ers(e.g., 
onst) are not meaningful in it. In Se
tion 2.4, weadd updateable referen
es (in C terminology, l-values) to ourlanguage and give the additional inferen
e rules for 
onst.The user supplies a set of quali�ers q1; : : : ; qn, annotatedto indi
ate the subtyping relation.De�nition 1 A type quali�er q is positive (negative) if � �q � (q � � � ) for any type � .For 
onvenien
e we denote the absen
e of quali�er q by ?qif q is positive or >q if q is negative.We extend subtyping to sets of quali�ers by de�ning aquali�er latti
e.De�nition 2 (Quali�er latti
e) Ea
h positive quali�er qde�nes a two-point latti
e Lq = ?q v q. Ea
h negative

� ::= Q �� ::= � j int j (�1 ! �2)Q ::= � j lFigure 3: Type language with quali�ersquali�er q de�nes a two-point latti
e Lq = q v >q. Thequali�er latti
e L is de�ned by L = Lq1 � � � � � Lqn . Wewrite ? and > for the bottom and top elements of L.Clearly it is unne
essary to model both positive and neg-ative quali�ers, sin
e they are dual notions. Instead of usinga negative quali�er q, we 
an give >q a name and use it asa positive quali�er, rearranging the type inferen
e rules ap-propriately. However, as it is often more intuitive to thinkof 
ertain quali�ers as being positive or negative, we allowboth.Figure 2 shows the quali�er latti
e for the positive quali-�ers 
onst and dynami
 and the negative quali�er nonzero.A nonzero quali�er on an integer indi
ates that the integer
annot be zero. Instead of writing ?q or >q in the pi
turewe have simply omitted the name q. (stati
 is just anothername for ?dynami
, and we have omitted it.) Noti
e that mov-ing up the latti
e adds positive quali�ers or removes negativequali�ers.We use v for the ordering on L, and u andt for meet and join. For a positive (negative)quali�er qi, we denote by :qi the latti
e element(>q1 ; : : : ;>qi�1 ;?qi ;>qi+1 ; : : : ;>qn) (for negative quali-�ers (?q1 ; : : : ;?qi�1 ;>qi ;?qi+1 ; : : : ;?qn)), where ?qj and>qj are the minimal and maximal elements of Lqj .This general formulation allows any 
ombination of qual-i�ers to appear on any type. In pra
ti
e, however, quali�ersneed not be orthogonal. The analysis designer may spe
ifyinferen
e rules that depend on multiple quali�ers and well-formedness 
onditions that prohibit 
ertain 
ombinations ofquali�ers.2.1 Quali�ed TypesThe next step is to add quali�ers to the standard type sys-tem. We de�ne a new set of types QTyp, the quali�ed types,by QTyp ::= Q �� ::= � j 
(QTyp1; : : : ;QTypa(
)) 
 2 �Q ::= � j lwhere � 2 QVars, the set of variables that range over typequali�ers, and the l are elements of the latti
e L. The qual-i�ed types are just the standard types annotated with setsof quali�ers, i.e., latti
e elements or quali�er variables. No-ti
e that we do not need variables that range over quali�edtypes, sin
e the 
ombination of a quali�er variable and atype variable � � serves the same purpose.Figure 3 shows the quali�ed types for our examplelanguage. To avoid ambiguity, we parenthesize fun
tiontypes. Example quali�ed types are dynami
 nonzero int anddynami
 (
onst � ! � �). Noti
e that we allow quali�ersto appear on all levels of a type, even though a parti
ularquali�er may only be asso
iated with 
ertain standard types(e.g., 
onst only applies to updateable referen
es).3



We now extend the v relation to a subtyping relation� on QTyp. We 
reate a set of subtyping rules that givejudgments ` � � �0, meaning that � is a subtype of �0.We abbreviate ` f� � �0; �0 � �g by ` � = �0. Thesystem also uses judgments of the form ` Q v Q0, whi
his valid if Q v Q0 holds in the latti
e. Figure 4a 
ontainsthe subtyping rules for our example language.The 
hoi
e of subtyping rules depends on the meaningsof the type 
onstru
tors �. In general, for any 
 2 � therule ` Q v Q0` �i = �0i i 2 [1::n℄` Q 
(�1; : : : ; �n) � Q0 
(�01; : : : ; �0n)is sound. Indeed, this is the standard 
hoi
e if 
 
