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ZYXIt is well-known that solving many forms of inclusionconstraints reduces to computing the dynamic transitive clo-sure of the underlying graph representation, or equivalentlyto a context-free grammar reachability problem [17]. Thus,the worst case complexity of the best known algorithms formany inclusion-based analyses is cubic in the size of the an-alyzed program [13,17]. Standard implementations of theseanalyses are e�cient for small to medium size programs, butusually do not scale to large programs.There are several reasons that straightforward implemen-tations are impractical:1. Memory RequirementThe transitive closure of a directed graph with n nodesmay have O(n2) edges. Standard implementationscompute an explicit representation of the transitive clo-sure and therefore may consume a lot of memory.2. Cyclic ConstraintsFor inclusion constraints, if there is a cycle of inclusions(constraints of the form X1 � X2 � X3 : : : � Xm � X1where the Xi's are set variables), up to m2 edges maybe added between the nodes on the cycle. This is unde-sirable because these variables are obviously equivalentin all solutions of the constraints.3. Redundant PathsIn constraint graphs, there are usually many di�er-ent ways to add a transitive edge, namely through themany di�erent paths that connect two nodes.In [7], the authors present a simple but e�ective cycleelimination algorithm addressing the problem of cyclic con-straints. Andersen's points-to analysis [5], a cubic time al-gorithm, is used as a case study.In the same paper, the authors propose a representationof inclusion constraints, called inductive form, which helpsovercome the problem of high memory usage. Instead of ex-plicitly representing the least solution, an implicit represen-tation is maintained. This implicit representation is sparserthan standard implementations and is better suited for usewith the suggested cycle elimination algorithm. A separatepost-processing phase is needed to compute the least solu-tion of the constraints. The separation into these two phasesalso helps reduce memory usage.However, the problem of redundant paths is not ad-dressed in [7]. The techniques in [7] are very e�ective for



programs up to 50,000 lines of preprocessed code, but evenfor these programs, the problem with redundant paths isevident. For example, for the largest program consideredin [7], redundant edge additions dominate (see [7], Table 3).On average, each transitive edge is added in four di�erentways.This paper addresses the problem of redundant paths viaa technique called projection merging. Combined with cycleelimination, projection merging yields orders of magnitudespeedup for large programs.The basic insight of the technique is the observationthat inductive form treats di�erent kinds of edges di�er-ently: variable-variable edges (edges between two variables)are less likely to be added than source-sink edges (edgesbetween two constructed terms). Thus, translating the con-straint graphs to expose more variable-variable paths canreduce redundant edge additions. Projection merging itselfis quite simple to explain and implement, but the analysisof its behavior is subtle because of positive interactions withcycle elimination.To validate the technique, we study the same points-toanalysis for C [5,21] used in [7] (See Appendix A for a briefdescription of the analysis). gimp, a program that beforepreprocessing has more than 440; 000 non-comment lines ofC, can be analyzed in less than half an hour with projec-tion merging and cycle elimination. With cycle eliminationalone, the analysis did not �nish after more than 33 hoursof processing.The rest of the paper is structured as follows. In Sec-tion 2, we briey describe the constraint language and in-ductive form. Section 3 presents projection merging. Sec-tion 4 presents experimental results to demonstrate the e�-cacy of the technique. Section 5 discusses related work, andSection 6 concludes.2 PreliminariesIn this section, we introduce a constraint language and stan-dard resolution rules. We also present inductive form, theparticular constraint graph representation we use.2.1 Set ConstraintsThis subsection covers basic material on set constraints. Inparticular, we work with a subset of the full language of setconstraints [2,12]. Constraints are of the form L � R, whereL and R are set expressions. Set expressions consist of setvariables X ;Y; : : : drawn from a countable set of variablesVars , terms constructed from n-ary constructors c 2 Con ,projection expressions, an empty set 0, and a universal set 1.L;R 2 se ::= X j c(se1; : : : ; sen) j proj(c; i; se) j 0 j 1Each constructor c is given a unique signature Sc speci-fying the arity and variance of c. Intuitively, a constructorc is covariant in an argument if the set denoted by a termc(: : : ) becomes larger as the argument increases. Similarly,a constructor c is contravariant in an argument if the setdenoted by a term c(: : : ) becomes smaller as the argumentincreases.De�nition 2.1 (Positive and Negative Positions) Ina constraint se � se 0, we say the set expression se appearspositively and the set expression se 0 appears negatively.The position of a subexpression is de�ned inductively.

S [ fX � Xg , SS [ fse � 1g , SS [ f0 � seg , SS [ fc(se1; : : : ; sen) � c(se 01; : : : ; se 0n)g ,S [Si� fse i � se 0ig c covariant in ifse i � se 0ig c contravariant in iS [ fc(se1; : : : ; sen) � proj(c; i; se)g ,S [ � fsei � seg c covariant in ifsei � seg c contravariant in iS [ f1 � proj(c; i; se)g ,S [� f1 � seg c covariant in if0 � seg c contravariant in iS [ fc(: : : ) � proj(d; i; se)g , Sif d 6= cS [ fc(: : : ) � d(: : : )g , no solutionif d 6= cS [ fc(: : : ) � 0g , no solutionS [ f1 � 0g , no solutionS [ f1 � d(: : : )g , no solutionFigure 1: Resolution rules� If c(se1; : : : ; sei; : : : ; sen) appears positively in a con-straint, then se i appears positively if c is covariant ini; se i appears negatively if c is contravariant in i. Thecase when c(se1; : : : ; sei; : : : ; sen) appears negativelyis symmetric.� If proj(c; i; se) appears negatively in a constraint, thense appears negatively if c is covariant in i; se appearspositively if c is contravariant in i. We require a projec-tion expression proj(c; i; se) to appear only in negativepositions.A projection expression proj(c; i; se) has the e�ect of se-lecting the ith component se 0 of any expression with headconstructor c on the left-hand side of the constraint, andthen adding the new constraint se 0 � se. For example, aconstraint c(X ;Y) � proj(c; 1;Z)implies the constraint (see Figure 1)X � Zassuming c is covariant in its �rst argument. Note thatproj(c; i; se) has no e�ect if there is no expression withhead constructor c; the constraint d(: : : ) � proj(c; i; se)is trivially satis�ed if d 6= c (see Figure 1). The notationproj(c; i; se) is closely related to the more standard set con-straint notation c�i(se). We discuss why we need this newnotation in Section 3.



