
Barrier InferenceAlexander Aiken� and David Gay�EECS DepartmentUniversity of California, BerkeleyBerkeley, CA 94720-1776faiken,dgayg@cs.berkeley.eduAbstractMany parallel programs are written in SPMD style, i.e.by running the same sequential program on all processes.SPMD programs include synchronization, but it is easy towrite incorrect synchronization patterns. We propose a sys-tem that veri�es a program's synchronization pattern. Wealso propose language features to make the synchroniza-tion pattern more explicit and easily checked. We haveimplemented a prototype of our system for Split-C and suc-cessfully veri�ed the synchronization structure of realisticprograms.1 IntroductionExplicitly parallel programming|where the programmerspeci�es the parallelism in a computation|is arguably themost widely used parallel programming paradigm. In ex-change for a programming model that gives direct controlover performance, programmers must manage the coordi-nation of parallel processes, a task that is facilitated orhindered by the programming language. Despite years ofpractical experience, there is little research exploring lan-guage and compiler support for writing explicitly parallelprograms. We propose a static semantics for global synchro-nization that guarantees an explicitly parallel program hasno global synchronization errors. Our proposal is based ona formalization of widespread programming practices. Wehave proven the soundness of our method and implementeda prototype system. Experimental evidence gathered fromtesting our system on realistic benchmarks supports our hy-pothesis that the global synchronization structure of realis-tic programs can be formalized and automatically veri�ed.Our system was developed in the context of a distributedmemory, shared address space programming language (Split-�This material is based in part upon work supported by NSFYoung Investigator Award No. CCR-9457812, DARPA contractF30602-95-C-0136 and a Microsoft graduate fellowship.

C, an SPMD language developed at Berkeley [13]), but wefound it equally applicable to checking the synchronizationstructure of shared memory, shared address space parallelprograms; our method can show the synchronization cor-rectness of the SPLASH-2 [25] benchmarks. Whether asimilar result holds for pure message passing programs re-quires further research.11.1 Global SynchronizationA simple and popular parallel programming model is SPMD(for Single Program, Multiple Data). SPMD programs areexplicitly-parallel programs written in sequential languagesextended with communication and synchronization primi-tives. A typical SPMD skeleton iswork1();barrier;work2();barrier;work3();where a barrier causes a process to block until all otherprocesses have also reached a barrier. In SPMD execution,all processes execute a copy of the program independently.In this example, the barriers serve to guarantee that allprocesses �nish work1() before proceeding to work2(). Theonly synchronization is at the barriers|processes executeworkn() asynchronously.While conceptually simple, the combination of asynchronousexecution and explicit global synchronization introduces sub-tle issues of program structure and correctness. Figure 1gives examples illustrating correct and incorrect synchro-nization patterns. In these examples, different() returnsa di�erent value in every process (causing di�erent branchdecisions in di�erent processes) and workn() is a functionwith no synchronization. In all the examples barriers areexecuted conditionally; we have observed that almost allSPMD programs have conditional synchronization.There are two basic forms of incorrect synchronization. InFigure 1a, processes execute di�erent numbers of barriers,1Such programs may not rely on global synchronization to thesame degree as shared address space programs, but standard messagepassing libraries such as MPI [20] do include global synchronizationprimitives.



if (different()) barrier;work1(); barrier;work2(); if (x) barrier else work();(a) processes left behind (e) correct if processes agree on x's valuewhile (different()) barrier;work1(); barrier;work2(); barrier;work3(); i <- 0;while i < 10(if (i = 1) barrier;i <- i + 1);barrier;(b) processes \trapped" in a loop (f) correct loopif (different()) barrier else broadcast; if (different())(barrier; barrier)else(work1(); barrier; work2(); barrier)(c) con
icting barrier/broadcast (g) if with matching barriersa <- different();if (a) barrier; (*)x <- x + 1;if (not a) barrier; (*) i <- 0if (different())(while (i < 10) (barrier; i <- i + 1))else(j <- i + 10;while (j < 20) (work1(); barrier; j <- j + 1))(d) correct but not structurally correct (h) structurally correct but not veri�ableFigure 1: Examples of correct and incorrect synchronization.causing the program to \hang" when some processes termi-nate while others wait at a barrier. The same problemoccurs in loops containing barriers if processes executedi�ering numbers of iterations (Figure 1b). The secondproblem is illustrated by Figure 1c, where some processesexecute barrierwhile others execute broadcast. In SPMDlanguages, simultaneously executing di�erent synchroniza-tion operations causes a runtime error (or, in some imple-mentations, unde�ned behavior).Even correct SPMD synchronization can be subtle. Fig-ure 1e is correct, provided the value of variable x (which isreplicated, i.e. each process has a variable x local to the pro-cess) is the same in all processes. This pattern|conditionalsynchronization where the program's design guarantees pro-cesses make the same branch decisions|is ubiquitous inSPMD programs. Figure 1f gives a more complex exampleillustrating the same point. However, processes in correctprograms need not always make the same branch decisions,as Figures 1d, g, and h show.1.2 Synchronization Veri�cationFigure 1e shows that an important component of under-standing synchronization behavior is knowing which repli-cated variables must have the same value in all processes:We call such variables single-valued. Replicated variableswith di�erent values in di�erent processes are multi-valued.Informally, a variable x is single-valued if for every assign-ment x = e, either e is a constant, a broadcast, or a functionof other single-valued variables. One can show by induc-tion on the length of program executions that single-valued