onstru
tsupdateable referen
es (see Se
tion 2.4).2.2 Quali�er Annotations and Quali�erAssertionsNow we wish to extend the standard type system to inferquali�ed types. Our 
onstru
tion should apply to any set oftype quali�ers. Thus we immediately en
ounter a problem,be
ause when 
onstru
ting a quali�ed type we do not knowhow to 
hoose the top-level quali�ers, i.e., the quali�ers onthe outermost 
onstru
tor.We divor
e this issue from the type system by addingquali�er annotations to the sour
e language. Initially we as-sume that any new top-level quali�er is ?. We then allowuser annotations that 
hange the top-level quali�er mono-toni
ally. Dually, we also add quali�er assertions to thesour
e language that allow the user to 
he
k the top-levelquali�er on a type. While we also allow extra 
onstraints onthe quali�ers to be added to the type rules, quali�er asser-tions are a simple way to test invariants, and their use doesnot require extensive knowledge of type systems.For our example language, we add produ
tions for anno-tations and assertions: e ::= � � �j ejlj l eHere quali�er annotation l e tells the type 
he
ker that l e'stop-level quali�er should be at least l. Note that the qual-i�er on an abstra
tion quali�es the fun
tion type itself andnot the type of the parameter. The quali�er assertion ejlrequires that if Qe is e's top-level quali�er, then Qe v l.2.3 Quali�ed Type SystemsThe �nal step is to extend the original type 
he
king systemto handle quali�ed types. Intuitively this extension shouldbe natural, in the sense that adding type quali�ers shouldnot modify the stru
ture of inferred types but only theirquali�ers. We must also extend the type system with a sub-sumption rule, to allow subtyping, and rules for quali�er as-sertions and annotations. The resulting quali�ed type systemfor our example language is shown in Figure 4b. Judgmentsare of the form A ` e : �, meaning that in the type envi-ronment A expression e has quali�ed type �. The systemin Figure 4 is the standard subtyping system (see [Mit91℄)spe
ialized to our appli
ation. Se
tion 3.1 
ontains a formaldes
ription of the 
onstru
tion of a quali�ed type systemfrom a standard type system.

In general ea
h quali�er 
omes with a set of rules de-s
ribing how the quali�er intera
ts with the operations inthe language. Noti
e in Figure 4b that the ante
edents of
ertain rules, e.g., (App), mat
h the types of subexpres-sions against arbitrary quali�ers Q. We allow the quali�erdesigner to restri
t these Q to enfor
e the semanti
s of par-ti
ular quali�ers. In Se
tion 2.4 we show how a type rule forassignment is modi�ed for the 
onst quali�er.We de�ne two pairs of transformation fun
tions betweenstandard and quali�ed types and expressions. For a quali�edtype � 2 QTyp, we de�ne strip(�) 2 Typ to be � with allthe quali�ers removed. Analogously, for an expression e inthe annotated language, strip(e) is e without any quali�erannotations or assertions.In the other dire
tion, for a standard type � 2 Typ wede�ne ?(� ) to be the quali�ed type � with the same typestru
ture as � and all quali�ers set to ?. Analogously, foran expression e in the original language, ?(e) is the 
orre-sponding expression in the annotated language with only ?quali�er annotations and no quali�er assertions.Observation 1 Let `S be the judgment relation of thetype system of the simply-typed lambda 
al
ulus, and let` be the judgment relation of the type system given in Fig-ure 4. Then� If ; `S e : � , then ; ` ?(e) : ?(� ).� If ; ` e0 : �, then ; `S strip(e0) : strip(�).This 
aptures our intuitive requirement that the type qual-i�ers do not modify the underlying type stru
ture.Even without any additional rules on quali�ers, the qual-i�ed type system 
an be quite useful. Perhaps the most ob-vious kind of type quali�er to add is one that 
aptures aproperty of a data stru
ture. For example, we may want todistinguish between sorted lists and possibly unsorted lists.We add a negative type quali�er sorted and annotate all ofour sorting fun
tions so they return sorted lists. (We do notattempt to verify that sorted is pla
ed 
orre
tly|we simplyassume it is.) We 
an then add quali�er assertions, e.g., to
he
k that a merge fun
tion is only 
alled with sorted lists.2.4 Example: 
onstMany quali�ers in
lude restri
tions on their usage. In oursystem, these restri
tions 
an be expressed as quali�er asser-tions or as extra 
onstraints between quali�ers. We illustratethe general pattern by adding updateable referen
es (in Cterminology, l-values) to our example language and givingthe rules for 
onst.Quali�er annotations and assertions 
an always be usedsafely (see Se
tion 3.3), whereas modi�
ations to the typerules must be made with 
are. It is up to the quali�er de-signer to ensure that after any modi�
ations the type infer-en
e rules remain not only sound, but also intuitive to theprogrammer, who sees only the presen
e or absen
e of qual-i�ers and not the underlying type system. This is espe
iallyimportant when designing multiple, intera
ting quali�ers,whi
h 
an potentially 
ompli
ate the type system.We add ML-style referen
es to the language in Figure 1;for a dis
ussion of 
onst in the C type system, see Se
tion 4.As mentioned in the introdu
tion 
onst is positive (for any� , � � 
onst � ). We extend the sour
e language and the4



` Q1 v Q2` Q1 int � Q2 int (SubInt)` Q1 v Q2 ` �2 � �1 ` �01 � �02` Q1 (�1 ! �01) � Q2 (�2 ! �02) (SubFun)(a) Subtyping rulesA ` e : � ` � � �0A ` e : �0 (Sub)A ` e : Q � ` Q v lA ` ejl : Q � (Assert)A ` e : Q � ` Q v lA ` l e : l � (Annot)A ` n : ? int (Int)A ` x : A(x) (Var)A[x 7! �x℄ ` e : �A ` �x:e : ? (�x ! �) (Lam)A ` e1 : Q (�2 ! �) A ` e2 : �2A ` e1 e2 : � (App)A ` e1 : Q int A ` e2 : � A ` e2 : �A ` if e1 then e2 else e3 fi : � (If)A ` e1 : �1 A[x 7! �1℄ ` e2 : �2A ` let x = e1 in e2 ni : �2 (Let)(b) Syntax-dire
ted rulesFigure 4: Basi
 type 
he
king rulesquali�ed type language:e ::= � � � j ref e j !e j e1 := e2v ::= � � � j ()� ::= � � � j ref (�) j unitIn this language, ref e 
reates an updateable referen
e, !ereturns the 
ontents of a referen
e, and e1 := e2 stores thevalue of e2 in referen
e e1. The type unit has only one value,(). Sin
e we have introdu
ed a new type 
onstru
tor ref,we also need to des
ribe how it intera
ts with subtyping.There are well-known problems with mixing subtyping andupdateable referen
es [AC96℄. The obvious rule,` Q1 v Q2 ` �1 � �2` Q1 ref (�1) � Q2 ref (�2) (Unsound)is unsound. For example, suppose we allowed subtypingunder a ref. Then we 
ould type
he
k the following 
ode(any missing quali�ers are ?):1 let x = ref(nonzero 37) in2 let y = x in3 y := 0;4 (!x)jnonzero5 ni niLine 3 type
he
ks be
ause we 
an promote the type ofy to :nonzero int , sin
e by subtyping nonzero int �:nonzero int . But noti
e that this does not a�e
t the type

