
A Theory of Type Quali�ers�Je�rey S. Fosterjfoster�s.berkeley.edu Manuel F�ahndrihmaf�mirosoft.omEECS DepartmentUniversity of California, BerkeleyBerkeley, CA 94720-1776
Alexander Aikenaiken�s.berkeley.edu

AbstratWe desribe a framework for adding type quali�ers to a lan-guage. Type quali�ers enode a simple but highly usefulform of subtyping. Our framework extends standard typerules to model the ow of quali�ers through a program,where eah quali�er or set of quali�ers omes with addi-tional rules that apture its semantis. Our framework al-lows types to be polymorphi in the type quali�ers. Wepresent a onst-inferene system for C as an example appli-ation of the framework. We show that for a set of real Cprograms, many more onsts an be used than are atuallypresent in the original ode.1 IntrodutionProgrammers know strong invariants about their programs,and it is widely aepted by pratitioners that suh invari-ants should be automatially, statially heked to the ex-tent possible [Mag93℄. However, exept for stati type sys-tems, modern programming languages provide little or nosupport for expressing suh invariants. In our view, theproblem is not a lak of proposals for expressing invariants;the researh ommunity, and espeially the veri�ation om-munity, has proposed many mehanisms for speifying andproving properties of programs. Rather, the problem lies ingaining widespread aeptane in pratie. A entral issueis what sort of invariants programmers would be willing towrite down.In this paper we onsiously seek a onservative frame-work that minimizes the unfamiliar mahinery programmersmust learn while still allowing interesting program invariantsto be expressed and heked. One kind of programming an-notation that is widely used is a type quali�er.Type quali�ers are easy to understand, yet they an ex-press strong invariants. The type system guarantees that inevery program exeution the semanti properties apturedby the quali�er annotations are maintained. This is in on-trast to dynami invariant heking (e.g., assert maros or�This researh was supported in part by the National SieneFoundation Young Investigator Award No. CCR-9457812, NASAContrat No. NAG2-1210, and an NDSEG fellowship.To appear in the Proeedings of the ACM SIG-PLAN '99 Conferene on Programming Language De-sign and Implementation (PLDI), Atlanta, Georgia,May 1999.

Purify [Pur℄), whih test for properties in a partiular pro-gram exeution.A anonial example of a type quali�er from the C worldis the ANSI C quali�er onst. A variable with a type an-notated with onst an be initialized but not updated.1 Aprimary use of onst is annotating pointer-valued funtionparameters as not being updated by the funtion. Not onlyis this information useful to a aller of the funtion, but itis automatially veri�ed by the ompiler (up to asting).Another example is Evans's llint [Eva96℄, whih intro-dues a large number of additional quali�er-like annotationsto C as an aid to debugging memory usage errors. Onesuh annotation is nonnull, whih indiates that a pointervalue must not be null. Evans found that adding suh an-notations greatly inreased ompile-time detetion of nullpointer dereferenes [Eva96℄. Although it is not a type-based system, we believe that annotations like llint's anbe expressed naturally as type quali�ers in our framework.Yet another example of type quali�ers omes frombinding-time analysis, whih is used in partial evaluationsystems [Hen91, DHM95℄. Binding-time analysis inferswhether values are known at ompile time (the quali�erstati) or may not be known until run time (the quali-�er dynami) by speializing the program with respet to aninitial input.There are also many other examples of type quali�ers inthe literature. Eah of the ited examples adds partiulartype quali�ers for a spei� appliation. This paper presentsa framework for adding new, user-spei�ed type quali�ers toa language in a general way. Our framework also extends thestandard type system to perform quali�er inferene, whihpropagates programmer-supplied annotations through theprogram and heks them. Suh a system gives the pro-grammer more omplete information about quali�ers andmakes quali�ers more onvenient to use than a pure hek-ing system.The main ontributions of the paper are� We show that it is straightforward to parameterize alanguage by a set of type quali�ers and inferene rulesfor heking onditions on those quali�ers. In partiu-lar, the hanges to the lexing, parsing, and type hek-ing (see below) phases of a ompiler are minimal. Webelieve it would be realisti to inorporate our proposalinto software engineering tools for any typed language.1C allows type asts to remove onstness, but the result is imple-mentation dependent [KR88℄.1

� We show that the handling of type quali�ers an beseparated from the standard type system of the lan-guage. That is, while the augmented type system in-ludes rules for manipulating and heking quali�ers,in fat the omputation of quali�ers an be isolated ina separate phase after standard typeheking has beenperformed. This fatorization is similar to that of re-gion inferene [TT94℄.� We introdue a natural notion of quali�er polymor-phism that allows types to be polymorphi in theirquali�ers. We present examples from existing C pro-grams to show that quali�er polymorphism is usefuland in fat neessary in some situations.� We present experimental evidene from a prototypequali�er inferene system. For this study, we exam-ine the use of the quali�er onst on a set of C benh-marks. We show that even in ases where programmershave apparently tried to systematially mark variablesas onst, monomorphi quali�er inferene is able to in-fer many additional variables as onst. Furthermore,polymorphi quali�er inferene �nds more onst vari-ables than monomorphi inferene. This study showsboth that quali�er inferene is pratial and useful,even for existing quali�ers and programs.The tehnial observation behind our framework is that atype quali�er q introdues a simple form of subtyping: Forall types � , either � � q � or q � � � . Here, as throughthe rest of the paper, we write quali�ers in pre�x notation,so q � represents standard type � quali�ed by q. We illus-trate the subtyping relationship using the examples givenabove. In C, non-onst l-values an be promoted to onstl-values, but not vie-versa. We apture this formally bysaying that � � onst � for any type � . In Evans's system,the set of non-null pointers is a subset of the set of all point-ers, whih is expressed as nonnull � � � . In binding timeanalysis values may be promoted from stati to dynami.Sine stati and dynami are dual notions, we an hooseto write stati � � � or � � dynami � , depending onwhih quali�er name we regard as the anonial one.Our framework extends a language with a set of standardtypes and standard type rules to a quali�ed type system asfollows.2 The user de�nes a set of n type quali�ers q1; : : : ; qnand indiates the subtyping relation for eah (whether qi � �� or � � qi � for any standard type �). Eah level of astandard type may be annotated with a set of quali�ers,e.g., if ref (int) is a standard type, then q1 ref (q2 int) is aquali�ed type, where q1 quali�es the ref and q2 quali�es theint. We extend the standard type system to infer quali�edtypes.The polymorphi version of our system requires polymor-phi onstrained types to apture bounds on polymorphiquali�er variables. This form of polymorphi types involvesonly relatively simple onstraints that an be solved withvery eÆient algorithms [HR97℄.Eah quali�er omes with rules that desribe well-formedtypes and how quali�ers interat with the operations inthe language. These rules are supplied by the user andmay be nearly arbitrary (see Setion 2.4). For example,a rule for onst adds a quali�er test to require that the left-hand side of an assignment is non-onst. An example of a2Apologies to Mark P. Jones for overloading the term quali�edtypes [Jon92℄.