variables take on the same sequence of values in all pro-cesses. A formal de�nition of single-valued requires moredevelopment (see Section 3.1).In practice, SPMD programmers use synchronization in ahighly structured way. All SPMD programs we have seenobserve the following notion of synchronization correctness,which relies on knowing single-valued variables.De�nition 1.1 (Structural Correctness) An expressionis structurally correct if all subexpressions e satisfy the fol-lowing: Let V be the set of single-valued variables on entryto e and V 0 the set of single-valued variables on exit frome. If processes begin execution of e in environments havingthe same value for each variable in V and all processes ter-minate (i.e., no process loops), then all processes executethe same sequence of synchronization operations and endexecution in environments having the same value for eachvariable in V 0.It is easy to check that Figure 1f, g, and h are structurallycorrect and that Figure 1e is structurally correct assumingx is single-valued. Figure 1d is an example without syn-chronization errors that is not structurally correct (becauseof the expressions marked (�)).1.3 Barrier InferenceWe have developed a static semantics that veri�es thata program has structurally correct synchronization. Be-cause barriers are the most common form of SPMD syn-chronization, we call this process barrier inference. Stat-



ically checking synchronization behavior guarantees thatprograms never fail by \hanging" at barriers or executingcon
icting synchronization operations. SPMD program-mers do make such mistakes,2 and our techniques eliminatethis class of bugs. Equally important, our method makesexplicit the heretofore implicit assumptions about single-valued variables in SPMD programs. In our experience,this extra information is extremely useful for understandingSPMD programs written by others. Barrier inference alsogives the compiler a more precise understanding of the por-tions of the program that execute in parallel, which makesSPMD optimizations, e.g. [14], more precise.There are structurally correct programs our system cannotverify, such as Figure 1h. Intuitively, the problem with thisexample is that although both branches execute the samenumber of barriers, our system only infers that the brancheseach execute some unknown number of barriers and cannottell that these numbers are equal. In contrast, our systemveri�es Figure 1g by inferring that both branches executetwo barriers. While we have seen examples similar to Fig-ure 1g, we have seen no programs with the structure ofFigure 1h.We present our barrier inference algorithm, which staticallyveri�es the correctness of an SPMD program's synchroniza-tion behavior (Section 3), along with a proof of soundness(Section 3.1). We propose language features that make thesynchronization structure of SPMD programs explicit (Sec-tion 4.1). We have implemented a prototype system to val-idate the algorithm and to empirically study the proposedlanguage features. We tested the prototype on a substan-tial number of Split-C programs (Section 5). Experiencewith our implementation is positive; the system successfullychecks the benchmarks with a few minor modi�cations tothe programs, including one to correct a bug detected by oursystem. We also examined the Splash-2 benchmarks [25] byhand and found that all but one can be checked with oursystem (Section 5.2). These experiments were for medium-size programs; we believe that static veri�cation of synchro-nization is especially important for larger systems becausethese are not amenable to manual veri�cation, and also forhigher-order languages (e.g. parallel object-oriented lan-guages) where control-
ow is less explicit.2 The LanguageWe present our system using L, a small procedural lan-guage extended with three parallel operations: barrier,broadcast (which is like barrier except a distinguishedvalue is sent to all processes), and communicate (which al-lows asynchronous communication). As our interest is insynchronization operations such as barrier and broadcast,we leave the semantics of communicate unspeci�ed. Thegrammar for L is:Expr ::= ij idj barrier2It is di�cult to provide direct evidence for this claim, but wehave committed such programming mistakes ourselves and foundthem in existing, presumably debugged, programs.

j broadcastj communicatej id(Expr; : : : ;Expr)j id Exprj if Expr Expr else Exprj Expr; Exprj let id in Exprj letrec id(id; : : : ; id) = Expr in ExprValues in L are integers and all variables are replicated. Alet introduces a new variable and a letrec introduces a po-tentially recursive function de�nition; the other expressionsare also standard. There are some prede�ned functions,such as +, which are mathematical functions, i.e. their re-sult depends solely on their arguments. In examples wewrite while e1 e2 as shorthand forletrec f() = if e1 (e2; f()) else 0 in f()This spare language is su�cient to illustrate the novel as-pects of our techniques. In Section 4.2 we discuss extensionsto the C- and FORTRAN-based languages used in prac-tice. Figure 2 gives a simple, CPS-inspired state-transitionsemantics for L. The computation of one process is a se-quence of steps: State; Statewhere a state FunEnv�Env�Cont�Expr consists of an ex-pression e to be evaluated, environments for the variablesand function names in scope at e, and the computation toperform after evaluating e (a continuation). Terminationis indicated by returning a special state without a contin-uation or a function environment. Readers familiar withCPS semantics will note that this CPS semantics is non-standard, because a continuation is a function returningonly the next state in the computation, rather than the �-nal answer of the entire computation. This modi�cationexposes intermediate states of the computation, which isneeded to de�ne the semantics of barrier and broadcast.The semantics of L model synchronization structure, butnot the details of the communication primitives. The syn-chronization primitives, barrier and broadcast, are theonly operations requiring global interaction. For barrier,once all processes reach a barrier each process proceedswith its continuation. The rule for broadcast is identical.The values returned by the communication operations arepredicted by an oracle() function. The only place wherethe communicated value is important is in broadcast: it re-turns the same value in all processes, but the actual value isnot important for synchronization veri�cation. The barrieroperation does not communicate any values, so its result isalways 0 (an arbitrary choice).For simplicity, we assume variables and functions are givenunique names (i.e., no names hide names in outer scopes).This property can be enforced by renaming variables.The semantics of Figure 2 uses a few operations: FF (f) isthe set of function names in scope at f 's de�nition; FV (f)is the set of identi�ers (other than f 's formal parameters) inscope at f 's de�nition. The set dom(E) is the domain of E.