of x, hen
e line 4 also type
he
ks even though the 
ontentsof x is now 0.The solution to this problem is to ensure that any aliasesof the same ref 
ell 
ontain the same quali�ers, whi
h 
an bea
hieved by using equality on the type of the ref's 
ontentsin the subtyping rule.` Q1 v Q2 ` �1 = �2` Q1 ref (�1) � Q2 ref (�2) (SubRef)The subtyping rule for unit is the expe
ted rule:` Q1 v Q2` Q1 unit � Q2 unit (SubUnit)We give type rules for our new 
onstru
ts; here we jumpdire
tly to the quali�ed type rules.A ` () : ? unit (Unit)A ` e : �A ` ref e : ? ref (�) (Ref)A ` e : Q ref (�)A ` !e : � (Deref)A ` e1 : Q ref (�2) A ` e2 : �2A ` e1 := e2 : ? unit (Assign)5



The semanti
s of 
onst requires that the left-hand sideof an assignment be non-
onst. In our framework, this re-quirement 
an be expressed with an assertion e1j:
onst := e2on every assignment. Noti
e that su
h assertions 
an beadded automati
ally.Another way to add this restri
tion is to 
hange (Assign).Re
all that in our 
onstru
tion of the quali�ed type rules,whenever we needed to insert a quali�er but had no way of
hoosing one, we simply allowed all quali�ers. This is whereQ 
ame from in (Assign).Rather than using annotations, we allow the quali�erdesigner to pla
e restri
tions at these 
hoi
e points. Thus(Assign) be
omesA ` e1 : :
onst ref (�2) A ` e2 : �2A ` e1 := e2 : ? unit (Assign0)2.5 Pra
ti
al ConsiderationsAlthough adding quali�er annotations and assertions
hanges the syntax of the sour
e language, in pra
ti
e the
hanges to the lexer and parser 
an be minimal. We 
anrequire that all quali�ers begin with a reserved symbol, sothat the lexer 
an unambiguously tokenize quali�ers. Thegrammar for types is extended so that quali�ers 
an appearon all levels of a type, using well-understood te
hniques toavoid ambiguity [ASU88℄. We add a spe
ial synta
ti
 formfor assertions.We have prototyped su
h a set of extensions to an ANSIC front end. The extended language a

epts standard ANSIC as a subset. The extensions required only trivial modi�-
ations.We 
an transform a quali�ed program to an unquali�edprogram simply by removing the quali�ers and the asser-tions. One way to do this is to follow the approa
h of Evans[Eva96℄ and use spe
ial 
omment syntax for our languageextensions. This has the advantage that a 
ompiler for thestandard language will automati
ally ignore all quali�ers,though it makes the parser for the quali�ed type systemmu
h more 
ompli
ated, espe
ially when arbitrary levels ofquali�
ation are permitted.3 Type Inferen
e, Polymorphism, and Soundness3.1 Type Inferen
eThe rules in Figure 4 des
ribe a type 
he
king system. We
an also extend a type inferen
e system in a similar way. Asbefore we assume that the original type system is monomor-phi
; polymorphism 
an be dealt with as des
ribed in Se
-tion 3.2. We view the standard type inferen
e system asa 
olle
tion of type inferen
e rules R1; : : : ; Rk giving judg-ments of the form A ` e : � ;C, meaning in type environ-ment A expression e has type � under equality 
onstraintsC. Formally, the 
onstraints generated by typing judgmentsare given by C ::= f�1 = �2g j C1 [ C2A solution to a set of equality 
onstraints fli = rig is asubstitution S : TVar ! Typ that maps type variables toground types (types without variables) su
h that ` S(li) =S(ri) for all i. If A ` e : � ;C and a solution S of C exists,then S de�nes a valid typing of e. If no solution exists, e isuntypable.

