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ABSTRACT
We describe a software error-detection tool that exploits re-
cent advances in boolean satisfiability (SAT) solvers. Our
analysis is path sensitive, precise down to the bit level, and
models pointers and heap data. Our approach is also highly
scalable, which we achieve using two techniques. First, for
each program function, several optimizations compress the
size of the boolean formulas that model the control- and
data-flow and the heap locations accessed by a function.
Second, summaries in the spirit of type signatures are com-
puted for each function, allowing inter-procedural analysis
without a dramatic increase in the size of the boolean con-
straints to be solved.

We demonstrate the effectiveness of our approach by con-
structing a lock interface inference and checking tool. In
an interprocedural analysis of more than 23,000 lock related
functions in the latest Linux kernel, the checker generated
300 warnings, of which 179 were unique locking errors, a
false positive rate of only 40%.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.3 [Software Engineering]: Coding Tools and
Techniques; D.2.5 [Software Engineering]: Testing and
Debugging

General Terms
Algorithms, Experimentation, Languages, Verification.
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1. INTRODUCTION
This paper presents Saturn1, a software error-detection

tool based on exploiting recent advances in solving boolean
satisfiability (SAT) constraints. Rapid improvements in al-
gorithms for SAT have led to its use in a variety of applica-
tions, including recently in program verification [16, 17, 19,
7, 11]. The contributions of our approach are:

• We give a translation from a realistic programming
language to SAT that is substantially more efficient
than previous approaches (Section 2). While we model
each bit path sensitively as in [19, 8, 24], several tech-
niques achieve a substantial reduction in the size of the
SAT formulas Saturn must solve.

• We describe how to compute a summary, similar to a
type signature, for each analyzed function (Section 4),
thereby enabling interprocedural analysis. Comput-
ing concise summaries enables Saturn to analyze much
larger programs than previous error checking systems
based on SAT, and in fact, the scaling behavior of
Saturn is at least competitive with, if not better than,
other, non-SAT approaches to bug finding and verifi-
cation. In addition, Saturn is able to infer and apply
summaries that encode a form of interprocedural path
sensitivity via input and output predicates, lending it-
self well to checking complex value-dependent program
behaviors (Section 5.2).

• We present an interface for defining temporal safety
properties for Saturn to check, and we show one such
specification in detail: checking that a single thread
correctly manages locks—i.e., does not perform two
lock or unlock operations in a row on any lock (Sec-
tion 5.5).

• We present a significant experiment in which we per-
form an interprocedural analysis of the entire Linux
kernel for locking errors (Section 6). In analyzing 4.8
million lines of code, Saturn generated 300 warnings,
of which 179 were unique locking errors, for a false pos-
itive rate of only 40% (i.e., more than half of the warn-
ings were genuine bugs). For comparison, two previous
studies of the same locking properties using MC [13]
and CQual [12] found 31 and 18 locking errors respec-
tively, with higher false positive rates (above 80% for
both MC and CQual—i.e., fewer than 1 in 5 warnings
is a genuine bug) [2, 10, 12].

1SATisfiability-based failURe aNalysis.



• We have built a database of all the inferred locking
signatures of functions in the Linux kernel. We re-
port some interesting statistics, showing that locking
behavior in Linux is quite complex and that much of
the kernel relies either directly or indirectly on correct
locking behavior (Section 6.2).

It is worth noting that Saturn can do more than analyz-
ing locks, although we do not report on additional checkers
here. Locking analysis has become a standard test case for
bug finding/verification tools, because in practice analyzing
locking requires accurate modeling of many features: lock-
ing is always a flow sensitive and sometimes a path sensitive
property, programmers store locks in data structures, pass
locks as arguments, use complex tests to decide when and
where to acquire and release locks, and so on.

One thing that Saturn is not, at least in its current form,
is a verification tool. Tools such as CQual are capable of
verification (proving the absence of bugs, or at least as close
as one can reasonably come to that goal for C programs).
Saturn is a bug finding tool in the spirit of MC, which means
it is designed to find as many bugs as possible with a low
false positive rate, potentially at the cost of missing some
bugs. In particular, Saturn currently is unsound in its anal-
ysis of loops (see Section 2) because it is not possible in
most cases to construct a finite boolean formula represent-
ing a fully unrolled loop. This problem is shared by all
SAT-based analysis systems (see, e.g., [19, 24]) and we leave
further investigation as future work.

Another source of unsoundness is Saturn’s treatment of
pointers in a function’s environment. In order to reduce
false positives, Saturn makes the assumption that distinct
pointers from the environment do not alias each other. The
same treatment is afforded to pointer values obtained from
aspects of the C language that Saturn does not currently
model (e.g., arrays, unions, inline assembly, unsafe casts,
and function pointers). A sound alternative is to use a sep-
arate global alias analysis to account for potentially missed
aliasing relationships. The treatment of external pointers is
further discussed in Section 3.2.

2. THE SATURN FRAMEWORK
In this section, we present a low-level programming lan-

guage and its translation into our error detection framework.
Because our implementation targets C programs, our lan-
guage models scalars, structures, pointers, and handles the
arbitrary control flow2 found in C. We begin with a lan-
guage and translation that handles only scalar program val-
ues (Section 2.1), and gradually add features until we have
presented the entire framework: arbitrary intraprocedural
control flow including loops (Section 2.2), structures (Sec-
tion 2.3), and finally pointers (Section 2.4). In Section 3
we consider some techniques that substantially improve the
performance of our translation.

2.1 Scalar Translation
Figure 1 presents a grammar for a scalar language. The

parenthesized symbol on the left hand side of each produc-

2The current implementation of Saturn handles reducible
flow-graphs, which are by far the most common form even
in C code. Irreducible flow-graphs can be converted to re-
ducible ones by node-splitting [1].

Language

Type (τ ) ::= (n, signed | unsigned)

Obj (o) ::= v

Expr (e) ::= unknown(τ ) | const(n, τ ) | o | unop e |
e1 binop e2 | (τ ) e | lifte(c, τ )

Cond (c) ::= false | true | ¬ c | e1 comp e2 |
c1 ∧ c2 | c1 ∨ c2 | liftc(e)

Stmt (s) ::= o← e | assert(c) | assume(c) | skip

unop ∈ {−, !}
binop ∈ {+,−, ∗, /,mod, band, bor, xor,�,�l,�a}
comp ∈ {=, >,≥, <,≤, 6=}

Representation

Rep (β) ::= [bn−1 . . . b0]s where s ∈ {signed, unsigned}
Bit (b) ::= 0 | 1 | x | b1 ∧ b2 | b1 ∨ b2 | ¬b

Figure 1: A scalar language.

tion is a variable ranging over elements of its syntactic cat-
egory.

The language is statically and explicitly typed; the type
rules are completely standard and for the most part we elide
types for brevity. There are two base types: booleans (bool)
and n-bit signed or unsigned integers (int). Note the base
types are syntactically separated in the language as expres-
sions, which are integer-valued, and conditions, which are
boolean-valued. We use τ to range solely over different types
of integer values.

