
Program Transformation in the Presence of ErrorsAlexander Aiken John H. Williams Edward L. WimmersIBM Almaden Research Center650 Harry Rd.San Jose, CA 95120email: lastname@ibm.com1 IntroductionA laudable trend of the past two decades has been the increased use of denotational semantics toguide the design and implementation of programming languages. Semantics-driven language designhas produced cleaner and simpler languages and provided more precise standards for testing thecorrectness of language implementations.An apparent exception to this trend is the treatment of error handling. All too often, errors areconsidered to be outside the pale of the denotational semantics; if anything is speci�ed about errorbehavior, it is usually through some ad hoc mechanism. Some language features|such as strongtyping|reduce the negative impact of such a design but cannot avoid it completely; runtime errorsexist in every language and must be handled in an implementation.Many languages simply omit errors altogether from their formal semantic speci�cation. For ex-ample, early Fortran implementations were free to report errors as the implementor saw �t, andtransformations to improve performance could change the behavior of error-producing programs.This approach is still taken with some modern languages, e.g., Haskell [HWA*88] and the languagesof Turner [Tur85], where strong typing and lazy evaluation lessen the need for error recovery andexception handling.Other languages include errors in the domain of values and provide some mechanism for computingwith (or recovering from) errors, but the formal speci�cation allows considerable variation in thebehavior of implementations. For example, in [Ste84] Steele writes:\The de�nition of Common Lisp : : : explicitly requires the interpreter and compiler toimpose identical semantics on correct programs so far as possible." (emphasis added)Indeed, in one Common Lisp implementation, taking the car of an atom produces a run time errorwhen interpreted but returns the current package when compiled!One study of program transformations carefully accounts for the fact that many common opti-mizations do not preserve error behavior by giving a precise, denotational treatment of such trans-formations [CF89]. In this approach, errors are considered to approximate other values, and programtransformations are lifting operations that can (possibly) make programs more de�ned. Anotherapproach [Hen81] 1

\: : :examines the optimization di�culties imposed by common exception handling fa-cilities [and] proposes restrictions on these mechanisms that make the optimization ofprograms possible."Why have language designers and implementors avoided specifying and preserving the meaning oferrors? The answer appears to be that not preserving error behavior increases the power and e�ec-tiveness of transforming correct programs, i.e., the \important" programs. For instance, substitutings2 (which selects the second element of a sequence) for s1 � tl (which selects the �rst element of thetail of a sequence) may improve a program's running time, but a programmer who hadn't used theprimitive s2 and was unaware of its existence would be confused by the run-time error message \s2incorrectly applied to a non-sequence argument."If the language designer opts for language clarity and ease of debugging by making a semanticdistinction between tl errors and s2 errors, then the general transformation becomes invalid, andsome weaker version must be substituted, perhaps in the form of a set of rules identifying particularcontexts in which the replacement is valid. This can be a signi�cant loss, since identifying suchcontexts in general requires knowledge of the entire program. Thus, including errors as semanticobjects in order to make a language easier to use appears to weaken the generality and power of thelanguage's program transformations.This paper presents a technique for preserving the power of general program transformations inthe presence of a rich collection of distinguishable error values. This is accomplished by introducingan annotation, \Safe", to mark occurrences of functions that cannot produce errors. Succinct andgeneral algebraic laws can be expressed using Safe, thereby giving program transformations in alanguage with many error values the same power and generality as program transformations in alanguage with only a single error value (such as FP [Bac78]). In fact, the Safe mechanism accomplishesmuch more. It actually strengthens equational reasoning by providing a su�cient condition on aprogram context E(�) and functions f and g; such that E(f) � E(g) even if f 6� g:The Safe mechanism is presented in the context of the functional language FL [BWW86], butit should be applicable to any language whose program transformations can be expressed equation-ally. Section 2 describes enough of FL to illustrate the technique and prove its soundness. Section 3introduces the Safe mechanism and gives a simple example illustrating that having just two distin-guishable errors causes as much loss of algebraic generality as having arbitrarily many di�erent kindsof errors. This shows that it is not possible through careful language design to make a gradual trade-o� between the expressiveness of error reporting and algebraic generality. Section 3 also contains theSubstitutability Theorem, which provides a criterion for proving the soundness of transformations in-volving Safe. Some examples of optimization using Safe are given in Section 4. Section 6 concludeswith suggestions for further work. 2