Xn�1...... ...X1X2Xn...c(Y) proj(c; 1;Z) Xn�1...... ...X1X2...c(Y) proj(c; 1;Z)Xn ZY(a) Before closure (b) After closureFigure 2: Example constraint graph A2.2 Constraint GraphsThis subsection reviews the framework of [7].The solved form of a constraint system is a directed graphG = (V;E) closed under a set of rules for adding edges.The edges E represent atomic constraints and the verticesV are variables, sources, and sinks. Sources are constructedterms appearing to the left of an inclusion, and sinks areconstructed terms appearing to the right of an inclusion. Aconstraint is atomic if it is one of the four formsX � Y variable-variable constraintc(: : : ) � X source-variable constraintX � proj(: : : ) variable-sink constraintX � c(: : : ) variable-sink constraintWe use the resolution rules shown in Figure 1 to rewriteconstraints into atomic form (note that non-atomic con-straints are not represented in the constraint graph). Eachrule states that the system of constraints on the left has thesame solutions as the system on the right1. In a resolutionengine these rules are used as left-to-right rewrite rules.The key idea of inductive form is that a variable-variableconstraint X � Y can be represented either as a successoredge (Y 2 succ(X )) or as a predecessor edge (X 2 pred(Y)).The representation for a particular edge is chosen as a func-tion of a �xed total order o : Vars ! N on the variables. Avariable-variable edge X���-Y is represented as a successoredge on X if o(X ) > o(Y); otherwise, it is represented as apredecessor edge on Y.The choice of the order function o(�) can a�ect the sizeof the closed constraint graph and the amount of work re-quired for the closure. Generation order, the order in whichvariables are created as part of building the initial systemof constraints, does very well in practice, and we have foundexperimentally that it is di�cult to pick a better order func-tion.The other two kinds of edges are associated with thevariables. A source-variable constraint c(: : : ) � X is rep-resented as a predecessor edge on X , and a variable-sinkconstraint X � proj(: : : ) or X � c(: : : ) is represented as asuccessor edge on X . The closure rule Transitive is givenas:L 2 pred(X ) ^R 2 succ(X ) ) L � R (Transitive)1For a treatment of the semantics of set constraints, see [2, 3, 12].

Notice that L may be a source or a variable and R maybe a sink or a variable. This closure rule combined withthe resolution rules in Figure 1 produces a �nal graph ininductive form [3]. The least solution of the constraints isnot explicit in inductive form, but it is easily computed by:Solleast(Y) =fc(: : : ) j c(: : : ) 2 pred(Yg) [[X2pred(Y)Solleast(X )Note that this computation amounts to computing anacyclic transitive closure since o(pred(Y)) < o(Y) for any setvariable Y. Furthermore, the least solution can be computedon demand. In practice, it is rarely necessary to compute theleast solution for every variable in a constraint system be-cause most applications require the solution of only a subsetof all set variables.A path in a constraint graph consists of a sequence ofnodes and inclusionsL � X1 � : : : � Xn � Rwhere L may be a source or a variable, and R a sink or avariable.De�nition 2.2 (Inductive Path) A path is inductive ifan edge is added between the two end points on the pathby applying the closure rule Transitive to the inclusionsalong the path. Equivalently, one can show that a path isinductive if and only if the two end points have the smallestindices (under the order function) on the path [7]. Sourcesand sinks are taken to have the smallest indices, i.e., �1.2.3 Redundant PathsIn inclusion constraint graphs, there are usually many pathsconnecting two nodes. Consider the example constraintgraph in Figure 2a. In the graph, there are n paths connect-ing the two nodes c(Y) and proj(c; 1;Z), namely throughthe n variables X1 to Xn. Thus, the implied constraintc(Y) � proj(c; 1;Z)is discovered n times, resulting in n�1 redundant additionsof the edge (Y;Z) to the constraint graph. Figure 2b shows
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Y ZV2V1X Y ZV2V1X(a) Before closure (b) After closureFigure 4: Example constraint graph Cthe graph after closure. The n dotted lines between c(Y)and proj(c; 1;Z) do not appear in the �nal graph. We showthem only to stress that the constraintc(Y) � proj(c; 1;Z)is resolved n times.For a program analysis problem, the aforementioned re-dundancy occurs because it is commonplace that some con-structed value (a source) ows through many intermedi-ate variables before a �eld is �nally projected out. A re-lated problem is depicted in Figure 3a, in which there are nsources owing into the variable X and m sinks to projectfrom X . In this case, nm edges are matched up, one foreach (Si; Tj) for 1 � i � n and 1 � j � m. The graph afterclosure is shown in Figure 3b.Although every inductive path may cause an edge to beadded between the two end points, the number of edge addi-tions can be smaller. As an example, consider the constraintgraph shown in Figure 4a. We assume the following orderingo(�) on the variableso(X ) < o(Z) < o(Y) < o(V1) < o(V2)Notice that there are two inductive paths between X andZ, namely X���-V1���-Y���-Zand X���-V2���-Y���-ZHowever, the edge (X ;Z) is only added once, through thepath X ������-Y���-Z

because the redundant addition of X ������-Y does not causethe edge X ������-Z to be added a second time. The graphafter closure is shown in Figure 4b.De�nition 2.3 (Join Point) Let p be an inductive path.Let node(p) denote the set of nodes on the path. Fur-ther let head(p) and tail(p) denote the two end-points onthe path. The join point of p, denoted by join(p), isthe variable with the minimum index among the variablesnode(p) n fhead(p); tail(p)g, i.e., o(join(p)) � o(X ) for allX 2 (node(p) n fhead(p); tail(p)g)The following lemma (Lemma 2.4) gives a characteriza-tion of the number of edge additions between two nodes.Lemma 2.4 Let n1 and n2 be two nodes in a constraintgraph, and P (n1; n2) be the set of inductive paths connect-ing the two nodes. The number of edge additions of (n1; n2),denoted by #(n1; n2), is given by#(n1; n2) = Card(fjoin(p) j p 2 P (n1; n2)g)where Card(�) denotes the cardinality of a set.Proof. [Sketch]It su�ces to demonstrate the following:1. For any p1; p2 2 P (n1; n2) with join(p1) = join(p2),the edge (n1; n2) is added once through these twopaths.2. For any p1; p2 2 P (n1; n2) with join(p1) 6= join(p2),the edge (n1; n2) is added twice, once through eachpath.