The integer expressions include constants (const), integer
variables (v), unary and binary operations, integer casts,
and lifting from conditionals. We give the list of operators
that we model precisely using boolean formulas (e.g. +,
-, bitwise-and, etc.); for other operators (e.g., division, re-
mainder, etc.), we make approximations. We use a special
expression unknown to model unknown values (e.g., in the
environment) and the result of operations that we do not
model precisely.

Objects in the scalar language are n-bit signed or un-
signed integers, where n and the signedness are determined
by the type τ . As shown at the bottom of Figure 1, a
separate boolean expression models each bit of an integer
and thus tracking the width is important for our transla-
tion. The signed/unsigned distinction is needed to precisely
model low-level type casts, bit shift operations, and arith-
metic operations.

The class of Objects (Obj) ultimately includes variables,
pointers, and structures, which encompass all the entities
that can be the target of an assignment. For the moment
we describe only scalar variables.

The translation for a representative selection of constructs
is shown in Figure 2; the translations for the omitted cases
introduce no new ideas. The translation rules for expressions



Expressions

β = ψ(v)

ψ ` v
E

⇒ β
scalar

(n, s) = τ
x0, . . . , xn−1 are fresh boolean variables

ψ ` unknown(τ )
E

⇒ [xn−1 . . . x0]s
unknown

ψ ` e
E

⇒ [bn−1 . . . b0]x τ = (m,s)

b′i =

8
<
:
bi if 0 ≤ i < n
0 if s = unsigned and n ≤ i < m
bn−1 if s = signed and n ≤ i < m

ψ ` (τ ) e
E

⇒ [b′m−1 . . . b
′
0]s

cast

(n, s) = τ ψ ` c
C

⇒ b

ψ ` lifte(c, τ )
E

⇒ [00 · · · 0| {z }
n−1

b]s
lifte

ψ ` e
E

⇒ [bn−1 . . . b0]s

ψ ` e′
E

⇒ [b′n−1 . . . b
′
0]s

ψ ` e band e′
E

⇒ [bn−1 ∧ b
′
n−1 . . . b0 ∧ b

′
0]s

and

Conditionals

ψ ` e
E

⇒ [bn−1 . . . b0]s

ψ ` liftc(e)
C

⇒
W

i bi
liftc

Statements

ψ ` e
E

⇒ β

G, ψ ` (v ← e)
S

⇒ 〈G;ψ[v 7→ β]〉
assign

ψ ` c
C

⇒ b

G, ψ ` assume(c)
S

⇒ 〈G ∧ b;ψ〉
assume

ψ ` c
C

⇒ b (G ∧ ¬b) not satisfiable

G, ψ ` assert(c)
S

⇒ 〈G;ψ〉
assert-ok

Figure 2: The translation.

MergeScalar
“
v, (Gi, ψi)

”
= [b′m . . . b′0]s

where


[bim . . . bi0]s = ψi(v)
b′j =

W
i(Gi ∧ bij)

MergeEnv
“
(Gi, ψi)

”
=

˙W
i Gi;ψ

¸

where ψ(v) = MergeScalar
“
v, (Gi, ψi)

”

Figure 3: Merging control-flow paths.

have the form

ψ ` e
E

⇒ β

which means that under the environment ψ mapping vari-
ables to vectors of boolean expressions (one for each bit in
the variable’s type), the expression e is translated to the
vector of boolean expressions β.

The translation scheme for conditionals

ψ ` c
C

⇒ b

is similar, except the target is a single boolean expression b
modeling the condition. The most interesting rules are for
statements, which have the form

G, ψ ` s
S

⇒
˙
G′;ψ′

¸

which means that under guard G and variable environment
ψ the statement s results in a new guard/environment pair
〈G′;ψ′〉. In our system, guards express path sensitivity; ev-
ery statement is guarded by a boolean expression express-
ing the conditions under which that statement may exe-
cute. Most statements do not affect guards (the exception is
assume); the important operations on guards are discussed
in Section 2.2. A key statement in our language is assert,
which we use to express points at which satisfiability queries
must be checked. A statement assert(c) checks that ¬c
cannot be true at that program point by computing the sat-
isfiability of G∧¬b, where b is the translation of the condition
c.

The overall effect of our translation is to perform straight-
forward symbolic execution, cast in terms of boolean ex-
pressions. Each statement transforms an environment into
a new environment (and guard) that captures the effect of
the statement. If all bits in the initial environment ψ0 are
concrete 0’s and 1’s and there are no unknown expressions in
the program being analyzed, then in fact this translation is
exactly symbolic execution and all modeled bits can them-
selves be reduced to 0’s and 1’s. However, bits may also be
boolean variables (unknowns). Thus each bit b represented
in our translation may be an arbitrary boolean expression
over such variables.

2.2 Control Flow
We represent function bodies as control-flow graphs, which

we define informally. Each statement s is a node in the
graph, and each edge (s, s′) represents an unconditional trans-
fer of control from s to s′. If a statement has multiple suc-
cessors, then execution may be transferred to any successor
non-deterministically.

To model the deterministic semantics of conventional pro-
grams, we require that if a node has multiple successors,
then each successor is an assume statement, and further-
more, that the conditions in those assumes are mutually
exclusive and that their disjunction is equivalent to true.
Thus a conditional branch with predicate p is modeled by a
statement with two successors: one successor assumes p (the
true branch) and the other assumes ¬p (the false branch).

The other important issue is assigning a guard and en-
vironment to each statement s. Assume s has an ordered
list of predecessors si.

3 The translation of si produces an
environment ψi and guard Gi. The initial guard and en-
vironment for s is then a combination of the final guards

3We use the notation Xi as a shorthand for a vector of
similar entities: X1 . . . Xn.



and environments of its predecessors. The desired guard is
simply the disjunction of the predecessor guards; as we may
arrive at s from any of the predecessors, s may be executed if
any predecessor’s guard is true. Note that due to the mutual
exclusion assumption for branch conditions, at most one of
the predecessor’s guard can be true at a time. The desired
environment is more complex, as we wish to preserve the
path-sensitivity of our analysis down to the bit level. Thus,
the value of each bit of each variable in the environment for
each predecessor si of s must include the guard for si as
well. This motivates the function MergeScalar in Figure 3,
which implements a multiplexer circuit that selects the ap-
propriate bits from the input environments (ψi(v)) based on
the predecessor guards (Gi). Finally, MergeEnv combines the
two components together to define the initial environment
and guard for s.

Preserving path sensitivity for every modeled bit is clearly
expensive and it is easy to construct realistic examples where
the number of modeled paths is exponential in the size of
the control-flow graph. In Section 3.3 we present an op-
timization that enables us to make this approach work in
practice.

Finally, every control-flow graph has a distinguished entry
statement with no predecessors. The guard for this initial
statement is true. We postpone discussion of the initial
environment ψ0 to Section 3.2 where we describe the lazy
modeling of the external execution environment.

As mentioned in Section 1, we treat loops unsoundly.
Loops are simply unrolled a number of times and the backedges
removed from the control-flow graph. Thus, every function
body is represented by an acyclic control-flow graph. While
this handling of loops is unsound and a limitation of our cur-
rent approach, we have found it to be effective in practice
(see Section 6).