f:x denotes function applicationhx1; : : : ; xni denotes sequence construction(f � g):x = f: (g:x)[f1; : : : ; fn]:x = hf1:x; : : : ; fn:xi(p! q; r):x = 8><>: p:x if p:x 2 EFLr:x if p:x = falseq:x otherwise~x:y = x�:f:hx1; : : : ; xni = hf:x1; : : : ; f:xni+:hx1; : : : ; xni = x1 + : : :+ xnsi:hx1; : : : ; xni = xitl:hx1; x2; : : : ; xni = hx2; : : : ; xnirev:hx1; : : : ; xni = hxn; : : : ; x1ial:hx; hy1; : : : ; ynii = hx; y1; : : : ; ynidistl:hx; hy1; : : : ; ynii = hhx; y1i; : : : ; hx; yniiid:x = xdom:f = s1 � [id; f]mkerr:"string" = stringerrcatch:hf; gi:x = (g:hx; yi if f:x = Err(y)f:x otherwiseFigure 1: A subset of FL.2 An Overview of FLFL [BWW86] is the result of an e�ort to design a practical functional language based on FP [Bac78].Figure 1 gives the subset of FL needed to understand the laws and examples that follow. Somefeatures of the language are ignored altogether; in particular, input/output functions and syntacticsugar are omitted. A de�nition of each function is given only for some arguments; for all otherarguments, the function f returns an error value ferr (e.g., s1:0 � s1err).1 The evaluation order isleftmost-innermost; thus, in [f; g]:x , f:x is evaluated and then g:x is evaluated.In designing FL, it was recognized that one of the de�ciencies of FP is that it has a single errormessage ? (or Wrong!) for all exceptional circumstances. Error messages and exception handling arean integral part of FL; as in the current version of Standard ML [HMT89], errors are �rst class valuesrather than the special results of functions that fail to produce values. Semantically, error values inFL are treated di�erently than ordinary values. All functions are strict with respect to errors; thatis, f: xerr � xerr for any function f and error value xerr: Sequence construction is also strict withrespect to errors; a sequence collapses to the leftmost error it contains. This behavior is justi�ed by1In fact, FL functions produce more informative errors than just the name of the function, but this countable set oferrors is su�cient to illustrate the technique. 3

the intended use of errors in FL: errors represent a situation in which something extraordinary hashappened, and therefore an error should persist until caught or until it escapes from (and becomesthe result of) the program. Some of the semantic treatment of errors can be seen in the recursivedomain equations for FL: DFL = D+FL [EFLD+FL = A [Seqs (D+FL) [(D+FL ! DFL)(the ordinary values)EFL = Err(D+FL) [f?g(the error values)In these equations, A is the set of atoms, Seqs is sequence construction, and Err is error construction.The ordering on D+FL is the standard one; in EFL, Err(x) � Err(y), x � y and ? � x for all x.3 The Safe MechanismOne of the principles underlying FL is that a programming language should have a rich algebra usefulfor reasoning about and optimizing programs. Errors have a great impact on the algebra; for example,if two expressions can produce distinct errors, then the order of evaluation of the expressions usuallycannot be changed without changing the error produced. Even with errors, however, there are manygeneral identities that hold between FL programs; as usual, f � g means that f and g denote thesame semantic value. f � id � f (1)id � f � f (2)[f1; : : : ; fn]�g � [f1�g; : : : ; fn�g] (3)f � (p! q; r) � p! f � q; f � r (4)(p! q; r)�f � p�f! q�f; r�f (5)These laws hold because the order of application of the component functions is unchanged.However, [g; f] � rev � [f; g] (6)which is a law in FP, is not valid for all FL functions f and g; if f produces ? and g produces tlerr;then [g; f] produces tlerr; but rev � [f; g] produces ?: This example shows there cannot be a gradualtrade-o� of expressiveness of error reporting for generality of program transformations. Having twoerrors is as limiting as having arbitrarily many, since the existence of just one error distinguishablefrom ? is su�cient to invalidate any \law" that does not preserve the order of evaluation of itsconstituent functions. However, it is true that[g; f] � rev � [f; g] if neither side makes an error (7)4