Both can be shown by observing that the edge addedbetween n1 and n2 along an inductive path p is added by a�nal application of rule Transitive to a 2-edge segment ofthe form n1 ������- join(p) ������- n2 2Because edges between variables are added only on in-ductive paths, inductive form gives a sparse representationfor variable-variable edges. But every path in the constraintgraph linking a source and a sink is inductive, and thus maycause an edge addition. It is shown in [7] that under a simplerandom graph model, the work to close a constraint graphis dominated by the addition of edges between sources andsinks, which is expected to be O(npn), where n is the num-ber of nodes in the graph. The cost of all other edges isexpected to be O(n lnn). These results are supported byexperimental data. For example, for the program mume, thenumber of edge additions between sources and sinks signif-icantly dominate the rest (see Table 2, the columns labeled\s-s", edge additions between sources and sinks, and \WorkOther", all other edge additions, under the column \Cy-cle Elimination Only": 13748716 versus 1106200). Thus,improving performance requires reducing the number of re-dundant edge additions between sources and sinks.3 Projection MergingThis section presents projection merging. Before we presentthe technique, we �rst provide some intuition with two ob-servations:1. In inductive form, variable-variable edges are sparse.In inductive form, any path between two constructedterms may cause an edge to be added. For paths be-tween variables, an edge is added only if the two vari-ables have smaller indices than the other variables onthe path. Thus variable-variable paths are preferred tosource-sink paths.2. There are a small number of constructors with smallarity.For many constraint-based program analyses, only asmall number of non-constant constructors are used(even though there may be many constant constructorsserving, e.g., as program point labels). Furthermore,these non-constant constructors usually have small ar-ity. For our example points-to analysis, only two con-structors are used, a ref constructor to denote locations(arity 3) and a lam constructor to denote functions (ar-ity 3).From the �rst observation we can conclude that by trans-forming the constraint system from paths between con-structed terms to paths between variables, we may reducethe number of redundant edge additions.Consider again the constraint graph in Figure 2a. Theultimate e�ect of this graph is to discover the constraintc(Y) � proj(c; 1;Z)between the source c(Y) and the sink proj(c; 1;Z). Thisconstraint is then resolved to the variable-variable constraintY � Z.

... ...Y ZX [c;1]n�1X [c;1]n
X [c;1]1X [c;1]2......

Figure 5: Transformed constraint graph A (Figure 2a)If there were a way to bypass source c(Y) and sinkproj(c; 1;Z) and instead deal directly with the ow of infor-mation from Y to Z, then we could avoid the redundant edgeadditions between the source and sink and deal with onlyvariable-variable paths. The key is to observe that when aconstraint Xi � proj(c; 1;Z) in Figure 2a is �rst formed, weknow that whatever lower bound Xi may have it will be pro-jected by Xi's upper bound. Thus we may as well replacethe constraint Xi � proj(c; 1;Z) by a constraint X [c;1]i � Z,where X [c;1]i is a variable standing for c�1(Xi). Note thatthe new constraint involves only variables.A naive method for systematically performing this trans-formation goes as follows. With each variable X , construc-tor c, and argument position i in the original constraintsystem associate a projection of the form proj(c; i;X [c;i]),where X [c;i] is a variable. The idea is that X [c;i] representsc�i(X ), the sum of all ith components of terms with headconstructor c in the set X . With this association of a vari-able with all its possible projections, we can transform theconstraint system to expose the variable-variable paths notexplicit before. By the second observation, not very manysuch projections are required.As an example, we explain how the graph in Figure 2amay be transformed into the graph in Figure 5. We asso-ciate with each Xi a projection proj(c; 1;X [c;1]i ). Now anyconstraint Xi � proj(c; 1;Y)is equivalent to X [c;1]i � YSystematically applying this rule to the graph in Figure 2agives the graph in Figure 5.As indicated above, this approach has problems.� The approach is static.By static we mean that the association of variables withtheir projections is made before performing the graphclosure. For some variables, it is unnecessary to asso-ciate the variable with its possible projections. In ad-dition, we may need to project only a particular �eldfrom a variable.� The approach is incomplete.The association of a variable and its projections is madefor variables appearing in the original system. Whatabout the newly created variables X [c;i]?Furthermore, these newly created variables must be as-signed indices in the total order. If the indices are not chosen



(Proj-Creation)
S0 [ fX � proj(c; i; se)g ) 8>>>>>>>>>>><>>>>>>>>>>>:

S0 [ ( fX � projs(c; i;X [c;i]);X [c;i] � seg c covariant in ifX � projs(c; i;X [c;i]); se � X [c;i]g c contravariant in iif (X � projs(c; i;X [c;i])) =2 S0S0 [ ( fX [c;i] � seg c covariant in ifse � X [c;i]g c contravariant in iotherwise.(Proj-Transitive)S0 [ fX � Y;Y � projs(c; i;Y [c;i])g ) S0 [ fX � Y;Y � projs(c; i;Y [c;i]);X � proj(c; i;Y [c;i])g| if o(X ) < o(Y)Figure 6: Rules speci�c for projection mergingABC
projs(c; i;X [c;i])proj(c; i; se)

projs(c; i;X [c;i])projs(c; i;X [c;i])projs(c; i;Y[c;i])YX X
X seseYX projs(c; i;Y[c;i])proj(c; i;Y[c;i])

)))
XX

proj(c; i; se) X [c;i]X [c;i]
Figure 7: Graph representation of projection merging ruleswith care, the bene�ts are lost. To stress this point, con-sider the example in Figure 2a. If the newly created variablesX [c;1]1 through X [c;1]n have large indices, we still add the edge(Y;Z) n times (due to inductive paths), which is no betterthan the original situation.These problems can all be solved with an incremental ap-proach. A variable X [c;i] is needed only if the variable X hasa projection upper bound, i.e., we have X � proj(c; i; se) forsome constructor c, index i, and expression se . We addressthe technical details of generating projection variables X [c;i]\on the y" in the next section, with an explanation of whyit helps to reduce the number of redundant edge additions.Note that in standard set constraint implementationssuch as SBA, constructed values (including projections) donot propagate backwards. Thus, projection upper boundsare not added to variables through constraint resolution.They only appear through the initial constraints. However,in inductive form, constructed values (including projections)can be propagated backwards along variable paths. Thus,a variable might accumulate many projections for the sameconstructor and index pair. Therefore, we need to apply thetransformation dynamically for the projections propagatedthrough constraint resolution.