well-formedness ondition omes from binding time analysis:Nothing dynami may appear within a value that is stati.Thus, a type suh as stati (dynami � ! dynami �) isnot well-formed.3Beause our framework is parameterized by the set ofquali�ers, we must extend not only the types, but alsothe soure language. We add both quali�er annotations,whih introdue quali�ers into types, and quali�er asser-tions, whih enfore heks on the quali�ers of a quali�edtype. These extensions allow the programmer to express theinvariants that are to be heked by the quali�er inferenerules.We onlude this setion with a brief illustration of theneed for quali�er polymorphism. Quali�er polymorphismsolves a problem with onst familiar to C and C++ pro-grammers. One of the more awkward onsequenes of thestandard (monomorphi) C++ type system appears in theStandard Template Library (STL) [MSS96℄ for C++. STLmust always expliitly provide two sets of operations, onefor onstant data strutures and one for non-onstant datastrutures. For illustration, onsider the following pair of Cfuntions:typedef onst int i;int *id1(int *x) { return x; }i *id2(i *x) { return x; }C programmers would like to have only one opy of thisfuntion, sine both versions behave identially and in fatompile to the same ode. Unfortunately we need both. Apointer to a onstant annot be passed to id1 without aast. A pointer to a non-onstant an be passed to id2, butthen the return value will be onst. In the language of typetheory, this diÆulty ours beause the identity funtionhas type ��! ��, with quali�er set � appearing both o-and ontravariantly.In part beause of the lak of onst polymorphism inC and C++, onst is often either not used, or funtionresults are deliberately ast to non-onst. For example, thestandard library funtion strhr takes a onst har *s asa parameter but returns a har * pointing somewhere in s.By adding polymorphism, we allow onst to be used moreeasily without resorting to asting.The rest of this paper is organized as follows. Setion 2desribes our framework in detail, inluding the rules foronst. Setion 3 disusses type inferene, quali�er poly-morphism, and soundness. Setion 4 desribes our onst-inferene system. Setion 5 disusses related work, Setion 6suggests future diretions, and Setion 7 onludes.2 Quali�ed Type SystemsFor our purposes, types are terms over a set of type on-strutors � and type variables TVar . Program variables aredenoted by PVar . Eah type onstrutor has an arity a().We denote the set of types by Typ:Typ ::= � j (Typ1; : : : ;Typa())where � 2 TVar and 2 �. A type environment A is a mapA : PVar ! Typ. We abbreviate the vetor (x1; : : : ; xn) by3Many desriptions of binding-time analysis omit the standardtypes. In suh a system, this type would be written stati (dynami!dynami).2

e ::= vj e1 e2j if e1 then e2 else e3 fij let x = e1 in e2 niv ::= x x 2 PVarj n n 2 Zj �x:e� ::= �j intj � ! �Figure 1: Soure languageonst dynamionst onst dynami nonzero dynamionst nonzero ; dynami nonzerononzero
6������* HHHHHHY������* HHHHHHY6 HHHHHHY 6������*6HHHHHHY ������*Figure 2: Example quali�er lattie~x. We de�neA[~x 7! ~� ℄(y) = � A(y) y 62 fx1; : : : ; xng�i y = xiwhere the xi are distint.We demonstrate our framework by adding type quali�ersto the funtional language shown in Figure 1. Using the Convention, we interpret 0 in the guard of an if statementas false and any non-zero value as true. Here we distinguishsyntati values v (whih an be evaluated without ompu-tation) from general expressions e. We use a all-by-valuelanguage, though the addition of quali�ers works equallywell for all-by-name languages.For this language, � = fint ;!g with arities 0 and 2, re-spetively, and the type system is that of the simply-typedlambda alulus. Although this language is onvenient fordemonstrating the type heking system, some quali�ers(e.g., onst) are not meaningful in it. In Setion 2.4, weadd updateable referenes (in C terminology, l-values) to ourlanguage and give the additional inferene rules for onst.The user supplies a set of quali�ers q1; : : : ; qn, annotatedto indiate the subtyping relation.De�nition 1 A type quali�er q is positive (negative) if � �q � (q � � �) for any type � .For onveniene we denote the absene of quali�er q by ?qif q is positive or >q if q is negative.We extend subtyping to sets of quali�ers by de�ning aquali�er lattie.De�nition 2 (Quali�er lattie) Eah positive quali�er qde�nes a two-point lattie Lq = ?q v q. Eah negative

� ::= Q �� ::= � j int j (�1 ! �2)Q ::= � j lFigure 3: Type language with quali�ersquali�er q de�nes a two-point lattie Lq = q v >q. Thequali�er lattie L is de�ned by L = Lq1 � � � � � Lqn . Wewrite ? and > for the bottom and top elements of L.Clearly it is unneessary to model both positive and neg-ative quali�ers, sine they are dual notions. Instead of usinga negative quali�er q, we an give >q a name and use it asa positive quali�er, rearranging the type inferene rules ap-propriately. However, as it is often more intuitive to thinkof ertain quali�ers as being positive or negative, we allowboth.Figure 2 shows the quali�er lattie for the positive quali-�ers onst and dynami and the negative quali�er nonzero.A nonzero quali�er on an integer indiates that the integerannot be zero. Instead of writing ?q or >q in the piturewe have simply omitted the name q. (stati is just anothername for ?dynami, and we have omitted it.) Notie that mov-ing up the lattie adds positive quali�ers or removes negativequali�ers.We use v for the ordering on L, and u andt for meet and join. For a positive (negative)quali�er qi, we denote by :qi the lattie element(>q1 ; : : : ;>qi�1 ;?qi ;>qi+1 ; : : : ;>qn) (for negative quali-�ers (?q1 ; : : : ;?qi�1 ;>qi ;?qi+1 ; : : : ;?qn)), where ?qj and>qj are the minimal and maximal elements of Lqj .This general formulation allows any ombination of qual-i�ers to appear on any type. In pratie, however, quali�ersneed not be orthogonal. The analysis designer may speifyinferene rules that depend on multiple quali�ers and well-formedness onditions that prohibit ertain ombinations ofquali�ers.2.1 Quali�ed TypesThe next step is to add quali�ers to the standard type sys-tem. We de�ne a new set of types QTyp, the quali�ed types,by QTyp ::= Q �� ::= � j (QTyp1; : : : ;QTypa()) 2 �Q ::= � j lwhere � 2 QVars, the set of variables that range over typequali�ers, and the l are elements of the lattie L. The qual-i�ed types are just the standard types annotated with setsof quali�ers, i.e., lattie elements or quali�er variables. No-tie that we do not need variables that range over quali�edtypes, sine the ombination of a quali�er variable and atype variable � � serves the same purpose.Figure 3 shows the quali�ed types for our examplelanguage. To avoid ambiguity, we parenthesize funtiontypes. Example quali�ed types are dynami nonzero int anddynami (onst � ! � �). Notie that we allow quali�ersto appear on all levels of a type, even though a partiularquali�er may only be assoiated with ertain standard types(e.g., onst only applies to updateable referenes).3