2.3 Structures
The program syntax and translation of structures is given

in Figure 4. A structure is a data type with named fields,
which we represent as a set of (field name, object) pairs. We
extend the syntax of types (resp. objects) with sets of types
(resp. objects) labeled by field names, and similarly the rep-
resentation of a struct in C is the representation of the fields
also labeled by the field names. The shorthand notation o.fi

selects the object of field fi from object o.
The function RecAssign does the work of structure assign-

ment. As expected, assignment of structures is defined in
terms of assignments of its fields. Because structures may
themselves be fields of structures, RecAssign is recursively
defined.

2.4 Pointers
The final and technically most involved construct in our

translation is pointers. The basic idea is to maintain path
sensitivity for heap locations, as we do for variables in the
environment. As with variables, we must allow for the pointer
to have different values (point to different locations) depend-
ing on the execution history (the guard). The language def-
inition and translation rules are given in Figure 5 and 6.
Pointers point to locations, which are either an object o or
the constant null (i.e., a null pointer). A guarded location
is a pair of a guard and a location. A guarded location set
(GLS), which we write as {| . . . |} to distinguish from other

Language

Type (τ ) ::= {(f1, τ1), . . . , (fn, τn)} | . . .
Obj (o) ::= {(f1, o1), . . . , (fn, on)} | . . .

Shorthand

o = {(f1, o1), . . . , (fn, on)}

o.fi
def
= oi

field-access

Representation

Rep (β) ::= {(f1, β1), . . . , (fn, βn)} | . . .

Translation

o = {(f1, o1), . . . , (fn, on)}

ψ ` oi
E

⇒ βi for i ∈ 1..n

ψ ` o
E

⇒ {(f1, β1), . . . , (fn, βn)}
object-str

RecAssign(ψ, v, β) = ψ[v 7→ β]
RecAssign(ψ, o, β) = ψn

where

8
>><
>>:

o = {(f1, o1), . . . , (fn, on)}
β = {(f1, β1), . . . , (fn, βn)}
ψ0 = ψ
ψi = RecAssign(ψi−1, oi, βi) (∀ i ∈ 1..n)

ψ ` e
E

⇒ β
ψ′ = RecAssign(ψ, o, β)

G, ψ ` (o← e)
S

⇒ 〈G;ψ′〉
assign-struct

Figure 4: Translation of structures.

kinds of sets, is a set of guarded locations. We define

{| . . . , (G, l), (G′, l), . . . |} ≡ {| . . . , (G ∨ G′, l), . . . |}

and we assume that a GLS is normalized using this equiva-
lence so that a location occurs at most once in the set. We
adopt the convention that the guard for null is listed first
with guard G0.

We briefly explain the rules in Figure 5. As shown in
the rule pointer, the mapping from pointers to GLS’s is part
of the environment. Taking the address of an object (rule
getaddr-obj) simply creates a GLS with a single entry—the
object itself with no guard (the guard true). Taking the
address of a series of field dereferences from a pointer means
taking each location the pointer could point to and creating
a guarded location from the object reached by performing
the field dereferences.4 The rule liftc-pointer expresses that
a pointer treated as a condition is true if it is non-null. The
rule malloc creates a fresh object that is the target of the
malloc’d pointer. Note that malloc is silent on the contents
of the new object; there are different choices (all bits zero, all
bits unconstrained) depending on the analysis application
and what one assumes about the memory allocator. The
rule store models an indirect assignment through a pointer,

4The treatment of null here is needed to be consistent with
the ANSI C standard.



Language

Type (τ ) ::= τ pointer | . . .
Obj (o) ::= p | . . .

Deref (m) ::= p→ f1. · · · .fn

Expr (e) ::= null | &o | &m | . . .
Stmt (s) ::= load(m,o) | store(m,e) | malloc(p) | . . .

Representation

Loc (l) ::= null | o
Rep (β) ::= {| (G1, l1), . . . , (Gk, lk) |} | ...

Translation

β = ψ(p)

ψ ` p
E

⇒ β
pointer

ψ ` &o
E

⇒ {| (true, o) |}
getaddr-obj

m = p→ f1. · · · .fn

ψ ` p
E

⇒ {| (G0, null), (Gi, oi) |}

β = {| (G0, null), (Gi, oi.f1. · · · .fn) |}

ψ ` &m
E

⇒ β
getaddr-mem

ψ(p) = {| (G0, null), (Gi, oi) |}

ψ ` liftc(p)
C

⇒
W

i6=0
Gi

liftc-pointer

β = {| (true, o) |} (o fresh)

G, ψ ` malloc(p)
S

⇒ 〈G;ψ[p 7→ β]〉
malloc

m = p→ f1. · · · .fn

ψ ` p
E

⇒ {| (G0, null), (G1, o1), . . . , (Gk, ok) |}
G′ = G ∧ ¬G0

G′ ∧ Gi, ψ ` (oi.f1. · · · .fn ← e)
S

⇒ 〈Gi;ψi〉
(for i ∈ 1..k)

G, ψ ` store(m,e)
S

⇒ MergeEnv
“
(Gi;ψi)

” store

Figure 5: Pointers and guarded location sets.

Merging

AddGuard (G, {| (G1, l1), .., (Gk, lk) |}) =
{| (G ∧ G1, l1), .., (G ∧ Gk, lk) |}

MergePointer
“
p, (Gi, ψi)

”
=

S
i AddGuard(Gi, ψi(p))

MergeEnv
“
(Gi, ψi)

”
=

˙W
i Gi;ψ

¸

where

8
<
:
ψ(v) = MergeScalar

“
v, (Gi, ψi)

”

ψ(p) = MergePointer
“
p, (Gi, ψi)

”

Figure 6: Control-flow merges with pointers.

possibly involving field dereferences, by combining the re-
sults for each possible location the pointer could point to.
The line G′ = G ∧ ¬G0 adds an assumption that the pointer
is not null; if we are interested in null-pointer checks that
can be done by a separate null-pointer checker built on our
framework. We omit the rule for load, as it is very similar
to store.

3. DISCUSSION AND IMPROVEMENTS
In this section, we discuss how our translation reduces the

size of satisfiability queries by achieving a form of program
slicing. We also discuss two improvements to our approach.
The first (Section 3.2) concerns how we treat inputs of un-
known shape to functions and the second (Section 3.3) is an
optimization that greatly reduces the cost of guards.

3.1 Automatic Slicing
Program slicing is a technique to simplify a program by

removing the parts that are irrelevant to the property we
are interested in. Slicing is commonly done by comput-
ing control and data dependencies and preserving only the
statements that the property depends on. We show that
our translation automatically slices a program and only uses
clauses that the current SAT query requires.

Consider the following program snippet below:
if (x) y = a; else y = b;
z = /* complex computation here */;
if (z) . . . else . . .;
assert(y < 5);

The computation of z is irrelevant to the property we are
checking (y < 5). The variable y is data dependent on a
and b and control dependent on x. Using the translation
rules in Section 2, we see that the translation of y < 5
only involves the bits in x, a, and b, but not z, because
the assign rule accounts for the data dependencies and the
merge rule pulls in the control dependency, and nothing else
is included. Because properties of interest often depend on
a small portion of the program, this design helps keep the
size of SAT queries under control.

3.2 Lazy Construction of the Environment
A standard problem in modular program analysis systems

is the modeling of the external environment. In particular,
we need a method to model and track data structures used,
but not created by the code fragment being analyzed.