F FunEnv = FunctionName! FunctionDefinitionE Env = Var! NC Cont = Env�N ! StateState = FunEnv� Env� Cont� Expression+ Env�NhF;E;C; ii ; C (E; i)hF;E; C; xi ; C (E;E(x))hF;E;C; communicatei ; C (E; oracle())hF;E; C0; f(Expr1; : : : ; Exprn)i ; hF;E; C1; Expr1i whereF (f) = f(x1; : : : ; xn) = ExprC1 = �E2; v1:hF;E2; C2; Expr2i: : :Cn�1 = �En; vn�1:hF;En; Cn; ExprniCn = �En+1 ; vn:hF j FF (f); E0; C 0; ExpriE0 = (En+1jFV (f))[x1  v1; : : : ; xn  vn]C 0 = �E0; v:C0 ((En+1==FV (f) + E0==fx1; : : : ; xng); v)hF;E;C0; p(Expr1; : : : ; Exprn)i ; hF;E; C1; Expr1i wherep is a primitiveC1 = �E2; v1:hF;E2; C2; Expr2i: : :Cn�1 = �En; vn�1:hF;En; Cn; ExprniCn = �En+1 ; vn:C0(En+1; p (v1; : : : ; vn))hF;E;C; x Expri ; hF;E; �E0; v:C (E0[x v]; v); ExprihF;E; C; if Expr1 Expr2 else Expr3i ; hF;E; C0; Expr1i whereC0 = �E0; v:hF;E0; C; if v = 0 then Expr2 else Expr3ihF;E;C;Expr1;Expr2i ; hF;E; �E0; v:hF;E0; C;Expr2i; Expr1ihF;E;C; let x in Expri ; hF;E[x 0]; �E0; v:C (E0==fxg; v); ExprihF;E; C; letrec f(x1; : : : ; xn) = Expr1 in Expr2i ; hF [f  f(x1; : : : ; xn) = Expr1];E; C;Expr2iFF (f) = dom(F ); FV (f) = dom(E)[hF1; E1; C1; barrieri; : : : ; hFn; En; Cn; barrieri] ; [C1 (E1; 0); : : : ; Cn (En; 0)][hF1; E1; C1; broadcasti; : : : ; hFn; En; Cn; broadcasti] ; [C1 (E1; v); : : : ; Cn (En; v)] where v = oracle()Figure 2: Semantics for L.



The environment EjV is E with the domain restricted tovariables V . The environment E==V is E with variables Vremoved; i.e., Ej(dom(E) � V ). The environment E1 + E2is the combination of two environments E1 and E2 withdisjoint domains.The result of a (terminating) sequence of states is an en-vironment recording the �nal state and an integer result.The computation of n processes executing in parallel is asequence of steps: Staten; StatenThe transitions for vectors of states include the synchro-nization rules for barrier and broadcast, plus a generalrule for interleaving the transitions of individual processes:[S1; : : : ; Si�1; Si; Si+1; : : : Sn]; [S1; : : : ; Si�1; S0i; Si+1; : : :Sn]whenever Si ; S0i.Let I be the initial continuation �E; v:(E; v). The evalua-tion of expression e on n processors is[h;; fpid = 1g; I; ei; : : : ; h;; fpid = ng; I; ei]�; [(E1; i1); : : : ; (En; in)]The initial environment of each process contains a processid in the variable pid. This value distinguishes one processfrom another.If all processes halt with a �nal environment and integervalue then that run is successful. A run is unsuccessful if(1) processes execute a di�erent number of barriers (Fig-ures 1a and 1b), (2) some processes reach a barrier atthe same time others reach a broadcast (Figure 1c), or (3)one or more processes loop. Our methods are capable ofstatically checking realistic programs for (1) and (2).3 Barrier InferenceBarrier Inference is an example of an e�ect system [7]. Ane�ect associated with each expression models two aspectsof SPMD computation. The �rst aspect is the sequenceof barriers and broadcasts executed in evaluating an ex-pression e. The rules associate an abstract synchronizationsequence with e: S = f?; fg [ fb; rg�A sequence value s 2 fb; rg� means every process executesexactly the sequence s of barriers (b) and broadcasts (r).A sequence value f (for �xed), means every process executesthe same unknown sequence of barriers and broadcasts.The sequence value ?means no process executes the expres-sion. An element of S can be assigned to every structurallycorrect expression. There is an ordering on synchronizationsequences: ?� s � f for any s 2 fb; rg�The second aspect of an expression's e�ect tracks single-valued variables. An abstract environment AEnv : Vars!