We now extend the v relation to a subtyping relation� on QTyp. We reate a set of subtyping rules that givejudgments ` � � �0, meaning that � is a subtype of �0.We abbreviate ` f� � �0; �0 � �g by ` � = �0. Thesystem also uses judgments of the form ` Q v Q0, whihis valid if Q v Q0 holds in the lattie. Figure 4a ontainsthe subtyping rules for our example language.The hoie of subtyping rules depends on the meaningsof the type onstrutors �. In general, for any 2 � therule ` Q v Q0` �i = �0i i 2 [1::n℄` Q (�1; : : : ; �n) � Q0 (�01; : : : ; �0n)is sound. Indeed, this is the standard hoie if onstrutsupdateable referenes (see Setion 2.4).2.2 Quali�er Annotations and Quali�erAssertionsNow we wish to extend the standard type system to inferquali�ed types. Our onstrution should apply to any set oftype quali�ers. Thus we immediately enounter a problem,beause when onstruting a quali�ed type we do not knowhow to hoose the top-level quali�ers, i.e., the quali�ers onthe outermost onstrutor.We divore this issue from the type system by addingquali�er annotations to the soure language. Initially we as-sume that any new top-level quali�er is ?. We then allowuser annotations that hange the top-level quali�er mono-tonially. Dually, we also add quali�er assertions to thesoure language that allow the user to hek the top-levelquali�er on a type. While we also allow extra onstraints onthe quali�ers to be added to the type rules, quali�er asser-tions are a simple way to test invariants, and their use doesnot require extensive knowledge of type systems.For our example language, we add produtions for anno-tations and assertions: e ::= � � �j ejlj l eHere quali�er annotation l e tells the type heker that l e'stop-level quali�er should be at least l. Note that the qual-i�er on an abstration quali�es the funtion type itself andnot the type of the parameter. The quali�er assertion ejlrequires that if Qe is e's top-level quali�er, then Qe v l.2.3 Quali�ed Type SystemsThe �nal step is to extend the original type heking systemto handle quali�ed types. Intuitively this extension shouldbe natural, in the sense that adding type quali�ers shouldnot modify the struture of inferred types but only theirquali�ers. We must also extend the type system with a sub-sumption rule, to allow subtyping, and rules for quali�er as-sertions and annotations. The resulting quali�ed type systemfor our example language is shown in Figure 4b. Judgmentsare of the form A ` e : �, meaning that in the type envi-ronment A expression e has quali�ed type �. The systemin Figure 4 is the standard subtyping system (see [Mit91℄)speialized to our appliation. Setion 3.1 ontains a formaldesription of the onstrution of a quali�ed type systemfrom a standard type system.

In general eah quali�er omes with a set of rules de-sribing how the quali�er interats with the operations inthe language. Notie in Figure 4b that the anteedents ofertain rules, e.g., (App), math the types of subexpres-sions against arbitrary quali�ers Q. We allow the quali�erdesigner to restrit these Q to enfore the semantis of par-tiular quali�ers. In Setion 2.4 we show how a type rule forassignment is modi�ed for the onst quali�er.We de�ne two pairs of transformation funtions betweenstandard and quali�ed types and expressions. For a quali�edtype � 2 QTyp, we de�ne strip(�) 2 Typ to be � with allthe quali�ers removed. Analogously, for an expression e inthe annotated language, strip(e) is e without any quali�erannotations or assertions.In the other diretion, for a standard type � 2 Typ wede�ne ?(�) to be the quali�ed type � with the same typestruture as � and all quali�ers set to ?. Analogously, foran expression e in the original language, ?(e) is the orre-sponding expression in the annotated language with only ?quali�er annotations and no quali�er assertions.Observation 1 Let `S be the judgment relation of thetype system of the simply-typed lambda alulus, and let` be the judgment relation of the type system given in Fig-ure 4. Then� If ; `S e : � , then ; ` ?(e) : ?(�).� If ; ` e0 : �, then ; `S strip(e0) : strip(�).This aptures our intuitive requirement that the type qual-i�ers do not modify the underlying type struture.Even without any additional rules on quali�ers, the qual-i�ed type system an be quite useful. Perhaps the most ob-vious kind of type quali�er to add is one that aptures aproperty of a data struture. For example, we may want todistinguish between sorted lists and possibly unsorted lists.We add a negative type quali�er sorted and annotate all ofour sorting funtions so they return sorted lists. (We do notattempt to verify that sorted is plaed orretly|we simplyassume it is.) We an then add quali�er assertions, e.g., tohek that a merge funtion is only alled with sorted lists.2.4 Example: onstMany quali�ers inlude restritions on their usage. In oursystem, these restritions an be expressed as quali�er asser-tions or as extra onstraints between quali�ers. We illustratethe general pattern by adding updateable referenes (in Cterminology, l-values) to our example language and givingthe rules for onst.Quali�er annotations and assertions an always be usedsafely (see Setion 3.3), whereas modi�ations to the typerules must be made with are. It is up to the quali�er de-signer to ensure that after any modi�ations the type infer-ene rules remain not only sound, but also intuitive to theprogrammer, who sees only the presene or absene of qual-i�ers and not the underlying type system. This is espeiallyimportant when designing multiple, interating quali�ers,whih an potentially ompliate the type system.We add ML-style referenes to the language in Figure 1;for a disussion of onst in the C type system, see Setion 4.As mentioned in the introdution onst is positive (for any� , � � onst �). We extend the soure language and the4

` Q1 v Q2` Q1 int � Q2 int (SubInt)` Q1 v Q2 ` �2 � �1 ` �01 � �02` Q1 (�1 ! �01) � Q2 (�2 ! �02) (SubFun)(a) Subtyping rulesA ` e : � ` � � �0A ` e : �0 (Sub)A ` e : Q � ` Q v lA ` ejl : Q � (Assert)A ` e : Q � ` Q v lA ` l e : l � (Annot)A ` n : ? int (Int)A ` x : A(x) (Var)A[x 7! �x℄ ` e : �A ` �x:e : ? (�x ! �) (Lam)A ` e1 : Q (�2 ! �) A ` e2 : �2A ` e1 e2 : � (App)A ` e1 : Q int A ` e2 : � A ` e2 : �A ` if e1 then e2 else e3 fi : � (If)A ` e1 : �1 A[x 7! �1℄ ` e2 : �2A ` let x = e1 in e2 ni : �2 (Let)(b) Syntax-direted rulesFigure 4: Basi type heking rulesquali�ed type language:e ::= � � � j ref e j !e j e1 := e2v ::= � � � j ()� ::= � � � j ref (�) j unitIn this language, ref e reates an updateable referene, !ereturns the ontents of a referene, and e1 := e2 stores thevalue of e2 in referene e1. The type unit has only one value,(). Sine we have introdued a new type onstrutor ref,we also need to desribe how it interats with subtyping.There are well-known problems with mixing subtyping andupdateable referenes [AC96℄. The obvious rule,` Q1 v Q2 ` �1 � �2` Q1 ref (�1) � Q2 ref (�2) (Unsound)is unsound. For example, suppose we allowed subtypingunder a ref. Then we ould typehek the following ode(any missing quali�ers are ?):1 let x = ref(nonzero 37) in2 let y = x in3 y := 0;4 (!x)jnonzero5 ni niLine 3 typeheks beause we an promote the type ofy to :nonzero int , sine by subtyping nonzero int �:nonzero int . But notie that this does not a�et the type