There is no consensus on the best solution to this problem.
To the best of our knowledge, SLAM [4] and Blast [15] re-
quire manual construction of the environment. For example,
to analyze a module that manipulates a linked list of locks
defined elsewhere, these systems likely require a harness that
populates an input list with locks. The problem is reduced
as the target code-bases (e.g., Windows drivers in the case
for SLAM) can often share a carefully crafted harness (e.g.,
a model for the Windows kernel) [3]. Nevertheless, the need
to “close” the environment represents a substantial manual
effort in the deployment of such systems.

Because we achieve scalability by computing function sum-
maries, we must analyze a function independent of its calling
context and still model its arguments. Our solution is sim-
ilar in spirit to the lazy initialization algorithm described
in [18]. Recall in Section 2, values of variables referenced
but not created in the code, i.e., those from the external en-
vironment, are defined in the initial evaluation environment



ψ0. Saturn lazily constructs ψ0 by calling a special function
DefVal, which is supplied by the analysis designer and maps
all external objects to a checker-specific estimation of their
default values. ψ0 is then defined as DefVal(v) for all v. Op-
erationally, DefVal is applied lazily, only when uninitialized
objects are encountered during symbolic evaluation. This
allows us to model potentially unbounded data structures
in the environment. Besides its role in defining the initial
environment ψ0, DefVal is also used to provide an estima-
tion of the return values and side-effects of function calls
(Section 5.3).

In our implementation, we model scalars from the envi-
ronment with a vector of unconstrained boolean variables.
For pointers, we use the common assumption that distinct
pointers from the environment do not alias each other. This
can be modeled by a DefVal that returns a fresh location
for each unknown pointer dereference.5 A sound alternative
would be to use a separate global alias analysis as part of the
definition of ψ0. Note once a pointer is initialized, Saturn
performs an accurate intraprocedural path-sensitive analy-
sis, including respecting alias relationships, on that pointer.

3.3 Using BDDs for Guards
Consider the following high-level code fragment:

if c then ... else ... ; s

After translation to a control-flow graph, there are two paths
reaching the statement s with guards c and ¬c. Thus the
guard of s is c ∨ ¬c. Since guards are attached to every
bit of every modeled location at every program point, it
is important to avoid growth in the size of guards at ev-
ery control-flow merge. One way to accomplish this task
is to decompile the unrolled control flow graph into struc-
tured programs with only if statements, so that we know
exactly where the branch conditionals cancel. However, this
approach requires code duplication in the presence of goto,
break, and continue statements commonly found in C.

Our solution is to introduce an intermediate representa-
tion of guards using binary decision diagrams [5]. We give
each condition (which may be a complex expression) a name
and use a BDD to represent the boolean combination of
all conditions that enable a program path. At control-flow
merges we join the corresponding BDDs. The BDD join op-
eration can simplify the representation of the boolean for-
mula to a canonical form; for example, the join of the BDDs
for c and ¬c is represented by true. In our translation of
a statement, we convert the BDD representing the set of
conditions at that program point to the appropriate guard.

The simplification of guards also eliminates trivial control
dependencies in the automatic slicing scheme described in
Section 3.1. In the small example in that section, had we
not simplified guards, the assertion would have been checked
under the guard (x ∨ ¬x) ∧ (z ∨ ¬z), which pulls in the
otherwise irrelevant computation of z.

5In the implementation, DefVal(p) returns
{| (G, null), (¬G, o) |}, where G is an unconstrained bit
variable, and o is a fresh object of the appropriate type.
This allows us to model common data structures like linked
lists and trees of arbitrary length or depth. A slightly
smarter variant handles doubly linked lists and trees with
parent pointers knowing one node in such a data structure.

4. INTERPROCEDURAL ANALYSIS
The misspecification and misunderstanding of function in-

terface constraints is a major source of errors in large soft-
ware systems. To detect such errors, we must perform in-
terprocedural analysis.

There are two well known approaches to interprocedural
analysis: function inlining and compositional analysis based
on summaries. Inlining is a simple technique used by a num-
ber of whole program analysis algorithms to analyze beyond
function boundaries (e.g., [19, 14]). However, it discards
natural boundaries in software systems and may lead to ex-
ponential explosion in code size. Therefore, this approach
does not readily scale to the size of systems we aim to check.

In a summary-based approach, each function or module is
abstracted into a concise representation which summarizes
the observable behavior of the function with regard to some
property. The benefit is two fold: First, the summary for
a particular function can be computed once and used at all
call sites, thereby avoiding redundant analysis. Second, a
function summary is usually expressed in terms of an ab-
straction of the observable behavior of a function, thereby
hiding irrelevant details of the function and simplifying the
analysis of its callers without losing relevant information.
However, finding the right abstraction is crucial, especially
for bug detection systems where being overly conservative
translates into large false positive rates, greatly reducing the
usefulness of the tool.

We provide a query-response interface that allows a user-
defined checker to compute function summaries by posing
satisfiability queries about program execution. In the follow-
ing section, we give an inference and checking framework for
finite state properties, also known as temporal safety prop-
erties, using Saturn.

5. CHECKING FINITE STATE PROPERTIES
Finite state properties are a class of specifications that

can be described as certain program values passing through
a finite set of states, over time, under specific conditions.
Locking, where a lock can legally only go from the unlocked
state to the locked state and then back to the unlocked state,
is a canonical example. These properties are also referred
to as temporal safety properties.

In this section, we focus on finite state properties, and de-
scribe a summary based interprocedural analysis that uses
the Saturn framework to automatically check such proper-
ties. We start by defining a common name space for shared
objects between the caller and the callee (Section 5.1), which
we use to define a general summary representation for fi-
nite state properties (Section 5.2). We then describe algo-
rithms for applying (Section 5.3) and inferring (Section 5.4)
function summaries in the Saturn framework. We conclude
by describing our implementation of an interprocedural lock
checker (Section 5.5).

5.1 Interface Objects
In C, the two sides of a function invocation share the

global name space, but have separate local name spaces.
Thus we need a common name space for objects referred to
in the summary. Barring external channels and unsafe mem-
ory accesses, the two parties share values through global
variables and parameters. Therefore, shared objects can be
named using a path from one of these two roots.



We formalize this idea using interface objects (IObj) as
common names for objects shared between caller and callee:

IObj (l) ::= parami | global var | ret val | ∗ l | l.f

Dependencies across function calls are expressed by inter-
face expressions (IExpr) and conditions (ICond), which are
defined respectively by replacing references to objects with
interface objects in the definition of Expr and Cond (as de-
fined in Figure 1, and extended in Figure 5).

To perform interprocedural analysis of a function, we must
map input interface objects to the names used in the func-
tion body, perform symbolic evaluation of the function, and
map the final function state to the final state of the interface
objects. Thus, we need two mappings to convert between
interface objects and those in the native name space of a
function:

[[·]]args : IObj→ Objext and [[·]]−1

args : Obj→ IObj

Converting IObj’s to native objects is straightforward. For
function call r = f(a0, ..., an),

[[global]]a0...an
= global

[[parami]]a0...an
= ai

[[ret val]]a0...an
= r

[[∗l]]a0 ...an
= ∗([[l]]a0 ...an

)
[[l.f ]]a0 ...an

= ([[l]]a0 ...an
).f

The range of the conversion is Objext, which allows deref-
erencing of pointers inside the expression. This feature is
not in the language defined in Section 2, but can be elimi-
nated by using temporary variables and explicit load/store
operations.