For expository purposes we assume that the type rulesRi 
an be written in the formA[~x1 7! ~�1℄ ` e1 : �1;C1 � � � A[~xn 7! ~�n℄ ` en : �n;CnC = (Sni=1 Ci) [ fli = rigA ` e : �e;Cwhere the ei are the immediate subexpressions of e (i.e., theinferen
e rules are 
ompositional), and the fli = rig are aset of equality 
onstraints between types, usually the �i and�e. In order to 
onstru
t a new rule for quali�ed types, wede�ne a spread operation (similar to [TT94℄)sp : (TVar ! QTyp)�Typ ! QTypthat 
onsistently rewrites standard types as quali�ed types.The �rst parameter of sp(�; �) is a mapping V that is used to
onsistently rewrite type variables and metavariables, andthe se
ond parameter is the type to be rewritten.sp(V; �) = V (�)sp(V; 
(�1; : : : ; �a(
))) =� 
(sp(V; �1); : : : ; sp(V; �a(
)))where the � are standard type variables and the � are freshvariables ranging over latti
e elements. Intuitively, when-ever sp(�; �) en
ounters a type 
onstru
tor, it does not knowwhi
h quali�er to add, and so the translation allows anyquali�er to appear on the 
onstru
tor.From the original type inferen
e rules Ri we 
onstru
tthe quali�ed type inferen
e rules R0i asA[~x1 7! ����!sp(V; � )1℄ ` e1 : sp(V; �1);C1 � � �A[~xn 7! ����!sp(V; � )n℄ ` en : sp(V; �n);CnC = (Sni=1 Ci) [ fsp(V; li) = sp(V; ri)gA ` e : sp(V; �e);Cwhere V maps ea
h distin
t metavariable � in Ri to a dis-tin
t quali�ed type metavariable �, and ea
h variable � inRi to a distin
t quali�ed type � �.For example, in the standard type inferen
e system forour language, the appli
ation rule isA ` e1 : �1;C1 A ` e2 : �2;C2C = C1 [ C2 [ f�1 = �2 ! �gA ` e1 e2 : �;CThe 
onstru
ted rule in the quali�ed type system isA ` e1 : �1;C1 A ` e2 : �2;C2C = C1 [ C2 [ f�1 = � (�2 ! �0 �)gA ` e1 e2 : �0 �;CAs in Figure 4 we add a subsumption rule and rules forquali�er annotations and assertions to the 
onstru
ted typeinferen
e system. The resulting quali�ed type inferen
e sys-tem proves judgments of the form A ` e : �;C, where nowC 
ontains subtyping 
onstraints and latti
e inequalities:C ::= f�1 � �2g j fQ1 v Q2g j C1 [ C2These 
onstraints arise from the subsumption rule and fromequality 
onstraints in the original rules (re
all that � = �0is an abbreviation for f� � �0; �0 � �g, where � and �0 arequali�ed types).To solve the subtyping 
onstraints, we �rst apply thesubtyping rules (in Figure 4a for our example language) tothe 
onstraints so that we are left with only latti
e 
on-straints. These 
onstraints are of the form � v L, L v �, orL1 v L2. This is an atomi
 subtyping system, whi
h 
an besolved in linear time for a �xed set of quali�ers [HR97℄.6



3.2 PolymorphismAs mentioned in the introdu
tion, we 
an add a notion ofpolymorphi
 type quali�ers. We begin by adding polymor-phi
 
onstrained types � to our type language:� ::= 8~�:�nC� ::= Q �� ::= � j int j �1 ! �2Q ::= � j lThe type 8~�:�nC represents any type of the form �[~� 7! ~Q℄under the 
onstraints C[~� 7! ~Q℄, for any 
hoi
e of quali�ers~Q. Note that polymorphism only applies to the quali�ersand not to the underlying types.Following [OSW97℄, we introdu
e existential quanti�
a-tion on 
onstraint systems:C ::= f�1 � �2g j fQ1 v Q2g j C1 [ C2 j 9~�:CNote that we 
an lift existential quanti�
ation to the top-level by renaming variables. If S[~� 7! ~Q℄ is a solution of C,then S is a solution of 9~�:C. Intuitively, existential quan-ti�
ation binds purely lo
al quali�er variables (see below).As is standard in let-style polymorphism [Mil78℄, werestri
t the introdu
tion of polymorphi
 types to let-expressions. Due to well-known problems with mixing up-dateable referen
es and polymorphism, we only allow syn-ta
ti
 values (i.e., fun
tions in C) to be polymorphi
 [Wri95℄.We extend the quali�ed type inferen
e system to introdu
eand eliminate polymorphi
 types:A ` v : �1;C1 A[x 7! 8~�:�1nC1℄ ` e2 : �2;C2~� not free in AA ` let x = v in e2 ni : �; (9~�:C1) [ C2 (Letv)A(x) = 8~�:�nCA ` x : �[~� 7! ~Q℄;C[~� 7! ~Q℄ (Var0)In (Letv), we bind ~� before adding C1 to the 
onstraintsgenerated by e2 so the purely lo
al ~� 
an be renamed freelywithout 
hanging the 
on
lusion of the rule. This mat
hesthe intuition that the ~� are lo
al to the body of the let, andalso allows for a relatively simple proof of soundness. See[EST95℄ for an alternate approa
h.Polymorphism solves the problem with C's monomorphi
type system that was outlined in the introdu
tion. Considerthe following 
ode fragment:1 let id = �x:x in2 let y = id(ref 1) in3 let z = id(
onst ref 1) in: : :ni ni niWe �rst derive that �x:x has type? (�x �x ! �x �x). Thenwe apply the rule (Letv) to give id the polymorphi
 type8�x:? (�x �x ! �x �x)n;. Now when we apply id in lines 2and 3, we 
an use rule (Var0) to instantiate id with two sep-arate sets of quali�ers, and so y 
an have type ? ref (? int)even though z must have type 
onst ref (? int).