of x, hene line 4 also typeheks even though the ontentsof x is now 0.The solution to this problem is to ensure that any aliasesof the same ref ell ontain the same quali�ers, whih an beahieved by using equality on the type of the ref's ontentsin the subtyping rule.` Q1 v Q2 ` �1 = �2` Q1 ref (�1) � Q2 ref (�2) (SubRef)The subtyping rule for unit is the expeted rule:` Q1 v Q2` Q1 unit � Q2 unit (SubUnit)We give type rules for our new onstruts; here we jumpdiretly to the quali�ed type rules.A ` () : ? unit (Unit)A ` e : �A ` ref e : ? ref (�) (Ref)A ` e : Q ref (�)A ` !e : � (Deref)A ` e1 : Q ref (�2) A ` e2 : �2A ` e1 := e2 : ? unit (Assign)5

The semantis of onst requires that the left-hand sideof an assignment be non-onst. In our framework, this re-quirement an be expressed with an assertion e1j:onst := e2on every assignment. Notie that suh assertions an beadded automatially.Another way to add this restrition is to hange (Assign).Reall that in our onstrution of the quali�ed type rules,whenever we needed to insert a quali�er but had no way ofhoosing one, we simply allowed all quali�ers. This is whereQ ame from in (Assign).Rather than using annotations, we allow the quali�erdesigner to plae restritions at these hoie points. Thus(Assign) beomesA ` e1 : :onst ref (�2) A ` e2 : �2A ` e1 := e2 : ? unit (Assign0)2.5 Pratial ConsiderationsAlthough adding quali�er annotations and assertionshanges the syntax of the soure language, in pratie thehanges to the lexer and parser an be minimal. We anrequire that all quali�ers begin with a reserved symbol, sothat the lexer an unambiguously tokenize quali�ers. Thegrammar for types is extended so that quali�ers an appearon all levels of a type, using well-understood tehniques toavoid ambiguity [ASU88℄. We add a speial syntati formfor assertions.We have prototyped suh a set of extensions to an ANSIC front end. The extended language aepts standard ANSIC as a subset. The extensions required only trivial modi�-ations.We an transform a quali�ed program to an unquali�edprogram simply by removing the quali�ers and the asser-tions. One way to do this is to follow the approah of Evans[Eva96℄ and use speial omment syntax for our languageextensions. This has the advantage that a ompiler for thestandard language will automatially ignore all quali�ers,though it makes the parser for the quali�ed type systemmuh more ompliated, espeially when arbitrary levels ofquali�ation are permitted.3 Type Inferene, Polymorphism, and Soundness3.1 Type InfereneThe rules in Figure 4 desribe a type heking system. Wean also extend a type inferene system in a similar way. Asbefore we assume that the original type system is monomor-phi; polymorphism an be dealt with as desribed in Se-tion 3.2. We view the standard type inferene system asa olletion of type inferene rules R1; : : : ; Rk giving judg-ments of the form A ` e : � ;C, meaning in type environ-ment A expression e has type � under equality onstraintsC. Formally, the onstraints generated by typing judgmentsare given by C ::= f�1 = �2g j C1 [C2A solution to a set of equality onstraints fli = rig is asubstitution S : TVar ! Typ that maps type variables toground types (types without variables) suh that ` S(li) =S(ri) for all i. If A ` e : � ;C and a solution S of C exists,then S de�nes a valid typing of e. If no solution exists, e isuntypable.

For expository purposes we assume that the type rulesRi an be written in the formA[~x1 7! ~�1℄ ` e1 : �1;C1 � � � A[~xn 7! ~�n℄ ` en : �n;CnC = (Sni=1 Ci) [fli = rigA ` e : �e;Cwhere the ei are the immediate subexpressions of e (i.e., theinferene rules are ompositional), and the fli = rig are aset of equality onstraints between types, usually the �i and�e. In order to onstrut a new rule for quali�ed types, wede�ne a spread operation (similar to [TT94℄)sp : (TVar ! QTyp)�Typ ! QTypthat onsistently rewrites standard types as quali�ed types.The �rst parameter of sp(�; �) is a mapping V that is used toonsistently rewrite type variables and metavariables, andthe seond parameter is the type to be rewritten.sp(V; �) = V (�)sp(V; (�1; : : : ; �a())) =� (sp(V; �1); : : : ; sp(V; �a()))where the � are standard type variables and the � are freshvariables ranging over lattie elements. Intuitively, when-ever sp(�; �) enounters a type onstrutor, it does not knowwhih quali�er to add, and so the translation allows anyquali�er to appear on the onstrutor.From the original type inferene rules Ri we onstrutthe quali�ed type inferene rules R0i asA[~x1 7! ����!sp(V; �)1℄ ` e1 : sp(V; �1);C1 � � �A[~xn 7! ����!sp(V; �)n℄ ` en : sp(V; �n);CnC = (Sni=1 Ci) [fsp(V; li) = sp(V; ri)gA ` e : sp(V; �e);Cwhere V maps eah distint metavariable � in Ri to a dis-tint quali�ed type metavariable �, and eah variable � inRi to a distint quali�ed type � �.For example, in the standard type inferene system forour language, the appliation rule isA ` e1 : �1;C1 A ` e2 : �2;C2C = C1 [C2 [f�1 = �2 ! �gA ` e1 e2 : �;CThe onstruted rule in the quali�ed type system isA ` e1 : �1;C1 A ` e2 : �2;C2C = C1 [C2 [f�1 = � (�2 ! �0 �)gA ` e1 e2 : �0 �;CAs in Figure 4 we add a subsumption rule and rules forquali�er annotations and assertions to the onstruted typeinferene system. The resulting quali�ed type inferene sys-tem proves judgments of the form A ` e : �;C, where nowC ontains subtyping onstraints and lattie inequalities:C ::= f�1 � �2g j fQ1 v Q2g j C1 [C2These onstraints arise from the subsumption rule and fromequality onstraints in the original rules (reall that � = �0is an abbreviation for f� � �0; �0 � �g, where � and �0 arequali�ed types).To solve the subtyping onstraints, we �rst apply thesubtyping rules (in Figure 4a for our example language) tothe onstraints so that we are left with only lattie on-straints. These onstraints are of the form � v L, L v �, orL1 v L2. This is an atomi subtyping system, whih an besolved in linear time for a �xed set of quali�ers [HR97℄.6