f+;�g is a mapping from program variables to + (indicat-ing a variable is single-valued) or � (indicating a variablemay be multi-valued). There is an ordering + � �.Analogous to an abstract environment there is an abstractfunction environment, which is a mappingFEnv : FunctionNames! f+;�gn�AEnv�f+;�g�AEnv�Sfrom function names to function signatures.De�nition 3.1 A function f satis�es a signature written(a1; : : : ;an); A! a; A0; sif the following hold: f has n arguments and its free vari-ables are those in dom(A) = dom(A0); processes beginningexecution of f in states agreeing on values of the single-valued function arguments in (a1; : : : ;an) and single-valuedvariables in A either diverge or (1) agree on the result ifa = +, (2) agree on the value of every single-valued variablein A0, and (3) have executed the same sequence of synchro-nization operations s.For example, the signaturef : (+;�); ; ! +; ;; �says that f(a; b) = f(a; c) for all b and c (provided bothevaluations terminate) and f executes no synchronizationoperations. The inference system proves statements of theform B; A ` Expr : a; A0; swhich is read: Given functions matching abstract functionenvironment B, if all processes begin the execution of Exprwith the same values for variables marked single-valued inA, then all processes that terminate (1) agree on the val-ues of variables marked single-valued in A0, (2) agree onthe result if a = +, and (3) have executed the same se-quence of synchronization operations s. Thus, any suchproof shows e's structural correctness (De�nition 1.1). Thesynchronization sequence s depends on information aboutsingle-valued variables and expressions, but not vice-versa.We �nd it most convenient to express both components inone set of rules.The inference rules are in Figure 3. The remainder of thissection discusses the rules, presents a soundness result, andillustrates barrier inference with examples. The [Int] ruleis simple; evaluating an integer is single-valued (all pro-cesses compute the same integer), does not a�ect the set ofsingle-valued variables, and executes no synchronization op-erations. The [Id] rule is similar; the result is single-valuedonly if all processes have the same value for the identi-�er in the environment. A communicate is assumed to bemulti-valued, as processes may receive di�erent values.3 Abarrier and a broadcast are always single-valued and eachexecutes a single synchronization operation. The [Prim]3When a process needs to communicate a value to all processes,broadcast is more e�cient than n communicate operations, and makesexplicit that the result is single-valued. Our experience with theSplit-C programs of Section 5 shows that this rule is nearly univer-sally followed.



B; A ` i : +; A; � [Int]B; A ` id : A(id); A; � [Id]B; A ` communicate : �; A; � [Comm]B; A ` barrier : +; A; b [Barrier]B; A ` broadcast : +; A; r [Broadcast]B; A0 ` Expr1 : a1; A1; s1: : :B; An�1 ` Exprn : an; An; snB(f) = (a01; : : : ; a0n); A! a;A0; sAnjdom(A) � A81 � i � n: ai � a0iB; A0 ` f(Expr1; : : : ; Exprn) : a; An==dom(A0) +A0; s1 � : : :� sn � s [Fun]B; A0 ` Expr1 : a1; A1; s1: : :B; An�1 ` Exprn : an; An; snB; A0 ` p (Expr1; : : : ; Exprn) : a1 t : : : t an; An; s1 � : : :� sn [Prim]B; A ` Expr : a; A0; sB; A ` x Expr : a; A0[x a]; s [Assign]B; A[x +] ` Expr : a; A0; sB; A ` let x in Expr : a; A0==fxg; s [Let]dom(A) = dom(A0) = dom(A0)S = (a1; : : : ; an); A! a;A0; sA0 = A00==fx1; : : : ; xngB[f  S]; A[x1  a1; : : : ; xn  an] ` Expr1 : a; A00; sB[f  S]; A0 ` Expr2 : a02; A2; s2B; A0 ` letrec f(x1; : : : ; xn) = Expr1 in Expr2 : a02; A2; s2 [LetRec]B; A0 ` Expr1 : +; A1; s1B; A1 ` Expr2 : a2; A2; s2B; A1 ` Expr3 : a3; A3; s3B; A0 ` if Expr1 Expr2 else Expr3 : a2 t a3; A2 tA3; s1 � (s2 t s3) [If-Single]B; A0 ` Expr1 : �; A1; s1B; A1 ` Expr2 : a2; A2; s2B; A1 ` Expr3 : a3; A3; s3s2 t s3 � fA0 = A1 / (AV(Expr2) [ AV(Expr3))B; A0 ` if Expr1 Expr2 else Expr3 : �; A0; s1 � (s2 t s3) [If-Multi]B; A0 ` Expr1 : a1; A1; s1B; A1 ` Expr2 : a2; A2; s2B; A0 ` Expr1; Expr2 : a2; A2; s1 � s2 [Sequence]Figure 3: Inference rules.



rule says that primitive, side-e�ect-free functions are single-valued if all their arguments are single-valued.In rule [Fun], actual parameters must be single-valued wher-ever the function signature requires single-valued arguments(the comparisons ai � a0i). Similarly, the environmentof the call must be single-valued in all variables the sig-nature requires be single-valued. We de�ne A1 � A2 ifdom(A1) = dom(A2) and for all x 2 dom(A1) we haveA1(x) � A2(x).The conclusion of [Fun] and several of the other rules com-bine synchronization sequences. The sequence s1�s2 is thebest description of s1 followed by s2:s1 � s2 = ( s1 � s2 if s1; s2 2 fb; rg�? if s1 =? _ s2 =?s1 t s2 otherwisewhere s1 � s2 is the concatenation of strings s1 and s2. Theoperator � is monotonic in both arguments.Note the di�erence between the treatment of primitive anduser-de�ned functions. The result of a primitive functionis single-valued if all its arguments are single-valued, whichis a kind of subtyping rule. Thus, some uses of a primi-tive function can be single-valued and others not. All callsto a user-de�ned function are either single-valued or not,depending on the function's signature in the abstract func-tion environment. This distinction is necessary, becauseuser-de�ned functions may modify single-valued state: If afunction were sometimes called with arguments not match-ing its signature, the function might set single-valued stateto a non-single value. We have not found this restrictionon user-de�ned functions to be a problem in practice (seeSection 5.1).The [Assign] rule updates the environment based on thenew value of the assigned variable; this re
ects the fact thata variable can be single-valued at some program points andnot at others. The [Let] rule introduces a new variable,which is initially single-valued as it is initialized to 0 in allprocesses. A new function is introduced into the functionenvironment by the [LetRec] rule. This rule, and the [Fun]rule, express constraints on the function's signature; in [6]we outline an implementation that �nds a solution to theseconstraints by �xed-point iteration.The two rules for if are interesting. The rule [If-Single]applies when the predicate is single-valued. All processestake the same branch, but we do not know which branch.In this case a conservative upper bound over the results ofboth branches su�ces.The rule [If-Multi] applies when the predicate is multi-valued. The upper-bound of the synchronization sequenceof the branches must be a known (not f) sequence. A subtlepoint is determining the single-valued variables of the �nalenvironment. Any variable modi�ed in either branch couldhave di�erent values in di�erent processes on exit from theconditional; all such variables must be marked multi-valuedin the �nal environment. It is easy to compute AV(e), theset of variables visible at e that may be assigned in the eval-uation of e (including via function calls in e). Now de�neA / fv1; : : : ; vng as A[v1  �; : : : ; vn  �].