3.3 SoundnessBy using standard te
hniques found in [WF94, EST95,OSW97℄ we show that the type system we have pre-sented, with quali�ers, referen
es, and polymorphism, satis-�es a subje
t redu
tion property. Our proof 
losely follows[EST95℄. We give only a proof sket
h, due to spa
e limita-tions.We begin by de�ning a store s as a �nite mapping fromlo
ations (i.e., variables) to values. We denote lo
ationsby a as a reminder that they must be bound in the store.The semanti
s assumes that all values are quali�ed, so thata semanti
 value is a quali�er annotation and a synta
ti
value (l v). A program 
an always be rewritten in this formby inserting ? annotations. We de�ne a redu
tion 
ontextto �x the left-to-right ordering of evaluation:R ::= [ ℄ j R e j (l v) R j if R then e2 else e3 fij let x = R in e2 ni j Q ref Rj!R j R := e j Q a :=R j l R j RjlWe give single-step operational semanti
s for the exe
u-tion of a program in Figure 5. A 
on�guration hs; ei is a pairwhere s represents the store and e represents the 
urrent re-dex. We assume that all values are quali�ed. We extendtypings to 
on�gurations:De�nition 3 (Store Typing) We write A ` hs; ei : �;Cif both of the following hold:1. A ` e : �;C2. For all a 2 dom(s), A(a) = Qa ref (�a) and A ` s(a) :�a;C.The �rst 
ondition guarantees that e has the right type, andthe se
ond 
ondition guarantees that the typing of the storeis 
onsistent with the values in the store.Lemma 1 If A ` e : �;C and S is a substitution su
h thatSC is satis�able, then SA ` e : S�;SC.Proof: By indu
tion on the derivation of A ` e : �;C.Sin
e SC is satis�able all subsets of the 
onstraints SC aresatis�able. The only interesting 
ase is in (Letv). In this
ase, we �rst rewrite the proof of A ` e : �;C so that noneof the variables ~� are 
hanged by S; we 
an do so be
ausethe ~� are bound by an existential quanti�er in the 
on
lusionof (Letv). 2Theorem 1 (Subje
t Redu
tion) If A ` hs; ei : �;Cand hs; ei ! hs0; e0i, then there exists an A0 su
h thatA0jdom(A) = A and A0 ` hs0; e0i : �;C0 where C0 � C.Proof: By indu
tion on the stru
ture of e. In the 
ase of(Letv), we need to show that we 
an give e2[x 7! v℄ the sametype as let x = v in e2 ni. We have A ` v : �1;C1. In thetyping proof A[x 7! 8~�:�1nC1℄ ` e2 : �2;C2, at ea
h o

ur-ren
e of x in e2 we applied (Var0) with some substitution Son ~�. By Lemma 1 we have A ` v : S�1;SC1, so we 
anrepla
e x by v and prove the same judgment. 2Next we observe that stu
k expressions (expressions thatare not values but for whi
h no redu
tion applies [WF94℄)do not type
he
k, whi
h is trivial to prove. Then we 
anshowCorollary 1 (Soundness) If ; ` e : �;C, then either e isa value or e diverges.7



hs; R[(l2 v)jl1 ℄i ! hs;R[l2 v℄i l2 v l1hs; R[l1 (l2 v)℄i ! hs;R[l1 v℄i l2 v l1hs;R[if (l n) then e2 else e3 fi℄i ! hs;R[e2℄i n 6= 0hs; R[if (l 0) then e2 else e3 fi℄i ! hs;R[e3℄ihs; R[(l �x:e1) v℄i ! hs;R[e1[x 7! v℄℄ihs; R[let x = v in e2 ni℄i ! hs;R[e2[x 7! v℄℄ihs; R[l ref v℄i ! hs[a 7! v℄; R[l a℄i a freshhs; R[!(l a)℄i ! hs;R[s(a)℄i a 2 dom(s)hs; R[(l a) := v℄i ! hs[a 7! v℄; R[? ()℄i a 2 dom(s)Figure 5: Operational Semanti
s4 Const Inferen
eIn this se
tion we des
ribe a 
onst-inferen
e system for Cthat takes an entire C program and infers the maximumnumber of 
onsts that 
an be synta
ti
ally present in theprogram. Su
h a system relieves the programmer of theburden of annotating all possible 
onst lo
ations. Insteadthe programmer 
an annotate the most important 
onstsand use the inferen
e to determine the 
onstness of the re-maining variables and parameters. Furthermore, our exper-iments show that the polymorphi
 quali�er system allowsmore 
onst annotations than the C type system, whi
h ismonomorphi
.4.1 C TypesC types already 
ontain quali�ers, hen
e our implementationdoes not use the sp operator de�ned in Se
tion 3.1. How-ever, our system does need to translate the C types into theform des
ribed in Se
tion 2.4. All variables in C refer toupdateable memory lo
ations. In the terminology of thispaper, they are all ref types. When C variables appear inr-positions, they are automati
ally dereferen
ed. For exam-ple, 
onsider the following 
ode:int x;
onst int y;x = y;In our example language, this program is written x := !y.Omitting the quali�ers on int , let A = ;[x 7!? ref (int); y 7! 
onst ref (int)℄ as 
an be derived from thede�nitions of x and y. Then we 
an type this program inour system as follows: A ` y : 
onst ref (int)A ` x : ? ref (int) A ` !y : int` ? v :
onstA ` x := !y : unitEven though in the C type it appears that the 
onst isasso
iated with the int, in fa
t 
onst quali�es the ref 
on-stru
tor of y. Hen
e y's 
onstness does not a�e
t x.We 
an explain this systemati
ally by giving a transla-tion � from the C types to ref types. For the sake of sim-pli
ity we only dis
uss pointer and integer types. Let the Ctypes be given by the grammarCTyp ::= Q int j Q ptr(CTyp)