3.2 PolymorphismAs mentioned in the introdution, we an add a notion ofpolymorphi type quali�ers. We begin by adding polymor-phi onstrained types � to our type language:� ::= 8~�:�nC� ::= Q �� ::= � j int j �1 ! �2Q ::= � j lThe type 8~�:�nC represents any type of the form �[~� 7! ~Q℄under the onstraints C[~� 7! ~Q℄, for any hoie of quali�ers~Q. Note that polymorphism only applies to the quali�ersand not to the underlying types.Following [OSW97℄, we introdue existential quanti�a-tion on onstraint systems:C ::= f�1 � �2g j fQ1 v Q2g j C1 [C2 j 9~�:CNote that we an lift existential quanti�ation to the top-level by renaming variables. If S[~� 7! ~Q℄ is a solution of C,then S is a solution of 9~�:C. Intuitively, existential quan-ti�ation binds purely loal quali�er variables (see below).As is standard in let-style polymorphism [Mil78℄, werestrit the introdution of polymorphi types to let-expressions. Due to well-known problems with mixing up-dateable referenes and polymorphism, we only allow syn-tati values (i.e., funtions in C) to be polymorphi [Wri95℄.We extend the quali�ed type inferene system to introdueand eliminate polymorphi types:A ` v : �1;C1 A[x 7! 8~�:�1nC1℄ ` e2 : �2;C2~� not free in AA ` let x = v in e2 ni : �; (9~�:C1) [C2 (Letv)A(x) = 8~�:�nCA ` x : �[~� 7! ~Q℄;C[~� 7! ~Q℄ (Var0)In (Letv), we bind ~� before adding C1 to the onstraintsgenerated by e2 so the purely loal ~� an be renamed freelywithout hanging the onlusion of the rule. This mathesthe intuition that the ~� are loal to the body of the let, andalso allows for a relatively simple proof of soundness. See[EST95℄ for an alternate approah.Polymorphism solves the problem with C's monomorphitype system that was outlined in the introdution. Considerthe following ode fragment:1 let id = �x:x in2 let y = id(ref 1) in3 let z = id(onst ref 1) in: : :ni ni niWe �rst derive that �x:x has type? (�x �x ! �x �x). Thenwe apply the rule (Letv) to give id the polymorphi type8�x:? (�x �x ! �x �x)n;. Now when we apply id in lines 2and 3, we an use rule (Var0) to instantiate id with two sep-arate sets of quali�ers, and so y an have type ? ref (? int)even though z must have type onst ref (? int).

3.3 SoundnessBy using standard tehniques found in [WF94, EST95,OSW97℄ we show that the type system we have pre-sented, with quali�ers, referenes, and polymorphism, satis-�es a subjet redution property. Our proof losely follows[EST95℄. We give only a proof sketh, due to spae limita-tions.We begin by de�ning a store s as a �nite mapping fromloations (i.e., variables) to values. We denote loationsby a as a reminder that they must be bound in the store.The semantis assumes that all values are quali�ed, so thata semanti value is a quali�er annotation and a syntativalue (l v). A program an always be rewritten in this formby inserting ? annotations. We de�ne a redution ontextto �x the left-to-right ordering of evaluation:R ::= [℄ j R e j (l v) R j if R then e2 else e3 fij let x = R in e2 ni j Q ref Rj!R j R := e j Q a :=R j l R j RjlWe give single-step operational semantis for the exeu-tion of a program in Figure 5. A on�guration hs; ei is a pairwhere s represents the store and e represents the urrent re-dex. We assume that all values are quali�ed. We extendtypings to on�gurations:De�nition 3 (Store Typing) We write A ` hs; ei : �;Cif both of the following hold:1. A ` e : �;C2. For all a 2 dom(s), A(a) = Qa ref (�a) and A ` s(a) :�a;C.The �rst ondition guarantees that e has the right type, andthe seond ondition guarantees that the typing of the storeis onsistent with the values in the store.Lemma 1 If A ` e : �;C and S is a substitution suh thatSC is satis�able, then SA ` e : S�;SC.Proof: By indution on the derivation of A ` e : �;C.Sine SC is satis�able all subsets of the onstraints SC aresatis�able. The only interesting ase is in (Letv). In thisase, we �rst rewrite the proof of A ` e : �;C so that noneof the variables ~� are hanged by S; we an do so beausethe ~� are bound by an existential quanti�er in the onlusionof (Letv). 2Theorem 1 (Subjet Redution) If A ` hs; ei : �;Cand hs; ei ! hs0; e0i, then there exists an A0 suh thatA0jdom(A) = A and A0 ` hs0; e0i : �;C0 where C0 � C.Proof: By indution on the struture of e. In the ase of(Letv), we need to show that we an give e2[x 7! v℄ the sametype as let x = v in e2 ni. We have A ` v : �1;C1. In thetyping proof A[x 7! 8~�:�1nC1℄ ` e2 : �2;C2, at eah our-rene of x in e2 we applied (Var0) with some substitution Son ~�. By Lemma 1 we have A ` v : S�1;SC1, so we anreplae x by v and prove the same judgment. 2Next we observe that stuk expressions (expressions thatare not values but for whih no redution applies [WF94℄)do not typehek, whih is trivial to prove. Then we anshowCorollary 1 (Soundness) If ; ` e : �;C, then either e isa value or e diverges.7

hs; R[(l2 v)jl1 ℄i ! hs;R[l2 v℄i l2 v l1hs; R[l1 (l2 v)℄i ! hs;R[l1 v℄i l2 v l1hs;R[if (l n) then e2 else e3 fi℄i ! hs;R[e2℄i n 6= 0hs; R[if (l 0) then e2 else e3 fi℄i ! hs;R[e3℄ihs; R[(l �x:e1) v℄i ! hs;R[e1[x 7! v℄℄ihs; R[let x = v in e2 ni℄i ! hs;R[e2[x 7! v℄℄ihs; R[l ref v℄i ! hs[a 7! v℄; R[l a℄i a freshhs; R[!(l a)℄i ! hs;R[s(a)℄i a 2 dom(s)hs; R[(l a) := v℄i ! hs[a 7! v℄; R[? ()℄i a 2 dom(s)Figure 5: Operational Semantis4 Const InfereneIn this setion we desribe a onst-inferene system for Cthat takes an entire C program and infers the maximumnumber of onsts that an be syntatially present in theprogram. Suh a system relieves the programmer of theburden of annotating all possible onst loations. Insteadthe programmer an annotate the most important onstsand use the inferene to determine the onstness of the re-maining variables and parameters. Furthermore, our exper-iments show that the polymorphi quali�er system allowsmore onst annotations than the C type system, whih ismonomorphi.4.1 C TypesC types already ontain quali�ers, hene our implementationdoes not use the sp operator de�ned in Setion 3.1. How-ever, our system does need to translate the C types into theform desribed in Setion 2.4. All variables in C refer toupdateable memory loations. In the terminology of thispaper, they are all ref types. When C variables appear inr-positions, they are automatially dereferened. For exam-ple, onsider the following ode:int x;onst int y;x = y;In our example language, this program is written x := !y.Omitting the quali�ers on int , let A = ;[x 7!? ref (int); y 7! onst ref (int)℄ as an be derived from thede�nitions of x and y. Then we an type this program inour system as follows: A ` y : onst ref (int)A ` x : ? ref (int) A ` !y : int` ? v :onstA ` x := !y : unitEven though in the C type it appears that the onst isassoiated with the int, in fat onst quali�es the ref on-strutor of y. Hene y's onstness does not a�et x.We an explain this systematially by giving a transla-tion � from the C types to ref types. For the sake of sim-pliity we only disuss pointer and integer types. Let the Ctypes be given by the grammarCTyp ::= Q int j Q ptr(CTyp)