If the inference system of Figure 3 cannot assign any syn-chronization value to an expression, then evaluating the ex-pression may cause processes to execute di�ering numbersof barriers and broadcasts|the program may get \out ofsynch." In this case the program is rejected. Of course,the inference system is conservative and may reject correctprograms. We show in Section 5.1 that the system workswell on realistic benchmarks.3.1 SoundnessA sticky point in proving our system correct is capturingthe meaning of single-valued variables. Intuitively, a vari-able is single-valued if all processors have the same value forthe variable at the same time. However, \at the same time"is a slippery notion in a setting with asynchronous execu-tion. Only at global synchronization points (i.e., barriers,broadcasts, and the start and end of execution) is it possi-ble to assert anything useful about the state of all processes.The key to this problem is to observe that the values ofsingle-valued variables depend only on other single-valuedexpressions. Using this fact, it can be shown (without refer-ring to time except within a single process) that if processesbegin execution agreeing on single-valued inputs, then theyterminate agreeing on the single-valued outputs.The proof of soundness has two steps. First, we provesingle-valued outputs are determined solely by single-valuedinputs for a process in isolation. Second, we show that ifthe inference rules can derive any proof for an expression,then all processes evaluating that expression execute thesame sequence of synchronization operations.A few de�nitions are required. Environments E1 and E2are equal with respect to an abstract environment A, writ-ten E1 �A E2, if dom(E1) = dom(E2) = dom(A) and8x:A(x) = + ) E1(x) = E2(x). A function environmentF and an abstract function environment B are compatible,written F : B, if dom(F ) = dom(B) and for all f 2 dom(F ):F (f) = f(x1; : : : ; xn) = ExprB(f) = (a1; : : : ; an); A! a;A0; sBjFF (f);A[x1  a1; : : : ; xn  an] ` Expr : a;A00; sA0 = A00==fx1; : : : ; xngAn execution state1 �;t state2 is an execution with syn-chronization sequence t, where t is a string with one bfor each barrier and one r for each broadcast executed.The broadcast sequence of an evaluation [S1; : : : ; Sn] �;[S01; : : : ; S0n] is the sequence of values returned by succes-sive calls to broadcast during this evaluation.Lemma 3.2 Let e be any expression and let B;A ` e :a;A0; s. Let E1 �A E2, and F : B. If[hF;E1; C1; ei] �;t1 [C1(E01; i1)][hF;E2; C2; ei] �;t2 [C2(E02; i2)]and the broadcast sequences of both evaluations are iden-tical, then the following are all true:



� t1 = t2 and t2 � s� E01 �A0 E02� a = +) i1 = i2Theorem 3.3 Let e be any expression and let B;A ` e :a;A0; s. Let F : B and Ei �A Ej for i; j = 1::n. Then[hF;E1; I; ei; : : : ; hF;En; I; ei] �; [(E01; v1); : : : ; (E0n; vn)]or some process diverges.The proofs of Lemma 3.2 and Theorem 3.3 are given in [6].The semantics of Figure 2 does not handle synchronizationerrors, i.e. the cases where barriers and broadcasts aremismatched or when some processes waits at a barrierwhile other processes have terminated. In those cases, theevaluation hangs. Theorem 3.3 shows that this cannot oc-cur with barrier inference: either the program terminates,or the evaluation sequence is in�nite.3.2 ExamplesWe present example applications of the inference rules toFigures 1a and 1e. Other examples are included in Ap-pendix A for the interested reader. The functions work()and different() do not contain barriers or modify visiblevariables.Figure 1a fails the [If-Multi] rule - the alternatives of theif have di�erent synchronization sequences.;; ; ` different() : �; ;; �;; ; ` barrier : +; ;; b;; ; ` 0 : +; ;; �b t � = f 6� f The rule fails.;; ; ` if different() barrier else 0 :? [If-Multi]Figure 1e successfully passes the inference rules, assumingx is single-valued:;; fx : +g ` x : +; fx : +g; �;; fx : +g ` barrier : +; fx : +g; b;; fx : +g ` work() : �; fx : +g; �;; fx : +g ` if (x) barrier else work() :�; fx : +g; �� (b t �) = f [If-Single]4 Realistic LanguagesWe now turn to the use of our techniques in realistic pro-gramming languages. Section 4.1 presents features we be-lieve every SPMD language design should include. Sec-tion 4.2 discusses modi�cations needed to incorporate ourtechniques in programs written in C- or FORTRAN-basedlanguages.