We can now explain why we introduce the notationproj(c; i; se) instead of using the more standard notationc�i(se). Consider a constraintX � proj(c; i; se)which would be writtenc�i(X ) � sein standard notation. The c�i(: : : ) form obscures the im-plied upper bound on X , which is explicit using proj(: : : ).Using c�i(: : : ) would thus complicate the de�nition of induc-tive form and the resolution rules and obscure the key pointthat sources propagate forward through the graph as lowerbounds while sinks propagate backwards as upper bounds.As noted above, this is relevant only for inductive formimplementations: using proj(: : : ) and projection mergingwould have no bene�t for standard implementations such asSBA.3.1 The AlgorithmThis subsection shows how to associate a variable with itsgeneric projections. We extend the closure rules in Figure 1



and the Transitive rule. Then we show how to choose avariable ordering that ensures the e�cient termination of themodi�ed rules. Finally, we explain why this approach workswell in reducing the number of redundant edge additions.We �rst discuss a transformation on the initial con-straints that removes all nested projections, i.e., projectionswithin projections or within constructed terms. We de-scribe the case for projection expressions, and the case forconstructors is similar. Replace each constraint with nestedprojections se1 � proj(c; i; se2)by� fse1 � proj(c; i;X ); X � se2g if c is covariaint in ifse1 � proj(c; i;X ); se2 � Xg if c is contravariant in iwhere X is a fresh set variable not appearing in the cur-rent constraint system. By repeated use of this rule, a sys-tem of initial constraints with nested projection operatorsis transformed into a system of constraints without nestedprojections in linear time, and the resulting constraints havesize linear in the size of the original constraints. For laterdiscussion we only consider constraints without nested pro-jections. Note that the resolution rules in Figure 1 do notreintroduce nested projections.Projection merging consists of two additional resolutionrules Proj-Creation and Proj-Transitive. The two rulesare shown in Figure 6. Figure 7 explains the rules in termsof constraint graphs.The Proj-Creation rule is used to merge projectionupper bounds. This rule uses a special marked sink,projs(c; i; se). This special projection has the same meaningas the normal projection proj(c; i; se). If for a set variableX , there is not yet a constraintX � projs(c; i;X [c;i])when a constraint X � proj(c; i; se)is to be added to the constraint system, we replace the con-straint by the two constraintsX � projs(c; i;X [c;i])and � X [c;i] � se if c is covariant in ise � X [c;i] if c is contravariant in iwhere X [c;i] is a fresh set variable. The variable X [c;i] iscalled the generic projection variable of X for constructor cat index i. This case is depicted as part A in Figure 7. If,on the other hand, there is already a special projection onX , adding the constraintX � proj(c; i; se)causes X [c;i] � seor se � X [c;i]

to be added depending on the variance of c in i. This caseis depicted as part B in Figure 7.Note that for each variable, there is at most one projec-tion for a constructor and index pair (c; i). By observation 2in Section 3, the total number of possible special projectionsis relatively small.The new transitive rule Proj-Transitive deals with thecase when a special projection is added transitively on avariable. The rule simply converts a special projection to anormal projection because to the variable X , the projectionprojs(c; i;Y [c;i]) is only a normal sink. This rule is depictedas part C in Figure 7. Note that a constructed expressioncan also appear in the position of the variable X , the rulefor a constructed expression is the same.In cases where the new rules are inapplicable, rules inFigure 1 and the Transitive rule are applied. To closea graph, we repeatedly apply all the rules until no rule isapplicable.The following theorem (Theorem 3.1) states that the res-olution of the constraints under the new rules yields thesame results as that under the standard rules in Figure 1and the Transitive rule.Theorem 3.1 (Correctness) The modi�ed resolutionrules preserve the least solution of the system. More pre-cisely, for any variable X appearing in the original constraintsystem, the least solution for X is the same under both setsof closure rules.Proof. [Sketch]Simply notice that with the projection merging rules anyvalue (a source) that is a lower bound on a non-generic pro-jection variable X under the original rules still is a lowerbound on X under the new rules, and vice versa. 2We also need to establish that resolution under the newrules terminates. It su�ces to show that only �nitely manygeneric projection variables are generated. We assume thatour order function o(�) is a one-to-one function that mapsall set variables (an in�nite set) to natural numbers N.Theorem 3.2 (Termination) For any constraint set S0and any one-to-one order function o(�) that maps set vari-ables to natural numbers N, �nitely many generic projectionvariables are generated during the resolution of S0 under theextended resolution rules.Proof. As noted above, for each constructor and indexpair (c; i), and each set variable, at most one generic projec-tion variable is created. Thus it su�ces to bound the numberof variables that may have a projection upper bound. LetOmax =max f o(X ) j X is a variable appearing in S0 gWe claim that for each constructor and index pair (c; i),at most Omax number of generic projection variables arecreated. The claim follows if there are at most Omax vari-ables that can have projection upper bounds with c as theconstructor and i as the index, namely the set of variableshaving index no greater than Omax.If a variable X has a projection upper bound, then theremust exist an inductive path from X to a projection. Weshow by induction that all variables X with projection orspecial projection upper bounds have index o(X ) � Omax.Clearly this is true before any resolution rules are applied.There are two cases for the inductive step:



1. Proj-Creation creates special projection constraintsX � projs(c; i;X [c;i]) from existing constraints X �proj(c; i;Z). By the inductive hypothesis, o(X ) �Omax.2. Proj-Transitive adds the constraintX � proj(c; i;Y [c;i])from constraintsX � Y � projs(c; i;Y [c;i])We know o(X ) < o(Y) (by the conditions of Proj-Transitive) and o(Y) � Omax (by the inductive hy-pothesis). Therefore o(X ) < Omax.Thus all such variables must have index no greater thanOmax. Since there are �nitely many constructor and indexpairs, the number of new projection variables is bounded byO(MOmax), where M is the number of distinct constructorand index pairs. 2Although resolution terminates for any order function,the ordering still a�ects the number of generic projectionvariables. The following corollary suggests a good orderingto use.Corollary 3.3 If for each generic projection variable X [c;i],we set o(X [c;i]) > Omax, then at most O(MN) new vari-ables are generated, where M is the number of constructorand index pairs and N is the number of set variables in theoriginal constraint system. In particular, if the number ofconstructor and index pairs is �xed, only a linear number ofgeneric projection variables are generated.Proof. There are only N set variables with index nogreater than Omax. 2Note it follows that if each generic projection variableX [c;i] has index larger than Omax, we only generate genericprojection variables for the set variables in the original con-straint system. We never generate a generic projection vari-able for another generic projection variable.Recall that most constraint-based program analyses usea small number of non-constant constructors and these con-structors usually have small arity. Thus the number of gen-erated generic projection variables tends to be small, whichis what makes projection merging viable.To implement the ordering suggested by Corollary 3.3,one can use some large o�set to separate the generic pro-jection variables from other variables; for each generic pro-jection variable we assign it an index that is its generationorder plus this chosen large o�set.To test the importance of choosing a good ordering, weperformed the following experiment. We tried both variablegeneration order and the above suggested ordering. Thereis a C source �le in one of the benchmarks (gimp) whichneeds more than 23,000 seconds to analyze under genera-tion order, whereas it took less than 2 seconds under theordering with a large o�set. Note that the generation orderinter-mixes the regular set variables and generic projectionvariables and thus may add more generic projection vari-ables. The generation order is the ordering used in [7] forthe cycle elimination experiments. In [7], it is observed thatthe chosen order function does not make much di�erencefor cycle elimination. However, for projection merging, theorder function in use is very important for performance.