We de�ne the mapping � : CTyp ! QTyp as follows:�(CTyp) = Q0 ref (�)where (Q0; �) = �0(CTyp)�0(Q int) = (Q;? int)�0(Q ptr(CTyp)) = (Q; (Q0 ref (�)))where (Q0; �) = �0(CTyp)Intuitively, the quali�ed type orresponding to a C type hasone extra ref on the outside, and the onst quali�ers haveshifted up one level in the type. Note that these are thetypes of l-values, and the outermost ref should be removedto get the type of an r-value.The advantage of this transformation is that we an usethe standard subtyping rules for ref. Consider the followingexample:int *x;onst int *y;y = x;In the C type system, we are assigning x, whih has typeptr(int), to y, whih has type ptr(onst int), thus it ap-pears that we are using a non-standard subtyping rule, be-ause pointers are updateable. However, when we translatethis into our system, we see that the r-value x has type? ref (int), and the l-value y has type? ref (onst ref (int)).In order to assign x to y, we must show ` ? ref (int) �onst ref (int) whih is true in the standard subtyping rela-tion we use.4.2 Other ConsiderationsUltimately we would like the analysis result to be the textof the original C program with some extra onst quali�ersinserted. Thus we plae some restritions on the types weinfer. In C di�erent variables with the same strut typeshare the delaration of their �elds. Thus in our system, ifa and b are delared with the same strut type, we onlyallow a and b to di�er on the outermost (top-level) quali�er;the quali�ers on their �elds must be idential. For example,onsider the following ode:strut st { int x; };strut st a, b;a = b;The assignment a=b is equivalent to a.x = b.x. To satisfythe type rules, it is suÆient for the r-type of b.x to be asubtype of the r-type of a.x. However, beause a.x and b.xshare the �eld annotation in strut st, we require them to8

be equal. Note that the top-level quali�er attahed to theref onstrutors of the l-types of a and b an be distint fromeah other. For example, although a must be a non-onstref, we do not require that b be non-onst.On the other hand, we treat typedefs as maro-expansions, e.g., intypedef int *ip;ip , d; and d do not share any quali�ers.One of the ompliations of analyzing real programs isthat real programs use libraries, the ode for whih is of-ten either unavailable or written in another language. Forany unde�ned funtions, we make the most onservative as-sumption possible: We treat any parameters not delaredonst as non-onst. In general library funtions are anno-tated with as many onsts as possible, and so lak of onstdoes mean an't-be-onst.C ontains many di�erent ways to defeat the type sys-tem, of whih the most obvious is asting. For expliit astswe hoose to lose any assoiation between the value beingast and the resulting type. For impliit asts we retain asmuh information as possible.Another way to defeat the type system is to use variable-length argument lists, or all a funtion with the wrong num-ber of arguments. Both ases happen in pratie; we simplyignore extra arguments.4.3 Polymorphi InfereneReall that we allow standard let-style polymorphism, inwhih polymorphi expressions are expliitly marked. Sinea C program is made up of a set of possibly mutually-reursive funtions, we need to syntatially analyze the pro-gram to �nd the let bloks.De�nition 4 The funtion dependene graph (FDG) of aprogram is a graph G = (V;E) with verties V and edgesE. V is the set of all funtions in the program, and there isan edge in E from f to g i� funtion f ontains an ourreneof the name g.The FDG exatly aptures the impliit struture of fun-tion de�nitions. There is an edge from f to g if g must betype heked before f, and the strongly-onneted ompo-nents of the FDG are the sets of mutually-reursive fun-tions.To apply the polymorphi inferene to a C program,we �rst onstrut the FDG. Then we traverse the strongly-onneted omponents of the FDG in reverse depth-�rst or-der (the traversal an be omputed in time linear in the sizeof the graph [CLR90℄). We analyze eah set of mutuallyreursive funtions monomorphially and then we apply therule for quanti�ation. After we reah the root node of theFDG, we analyze any global variable de�nitions.More work is required after type inferene to measure theresults. We want to know how many formal parameters anbe polymorphi, i.e., either onst or non-onst. However,in general a C funtion may refer to global variables, so a Cfuntion's polymorphi type is not losed.The types of global variables are losed one we have an-alyzed the whole program. A straightforward post-analysispass ombines this information with the types inferred dur-ing the FDG traversal to ompute the results.

0%

20%

40%

60%

80%

100%

wom
an

-3
.0

a

pa
tch

-2
.5

m
4-

1.
4

dif
fu

tils
-2

.7

ss
h-

1.
2.

26

uu
cp

-1
.0

4

Other
Poly
Mono
Declared

Figure 6: Number of inferred onsts for benhmarksWe would prefer to use polymorphi reursion ratherthan let-style polymorphism to avoid working with the FDG,but BANE [AFFS98℄, the toolkit used to ondut our exper-iments, did not support polymorphi reursion when thiswork began. Beause the quali�er lattie is �nite and qual-i�ers do not hange the type struture, the omputation ofpolymorphi reursive types is deidable and in fat shouldbe very eÆient. We have reently learned that Jakob Rehofhas written a polymorphi reursive type inferene systemfor C++ [Reh99℄.4.4 ExperimentsWe perform onst inferene using the rules for onst out-lined in Setion 2.4. Table 1 lists the set of benhmarks weused to test our analysis. We purposely seleted programsthat show a signi�ant e�ort to use onst, rather than thosethat use it in only a few plaes.Several of these \programs" are atually olletions ofprograms that share a ommon ode base. We analyzedeah set of programs at one. This oasionally requiredrenaming ertain funtions that were de�ned in several �lesto be distint.For eah benhmark, we measured the number of inter-esting onsts (see below) inferred by the monomorphi andthe polymorphi version of our analysis. For any given reftype, there are three possible results that our analysis aninfer: It an deide that the ref1. must be onst,2. must not be onst, or3. ould be either.If the analysis inferred that something not marked as onstmust in fat be onst, this would indiate a type error. Sineall of our benhmarks are orret C programs, all of thepossible additional onsts deteted must be from (3). Thetotal number of possible onsts is the sum of (1) and (3).Note that the number of possible onsts does not depend onthe soure-level onst annotations, sine removing a onstmerely shifts the annotation on a ref type from (1) to (3).9