That is, there are contexts in which [g; f] can be substituted for rev � [f; g]: There are many otherexamples of rewrite rules that are correct provided neither side produces an error, and including themgreatly enhances the power of a program transformation system. The following informal examplesillustrate the notion of \rewriting in context", i.e., using rules whose validity depends on the contextin which they are applied. In these examples, an occurrence of a function f is annotated as being\safe" (written S(f)), if it is known that that occurrence is guaranteed not to produce an error whenapplied to a non-error value; the notation f 7! g simply indicates that f is rewritten to g: (N.B. Fornow, S(f) is an extra-linguistic notion; the phrase \annotating f with S(f) " has no more semanticcontent than the phrase \painting f green".)Consider the program rev � [~0; ~1]: Since the two constant functions cannot produce an errorunless applied to an error, neither can the construction of the two constant functions. Thus theprogram can be rewritten: rev � [~0; ~1] 7!rev � [S(~0); S(~1)] 7!rev � S([~0; ~1])Now note that because the argument to reverse is safe, the order of evaluation of the elements ofthe sequence must be irrelevant, so the application of rev can be eliminated. As a last step, theannotation S can be dropped: rev � S([~0; ~1]) 7!S([~1; ~0]) 7![~1; ~0]This rewriting sequence is correct in the sense that the �nal program is equivalent to the originalprogram; i.e., rev � [~1; ~0] � [~1; ~0]: At this point, however, the safe mechanism is informal, and itis easy to make mistakes. Consider the program rev � [distl; tl � al]: Because al follows distl inthe order of evaluation, and because al produces an error for exactly the same arguments as distl;al can be marked safe. rev � [distl; tl � al] 7! rev � [distl; tl � S(al)]Next notice that if al is error-free, then tl always succeeds and returns the second component of theoriginal argument. Therefore S(s2) can be substituted for tl � S(al):rev � [distl; tl � S(al)] 7! rev � [distl; S(s2)]At this point, one might suppose that rev can be eliminated as in the previous example, since onlyone of the functions in the sequence to be reversed can produce an error and therefore the evaluationorder of the elements of the sequence is irrelevant:rev � [distl; S(s2)] ?7! [S(s2); distl]5

Now, however, something has gone wrong: rev � [distl; tl � al] 6� [s2; distl]; becauserev � [distl; tl � al] : 3 produces distlerr; whereas rev � [s2; distl] : 3 produces s2err (whichisn't even mentioned in the original program). The fact that intuition can fail on such a small andsimple example is strong motivation to provide a precise formalism for stating and verifying thesetransformations.A �rst step towards formalizing the rewrite rules is to express quali�ed laws such as (7) equation-ally. One way to do this is to force both sides to produce some identical \don't care" value for allarguments not in the domain of interest. In the following de�nition of Safe; ? plays the role of the\don't care" value.De�nition 3.1 (Safe) For every FL function f; Safe:f denotes the function:Safe:f :x = 8>><>>: x if x 2 EFL? if f:x 2 EFLf:x otherwiseFor convenience, Safe : f is often abbreviated S : f: With this de�nition of Safe; Law (7) can beexpressed as: S: [g; f]� S: (rev � [f; g]) (8)Moreover, many other useful laws are expressible:f � S:f � dom:f (9)f � S: (dom:f) � S:f (10)S:f � S:g � S: (f � g) (11)S:p! S:q; S:r � S: (p! q; r) (12)[f; g] � [f; g � S: (dom:f)] (13)[S:f1; : : : ; S:fn] � S: [f1; : : : ; fn] (14)rev � S: [f1; : : : ; fn] � S: [fn; : : : ; f1] (15)S: (s1 � tl) � S:s2 (16)catch:hS:f; gi � S:f (17)catch:hf; gi � S: (dom:h) � catch:hf � S: (dom:h); gi (18)Note that some of the informal 7! steps have been captured as equivalences; e.g., Laws (14) and(15). Unfortunately, others cannot be expressed as equivalences. For example, the rule tl � S(al) 7!S(s2) cannot be written as tl�S:al � s2; since (tl�S:al):h1; 2; 3i � alerr whereas s2:h1; 2; 3i � 2;nor could it be tl � S:al � S:s2; for the same reason.The di�culty is that � is a symmetric relation, whereas the desired property is inherently asym-metric: tl � S:al can be rewritten to S:s2; because in any program in which tl � S:al could appear,the function S:s2 produces the same result. Thus, at least some of the desired rewrite rules f 7! gare valid only when f appears in a \good" context; i.e., in one which enforces the condition that S:fcannot produce ?: The following de�nitions develop the relation > (read \rewrites in context to"),6