3.2 DiscussionWithout creating many generic projection variables, projec-tion merging turns many source-sink paths into variable-variable paths. We should expect that redundant paths be-tween variable nodes do not produce as many redundantedge additions because of the properties of inductive form.However, as hinted in the beginning of Section 3, thereis a aw in the argument. Reconsider the example in Fig-ures 2a and 5. For the variables X1 through Xn, the genericprojection variables are X [c;1]1 through X [c;1]n respectively.The generic projection variables have indices larger than therest of the variables Y;Z;X1; : : : ;Xn. In this case, the edgebetween Y and Z is added n times. Overall, there is noreduction in redundant work.There is actually a trade-o� in choosing the variable or-dering. For generic projection variables, making the indicessmall reduces the number of redundant edges added (e.g.,Figures 2a and 5). However, small indices cause many moresuch variables to be created (Theorem 3.2).On the other hand, if we let the generic projection vari-ables have large indices, the number of generic projectionvariables generated is linearly bounded. However, as justshown, redundancy in constraint graphs is not reduced. Itis worth mentioning that if we only use projection mergingwithout cycle elimination, analysis time tends to be muchlonger than without projection merging. For the case wherewe use small indices for generic projection variables, this isbecause the number of generic projection variables gener-ated is large. For the case where we add a large o�set togeneration order, the analysis time is about a constant fac-tor slower because of the extra work to create the projectionvariables and to apply the extra rules.The missing insight is a very subtle, but pronounced,positive interaction between projection merging and cycleelimination. We �rst explain a few details of cycle elimina-tion. Cycle elimination focuses on dynamically �nding andeliminating cycles of constraints between variables of theform X1 � X2 � : : : � Xn � X1. Since X1; : : : ;Xn are equalin all solutions, the n variables can be replaced by a singlevariable, which becomes the representative of X1; : : : ;Xn.For reasons discussed in [6], it turns out that the best choiceof representative is the variable among X1; : : : ;Xn with thesmallest index under the ordering o(�).Since we collapse a cycle to the variable with the small-est index on the cycle, all the variables on the cycle nowhave a smaller index, which at �rst sight might appear tocause additional projection variables to be generated for thegeneric projection variables. This is not a problem becauseof the following:� The variables on a cycle become one variable, and soonly need at most one generic projection variable foreach constructor and index pair (c; i).� Eliminating a cycle does not increase the number ofvariables having indices no greater than Omax, and infact may decrease the number of variables with indicesno greater than Omax.3.2.1 Reducing Redundant AdditionsNow we are in the position to explain why projection merg-ing combined with cycle elimination reduces redundant edgeadditions. We use a sequence of graph transformations toaid the explanation.



X proj(c; 1;Z1)c(Y1) X projs(c; 1;X [c;1])c(Y1) Z1Y1 X [c;1](a) Step 1 (b) Step 2X projs(c; 1;X [c;1])c(Y1) Z1Y1 X [c;1] X projs(c; 1;X [c;1])c(Y1) X [c;1]Z1 : : :: : :: : : REP Y1(c) Step 3 (d) Step 4projs(c; 1;X [c;1])c(Y1)
X [c;1]Z1 : : :: : :: : : REP Y1

c(Y2) proj(c; 1;Z2)c(Y3) proj(c; 1;Z3)c(Yn) proj(c; 1;Zm)X� � � � � � projs(c; 1;X [c;1])c(Y1)c(Y2)c(Y3)c(Yn) X
Y2Y3 X [c;1]Z1 : : :: : :: : : REP Y1 Z2Z3Zm� � �� � �� � �
Yn(e) Step 5 (f) Step 6Figure 8: Reducing edge additionsFirst, we give a high level overview. A generic projectionvariable X [c;i] of X starts with large index, since its index isgiven as generation order plus a large o�set. In the process ofresolving the constraints, X [c;i] can potentially be on a cyclethat is detected with online cycle detection and elimination.In that case, the cycle including X [c;i] is collapsed to a singlerepresentative node Y with small index.Suppose later we obtain another constraint X �proj(c; i;Z). This constraint transforms into the constraintY � Z, because X [c;i] is aliased to Y. If Z is generated af-ter Y, we have o(Y) < o(Z), and any path ending with theedge (Y;Z) is not inductive. Thus eliminating cycles withgeneric projection variables tends to reduce the redundancyin a constraint graph.The following lemma states that generic projection vari-ables, if found on a cycle, always have a representative thatis not a generic projection variable.Lemma 3.4 Let X1 � : : : � Xn � X1 be a cycle in aconstraint graph. It holds that at least one of Xi for 1 � i �n is a not a generic projection variable.Proof.Let X [c;i] and Y [d;j] be two generic projection variables.Assume there is an edge X [c;i] � Y [d;j] in the graph. Weclaim that o(X ) < o(Y) (with c = d and i = j) if c iscovariant in i, and o(X ) > o(Y) (with c = d and i = j) if cis contravariant in i.We consider the case when c is covariant in i. The casewhen c is contravariant in i is symmetric.

There are two ways that the edge X [c;i] � Y [d;j] can beadded:1. through a pathX���-Y���- projs(d; j;Y [d;j])where c = d and i = j. By applying the Proj-Transitive rule, we getX���- proj(d; j;Y [d;j])Applying the Proj-Creation rule, we get the edgeX [c;i]���-Y [d;j]For the Proj-Transitive rule to be applicable, it mustbe the case that o(X ) < o(Y).2. through a pathd(: : : ;X [c;i]; : : : )���-Y���- projs(d; j;Y [d;j])where X [c;i] is the jth argument of d. This case isimpossible because X [c;i] cannot appear inside a con-structor.Any cycle with X [c1;i1]1 � : : : � X [cn;in]n � X [c1;i1]1 , re-quires that c1 = : : : = cn and i1 = : : : = in and o(X1) <: : : < o(Xn) < o(X1) or o(X1) > : : : > o(Xn) > o(X1) ,which is impossible.