Name Lines Desriptionwoman-3.0a 1496 Replaement for man pakagepath-2.5 5303 Apply a di� �le to an originalm4-1.4 7741 Unix maro preproessordi�utils-2.7 8741 Colletion of utilities for diÆng �lesssh-1.2.264 18620 Seure shelluup-1.04 36913 Unix to unix opy pakageTable 1: Benhmarks for onst infereneName Compile time (s) Mono time (s) Poly time (s) Delared Mono Poly Total possiblewoman-3.0a 4.84 3.91 8.91 50 67 72 95path-2.5 16.98 18.70 33.43 84 99 107 148m4-1.4 19.48 36.81 64.43 88 249 262 370di�utils-2.7 24.46 35.70 57.34 153 209 243 372ssh-1.2.26 84.55 101.90 174.28 147 316 347 547uup-1.04 113.75 177.71 457.16 433 1116 1299 1773Table 2: Number of inferred possibly onst positions for benhmarksWe only ounted the number of \interesting" onstsplaed on arguments and results of de�ned funtions. Reallthat onsts an only be plaed on pointers and that argu-ments are passed by value, so the funtion int foo(int x,int *y) has only one interesting loation where onst ango, namely on the ontents of y, whih is itself a ref.Figure 6 shows our results, whih are tabulated in Ta-ble 2. Our urrent implementation uses BANE [AFFS98℄,a framework for onstruting onstraint-based analyses, forthe quali�er inferene. BANE handles onstraint representa-tion and solution, and our analysis tool generates onstraintsand interprets the results.The �rst olumn of measurements gives the ompile time.The next two olumns give the running time (average of �ve)for the monomorphi and polymorphi onst-inferene. Wedo not inlude the parsing time. Note that the inferenesales roughly linearly with the program size, and that thepolymorphi inferene takes at most 3 times longer than themonomorphi inferene. Our implementation uses a generiset onstraint engine to solve quali�er onstraints, and weexpet substantial speedups would be ahieved with a frame-work speialized to the quali�er lattie.The next olumn lists the number of interesting onststhat were delared in the program. The right-most olumnindiates the total number of plaes that are syntatiallyallowed to have a onst quali�er (aording to our de�nitionof interesting).The Mono and Poly olumns list the results of themonomorphi and polymorphi inferene algorithms, respe-tively. As mentioned previously, any additional quali�ersinferred an be either onst or non-onst (these orrespondto unonstrained quali�er variables). For the monomorphitype system we an make all of these positions onst andstill have a type orret program. For the polymorphi typesystem we need to leave these as unonstrained variables,sine they may be required to be onst or non-onst in4The ssh distribution also inludes a ompression library zlib andthe GNU MP library (arbitrary preision arithmeti). We treatedboth of these as unanalyzable libraries; zlib ontains ertain stru-tures that are inonsistently de�ned aross �les, and the GNU MPlibrary ontains inlined assembly ode.

di�erent ontexts.The measurements show that many more onsts an beinferred than are typially present in a program. For someprograms the results are quite dramati, notably for uup-1.04, whih an have more than 2.5 times more onsts thanare atually present. Reall these are already programs inwhih some e�ort was made to use onst.For this set of benhmarks polymorphi analysis allows 5-16% more onsts than monomorphi analysis. These resultsshow that quali�er polymorphism is both useful and alreadylatent in C programs, although we believe that most of thebene�t for polymorphism omes from allowing fewer typeasts rather than more onsts.Our experiments show that an automated inferene toolmakes it muh easier for a programmer to fully use onstannotations to express information about the side-e�ets offuntions. They also show that polymorphism allows moreonst annotations than the monomorphi C type systemwithout asts.5 Related WorkThere are three threads of related work: examples of sys-tems that use type quali�ers, frameworks related to typequali�ers, and other tehniques for heking programmer-spei�ed invariants.We have already mentioned the example quali�er sys-tems of onst from ANSI C [KR88℄, Evans's llint [Eva96℄,and stati and dynami annotations from binding-timeanalysis [DHM95℄. Two other examples are the seure infor-mation ow system of [VS97℄, whih annotates types withhigh- and low-seurity quali�ers, and the �-alulus withtrust annotations of [�P97℄. [�P97℄ suggests an extensionof their system to multiple levels of trust, whih is similarto our idea of a lattie of type quali�ers.Another example omes from Titanium [YSP+98℄, aJava-based SPMD programming language. Titanium usesthe quali�er loal to distinguish pointers to loal memory,whih an be aessed with a simple load instrution, frompointers to non-loal memory, whih must be aessed witha network operation. A pointer annotated with loal must10

be loal; a pointer not annotated with loal may either beloal or non-loal. In Titanium, loal annotations are rit-ial beause they allow the ompiler to remove expensiverun-time tests.Several other researhers have noted that type quali�ersare an important tool for program analysis. [Sol95℄ gives aframework for understanding a partiular family of relatedanalyses as type annotation (quali�er) systems. [ABHR99℄desribes the Dependeny Core Calulus (DCC) and pro-vides translations into DCC from several dependeny-basedtype quali�er systems suh as [VS97℄. DCC is one exampleof a alulus based on monads. Reent work [Kie98, Wad98℄has explored the onnetion between monads and e�et sys-tems [LG88℄. Some e�et systems an also be expressed astype quali�er systems. However, the exat onnetion be-tween monads, e�et systems, and type quali�ers is unlear.Other frameworks hoose a di�erent design point by pro-viding more powerful annotation languages. For example,Klarlund and Shwartzbah's graph types [KS93℄ allow pro-grammers to speify detailed shape invariants on data stru-tures. Another approah is the Extended Stati Chekingsystem [Det96, LN98℄, whih uses sophistiated theorem-proving tehniques that allow the programmer to hek in-variants. The advantage of suh systems is that the invari-ants are muh more preise than in a type quali�er system.However, speifying suh invariants requires more e�ort andsophistiation on the programmer's part.6 Future WorkIn the framework presented in this paper, types remainstati throughout the soure program, even though the val-ues stored in some loations may hange through updates.Indeed, as stated our framework annot express the analysisof llint, in whih annotations on a given loation mayvary at eah program point.One solution we are investigating is to assign eah lo-ation a distint type at every program point and to addsubtyping onstraints between the di�erent types. For ex-ample, suppose that x has type �1 before a non-branhingstatement s and x has type �2 after s. Then if s does notperform a strong update of x we add the onstraint �1 � �2;if s does strongly update x then we do not add this on-straint. This tehnique allows a measure of ow sensitivity,whih may make type quali�ers more useful in ertain ap-pliations.Finally, an issue we have not addressed is the presen-tation and spei�ation of polymorphi funtion types. Inour system eah polymorphi type also arries a set of on-straints, and we urrently do not have a notation for spe-ifying onstraints in the soure language. Additionally, inpratie these onstraint systems an be large and diÆultto interpret. Simplifying these onstrained types for presen-tation is an open researh problem.7 ConlusionWe believe that type quali�ers are a simple yet useful addi-tion to standard type systems. We have presented a frame-work for adding type quali�ers, quali�er annotations, andquali�er assertions to an standard language, and we allowtypes to be polymorphi in the type quali�ers. Our exper-imental results show that for a set of benhmarks, many