We de�ne the mapping � : CTyp ! QTyp as follows:�(CTyp) = Q0 ref (�)where (Q0; �) = �0(CTyp)�0(Q int) = (Q;? int)�0(Q ptr(CTyp)) = (Q; (Q0 ref (�)))where (Q0; �) = �0(CTyp)Intuitively, the quali�ed type 
orresponding to a C type hasone extra ref on the outside, and the 
onst quali�ers haveshifted up one level in the type. Note that these are thetypes of l-values, and the outermost ref should be removedto get the type of an r-value.The advantage of this transformation is that we 
an usethe standard subtyping rules for ref. Consider the followingexample:int *x;
onst int *y;y = x;In the C type system, we are assigning x, whi
h has typeptr(int), to y, whi
h has type ptr(
onst int), thus it ap-pears that we are using a non-standard subtyping rule, be-
ause pointers are updateable. However, when we translatethis into our system, we see that the r-value x has type? ref (int), and the l-value y has type? ref (
onst ref (int)).In order to assign x to y, we must show ` ? ref (int) �
onst ref (int) whi
h is true in the standard subtyping rela-tion we use.4.2 Other ConsiderationsUltimately we would like the analysis result to be the textof the original C program with some extra 
onst quali�ersinserted. Thus we pla
e some restri
tions on the types weinfer. In C di�erent variables with the same stru
t typeshare the de
laration of their �elds. Thus in our system, ifa and b are de
lared with the same stru
t type, we onlyallow a and b to di�er on the outermost (top-level) quali�er;the quali�ers on their �elds must be identi
al. For example,
onsider the following 
ode:stru
t st { int x; };stru
t st a, b;a = b;The assignment a=b is equivalent to a.x = b.x. To satisfythe type rules, it is suÆ
ient for the r-type of b.x to be asubtype of the r-type of a.x. However, be
ause a.x and b.xshare the �eld annotation in stru
t st, we require them to8



be equal. Note that the top-level quali�er atta
hed to theref 
onstru
tors of the l-types of a and b 
an be distin
t fromea
h other. For example, although a must be a non-
onstref, we do not require that b be non-
onst.On the other hand, we treat typedefs as ma
ro-expansions, e.g., intypedef int *ip;ip 
, d;
 and d do not share any quali�ers.One of the 
ompli
ations of analyzing real programs isthat real programs use libraries, the 
ode for whi
h is of-ten either unavailable or written in another language. Forany unde�ned fun
tions, we make the most 
onservative as-sumption possible: We treat any parameters not de
lared
onst as non-
onst. In general library fun
tions are anno-tated with as many 
onsts as possible, and so la
k of 
onstdoes mean 
an't-be-
onst.C 
ontains many di�erent ways to defeat the type sys-tem, of whi
h the most obvious is 
asting. For expli
it 
astswe 
hoose to lose any asso
iation between the value being
ast and the resulting type. For impli
it 
asts we retain asmu
h information as possible.Another way to defeat the type system is to use variable-length argument lists, or 
all a fun
tion with the wrong num-ber of arguments. Both 
ases happen in pra
ti
e; we simplyignore extra arguments.4.3 Polymorphi
 Inferen
eRe
all that we allow standard let-style polymorphism, inwhi
h polymorphi
 expressions are expli
itly marked. Sin
ea C program is made up of a set of possibly mutually-re
ursive fun
tions, we need to synta
ti
ally analyze the pro-gram to �nd the let blo
ks.De�nition 4 The fun
tion dependen
e graph (FDG) of aprogram is a graph G = (V;E) with verti
es V and edgesE. V is the set of all fun
tions in the program, and there isan edge in E from f to g i� fun
tion f 
ontains an o