The inverse conversion is more involved, since there may
be multiple aliases of the same object in the program. We
incrementally construct the [[·]]−1

args mapping for objects ac-
cessed through global variables and parameters. For exam-
ple, in

void f(struct str *p) { spin lock(&p−>lock); }

the corresponding interface object for p is param
0
, since it is

defined as the first formal parameter of f . Recall that the
object pointed to by p→lock is lazily instantiated when p is
dereferenced by calling DefVal(p) (see Section 3). As part
of the instantiation, we initialize every field of the struct
(*p), and compute the appropriate IObj for each field at
that time. Specifically, the interface object for p→lock is
(∗param

0
).lock.

The conversion operations extend to interface expressions
and conditionals. For brevity, name space conversions for
objects, expressions, and conditionals are mostly kept im-
plicit in the discussion below.

5.2 Function Summary Representation
The language for expressing finite state summaries is given

in Figure 7. Each function summary is a four-tuple consist-
ing of:

• a set of input predicates Pin,

• a set of output predicates Pout,

• a set of interface objects M , which may be modified
during the function call, and

• a relation R summarizing the FSM behavior of the
function.

FSM States S = {Error, s1, . . . , sn}
Summaries Σ = 〈Pin, Pout,M,R〉

where Pin = {p1, . . . , pn} pi ∈ ICond,
Pout = {q1, . . . , qn} qi ∈ ICond,
M ⊆ IObj, and

R ⊆ IObj× 2|Pin| × S × 2|Pout| × S

Figure 7: Function summary representation.

The checker need only supply the set of FSM states and the
input and output predicates; both M and R are computed
automatically for each function by Saturn (see Section 5.4).

The FSM behavior of a function call is modeled as a set
of state transitions of one or more interface objects. These
transitions map input states to output states based on the
values of a set of input (Pin) and output predicates (Pout).
The state transitions are given in the set R. Each element
in R is a five tuple: (sm, incond, s, outcond, s′), which we
describe below:

• sm ∈ IObj is the object whose state is affected by the
transition relationship. In the lock checker, sm identi-
fies the accessed lock objects, as a function may access
more than one lock during its execution.

• incond ∈ 2|Pin| is used to denote the input condition
(
V

i∈incond pi)∧(
V

i/∈incond ¬pi) where Pin = {p1, . . . , pn}.
The value of incond is evaluated on entry to the func-
tion.

• s ∈ S is the initial state of sm in the state transition.

• outcond ∈ 2|Pout| is defined like incond and denotes the
output condition of the transition. outcond is evalu-
ated on exit.

• s′ ∈ S is the state of sm after the transition.

Figure 8 presents the summary of three sample locking
functions: spin lock, spin trylock, and complex wrapper. The
function complex wrapper captures some of the more compli-
cated locking behavior in Linux. Nevertheless, we are able
to express its behavior using our summary representation.
We describe how function summaries are inferred and used
in the following subsections.

5.3 Summary Application
This subsection describes how the summary of a function

is used to model its behavior at a call site. For a given
function invocation f(a0, . . . , an), we translate the call into
a set of statements simulating the observable effects of the
function. The translation, given in Figure 9, is composed of
two stages:

1. In the first stage, we save the values of relevant pro-
gram states before and after the call (line 3-4 and 8
in Figure 9), and account for the side effects of the
function by conservatively assigning unknown values
to objects in the modified set M (line 6). Relevant
values before the call include all input predicates pi,
and the current states (smi) of the interface objects
mentioned in the transition relation R. Relevant val-
ues after the call include all output states qi. We then



void complex wrapper(spinlock t *l, int flag, int *success)
{

if (flag) *success = spin trylock(l);
else { spin unlock(l); *success = 1; }

}

States: S = {Error = 0, Locked = 1,Unlocked = 2}
Summary: Σ = 〈M,R,Pin, Pout〉

spin lock :
Input: Pin = {} Pout = {}
Output: M = {∗param

0
}

R = { (∗param
0
, ,Unlocked, , Locked),

(∗param
0
, , Locked, ,Error)}

spin trylock :
Input: Pin = {} Pout = {liftc(ret val)}
Output: M = {∗param

0
, ret val}

R = { (∗param
0
, ,Unlocked, true, Locked),

(∗param
0
, ,Unlocked, false,Unlocked),

(∗param
0
, , Locked, ,Error)}

complex wrapper :
Input: Pin = {liftc(param

1
)} Pout = {liftc(∗param

2
)}

Output: M = {∗param
0
, ∗param

2
}

R = { (∗param
0
, true, Locked, ,Error)

(∗param
0
, true,Unlocked, true, Locked)

(∗param
0
, true,Unlocked, false,Unlocked)

(∗param
0
, false,Unlocked, true,Error)

(∗param
0
, false, Locked, true,Unlocked)}

Figure 8: Sample function summaries for the locking
property.

use an assume statement to rule out impossible combi-
nations of input predicates and output predicates (line
10; e.g., some functions always return a non-NULL
pointer).

2. In the second stage, we process the state transitions
in R by first testing their activation conditions, and
when satisfied, carrying out the transitions (line 14-
16). incond denotes the condition
(
V

i∈incond bpi) ∧ (
V

i/∈incond ¬bpi); and the condition for
outcond is symmetric. Notice that since incond and
outcond are a valuation of all input and output pred-
icates, no two transitions on the same state machine
should be enabled simultaneously (we flag such cases
as errors, since the caller would have no way of know-
ing the exit state of the function).

There is one aspect of the translation that is left unspeci-
fied in the description, which is the unknown values used to
model the side-effects of the function call. For scalar values,
we use the translation rule for unknown and conservatively
model these values with a set of unconstrained boolean vari-
ables. For pointers, we extend the DefVal operator described
in Section 3.2 to obtain a checker-specified estimation of the
shape of the object being pointed to.

5.4 Summary Generation
This subsection describes how we compute the summary

of a function after analysis. Before we proceed, we first state
two assumptions about the translation from C to Saturn:

Assumption

Σ(f) = 〈Pin, Pout,M, R〉

where

8
>>><
>>>:

Pin = {p1, . . . , pm}
Pout = {q1, . . . , qn}
M = {o1, . . . , ok}
R = {(sm1, incond1, s1, outcond1, s

′
1), . . . ,

(sml, incondl, sl, outcondl, s
′
l)}

Instrumentation

1: (* Stage 1: Preparation *)
2: (* save useful program states *)
3: bp1 ← p1; . . . ; bpn ← pm;
4: csm1 ← sm1; . . . ; csml ← sml;
5: (* account for the side-effects of f *)
6: o1 ← unknown(τo1

); . . . ; ok ← unknown(τok
);

7: (* save the values of output predicates *)
8: q′1 ← q1; . . . ; q

′
n ← qn;

9: (* rule out infeasible comb. of incond and outcond *)
10: assume(

W
i(smi = si ∧ incondi ∧ outcondi));

11:
12: (* Stage 2: Transitions *)
13: (* record state transitions after the function call *)
14: if (csm1 = s1 ∧ incond1 ∧ outcond1) sm1 ← s′1;
15: . . .
16: if (csml = sl ∧ incondl ∧ outcondl) sml ← s′l;

Figure 9: Summary application.