...Yk ZkX [c;1]1: : :REP X [c;1]2: : :REP X [c;1]n: : :REPFigure 9: Reducing edge additions for constraint graph A(Figure 2a)Thus every cycle must contain a variable that is not ageneric projection variable. 2We give now a more detailed explanation by graph trans-formations. Assume we start with the constraints shown inFigure 8a: c(Y1) � X � proj(c; 1;Z1)Applying the Proj-Creation rule creates the constraintsX � projs(c; 1;X [c;1]) and X [c;1] � Z1. Applyingthe Proj-Transitive rule adds the constraints c(Y1) �proj(c; 1;X [c;1]), which is decomposed by the rule in Fig-ure 1 into the constraint Y1 � X [c;1]. The resulting graph inshown in Figure 8b. After applying more rules to portions ofthe graph not shown, assume we discover that the variablesY1, X [c;1], and Z1 are on a cycle. The situation is depictedin Figure 8c. This cycle of constraints is then collapsed to asingle node with a representative for all the variables on thecycle. In Figure 8d, we show the collapsed cycle as a dottedoval, with � � � �
� � � �REP as the representative. Note that the index ofthe representative is relatively small since it is the variablewith the smallest index on the cycle, and the representativecannot be a generic projection variable by Lemma 3.4.Now suppose the following constraints shown in Fig-ure 8e are generated and added to the system2c(Y2) � Xc(Y3) � X...c(Yn) � XX � proj(c; 1;Z2)X � proj(c; 1;Z3)...X � proj(c; 1;Zm)Assume the variables Y2; : : : ;Yn;Z2; : : : ;Zm have largerindices than the variables Y1 and Z1. Thus they have largerindex than the representative � � � �

� � � �REP . After applying the res-olution rules, we get the constraint graph shown in Fig-ure 8f. Since � � � �
� � � �REP has smaller index than the variables2The addition of such constraints is common when the variable Xis found to be the representative of a cycle.

Y2; : : : ;Yn;Z2; : : : ;Zm, none of the pathsYi���- � � � �
� � � �REP ���-Zjfor 2 � i � n and 2 � j � m is inductive. Thus none ofthe edges (Yi;Zj) is added. In contrast, without projectionmerging, all the nm edges (Yi;Zj) are added to the graph.The above scenario is the best case for projection merging.In practice, we can assume that a fraction f of the nodesY2; : : : ;Yn and Z2; : : : ;Zm have lower index than the rep-resentative � � � �

� � � �REP . In that case, f2(nm) transitive edges areadded to the graph instead of nm edges.We now come back to the redundant paths problemshown in Figure 2 and show how it is handled by projec-tion merging. Suppose the constraintsc(Yk) � X1c(Yk) � X2...c(Yk) � XnX1 � proj(c; 1;Zk)X2 � proj(c; 1;Zk)...Xn � proj(c; 1;Zk)are added to the graph in Figure 2a. The generic projec-tion variables for X1 through Xn are created; let these beX [c;1]1 ; : : : ;X [c;1]n . Assume that all of the generic projectionvariables are found to be on cycles and are identi�ed withother variables as the representatives. Assume also that Ykand Zk have smaller indices than a fraction f of the rep-resentatives of the variables X [c;1]1 ; : : : ;X [c;1]n . After apply-ing closure rules, we get the graph in Figure 9. The edge(Yk;Zk) is added fn times because only fn of the pathsYk���-� � � �
� � � �REP ���-Zkare inductive.The examples in this section illustrate how projectionmerging interacts positively with cycle elimination. Thereis another informal argument which is insightful. The ran-dom graph model in [7] shows that if indices are assignedrandomly to variables, then inductive form adds asymptot-ically fewer variable-variable edges than source-sink edges.The problem with assigning all generic projection variableslarge indices is that the resulting graph is anything but ran-dom, and the examples show that there is no bene�t. Cycleelimination, however, has the e�ect of arbitrarily perturbingthe indices of generic projection variables. This apparentlymakes the graph su�ciently random that the behavior ismore in line with the predictions in [7].In Section 4, we will see that projection merging com-bined with cycle elimination signi�cantly improves the anal-ysis time. The e�ect on redundant edge additions is verydramatic. In one example, gcc, the average number of timesan edge is redundantly added drops from 85 to 0.32.4 ExperimentsThis section experimentally validates the idea of projectionmerging. We show that combined with cycle elimination,



AST #ProgBenchmark Nodes LOC Varsallroots 700 426 91di�.di�h 935 293 122anagram 1078 344 130genetic 1412 323 154ks 2284 574 210ul 2395 441 141ft 3027 1180 279compress 3333 651 174ratfor 5269 1532 388compiler 5326 1888 320assembler 6516 2980 796ML-typecheck 6752 2410 557eqntott 8117 2266 592simulator 10946 4216 1125less-177 15179 11988 1420li 16828 5761 2313ex-2.4.7 29960 9345 2871pmake 31148 18138 2493make-3.72.1 36892 15213 3061inform-5.5 38874 12957 3186tar-1.11.2 41035 18293 2471sgmls-1.1 44533 30941 2890screen-3.5.2 49292 23919 3235cvs-1.3 51223 31130 4691espresso 56938 21537 3981gawk-3.0.3 71140 28326 3692povray-2.2 87391 59689 4924mume 312458 430947 28849spice 452149 849258 24310gs 504724 437211 35687pgsql 718781 1344689 45299gcc 1168907 411034 59991gimp 2112848 7486733 178829Table 1: Benchmark programsprojection merging signi�cantly improves the execution timeof Andersen's points-to analysis [5]. Note that the analysistime includes not only the time to close the constraint graphbut also the time to compute the points-to sets for all theprogram variables. In our implementation of the analysis,we model structures as single atomic memory locations. Ev-ery �eld of a structure shares the same location.4.1 Experimental DataOur experiments were done with the BANE analysistoolkit [1] using a single processor on a SPARC Enterprise-5000 with 2048M of memory. We use the generation orderof set variables, except for the generic projection variables,where we set the indices to be generation order plus a largeo�set (0x0fffffff). This ordering guarantees that the in-dices of generic projection variables are greater than theindices of other variables for the set of benchmarks we ana-lyze.We use the C benchmarks shown in Table 1. The bench-marks are those in [7] with six additional large programs:mume, spice, gs, pgsql, gcc, and gimp.� mume is a multiuser dungeon program.� spice (version 3f4) is a circuit simulation program.� gs is ghostscript version 5.01 without the X library.