4.1 SPMD Language DesignCurrent SPMD languages have few ways of indicating thesynchronization structure of an application. Even with bar-rier inference, this makes SPMD programs unnecessarilydi�cult to read and maintain. We propose two languagefeatures that make synchronization structure more explicit:named barriers and a single keyword to declare single-valued variables and functions.Some SPMD languages provide named barriers, with thesemantics that a runtime error results if processes simulta-neously execute barriers with di�erent names. Using namedbarriers indicates which syntactic barriersmay participatein a synchronization. Named barriers also make the di�er-ence between [If-Multi] and [If-Single] explicit: an [If-Multi]must use the same barrier names in both branches, whilean [If-Single] may use di�erent names. Usually named bar-riers are implemented using a broadcast (so the names canbe compared) which is much slower than special-purposebarrier hardware (e.g., on the CM5 [17] and T3D [4]). ButL already e�ectively has two barrier names: barrier andbroadcast. Adding more names increases the alphabetof synchronization strings but has no impact on inferencecomplexity. Our system thus allows named barriers to bechecked at compile-time, allowing their implementation withmore e�cient anonymous barriers. In a language with bar-rier inference there are only advantages to using namedbarriers.Our inference system makes clear that knowing the single-valued variables is crucial to understanding an SPMD pro-gram's synchronization structure. We believe programmersshould declare single-valued variables, formal parameters,and function results. These declarations are checked by arevised inference system. We propose a keyword singleused as a type modi�er (e.g., single int x;). The modi-�cations to the language are:Expr ::= : : :j let Decl in Exprj letrec Decl(Decl;: : : ;Decl) = Expr in ExprDecl ::= idj single idDeclaring single-valuedness has two advantages. First, theprogram is clearer as the common parts of the data-
ow areexplicit. Second, barrier inference is simpli�ed. Because ab-stract environments can be built from single declarationsrather than computed, proofsB; A ` Expr : a; sno longer need a result environment. Function signatures(a1; : : : ;an)! a;sdo not include environments and can be built from the dec-larations. Figure 4 shows the new inference rules.



B; A ` i : +; � [Int]B; A ` id : A(id); � [Id]B; A ` communicate : �; � [Comm]B; A ` barrier : +; b [Barrier]B; A ` broadcast x : +; r [Broadcast]B; A ` Expr1 : a1; s1: : :B; A ` Exprn : an; snB(f) = (a01; : : : ; a0n)! a; s81 � i � n: ai � a0iB; A ` f(Expr1; : : : ; Exprn) : a; s1 � : : :� sn � s [Fun]B; A ` Expr1 : a1; s1: : :B; A ` Exprn : an; snB; A ` p (Expr1; : : : ; Exprn) : a1 t : : : t an; s1 � : : :� sn [Prim]B; A ` Expr : a; sa � A(x)B; A ` x Expr : a; s [Assign]B; A[x a] ` Expr : a0; sB; A ` let a x in Expr : a0; s [Let]S = (a1; : : : ; am)! a0; sB[f  S]; A[x1  a1; : : : ; xm  am] ` Expr1 : a0; sB[f  S]; A ` Expr2 : a02; s2B; A ` letrec a0 f(a1 x1; : : : ; am xm) = Expr1 in Expr2 : a02; s2 [LetRec]B; A ` Expr1 : +; s1B; A ` Expr2 : a2; s2B; A ` Expr3 : a3; s3B; A ` if Expr1 Expr2 else Expr3 : a2 t a3; s1 � (s2 t s3) [If-Single]B; A ` Expr1 : �; s1B; A ` Expr2 : a2; s2B; A ` Expr3 : a3; s3s2 t s3 � f8x:A(x) = +) x 62 (AV (Expr2) [ AV (Expr3))B; A ` if Expr1 Expr2 else Expr3 : �; s1 � (s2 t s3) [If-Multi]B; A ` Expr1 : a1; s1B; A ` Expr2 : a2; s2B; A ` Expr1; Expr2 : a2; s1 � s2 [Sequence]Figure 4: Inference rules with a single keyword.



4.2 Application to Existing LanguagesSome features of C and FORTRAN, which are popularstarting points for SPMD languages, complicate barrier in-ference. Unstructured control-
ow, aliasing, function point-ers, and unitialized data structures are problematic.The inference of single-valued variables is very similar to theproblem of binding-time analysis in partial evaluation [12]:Given a set of variables whose value is assumed known (orsingle-valued in our case), determine which expressions andvariables have a value that depends solely on these vari-ables. Algorithms for binding-time analysis for C, suchas [1], handle unstructured control-
ow and can be modi-�ed to compute single-valued variables and synchronizationsequences.In the presence of pointers, detecting single-valued vari-ables can require alias analysis, a well-known hard prob-lem [15]. We have found very conservative assumptions suf-�ce in practice (see Section 5.1): a variable whose addressis taken is multi-valued; any pointer dereference is multi-valued. Similar problems arise with function pointers, so werequire that functions whose address is computed have syn-chronization sequence � and that all visible variables theyassign are multi-valued.When a data structure is initialized with a single-valuedexpression at creation, it remains single-valued so long asall modi�cations are single-valued. Without initialization,detecting when all elements of a data structure are single-valued is much harder. We mark uninitialized data struc-tures as multi-valued.In practice we have found pointers and complex data struc-tures rarely used in conjunction with synchronization. Thereare a few exceptions; in particular, in C programs command-line arguments are single-valued pointers and strings inargv. Many programs parse argv to initialize some single-valued variables. For these situations a mechanism is neededfor the programmer to assert a particular expression is single-valued. In the tradition of C, we call this a single-valuedcast. Use of this feature should of course be minimized.5 ExperimentsWe implemented a prototype of our inference system forSplit-C [5], an explicitly parallel extension to C. We testedour prototype on Split-C kernels and applications. Theempirical question we sought to answer is: How well doesbarrier inference integrate with real SPMD programming?Our measure is the number of changes preexisting programsrequired to conform to our system. The results were promis-ing: the checks were all successful with minor changes, ex-cept for the exception handling aspects of one application.We also hand-examined the Splash-2 benchmarks and foundthat all but one would be checkable with our approach.5.1 Split-C PrototypeFor our purposes, the important features of Split-C are thebarrier() and all bcast() functions, which correspond to