Pin = {p1, . . . , pm}
Pout = {q1, . . . , qn}
M = {v | is satisfiable(ψ0(v) 6= ψ(v))}
R = { (sm, incond, s, outcond, s′) |

is satisfiable(ψ0(sm = s) ∧ ψ0(incond)∧
ψ(outcond) ∧ ψ(sm = s′)) }

Figure 10: Summary generation.

1. We assume that each function has one unique exit
block. In case the function has multiple return state-
ments, we add a dummy exit block linked to all return
sites. The exit block is analyzed last (see Section 2)
and the environment ψ at that point encodes all paths
from function entry to exit. Summary generation is
carried out after analyzing the exit block.

2. We model return statements in C by assigning the re-
turn value to a special object rv, and [[rv]]−1

args = ret val.

Figure 10 gives the summary generation algorithm. The
input is a set of input (Pin) and output predicates (Pout).
The algorithm involves a series of queries to the SAT solver
based on the initial (ψ0) and final state (ψ) to determine: (1)
the set of modified objects M , and (2) the set of transition
relationships R. In computing M and R, we use a shorthand
ψ(x) to denote the valuation of x under environment ψ.

The summary generation algorithm proceeds as follows.
Intuitively, modified objects are those whose valuation may
be different under the initial environment ψ0 and the final



environment ψ. We compute M by iterating over all inter-
face objects v and use the SAT solver to determine whether
the values may be different or not.
R is computed by enumerating over all relevant interface

objects (e.g., locks in the lock checker) in the function and
all combinations of input predicates and output predicates.
We again use the SAT solver to determine whether a tran-
sition under a particular set of input and output predicates
is feasible.

As one may have noticed, this process involves many SAT
queries. We observe that if done carefully, each SAT query
can be separated into two parts: (1) constraints that en-
code the program control and data flow; and (2) the specific
valuations of the state variables and the input and output
predicates. Part (1) is shared among all SAT queries. Incre-
mental SAT solvers are able to share and reuse information
learned (e.g., using conflict clauses) in the common part of
the queries to speed up the SAT solving process. In practice,
SAT queries typically complete in under one second.

5.5 A Linux Lock Checker
In this section, we use the FSM checking framework de-

scribed above to construct a lock checker for the Linux ker-
nel. We start with some background information, and list
the challenges we encountered in trying to detect locking
bugs in Linux. We then describe the lock checker we have
implemented in the Saturn framework.

The Linux kernel is a widely deployed and well-tested core
of the Linux operating system. The kernel is designed to
scale to an array of multiprocessor platforms, and thus is
inherently concurrent. It uses a variety of locking mecha-
nisms (e.g., spin locks, semaphores, read/write locks, prim-
itive compare and swap instructions, etc.) to coordinate
concurrent accesses of kernel data structures. For efficiency
reasons, most of the code in the kernel runs in the supervi-
sor mode, and synchronization bugs can thus cause crashes
or hangs that result in data losses and system down time.
For this reason, locking bugs have received the attention of
a number of research and commercial checking and verifica-
tion efforts.

Locks (a.k.a. mutexes) are naturally expressed as a fi-
nite state property with three states: Locked, Unlocked, and
Error. The lock operation can be modeled as two transi-
tions: from Unlocked to Locked, and Locked to Error (unlock
is similar). There are a few challenges that a checker must
deal with to model locking behavior in Linux:

• Aliasing. In Linux, locks are passed by reference
(i.e., by pointers in C). One immediate problem is the
need to deal with pointer aliasing. CQual employs
a number of techniques to infer non-aliasing relation-
ships to help refine the results from the alias analy-
sis [2]. MC [13] assumes non-aliasing among all point-
ers, which helps reduce false positives, but also limits
the checking power of the tool.

• Heap Objects. In fine grained locking, locks are
often embedded in heap objects. These objects are
stored in the heap and passed around by reference. To
detect bugs involving heap objects, a reasonable model
of the heap needs to be constructed (recall Section 3.2).
The need to write “drivers” that construct the check-
ing environment has proven to be a non-trivial task in
traditional model checkers [3].

• Path Sensitivity. The state machine for locks be-
comes more complex when we consider trylocks. Try-
locks are lock operations that can fail. The caller must
check the return value of trylocks to determine whether
the operation has succeeded or not. Besides trylocks,
some functions intentionally exit with locks held on
error paths and expect their callers to carry out error
recovery and cleanup work. These constructs are used
extensively in Linux. In addition to that, one common
usage scenario in Linux is the following:

if (x) spin lock(&l); . . .; if (x) spin unlock(&l);

Some form of path sensitivity is necessary to handle
these cases.

• Interprocedural Analysis. As we show in Section 6,
a large portion of synchronization errors arise from
misunderstanding of function interface constraints. The
presence of more than 600 lock/unlock/trylock wrap-
pers further complicates the analysis. Imprecision in
the intraprocedural analysis is amplified in the inter-
procedural phase, so we believe a precise interprocedu-
ral analysis is important in the construction of a lock
checker.

Our lock checker is based on the framework described
above (see Figure 8). States are defined as usual: {Locked,
Unlocked,Error}. To accurately model trylocks, we define
Pout = {liftc(ret val)} for functions that return integers or
pointers. Tracking this predicate in summaries is also ade-
quate for modeling functions that exit in different lock states
depending on whether the return value is 0 (null) or not.
Pout is defined to be the empty set for functions of type
void. Pin is defined to be the empty set.

We detect two types of locking errors in Linux:

• Type A: double locking/unlocking. These are
functions that may acquire or release the same lock
twice in a row. The summary relationship R of such
functions contains two transitions on the same lock:
one leads from the Locked state to Error, and the other
from the Unlocked state to Error. This signals an in-
ternal inconsistency in the function—no matter what
state the lock is in on entry to the function, there is a
path leading to the error state.

• Type B: ambiguous return state. These are func-
tions that may exit in both Locked and Unlocked state
with no observable difference (w.r.t. Pout, which is
liftc(ret val)) in the return value. These bugs are com-
monly caused by missed operations to restore lock states
on error paths.

6. EXPERIMENTAL RESULTS
Our implementation of Saturn is written in O’Caml [20]

and makes use of several existing software packages. We use
a modified version of the GNU C preprocessor to preserve
a number of primitive lock operations that would otherwise
be macro expanded into inline assembly instructions. Sev-
eral “panic” primitives (e.g., panic, BUG) are also preserved
in this phase. The preprocessed code then goes through a
modified version of CIL [23], where it is parsed and trans-
lated into the Saturn modeling language described in Sec-
tion 2. We use a GNU DBM (GDBM) database to index



Type Count

Num. of Files 12455
Total Line Count 4.8 million LOC
Total Num. Func. 63850
Lock Related Func. 23458
Running time 19h40m CPU time
Approx. LOC/sec 67

Table 1: Performance statistics.

and store the processed function bodies to avoid redundant
parsing and transformation. A separate GDBM database
is also used to store function summaries as they are com-
puted. During the analysis, we use the BuDDy [21] BDD
package to track and simplify CFG block guards. Finally,
we use zChaff [25, 22] as our backend SAT solver because of
its performance and incremental SAT solving capabilities.