� pgsql is PostgreSQL, an Object-Relational DBMS de-rived from the Berkeley Postgres database managementsystem.� gcc is the GNU C compiler version 2.8.1.� gimp is the GNU image manipulation program with theX library included.For each benchmark, the table lists the number of ab-stract syntax tree (AST) nodes, the number of lines in thepreprocessed source, and the number of program variablesin the source. Notice that the six new benchmarks aremuch larger than those used in [7]. As an aside, gimp wasthe largest program we could obtain for these experiments(440; 000 non-comment source lines before preprocessing).The Linux kernel without assembly �les is a little larger(550; 000 non-comment, non-assembler source lines beforepreprocessing) but uses a number of GNU extensions thatour C parser does not support.Two experiments were performed. In the �rst experi-ment, we analyzed all the benchmarks with cycle eliminationonly. In the second experiment, we combined cycle elimina-tion and projection merging. For the experiment with cycleelimination only, all programs ran through the analysis ex-cept gimp. The analysis for gimp did not �nish in 33 hours,after which the job was killed. For the second experiment,all programs ran through in less than half an hour.Table 2 shows the results for the two experiments. Foreach experiment and each benchmark, we report the numberof set variables, the number of edges in the �nal graph, thetotal number of source-sink edge additions including redun-dant ones, the total number of non-source-sink edge addi-tions, the total number of edge additions, and the analysistime in seconds. We ran each experiment three times, andthe one with the best execution time is presented in the ta-ble. The data for gs is abnormal. There are a large numberof edges in the �nal graph under the experiment with cycleelimination only. We believe this is partly due to the lackof the X library mentioned above. Since the program is in-complete, there are fewer opportunities for collapsing cyclicconstraints, which may make the �nal graph very large.We show some plots to better demonstrate the e�ective-ness of projection merging with cycle elimination. In Fig-ure 10, we plot the analysis time for both cycle eliminationwith projection merging and cycle elimination alone againstthe number of AST nodes of the parsed benchmarks. Notethat all the plots are on a log-log scale. For small pro-grams, the analysis times di�er by very little. As the size ofthe program increases, redundant source-sink paths beginto dominate as predicted in the complexity analysis in [7]and the e�ect of projection merging becomes pronounced.The analysis time with projection merging is signi�cantlysmaller than without, especially for the last six large bench-marks. In Figure 11, we plot the speedup of the analysistime with projection merging over cycle elimination only,and the trend becomes more obvious. The speedups seemto be asymptotic: the speedup increases with the size of theprograms. Figure 12 plots the total number of edge addi-tions (Work) for both experiments. We see the same trendas in the case of analysis time. Figure 13 plots the ratio ofthe total edge additions, which has basically the same shapeas Figure 11. Figure 14 plots the total number of redun-dant edge additions. We notice that the absolute number ofredundant edge additions for cycle elimination only is sig-ni�cantly higher. In Figure 15, we plot, on average, how



Cycle Elimination Only Projection Merging + Cycle EliminationBenchmark Work Work#Vars Edges s-s Other Total Time(s) #Vars Edges s-s Other Total Time(s)allroots 126 257 86 205 291 0.14 210 335 71 317 388 0.15diff.diffh 184 363 127 282 409 0.16 269 412 109 350 459 0.17anagram 208 346 81 290 371 0.18 318 411 106 324 430 0.21genetic 228 391 115 300 415 0.21 436 610 129 507 636 0.24ks 324 1222 641 1276 1917 0.40 511 1028 280 977 1257 0.45ul 199 264 56 259 315 0.26 255 237 48 270 318 0.27ft 393 1037 297 1029 1326 0.42 581 955 266 840 1106 0.53compress 249 395 51 409 460 0.33 383 451 71 514 585 0.39ratfor 599 1982 727 1853 2580 0.89 840 2493 577 2297 2874 1.05compiler 439 1159 431 997 1428 0.69 656 1219 196 1281 1477 0.82assembler 969 2235 874 1906 2780 1.45 1502 3336 688 3511 4199 1.61ML-typecheck 793 4505 2814 5062 7876 1.77 1214 3833 980 4139 5119 1.87eqntott 987 2950 922 3048 3970 1.11 1544 2997 799 2804 3603 1.47simulator 1441 4141 4849 3943 8792 2.36 2066 3990 823 3647 4470 1.95less-177 1852 7656 7289 8125 15414 3.36 2417 6478 1375 6504 7879 2.90li 3202 14125 81948 21288 103236 15.49 4033 13234 3719 15467 19186 5.42flex-2.4.7 3755 8224 2252 7787 10039 6.41 5207 8886 1732 8461 10193 6.96pmake 3300 12537 41301 13588 54889 10.33 5172 11857 2232 12966 15198 6.25make-3.72.1 4731 31820 159389 97474 256863 31.54 6861 55452 15389 168933 184322 31.38inform-5.5 4364 18394 47315 20172 67487 13.48 8056 19587 3121 19069 22190 8.88tar-1.11.2 4156 18038 32257 18888 51145 10.84 5476 18262 2092 19422 21514 7.84sgmls-1.1 4255 34178 300563 41651 342214 47.10 6102 28082 5571 38275 43846 13.46screen-3.5.2 6449 28098 154413 32185 186598 28.11 7900 17543 3686 17750 21436 9.72cvs-1.3 6967 22120 27076 23557 50633 11.99 10444 22681 3433 25171 28604 11.80espresso 6295 26697 120880 28730 149610 25.98 10078 24927 5150 26737 31887 12.76gawk-3.0.3 6337 26052 108261 35195 143456 26.53 8519 22307 5217 24533 29750 13.02povray-2.2 7673 65861 246225 70129 316354 51.12 11421 43898 10069 56052 66121 21.72mume 52859 676765 13748716 1106200 14854916 1964.24 66800 228641 40938 276446 317384 137.27spice 34748 220725 719903 146675 866578 211.19 50969 103198 21649 116610 138259 82.49gs 96633 44406952 76168794 7788690 83957484 64675.54 121335 311999 123831 273115 396946 257.51pgsql 89814 1279129 15649146 875655 16524801 3941.39 129726 353714 70691 631884 702575 569.52gcc 135655 940361 80178428 1301387 81479815 11445.80 188853 427584 80942 485653 566595 503.41gimp 1 1 1 1 1 1 378872 917401 209117 1011301 1220418 1494.12Table 2: Benchmark datamany times an edge is added redundantly through di�erentpaths. Notice that for projection merging with cycle elim-ination, the number is consistently around 0.3 for almostall programs. For cycle elimination alone, the number ismuch larger for large programs, with the exception of gs,where cycle elimination alone adds each edge 0.9 times re-dundantly on average, and cycle elimination plus projectionmerging adds each edge an average of 0.27 times. Thesedata show that projection merging with cycle eliminatione�ectively solves the problem of redundant paths.5 Related WorkMany researchers have studied the problem of points-toanalysis. Andersen devised a natural inclusion-based points-to algorithm based on set constraints in his thesis [5]. Workby Shapiro and Horwitz [21] contrast Andersen's set basedpoints-to analysis with the uni�cation based points-to analy-sis of Steensgaard [23]. They conclude that while Andersen'sanalysis is substantially more precise than Steensgaard's, itsrunning time is impractical. Work in [7], however, demon-strates that Andersen's points-to analysis can be made toscale much better with a special online cycle eliminationtechnique and the inductive form representation. This pa-per presents techniques that allow Andersen's analysis tobe applied to programs an order of magnitude larger thanin [7].Inclusion constraint resolution algorithms usually have atleast O(n3) time complexity. Work by Melski and Reps [17]gives some insight as to why this cubic bottleneck is di�cultto break. They show the equivalence of some set-based anal-yses to context-free grammar reachability problems. Similarwork by Heintze and McAllester [14] also gives some theo-retical evidence of the di�culty for some subtyping and owanalyses. They show that certain data-ow and control-owproblems are 2NPDA-complete, a class of problems that hasresisted a sub-cubic algorithm for over 30 years.Heintze and McAllester also present a quadratic time