the barrier and broadcast primitives of L.The prototype combines a pure inference system with thelanguage extensions of Section 4.1: It relies on a speci�-cation of the signatures of functions and a list of single-valued global variables, but it infers the single-valued localvariables. It veri�es all speci�cations are correct.Our implementation follows the guidelines of Section 4.2 forsupporting C, except we have not implemented the analy-sis of data structures (which was only needed by one ofthe Split-C programs). The algorithm for inferring single-valued variables is similar to [1], but includes synchroniza-tion sequence analysis.Table 5.1 presents the programs and summarizes our re-sults. The second column counts the static occurrences ofbarriers in the program, while the third column reports thenumber of branches that control the execution of a barrierand whose condition is single-valued. The function signa-ture and single-valued globals columns report the numberof annotations necessary to check the program. The casesthat required modi�cations to the code are summarized inthe `single-valued casts' and `other changes' columns. Ex-cept for `svd', all the casts are for values computed byparsing program arguments (see Section 4.2). The `svd'algorithm uses single-valued arrays (not supported by ourprototype) which accounts for 18 of the 19 casts. The lastcast arises from a single-valued result returned by reference,which implies taking the address of a variable. Our systemassumes that any variable whose address is taken is notsingle-valued.The `barnes' application includes exception handling (viasetjmp), which is unchecked by our system.4 This applica-tion also required one small, local change: It broadcasts val-ues without using the Split-C broadcast primitives; we re-placed this code with explicit broadcasts. One-line changeswere needed in three programs, `mm', `wator' and `nbody'to avoid taking the address of single-valued variables readwith scanf. The second change in `nbody' corrected a mi-nor bug detected by our prototype: when unexpected ar-guments were supplied only some processes exited.These results show that our system successful veri�es ex-isting Split-C applications, with few changes and annota-tions. All but one of the programs depend on single-valuedbranches, which implies that conditional synchronization isthe rule and not the exception in SPMD programs, andtherefore that analysis of single-valued variables is neces-sary. The analysis time is low enough that our system canbe integrated into an existing compiler without signi�cantcost. The times, measured on a Sun Ultra-1/167Mhz, rep-resent the time spent in our system and do not include thetime to build the standard SSA representation used by ourprototype.5.2 The SPLASH-2 BenchmarksAs a further validation of our approach, we examined thesynchronization structure of the SPLASH-2 benchmarks [25],4Checking use of setjmp and longjmp in C is almost impossible inany program analysis. In `barnes', when an exception arises in oneprocess, the whole program is terminated.



Program Lines Number of Single-valued Function Single-valued Single-valued Other Analysisbarriers branches signatures globals casts changes timecannon 501 17 1 1 - - - 0.14scg 453 18 2 3 - - - 0.05scholesky 1542 38 16 4 - 2 - 1.06scolumn 651 7 3 1 - - - 0.04s�t3d 1181 12 5 1 - 1 - 0.05smm 508 23 1 1 - - 1 0.07sradix 379 7 3 - - 2 - 0.06ssample 302 9 0 - - - - 0.06ssvd 1395 1 23 13 9 19 (or 1)a - 0.12swator 348 10 5 - 3 - 2 0.04snbody 546 7 6 - 2 3 2 0.09sem3d 1080 16 1 - - - - 0.11sbarnes 2804 73 17 2 6 7 2 0.32sa18 of the 19 casts are required because of the lack of support for single-valued arrays.Kernels: Applications:� column, sample, radix: Sorting programs. � wator: Simulation of particle-like �sh under current.� cannon: Matrix multiplication using Cannon's algorithm. � nbody: A simple n body simulation code.� cg: Conjugent-gradient based equation solver. � em3d: 3-dimensional electro-magnetic simulation.� cholesky: 7 implementations of Cholesky decomposition. � barnes: Simulate the interaction of a system of n bodies� �t3d: A 3-dimensional fast fourier transform. using the Barnes-Hut hierarchical method.� mm: Matrix-multiply, blocked or unblocked.� svd: Lanczos algorithm for singular-value decomposition.Table 1: Results of checking Split-C programs.which are written in C extended with macros for writingparallel programs. The facilities provided by the macrosinclude named barrier synchronization. Process manage-ment is with a fork/join model, but all but one programis written in SPMD style with all processes executing thesame code. The exception is `radiosity'; as it is outside ourmodel we cannot check it.Our implementation is written for Split-C and thereforedoes not check the SPLASH-2 programs. We examined theSPLASH-2 programs by hand to see if a suitably modi�edsystem would check these programs. The results of thisexamination are in Table 2. The four kernels and all butone of the applications pose no particular problems for oursystem.6 Related WorkThere are two strands of related work: SIMD (Single In-struction, Multiple Data) languages and synchronizationanalysis.SIMD Languages divide variables into control unit and pro-cessing unit variables. Control unit variables resemble oursingle-valued variables: they are variables that have onlyone value. Unlike single-valued variables, control unit vari-ables are stored in only one location. Control unit variablesare declared with a CU keyword in the Illiac IV programminglanguage Glypnir [16]. The Connection Machine languageC* [23] calls these variables scalar. There is no equivalent ofour inference system for these languages, as the propertieswe are inferring are guaranteed by SIMD semantics. Ourproposed single keyword provides similar advantages for