which both captures this asymmetry and de�nes a set of contexts in which such rewrite rules can beapplied.De�nition 3.21. The set of simple expressions is the smallest set of FL functions such that:� si; tl; rev; al; distl; id; ~a for all atoms a; and mkerr are simple expressions.� If e1; : : : ; en are simple expressions, then e1 � e2; [e1; : : : ; en]; (e1 ! e2; e3); dom : e1;catch:he1; e2i; Safe:e1; and �:e1 are simple expressions.2. E is a simple context i� E(f) is a simple expression for every simple expression f:Since only the language processor introduces and manipulates Safe expressions, and since trans-formations preserve the meaning of expressions, the transformations need to work only for expressionsthat can be written without Safe:De�nition 3.3 A simple expression f is user-de�nable i� there exists a simple expression u with nooccurrences of Safe such that f � u:De�nition 3.4 Let f; g be simple expressions. f > g i� for every simple context E such that E(f) isuser-de�nable, E(f) � E(g):This de�nition of > allows the expression of a large number of \in-context" transformations. Notethat (22) is a correct version of the incorrect rewriting step discussed above.tl � S:al > s2 (19)S:f > f (20)dom: (S:f) > id (21)rev � [S:f; g] > [g; S:f] (22)�:f � �: (S:g) > �: (f � S:g) (23)dom: (S: (�:f)) > �: (S: (dom:f)) (24)There is one nagging problem. De�nition 3.4 provides little assistance in establishing that f > g;because it requires reasoning about all possible contexts. The purpose of the Substitutability Theorem(given below) is to provide a su�cient condition that is easier to check. The following de�nition givesthis condition; the idea is that f should rewrite to g if f and g agree wherever f does not return the\don't care" value.De�nition 3.5 f �s g i� f:x � g:x whenever f:x 6� ?:The following two lemmas precisely capture the properties of simple expressions that are neededto make the technique of \in-context substitutions" work.7

Lemma 3.6 If E is a simple context and f �s g; then E(f) �s E(g):Lemma 3.7 If e is a user-de�nable simple expression, then e:x 6� ? whenever x 6� ?:The Substitutability Theorem reduces the problem of verifying that f > g to the easier problemof checking that f �s g in the case where E(f) is a user-de�nable simple expression.Theorem 3.8 (Substitutability Theorem)If f and g are simple expressions and f �s g; then f > g:Proof: Let E be a simple context and assume that E(f) is user-de�nable. By Lemma 3.6, E(f) �sE(g): By Lemma 3.7, E(f):x 6� ? if x 6� ?: Together these facts imply that E(f):x � E(g):x if x 6� ?:By strictness, E(f):? � ? � E(g):?: Therefore, E(f) � E(g) . 2Using the Substitutability Theorem, transformations (19)-(24) are easily veri�ed. Note that theproof of the Substitutability Theorem depends only on Lemmas 3.6 and 3.7; therefore, this approachworks with any extension of the simple expressions that preserves these two Lemmas. Also notethat pure identities, such as transformations (1)-(17), apply to all expressions, not merely the simpleexpressions.4 Using SafeThis section shows the usefulness of Safe with a few short examples illustrating the elimination offunction calls, the use of Safe in code generation, the optimization of exception handling, and the useof in-context laws. Recall that dom:f:x is f:x if f:x is an error value and x otherwise (see Figure 1).The examples use the following laws involving dom:dom:id � id (25)dom: [f1; : : : ; fn] � dom:fn � : : : � dom:f1 (26)dom:al � dom:distl � dom:distl (27)S: (dom:tl) � S: (dom:s1) (28)In the �rst example, nothing is known about f; but the fact that id is a total function allows theconstruction of the two functions to be reversed.rev � [f; id]� rev � S: [f; id] � dom: [f; id] by 9� S: [id; f] � dom: [f; id] by 15� S: [id; f] � dom:id � dom:f by 26� S: [id; f] � id � dom:f by 25� S: [id; f] � dom:f by 2� S: [id; f] � dom:f � id by 1� S: [id; f] � dom:f � dom:id by 25� S: [id; f] � dom: [id; f] by 26� [id; f] by 98