We have implemented the lock checker described in Sec-
tion 5.5 as a plugin to the Saturn framework. The checker
models locks in Linux (e.g., objects of type spinlock t,

rwlock t, rw semaphore, and semaphore) using the state
machines defined in Section 5. When analyzing a function,
we retrieve the lock summaries of its callees and use the al-
gorithm described in Section 5.3 to simulate their observable
effects. At the end of the analysis, we compute a summary
for the current function using the algorithm described in
Section 5.4 and store it in the summary database for future
use.

The order of analysis for functions in Linux is determined
by topologically sorting the static call graph of the Linux
kernel. Recursive function calls are represented by strongly
connected components (SCC) in the call graph. During the
bottom up analysis, functions in SCCs are analyzed in arbi-
trary order.

We start the analysis by seeding the lock summary database
with manual specifications of around 40 lock, unlock and
trylock primitives in Linux. Otherwise the checking process
is fully automatic: our tool works on the unmodified source
tree and requires no human guidance during the analysis.

We ran our lock checker on the then latest release of the
kernel source tree (v2.6.5). Performance statistics of the ex-
periment are tabulated in Table 1. All experiments were
done on a 3.0GHz Pentium IV computer with 1G of mem-
ory. Our tool parsed and analyzed around 4.8 million lines
of code in 63,850 functions in under 20 hours. Function
side-effect computation is not currently implemented in the
version of the checker reported here. Loops are unrolled a
maximum of two iterations based on the belief that most
double lock errors manifest themselves by the second itera-
tion. We have implemented an optimization that skips func-
tions that have no lock primitives and do not call any other
functions with non-trivial lock summaries. These functions
are automatically given the trivial “No-Op” summary. We
analyzed the remaining 23,927 lock related functions, and
stored their summaries in a GDBM database.

We set the memory limit for each function to 700MB to
prevent thrashing, and the CPU time limit to 90 seconds.
Our tool failed to analyze 27 functions – some of which were
written in assembly, and the rest due to internal failures of
the tool. It failed to terminate on 442 functions in the ker-
nel, largely due to resource constraints, with a small number

Type Bugs FP Warnings Accuracy
(Bug/Warning)

A 134 99 233 57%
B 45 22 67 67%

Total 179 121 300 60%

Table 2: Bug count.

Type A B Total
Interprocedural 108 27 135
Intraprocedural 26 18 44
total 134 45 179

Table 3: Bug breakdown.

of them due to implementation bugs in our tool. In every
case we have investigated, resource exhaustion is caused by
exceeding the capacity of an internal cache in Saturn. This
represents a failure rate of < 2% on the lock-related func-
tions.

The result of the analysis consists of a bug report of 179
previously unknown errors6 and a lock summary database
for the entire kernel, which we describe in the subsections
below.

6.1 Errors and False Positives
As described in Section 5.5, we detect two types of locking

errors in Linux: double lock/unlock (Type A) and ambigu-
ous output states (Type B). We tabulate the bug counts in
Table 2.

The bugs and false positives are classified by manually in-
specting the error reports generated by the tool. One caveat
of this approach is that errors we diagnose may not be actual
errors. To counter this, we only flag ones we are reasonably
sure about. We have several years of experience examin-
ing Linux bugs, so the number of misdiagnosed errors is
expected to be low.

Table 3 further breaks down the 179 bugs into intraproce-
dural versus interprocedural errors. We observe that more
than three quarters of diagnosed errors are caused by mis-
understanding of function interface constraints.

Table 4 classifies the false positives into six categories.
The biggest category of false positives is caused by inade-
quate choice of predicates Pin and Pout. In a small num-
ber of widely called utility functions, input and output lock
states are correlated with values passed in/out through the
parameter, instead of the return value. To improve this,
we need to detect the relevant predicates either by manual
specification or by using a predicate abstraction algorithm
similar to that used in SLAM or BLAST, which we will
leave to future work. Another large source of false positives
is the idiom that uses trylock operations as a way of query-
ing the current state of the lock. This idiom is commonly
used in assertions to make sure that a lock is held at a cer-
tain point. We believe a better way to accomplish this task
is to use the lock query functions, which we model precisely
in our tool. Fortunately, this usage pattern only occurs in
a few macros, and can be easily identified during inspec-

6The bug reports are available online at
http://glide.stanford.edu/saturn/results/err{1,2}.php



Type A Type B Total
Predicates 26 16 42
Lock Assertions 21 4 25
Semaphores 22 0 22
Saturn Lim. 18 1 19
Readlocks 7 0 7
Others 5 1 7
Total 99 22 121

Table 4: False positives breakdown.

1 static void sscape coproc close(void *dev info, int sub device)
2 {
3 spin lock irqsave(&devc−>lock,flags);
4 if (devc−>dma allocated) {
5 sscape write(devc, GA DMAA REG, 0x20);
6 . . .
7 . . .
8 }

Figure 11: An interprocedural Type A error found
in sound/oss/sscape.c.

tion. The third largest source of false positives is counting
semaphores. Depending on the context, semaphores can be
used in Linux either as locks (with down being lock and up
being unlock) or counters. Our tool treats all semaphores as
locks, and therefore may misflag consecutive down/up op-
erations as double lock/unlock errors. The remaining false
positives are due to readlocks (where double locks are OK),
and Saturn limitations in modeling arrays, void *, etc.

Figure 11 shows a sample interprocedural Type A error
found by Saturn, where sscape coproc close calls sscape write

with &devc→lock held. However, the first thing sscape write

does is to acquire that lock again, resulting in a deadlock on
multiprocessor systems.

Figure 12 gives a sample intraprocedural Type B error.
There are two places where the function exits with return
value -EBUSY: one with the lock held, and the other unheld.
The programmer has forgotten to release the lock before
returning at line 13.

We have filed the bug reports to the Linux Kernel Mailing
List (LKML) and received confirmations and patches for a
number of reported errors. To the best of our knowledge,
Saturn is by far the most effective bug detection tool for
Linux locking errors.

6.2 The Lock Summary Database
Synchronization errors are known to be difficult to repro-

duce and debug dynamically. To help developers diagnose
reported errors, and also better understand the often subtle
locking behavior in the kernel (e.g., lock states under error
conditions), we have built a web interface for the Linux lock
summary database7 generated during the analysis.

Our own experience with the summary database has been
pleasant. During inspection, we use the summary database
extensively to match up the derived summary with the im-
plementation code to determine whether a bug report is a
false positive. In our experience the generated summaries

7The web interface is available online at
http://glide.stanford.edu/saturn/results/browse.php

1 int i2o claim device(struct i2o device *d,
2 struct i2o handler *h)
3 {
4 down(&i2o configuration lock);
5 if (d−>owner) {
6 . . .
7 up(&i2o configuration lock);
8 return −EBUSY;
9 }

10 . . .
11 if(. . .) {
12 . . .
13 return −EBUSY;
14 }
15 up(&i2o configuration lock);
16 return 0;
17 }

Figure 12: An intraprocedural Type B error found
in drivers/message/i2o/i2o core.c.

accurately model the locking behavior of the function being
analyzed. In fact, shortly after we filed these bugs, we logged
more than a thousand queries to the summary database from
the Linux community.