Program Lines Number of Checkable ?(�: kernel) barriersocean 2954 19 yes, needs single-4703 20 valued arrays(both versions)barnes 2078 6 yesfmm 3800 13 yesradiosity 11319 5 no, not SPMDraytrace 10020 1 yeswater 1744 9 yes2971 9 (both versions)volrend 3704 13 yescholesky� 5050 4 yes�t� 1005 7 yeslu� 988 5 yes763 5 (both versions)radix� 879 7 yesTable 2: Results of examining the SPLASH-2 benchmarks.SPMD languages.The ELP language [21, 24], a joint SIMD/SPMD program-ming language where both \modes" have the same seman-tics, allows declaration of single-valued variables with amono keyword. When in SPMD mode the compiler guaran-tees that the single-valued property is preserved, presum-ably using rules similar to ours (the paper does not givemany details on the checking strategy). ELP does not in-clude explicit barriers or language-level broadcast, so thereis no equivalent to our veri�cation of synchronization. The



programming model is also very di�erent.Analysis of the synchronization of parallel programs hasbeen extensively studied for the purposes of deadlock anddata-race detection as well as for optimization. Our surveyof this work is necessarily partial, and covers only statictechniques.Jeremiassen and Eggers [11] analyse barrier synchroniza-tion for SPMD programs to improve the precision of opti-mization. They do not attempt to verify synchronizationcorrectness. Their analysis relies on named barriers for pre-cision and does not consider single-valued variables, thoughthey do consider dependencies on multi-valued constantslike pid [10].A number of papers analyse 2-way synchronization, suchas post/wait or Ada's accept/call mechanism, between ex-plicitly speci�ed tasks. As each task is speci�ed with dif-ferent code, there is no analogue of single-valued variables.Analyzing synchronization in this context is similar to an-alyzing the synchronization between the two branches inthe [If-Multi] case, for which we only allow very simple syn-chronization sequences. None of the many papers on thissubject present exact solutions for more general situations[2, 3, 9, 18, 19, 22, 26].7 ConclusionWe have identi�ed an important property of SPMD pro-grams that current languages do not explicitly support: Theportion of control and data 
ow governing global synchro-nization that is identical across all processes. This syn-chronization kernel structures the entire application. Wehave developed an inference system that both detects thisstructure and veri�es that global synchronization is correct.An implementation of this system for Split-C successfullychecks a number of programs.The synchronization kernel is su�ciently important thatit should be explicitly visible in source code. We proposelanguage features that make SPMD programs clearer andeasier to check.We are integrating these language extensions into Tita-nium, a Java-based [8] successor to Split-C. This requiresextending the application of the single-valued concept tomore complex data structures, including references and ob-jects, and to support language features such as exceptionhandling.References[1] J. Auslander, M. Philipose, C. Chambers, S. J. Eggers,and B. N. Bershad. Fast, E�ective Dynamic Compila-tion. In Proceedings of the ACM SIGPLAN '96 Con-ference on Programming Language Design and Imple-mentation, pages 149{159, Philadelphia, Pennsylvania,May 1996.[2] D. Callahan, K. Kennedy, and J. Subhlok. Analysisof Event Synchronization in a Parallel Programming
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A ExamplesThis appendix shows the results produced by our inferencesystem on the more complex examples from Figure 1. Thewhile loops of Figures 1b and 1e are rewritten using letrecso that we can directly apply the rules in Figure 3. Figure 5shows the new code.letrec w1() = if (different())(barrier; w1())else0in w1();work1(); barrier();work2(); barrier();work3(); Example (b)i <- 0;letrec w2() = if (i < 10)(if (i = 1) barrier;i <- i + 1;w2())else0in w2();barrier; Example (f)Figure 5: Loops rewritten with letrec.� Figure 1b fails [If-Multi]. We end up trying to matchfw1 : (); ; ! +; ;;?g; ; ` different() : �; ;; �fw1 : (); ; ! +; ;;?g; ; ` (barrier; w1()) : +; ;; bfw1 : (); ; ! +; ;;?g; ; ` 0 : +; ;; �b t � = f 6� f The rule fails.` if (different()) (barrier; w1()) else 0 :?[If-Multi]� Figure 1f succeeds with this signature for w2:(); (i : +)! +; (i : +); f .� Figure 1g successfully passes [If-Multi]` different() : �; ;; �` (barrier; barrier) : +; ;; bb` (work1(); barrier; work2();barrier) : +; ;; bbbb t bb = bb � f` if (different()) (...) else (...) : �; ;; bb[If-Multi]� Figure 1h fails because both branches have abstract syn-chronization sequence f` different() : �; ;; �` (while ...) : +; ;; f` (j = i + 10; ...) : +; ;; ff t f = f 6� f The rule fails.` if (different()) (...) else (...) :?[If-Multi]