algorithm for some restricted classes of the closure analy-sis problem for higher order functional programming lan-guages [13]. The technique presented in [13] resembles pro-jection merging in some ways, but there are important dif-ferences. [13] relies on a given, non-recursive type structureof the program that the algorithm exploits. While projec-tion merging \discovers" whatever structure it needs andworks with recursive structures, its worst-case complexity isstill cubic.6 ConclusionsRedundant paths in inclusion constraint graphs limit thepractical application of constraint based program analysesto very large programs. In this paper, we present projectionmerging for speeding up constraint-based program analy-ses, and demonstrate that the technique together with cycleelimination can yield orders of magnitude improvements inanalysis time. With projection merging, a cubic time points-to analysis for C can be applied to half million line programsin less than half an hour. We expect the technique to workwell for other set-based analyses that use only a small num-ber of non-constant constructors.AcknowledgmentsWe thank Je� Foster, David Gay, Ben Liblit, and the anony-mous referees for their comments on an earlier draft of thispaper.References[1] Aiken, A., F�ahndrich, M., Foster, J., and Su,Z. A Toolkit for Constructing Type- and Constraint-Based Program Analyses. In Proceedings of the Sec-ond International Workshop on Types in Compilation(TIC'98) (March 1998), pp. 78{96.
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Figure 10: Total analysis times 0.1
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Figure 11: Speedups through projection merging
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Figure 12: Total number of edge additions 0.1
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Figure 13: Reduction in edge additions
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Figure 14: Total number of redundant edge additions 0.01
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Figure 15: Ratio of redundant edge additions to total edges
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dFigure 16: Example points-to graphFigure 16 shows the points-to graph computed by Ander-sen's analysis for the following simple C program:a = &b;a = &c;*a = &d;Note that these points-to graphs are di�erent from theconstraint graphs discussed in this paper. Points-to graphscan be constructed from the least solution of the constraints.A.1 Formulation using Set ConstraintsAndersen's set formulation of points-to graphs consists of aset of abstract locations fl1; : : : ; lng, together with set vari-ables Xl1 ; : : : ;Xln denoting the set of locations pointed toby l1; : : : ; ln. The example in Figure 16 has the set formu-lation Xla = flb; lcgXlb = fldgXlc = fldgThe association between a location li and its points-to setXli is implicit in Andersen's formulation and results in anad-hoc resolution algorithm. In [7], a di�erent formula-tion makes this association explicit and enables the use of ageneric set constraint solver. Locations are modeled by pair-ing location names and points-to set variables with a con-structor ref (flig;Xli) akin to reference types in languageslike ML [18].Unlike the type system of ML, which is equality-based,we need inclusion constraints. It is well known that sub-typing of references is unsound in the presence of updateoperations (e.g., Java arrays [10]). A sound approach isto turn inclusions between references into equality for theircontents: ref (X ) � ref (Y), X = Y.This technique can be adapted to a purely inclusion-based system. We intuitively treat a reference lx as an objectwith a location name and two methods get : void! Xlx andset : Xlx ! void, where the points-to set of the location actsboth as the range of the get function and the domain of theset function. Updating a location corresponds to applyingthe set function to the new value. Dereferencing a locationcorresponds to applying the get function.Translating this intuition, we add a third argument tothe ref constructor that corresponds to the domain of theset function, and is thus contravariant. A location lx is thenrepresented by ref (lx;Xlx ;Xlx) (to improve readability weoverline contravariant arguments). To update an unknownlocation � with a set T , it su�ces to add a constraint � �proj(ref ; 3; T ). For example, if ref (lx;Xlx ;Xlx) � � , thenthe transitive constraint ref (lx;Xlx ;Xlx) � proj(ref ; 3; T ) isequivalent to T � Xlx (due to contravariance), which is thedesired e�ect. Dereferencing is analogous, but involves thecovariant points-to set of the ref constructor.

x : ref (lx;Xlx ;Xlx) (Var)e : �&e : ref (0; �; �) (Addr)e : � � � proj(ref ; 2; T ) T fresh�e : T (Deref)e1 : �1 e2 : �2�1 � proj(ref ; 3; T1) �2 � proj(ref ; 2; T2)T2 � T1 T1; T2 freshe1=e2 : �2 (Asst)Figure 17: Constraint generation for Andersen's analysisTo formally express Andersen's points-to graph, we mustassociate with each location lx a set variable Ylx for theset of abstract location names and a constraint Xlx �proj(ref ; 1;Ylx) that constrains Ylx to be a superset of allnames of locations in the points-to set Xlx . The points-tograph is then de�ned by the least solution for Yli . In ourimplementation we avoid using the location names li and thevariables Yli , and instead derive the points-to graph directlyfrom the constraints.A.2 Constraint GenerationFigure 17 gives a subset of the constraint-generation rulesfor Andersen's analysis. For the full set of rules, see [9]. Therules assign a set expression to each program expression andgenerate a system of set constraints as side conditions. Thesolution to the set constraints describes the points-to graphof the program. We write � for set expressions denotinglocations. To avoid separate rules for L- and R-values, weinfer sets denoting L-values for every expression. In (Var),the type ref (lx;Xlx ;Xlx) associated with x therefore denotesthe location of x and not its contents.We briey describe the other rules in Figure 17. Theaddress-of operator (Addr) adds a level of indirection to itsoperand by adding a ref constructor. The dereferencing op-erator (Deref) does the opposite, removing a ref and makingthe fresh variable T a superset of the points-to set of � . Thisis achieved through the projection operator proj. The sec-ond constraint in the assignment rule (Asst) transforms theright-hand side �2 from an L-value to an R-value T2, as in(Deref) (recall these rules infer sets representing L-values).The �rst constraint �1 � proj(ref ; 3; T1) makes T1 a sub-set of the points-to set of �1. The �nal constraint T2 � T1expresses exactly the intuitive meaning of assignment: thepoints-to set T1 of the left-hand side contains at least thepoints-to set T2 of the right-hand side. For example, the �rststatement of Figure 16, a = &b, generates the constraints�1 = ref (la;Xla ;Xla) � proj(ref ; 3; T1), and so T1 � Xla , and�2 = ref (0; ref (lb;Xlb ;Xlb); : : : ) � proj(ref ; 2; T2), and soref (lb;Xlb ;Xlb) � T2. The �nal constraint T2 � T1 impliesthe desired e�ect, namely ref (lb;Xlb ;Xlb) � Xla .