urren
eof the name g.The FDG exa
tly 
aptures the impli
it stru
ture of fun
-tion de�nitions. There is an edge from f to g if g must betype 
he
ked before f, and the strongly-
onne
ted 
ompo-nents of the FDG are the sets of mutually-re
ursive fun
-tions.To apply the polymorphi
 inferen
e to a C program,we �rst 
onstru
t the FDG. Then we traverse the strongly-
onne
ted 
omponents of the FDG in reverse depth-�rst or-der (the traversal 
an be 
omputed in time linear in the sizeof the graph [CLR90℄). We analyze ea
h set of mutuallyre
ursive fun
tions monomorphi
ally and then we apply therule for quanti�
ation. After we rea
h the root node of theFDG, we analyze any global variable de�nitions.More work is required after type inferen
e to measure theresults. We want to know how many formal parameters 
anbe polymorphi
, i.e., either 
onst or non-
onst. However,in general a C fun
tion may refer to global variables, so a Cfun
tion's polymorphi
 type is not 
losed.The types of global variables are 
losed on
e we have an-alyzed the whole program. A straightforward post-analysispass 
ombines this information with the types inferred dur-ing the FDG traversal to 
ompute the results.
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Figure 6: Number of inferred 
onsts for ben
hmarksWe would prefer to use polymorphi
 re
ursion ratherthan let-style polymorphism to avoid working with the FDG,but BANE [AFFS98℄, the toolkit used to 
ondu
t our exper-iments, did not support polymorphi
 re
ursion when thiswork began. Be
ause the quali�er latti
e is �nite and qual-i�ers do not 
hange the type stru
ture, the 
omputation ofpolymorphi
 re
ursive types is de
idable and in fa
t shouldbe very eÆ
ient. We have re
ently learned that Jakob Rehofhas written a polymorphi
 re
ursive type inferen
e systemfor C++ [Reh99℄.4.4 ExperimentsWe perform 
onst inferen
e using the rules for 
onst out-lined in Se
tion 2.4. Table 1 lists the set of ben
hmarks weused to test our analysis. We purposely sele
ted programsthat show a signi�
ant e�ort to use 
onst, rather than thosethat use it in only a few pla
es.Several of these \programs" are a
tually 
olle
tions ofprograms that share a 
ommon 
ode base. We analyzedea
h set of programs at on
e. This o

asionally requiredrenaming 
ertain fun
tions that were de�ned in several �lesto be distin
t.For ea
h ben
hmark, we measured the number of inter-esting 
onsts (see below) inferred by the monomorphi
 andthe polymorphi
 version of our analysis. For any given reftype, there are three possible results that our analysis 
aninfer: It 
an de
ide that the ref1. must be 
onst,2. must not be 
onst, or3. 
ould be either.If the analysis inferred that something not marked as 
onstmust in fa
t be 
onst, this would indi
ate a type error. Sin
eall of our ben
hmarks are 
orre
t C programs, all of thepossible additional 
onsts dete
ted must be from (3). Thetotal number of possible 
onsts is the sum of (1) and (3).Note that the number of possible 
onsts does not depend onthe sour
e-level 
onst annotations, sin
e removing a 
onstmerely shifts the annotation on a ref type from (1) to (3).9



Name Lines Des
riptionwoman-3.0a 1496 Repla
ement for man pa
kagepat
h-2.5 5303 Apply a di� �le to an originalm4-1.4 7741 Unix ma
ro prepro
essordi�utils-2.7 8741 Colle
tion of utilities for diÆng �lesssh-1.2.264 18620 Se
ure shelluu
p-1.04 36913 Unix to unix 
opy pa
kageTable 1: Ben
hmarks for 
onst inferen
eName Compile time (s) Mono time (s) Poly time (s) De
lared Mono Poly Total possiblewoman-3.0a 4.84 3.91 8.91 50 67 72 95pat
h-2.5 16.98 18.70 33.43 84 99 107 148m4-1.4 19.48 36.81 64.43 88 249 262 370di�utils-2.7 24.46 35.70 57.34 153 209 243 372ssh-1.2.26 84.55 101.90 174.28 147 316 347 547uu
p-1.04 113.75 177.71 457.16 433 1116 1299 1773Table 2: Number of inferred possibly 
onst positions for ben
hmarksWe only 
ounted the number of \interesting" 
onstspla
ed on arguments and results of de�ned fun
tions. Re
allthat 
onsts 
an only be pla
ed on pointers and that argu-ments are passed by value, so the fun
tion int foo(int x,int *y) has only one interesting lo
ation where 
onst 
ango, namely on the 
ontents of y, whi
h is itself a ref.Figure 6 shows our results, whi
h are tabulated in Ta-ble 2. Our 
urrent implementation uses BANE [AFFS98℄,a framework for 
onstru
ting 
onstraint-based analyses, forthe quali�er inferen
e. BANE handles 
onstraint representa-tion and solution, and our analysis tool generates 
onstraintsand interprets the results.The �rst 
olumn of measurements gives the 
ompile time.The next two 
olumns give the running time (average of �ve)for the monomorphi
 and polymorphi
 
onst-inferen
e. Wedo not in
lude the parsing time. Note that the inferen
es
ales roughly linearly with the program size, and that thepolymorphi
 inferen
e takes at most 3 times longer than themonomorphi
 inferen
e. Our implementation uses a generi
set 
onstraint engine to solve quali�er 
onstraints, and weexpe
t substantial speedups would be a
hieved with a frame-work spe
ialized to the quali�er latti
e.The next 
olumn lists the number of interesting 
onststhat were de
lared in the program. The right-most 
olumnindi
ates the total number of pla
es that are synta
ti
allyallowed to have a 
onst quali�er (a

ording to our de�nitionof interesting).The Mono and Poly 
olumns list the results of themonomorphi
 and polymorphi
 inferen
e algorithms, respe
-tively. As mentioned previously, any additional quali�ersinferred 
an be either 
onst or non-
onst (these 
orrespondto un
onstrained quali�er variables). For the monomorphi
type system we 
an make all of these positions 
onst andstill have a type 
orre
t program. For the polymorphi
 typesystem we need to leave these as un
onstrained variables,sin
e they may be required to be 
onst or non-
onst in4The ssh distribution also in
ludes a 
ompression library zlib andthe GNU MP library (arbitrary pre
ision arithmeti
). We treatedboth of these as unanalyzable libraries; zlib 
ontains 
ertain stru
-tures that are in
onsistently de�ned a
ross �les, and the GNU MPlibrary 
ontains inlined assembly 
ode.