This transformation is an optimization, because the end result eliminates the application of rev:Note, however, that the intermediate steps are not necessarily optimizations, because they involvecomputing some values twice; in particular, f could be arbitrarily expensive to compute. The lawf � S:f�dom:f is very useful for introducing safe functions, but if the added dom cannot be discharged,then the resulting program could be less e�cient than the original program. In the worst case, usingLaw 9 could result in a program that computes f once very slowly to preserve errors and then onceagain to produce the result!The next example illustrates that there are intermediate cases where dom cannot be completelydischarged but the result is still a useful optimization. Section 6 contains further discussion of theproblem of discharging dom: rev � [distl; al]� rev � S: [distl; al] � dom: [distl; al] by 9� S: [al; distl] � dom: [distl; al] by 15� S: [al; distl] � dom:al � dom:distl by 26� S: [al; distl] � dom:distl by 27� [S:al; S:distl] � dom:distl by 14In this case, the end result is an optimization not only because the application of rev is eliminated,but also because dom: distl permits the rest of the program to be executed without checking thearguments of any of the functions. The use of Safe makes it easy for a code generator to takeadvantage of this fact. When a primitive is marked as safe, a code generator can produce a versionof the primitive that does not check its argument; in this example, both al and distl can rununchecked.The following example presents a more substantial optimization (similar to loop-jamming opti-mizations for imperative languages [ASU86]) and illustrates the use of in-context laws:[�:s1; �:+ � �:tl]� [�:s1; �:+ � �:tl � S: (dom: (�:s1))] by 13� [�:s1; �:+ � �:tl � �: (S: (dom:s1))] by 24� [�:s1; �:+ � �: (tl � S: (dom:s1))] by 23� [�:s1; �:+ � �: (tl � S: (dom:tl))] by 28� [�:s1; �:+ � �: (S:tl)] by 10� [�:s1; �: (+ � S:tl)] by 23Even though the second, third, and last steps use in-context transformations, these steps are actu-ally equivalences, because they occur in simple contexts. Since the �rst and last lines are equivalentthey can be substituted freely one for the other in any program. Note that this shows that it isnot necessary that the entire program be simple for an in-context law to apply|it is su�cient thatin-context laws be used within simple sub-expressions.9