The summary database also reveals interesting facts about
the Linux kernel. To our surprise, locking behavior is far
from simple in Linux. More than 23,000 of the ∼63,000 func-
tions in Linux directly or indirectly operate on locks. In ad-
dition, 8873 functions access more than one lock. There are
193 lock wrappers, 375 unlock wrappers, and 36 functions
where the output state correlates with the return value. Fur-
thermore, more than 17,000 functions directly or indirectly
require locks to be in a particular state on entry.

We believe Saturn is the first automatic tool that suc-
cessfully understands and documents any aspect of locking
behavior in code the size of Linux.

7. RELATED AND FUTURE WORK
In this section, we discuss the relationship of Saturn to

several other systems for bug finding and verification.
Saturn was inspired by the first author’s previous work on

Meta Compilation (MC) [10, 13] and our project is philo-
sophically aligned with MC in that it is a bug detection,
rather than a verification, system. In fact, Saturn began as
an attempt to improve the accuracy of MC’s flow sensitive
but path insensitive analysis.

Under the hood, MC attaches finite state machines (FSM)
to syntactic program objects (e.g., variables, memory loca-
tions, etc.) and uses an interprocedural data flow analysis
to compute the reachability of the error state. Because con-
servative pointer analysis is often a source of false positives
for bug finding purposes [12], MC simply chooses not to
model pointers or the heap, thereby preventing false posi-
tives from spurious alias relationships by fiat. MC checkers
use heuristics (e.g., separate FSM transitions for the true
and false branches of “interesting” if statements) and sta-
tistical methods to infer some of the lost information. These
techniques usually dramatically reduce false positive rates
after several rounds of trial and error. However, they cannot
fully compensate for the information lost during the analy-
sis. For example, in the code below,



/* 1: data correlation */
if (x) spin lock(&lock);
if (x) spin unlock(&lock);
/* 2: aliasing */
l = &p−>lock;
spin lock(&p−>lock);
spin lock(l);

MC emits a spurious warning in the first case, and misses
the error in the second. The first scenario occurs frequently
in Linux, and an interprocedural version of the second is
also prevalent.

Saturn can be viewed as both a generalization and sim-
plification of MC because it uniformly relies on boolean sat-
isfiability to model all aspects without special cases. The
lock checker presented in Section 5.5 naturally tracks locks
that are buried in the heap, or conditionally manipulated
based on the values of certain predicates. In designing this
checker, we focused on two kinds of Linux mutex errors that
exhibited high rates of false positives in MC: double lock-
ing and double unlocking (2 errors and 23 false positives
[10]). Our experiments show that Saturn’s improved accu-
racy and summary-based interprocedural analysis allow it
to better capture locking behavior in the Linux kernel and
thus find more errors at a lower false positive rate.

While Blast, SLAM, and other software model checking
projects have made dramatic progress and now handle hun-
dreds of thousands of lines of code [4, 15, 14], these are
whole-program analyses. ESP, a lower-complexity approach
based on context-free reachability, is similarly whole-program
[9]. In contrast, Saturn computes summaries function-by-
function and, based on our experiments, scales to millions
of lines of code and should in fact be able to scale arbitrarily,
at least for checking properties that lend themselves to con-
cise function summaries. In addition, Saturn has the preci-
sion of path-sensitive bit-level analysis within function bod-
ies, which makes handling normally difficult-to-model con-
structs, such as type casts, easy. In fact, Saturn’s code size
is only about 25% of the comparable part of Blast (the most
advanced software model checker available to us), which sup-
ports our impression that a SAT-based checker is easier to
engineer. One weakness of Saturn with respect to these sys-
tems is its current handling of loops and recursion (which
is the primary source of unsoundness). This is an area we
intend to examine in future work.

CQual is a quite different, type-based approach to pro-
gram checking [12, 2]. CQual’s primary limitation is that
it is path insensitive. In the locking application path sensi-
tivity is not particularly important for most locks, but we
have found that it is essential for uncovering the numerous
trylock errors in Linux. CQual’s strength is in sophisti-
cated global alias analysis that allows for sound reasoning
and relatively few false positives due to spurious aliases; an-
other possible direction for future work is to integrate this
alias analysis into Saturn.

PREfix [6] is a symbolic execution based static error-
detection tool. It selectively simulates a set number of paths
through a function using a solver that specializes in detect-
ing memory errors such as NULL pointer dereferences and
leaks. Information gathered during the simulation is sum-
marized into interface constraints for the function, which
are subsequently used during the analysis of its callers. Sat-
urn employs a similar architecture in its summary-based
bottom-up interprocedural analysis.

CBMC [19, 8] is a SAT-based bounded model checker

for C. It has been used to verify hardware design specifica-
tions [19] and also a component of an air traffic control sys-
tem [8]. Like Saturn, it translates C programs into boolean
formulas by unrolling loops up to a given bound and uses a
SAT solver to analyze relevant properties. However, there
are a few key differences between these two systems. On
a high level, CBMC is optimized as a whole-program asser-
tion checker aimed at verifying C programs with hundreds of
lines of code. Saturn is designed for compositional analysis
of large systems with millions of lines of code. The difference
in goals results in low-level technical differences in modeling
C features. For example, CBMC translates assignments as
assumptions and feeds them to the SAT solver regardless
of whether or not they are relevant to the properties being
checked. This approach is not usually a problem because
specification code is by design an abstraction of the imple-
mentation and thus should likely contain relevant informa-
tion. The same cannot be said about the unmodified Linux
kernel. In Linux, most of the code analyzed (e.g., complex
logic in handling logs in the file system) is irrelevant to the
property (e.g., locking behavior) of interest. Saturn models
assignments with a map recording the binding of variables to
their boolean representations, and Saturn only commits the
boolean constraints to the SAT solver if they are relevant
to the query. This design dramatically cuts the time spent
in the solver. Saturn’s modeling of pointers using guarded
location sets also lends itself well to the automatic construc-
tion of the checking environment.

Closer to Saturn is Magic [7], a compositional checking
tool that verifies a form of conformance relationship called
weak simulation between two labeled transition systems (LTS):
one abstracted from the program by a predicate abstraction
tool like SLAM or BLAST, and the other written by the
programmer as a form of specification. Checking is done
by reducing the conformance query to the satisfiability of
a special form of boolean formulas (weakly negated HORN
formulas) that can be solved in linear time. Magic also fo-
cuses on checking finite state machine properties. The basic
difference between Saturn and Magic is that Magic is con-
ceived of as a tool to check user-supplied specification, while
Saturn is an inference system.

8. CONCLUSIONS
We have presented Saturn, a scalable and precise error de-

tection framework based on boolean satisfiability. Our sys-
tem has a novel combination of features: it models all values,
including those in the heap, path sensitively down to the bit
level, it computes function summaries automatically, and it
scales to millions of lines of code. We have demonstrated
the utility of tool with a lock checker for Linux, finding in
the process 179 unique locking errors in the Linux kernel.
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