di�erent 
ontexts.The measurements show that many more 
onsts 
an beinferred than are typi
ally present in a program. For someprograms the results are quite dramati
, notably for uu
p-1.04, whi
h 
an have more than 2.5 times more 
onsts thanare a
tually present. Re
all these are already programs inwhi
h some e�ort was made to use 
onst.For this set of ben
hmarks polymorphi
 analysis allows 5-16% more 
onsts than monomorphi
 analysis. These resultsshow that quali�er polymorphism is both useful and alreadylatent in C programs, although we believe that most of thebene�t for polymorphism 
omes from allowing fewer type
asts rather than more 
onsts.Our experiments show that an automated inferen
e toolmakes it mu
h easier for a programmer to fully use 
onstannotations to express information about the side-e�e
ts offun
tions. They also show that polymorphism allows more
onst annotations than the monomorphi
 C type systemwithout 
asts.5 Related WorkThere are three threads of related work: examples of sys-tems that use type quali�ers, frameworks related to typequali�ers, and other te
hniques for 
he
king programmer-spe
i�ed invariants.We have already mentioned the example quali�er sys-tems of 
onst from ANSI C [KR88℄, Evans's l
lint [Eva96℄,and stati
 and dynami
 annotations from binding-timeanalysis [DHM95℄. Two other examples are the se
ure infor-mation 
ow system of [VS97℄, whi
h annotates types withhigh- and low-se
urity quali�ers, and the �-
al
ulus withtrust annotations of [�P97℄. [�P97℄ suggests an extensionof their system to multiple levels of trust, whi
h is similarto our idea of a latti
e of type quali�ers.Another example 
omes from Titanium [YSP+98℄, aJava-based SPMD programming language. Titanium usesthe quali�er lo
al to distinguish pointers to lo
al memory,whi
h 
an be a

essed with a simple load instru
tion, frompointers to non-lo
al memory, whi
h must be a

essed witha network operation. A pointer annotated with lo
al must10



be lo
al; a pointer not annotated with lo
al may either belo
al or non-lo
al. In Titanium, lo
al annotations are 
rit-i
al be
ause they allow the 
ompiler to remove expensiverun-time tests.Several other resear
hers have noted that type quali�ersare an important tool for program analysis. [Sol95℄ gives aframework for understanding a parti
ular family of relatedanalyses as type annotation (quali�er) systems. [ABHR99℄des
ribes the Dependen
y Core Cal
ulus (DCC) and pro-vides translations into DCC from several dependen
y-basedtype quali�er systems su
h as [VS97℄. DCC is one exampleof a 
al
ulus based on monads. Re
ent work [Kie98, Wad98℄has explored the 
onne
tion between monads and e�e
t sys-tems [LG88℄. Some e�e
t systems 
an also be expressed astype quali�er systems. However, the exa
t 
onne
tion be-tween monads, e�e
t systems, and type quali�ers is un
lear.Other frameworks 
hoose a di�erent design point by pro-viding more powerful annotation languages. For example,Klarlund and S
hwartzba
h's graph types [KS93℄ allow pro-grammers to spe
ify detailed shape invariants on data stru
-tures. Another approa
h is the Extended Stati
 Che
kingsystem [Det96, LN98℄, whi
h uses sophisti
ated theorem-proving te
hniques that allow the programmer to 
he
k in-variants. The advantage of su
h systems is that the invari-ants are mu
h more pre
ise than in a type quali�er system.However, spe
ifying su
h invariants requires more e�ort andsophisti
ation on the programmer's part.6 Future WorkIn the framework presented in this paper, types remainstati
 throughout the sour
e program, even though the val-ues stored in some lo
ations may 
hange through updates.Indeed, as stated our framework 
annot express the analysisof l
lint, in whi
h annotations on a given lo
ation mayvary at ea
h program point.One solution we are investigating is to assign ea
h lo-
ation a distin
t type at every program point and to addsubtyping 
onstraints between the di�erent types. For ex-ample, suppose that x has type �1 before a non-bran
hingstatement s and x has type �2 after s. Then if s does notperform a strong update of x we add the 
onstraint �1 � �2;if s does strongly update x then we do not add this 
on-straint. This te
hnique allows a measure of 
ow sensitivity,whi
h may make type quali�ers more useful in 
ertain ap-pli
ations.Finally, an issue we have not addressed is the presen-tation and spe
i�
ation of polymorphi
 fun
tion types. Inour system ea
h polymorphi
 type also 
arries a set of 
on-straints, and we 
urrently do not have a notation for spe
-ifying 
onstraints in the sour
e language. Additionally, inpra
ti
e these 
onstraint systems 
an be large and diÆ
ultto interpret. Simplifying these 
onstrained types for presen-tation is an open resear
h problem.7 Con
lusionWe believe that type quali�ers are a simple yet useful addi-tion to standard type systems. We have presented a frame-work for adding type quali�ers, quali�er annotations, andquali�er assertions to an standard language, and we allowtypes to be polymorphi
 in the type quali�ers. Our exper-imental results show that for a set of ben
hmarks, many

more 
onst quali�ers 
an be added than are present, eventhough our ben
hmarks make signi�
ant use of 
onst.A
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