The �nal example illustrates how Safe is used to optimize exception handling. Suppose a pro-grammer de�nes a function newtl that returns the empty sequence whenever tl would return anerror. A simple de�nition of newtl is catch: htl; []i: Now, if newtl appears in a context where italways gets an argument in the proper domain of tl; newtl can be transformed to S:tl as follows:newtl � S: (dom:tl)� catch:htl; []i � S: (dom:tl) by def. of newtl� catch:htl � S: (dom:tl); []i by 18� catch:hS:tl; []i by 10� S:tl by 175 Related WorkSafety analysis bears some resemblance to projection analysis [WH87]. Both techniques deal withmanipulating \annotations". For projection analysis, these annotations are projections; for safetyanalysis, the annotation is the function Safe. Many of the techniques for manipulating the annota-tions are also similar; however, safety analysis and projection analysis are addressed at two di�erentproblems. Projection analysis is primarily concerned with determining (in a lazy system) whether afunction is strict in its arguments, and gives a nice way of addressing that problem. Safety analysis(as presented here for a strict language) is concerned not only with determining when a function is\safe" but also with trying to use that fact to facilitate other source-level optimizations.6 Conclusions and Future WorkThe Safe mechanism resolves the tension between the desire to make functional programs run fastthrough optimization and the desire to have a language in which it is easy to write and debugprograms. This tension is perhaps at a maximum in FL, because no distinction is made betweenuser-generated exceptions and system-generated errors|both are legitimate error values. Thus, itwould be disastrous for an FL compiler to fail to preserve the error behavior of a program; on the otherhand, preserving errors creates problems for optimization. Safe solves this dilemma by providing away to express the program transformations of a language with a single error value in a languagewith many error values.The transformations involving Safe are useful only if Safe functions can be introduced by acompiler. While it remains to be proven that Safe enables large scale optimization in practice, onepractical problem is readily apparent from the examples in this paper. As noted in Section 4, it isdesirable to introduce Safe without using the law f � S:f �dom:f; which requires computing f twice.In this law, dom : f ensures that the type of S : f is such that S: f cannot produce an error. Thus,10

discharging dom:f is a type inference problem|a type inference algorithm can check whether f is safebefore Law 9 is applied, and if f is safe the dom need not be introduced.It would strengthen the theoretical treatment if the restriction of in-context laws to simple expres-sions could be removed. While this is not critical from a practical point of view|the class of simpleexpressions covers many commonly occurring situations|the added generality may help clarify thesemantic role of Safe and add some power to the algebra.7 AcknowledgementsThe congenial atmosphere of the FL group (John Backus, Thom Linden, Peter Lucas, and PaulTucker) contributed signi�cantly to this work. It is also a pleasure to thank Luca Cardelli, RobertCartwright, David Chase, Jim Donahue, Joe Halpern, Paul Hudak, Matthias Felleisen, Phil Wadler,Jennifer Widom, and the members of IFIP WG 2.8 for their helpful comments and suggestions. Inparticular, Joe Halpern's persistent critiques greatly improved the presentation of Section 3.References[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools.Addison-Wesley, 1986.[Bac78] J. Backus. Can programming be liberated from the von Neumann style? A functionalstyle and its algebra of programs. Communications of the ACM, 21(8):613{641, August1978.[BWW86] J. Backus, J. H. Williams, and E. L. Wimmers. The FL Language Manual. TechnicalReport RJ 5339 (54809), IBM, 1986.[CF89] R. Cartwright and M. Felleisen. The semantics of program dependence. In Proceedings ofthe 1989 Conference on Programming Language Design and Implementation, June 1989.[Hen81] J. Hennessy. Program optimization and exception handling. In Proceedings of the 1981Symposium on Principles of Programming Languages, January 1981.[HMT89] R. Harper, R. Milner, and M. Tofte. The De�nition of Standard ML|Version 3. TechnicalReport ECFS-LFCS-89-81, Laboratory for Foundations of Computer Science, Universityof Edinburgh, 1989.[HWA*88] P. Hudak, P. Wadler, Arvind, B. Boutel, J. Fairbairn, J. Fasel, J. Hughes, T. Johnsson, D.Kieburtz, S. P. Jones, R. Nikhil, M. Reeve, D. Wise, and J. Young. Report on the Func-tional Programming Language Haskell. Technical Report DCS/RR-666, Yale University,December 1988. 11

[Ste84] G. L. Steele. Common Lisp: The Language. Digital Press, 1984.[Tur85] D. A. Turner. Miranda: A non-strict functional language with polymorphic types. In Pro-ceedings of the IFIP International Conference on Functional Programming and ComputerArchitecture, Springer Verlag Lecture Notes in Computer Science no. 201, 1985.[WH87] P. Wadler and R. J. M. Hughes. Projections for strictness analysis. In Proceedingsof the Symposium on Functional Programming Languages and Computer Architecture,pages 385{407, Springer Verlag Lecture Notes in Computer Science no. 274, September1987.

12