more onst quali�ers an be added than are present, eventhough our benhmarks make signi�ant use of onst.AknowledgmentsWe would like to thank Daniel Weise, Henning Niss, MartinElsman, Zhendong Su, and the anonymous referees for theirhelpful omments and suggestions.Referenes[ABHR99℄ Mart��n Abadi, Anindya Banerjee, Nevin Heintze, andJon G. Rieke. A Core Calulus of Dependeny.In Proeedings of the 26th Annual ACM SIGPLAN-SIGACT Symposium on Priniples of ProgrammingLanguages, pages 147{160, San Antonio, Texas, Jan-uary 1999.[AC96℄ Mart��n Abadi and Lua Cardelli. A Theory of Ob-jets. Springer, 1996.[AFFS98℄ Alexander Aiken, Manuel F�ahndrih, Je�rey S. Fos-ter, and Zhendong Su. A Toolkit for ConstrutingType- and Constraint-Based Program Analyses. InProeedings of the seond International Workshop onTypes in Compilation, Kyoto, Japan, Marh 1998.[ASU88℄ Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman.Compilers: Priniples, Tehniques, and Tools. Addi-son Wesley, 1988.[CLR90℄ Thomas H. Cormen, Charles E. Leiserson, andRonald L. Rivest. Introdution to Algorithms. M-Graw Hill, 1990.[Det96℄ David L. Detlefs. An overview of the Extended StatiCheking system. In Proeedings of the First Work-shop on Formal Methods in Software Pratie, pages1{9, January 1996.[DHM95℄ Dirk Dussart, Fritz Henglein, and Christian Mossin.Polymorphi Reursion and Subtype Quali�ations:Polymorphi Binding-Time Analysis in PolynomialTime. In Stati Analysis, Seond International Sym-posium, number 983 in Leture Notes in ComputerSiene, pages 118{135, Glasgow, Sotland, Septem-ber 1995. Springer-Verlag.[EST95℄ Jonathan Eifrig, Sott Smith, and Valery Trifonov.Type Inferene for Reursively Constrained Typesand its Appliation to OOP. In Mathematial Foun-dations of Programming Semantis, Eleventh AnnualConferene, volume 1 of Eletroni Notes in Theoret-ial Computer Siene. Elsevier, 1995.[Eva96℄ David Evans. Stati Detetion of Dynami MemoryErrors. In Proeedings of the 1996 ACM SIGPLANConferene on Programming Language Design andImplementation, pages 44{53, Philadelphia, Pennsyl-vania, May 1996.[Hen91℄ Fritz Henglein. EÆient Type Inferene for Higher-Order Binding-Time Analysis. In J. Hughes, editor,FPCA '91 Conferene on Funtional ProgrammingLanguages and Computer Arhiteture, volume 523 ofLeture Notes in Computer Siene, pages 448{472,Cambridge, MA, August 1991. Springer-Verlag.[HR97℄ Fritz Henglein and Jakob Rehof. The Complexity ofSubtype Entailment for Simple Types. In Proeed-ings, Twelfth Annual IEEE Symposium on Logi inComputer Siene, pages 352{361, Warsaw, Poland,July 1997.[ICF98℄ Proeedings of the third ACM SIGPLAN Interna-tional Conferene on Funtional Programming, Bal-timore, Maryland, September 1998.11

[Jon92℄ Mark P. Jones. A theory of quali�ed types. In BerndKrieg-Br�uker, editor, 4th European Symposium onProgramming, number 582 in Leture Notes in Com-puter Siene, pages 287{306, Rennes, Frane, Febru-ary 1992. Springer-Verlag.[Kie98℄ Rihard Kieburtz. Taming E�ets with Monadi Typ-ing. In ICFP'98 [ICF98℄, pages 51{62.[KR88℄ Brian W. Kernighan and Dennis M. Rithie. The CProgramming Language. Prentie Hall, 2nd edition,1988.[KS93℄ Nils Klarlund and Mihael I. Shwartzbak. GraphTypes. In Proeedings of the 20th Annual ACMSIGPLAN-SIGACT Symposium on Priniples ofProgramming Languages, pages 196{205, Charleston,South Carolina, January 1993.[LG88℄ John M. Luassen and David K. Gi�ord. PolymorphiE�et Systems. In Proeedings of the 15th AnnualACM SIGPLAN-SIGACT Symposium on Priniplesof Programming Languages, pages 47{57, San Diego,California, January 1988.[LN98℄ K. Rustan M. Leino and Greg Nelson. An ExtendedStati Cheker for Modula-3. In Compiler Constru-tion: 7th International Conferene, volume 1383 ofLeture Notes in Computer Siene, pages 302{305,April 1998.[Mag93℄ Steve Maguire. Writing Solid Code. Mirosoft Press,1993.[Mil78℄ Robin Milner. A Theory of Type Polymorphism inProgramming. Journal of Computer and System Si-enes, 17:348{375, 1978.[Mit91℄ John C. Mithell. Type inferene with simple sub-types. Journal of Funtional Programming, 1(3):245{285, July 1991.[MSS96℄ David R. Musser, Atul Saini, and AlexanderStepanov. STL Tutorial and Referene Guide.Addison-Wesley Publishing Company, 1996.[�P97℄ Peter �rb�k and Jens Palsberg. Trust in the�-alulus. Journal of Funtional Programming,3(2):75{85, 1997.[OSW97℄ Martin Odersky, Martin Sulzmann, and Martin Wehr.Type Inferene with Constrained Types. In BenjaminPiere, editor, Proeedings of the 4th InternationalWorkshop on Foundations of Objet-Oriented Lan-guages, January 1997.[Pur℄ Pure Atria. Purify: Fast detetion of memory leaksand aess errors.[Reh99℄ Jakob Rehof. Personal ommuniation, January 1999.[Sol95℄ Kirsten Lakner Solberg. Annotated Type Systemsfor Program Analysis. PhD thesis, Aarhus University,Denmark, Computer Siene Department, November1995.[TT94℄ Mads Tofte and Jean-Pierre Talpin. Implementa-tion of the Typed Call-by-Value �-Calulus using aStak of Regions. In Proeedings of the 21st AnnualACM SIGPLAN-SIGACT Symposium on Priniplesof Programming Languages, pages 188{201, Portland,Oregon, January 1994.[VS97℄ Dennis Volpano and Geo�rey Smith. A Type-BasedApproah to Program Seurity. In Mihel Bidoitand Max Dauhet, editors, Theory and Pratie ofSoftware Development, 7th International Joint Con-ferene, volume 1214 of Leture Notes in ComputerSiene, pages 607{621, Lille, Frane, April 1997.Springer-Verlag.

[Wad98℄ Philip Wadler. The Marriage of E�ets and Monads.In ICFP'98 [ICF98℄, pages 63{74.[WF94℄ Andrew K. Wright and Matthias Felleisen. A Synta-ti Approah to Type Soundness. Information andComputation, 115(1):38{94, 1994.[Wri95℄ Andrew K. Wright. Simple Imperative Polymor-phism. In Lisp and Symboli Computation 8, vol-ume 4, pages 343{356, 1995.[YSP+98℄ K. Yelik, L. Semenzato, G. Pike, C. Miyamoto,B. Liblit, A. Krishnamurthy, P. Hil�nger, S. Graham,D. Gay, P. Colella, and A. Aiken. Titanium: A High-Performane Java Dialet. In ACM 1998 Workshopon Java for High-Performane Network Computing,February 1998.

12

