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Abstract
We present Singe, a Domain Specific Language (DSL) compiler for
combustion chemistry that leverages warp specialization to pro-
duce high performance code for GPUs. Instead of relying on tra-
ditional GPU programming models that emphasize data-parallel
computations, warp specialization allows compilers like Singe to
partition computations into sub-computations which are then as-
signed to different warps within a thread block. Fine-grain synchro-
nization between warps is performed efficiently in hardware using
producer-consumer named barriers. Partitioning computations us-
ing warp specialization allows Singe to deal efficiently with the
irregularity in both data access patterns and computation. Further-
more, warp-specialized partitioning of computations allows Singe
to fit extremely large working sets into on-chip memories. Finally,
we describe the architecture and general compilation techniques
necessary for constructing a warp-specializing compiler. We show
that the warp-specialized code emitted by Singe is up to 3.75X
faster than previously optimized data-parallel GPU kernels.

Categories D.1.3 [Programming Techniques]: Parallel Programming
Keywords warp specialization; warp-specializing compiler; GPU; DSL

1. Introduction
Current GPU programming models, such as OpenCL[10] and
CUDA[1], support data-parallel computations where all threads ex-
ecute the same instruction stream on arrays of data. However, the
expansion of GPUs into general purpose computing has uncovered
many applications which exhibit properties which make them chal-
lenging to map onto traditional data-parallel GPU programming
models. For example, consider the domain of combustion science,
which includes applications such as S3D[5, 11]. The physics and
chemistry kernels for these combustion applications have three
characteristics that make them difficult to optimize for GPUs:

• Large working sets: combustion kernels routinely require hun-
dreds of live double-precision variables per physical point in
discretized space. In a data-parallel model these working sets
commonly exceed the small on-chip memory capacity allotted
to each thread, resulting in register spilling, low occupancy, and
under-utilization of math units.
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Figure 1. Contrasting GPU programming models.

• Irregular computations: combustion kernels often contain mul-
tiple phases with different computational characteristics. The
large number of temporaries between phases necessitates that
the phases be fused together into a single kernel. While some of
these phases could be run in parallel, current data-parallel GPU
programming models serialize these phases.

• Irregular data accesses: data accesses in combustion kernels are
dependent both on the properties of the chemical mechanism as
well as runtime values. Under many circumstances it is impos-
sible for a data-parallel model to avoid memory divergence and
shared memory bank conflicts.

In practice, many different scientific computing domains demon-
strate some or all of the same characteristics as combustion.
Achieving peak performance for these applications mandates find-
ing alternative approaches to programming GPUs.

In this work we describe how warp specialization can be used
as an alternative programming model for mapping irregular and
large working set applications onto GPUs. Figure 1 illustrates the
differences between the core data-parallel abstraction of current
GPU programming models and warp specialization. In the data-
parallel model, a collection of threads within a thread block all
execute the same program over independent elements from arrays
of input data. On the hardware, however, a thread block is broken
into warps consisting of (typically) 32 threads which serve as
the unit of scheduling. Warp specialization exploits the division
of a thread block into warps to partition computations into sub-
computations such that each sub-computation is executed by a
different warp within a thread block. Carefully structured programs
can handle irregularity by grouping threads into warps such that
threads within a warp have good data-parallel behavior, even if
threads in different warps do not. Warp specialization can also
be used to partition extremely large working sets across multiple



threads in different warps, keeping data on-chip and dramatically
reducing the register pressure on an individual thread.

We describe the design and implementation of a Domain Spe-
cific Language (DSL) compiler capable of using warp specializa-
tion in conjunction with domain specific knowledge to better map
challenging kernels onto GPU architectures. Our approach has been
implemented in Singe, a DSL compiler for general combustion
simulations. While Singe targets combustion specifically, the tech-
niques described in this paper are general and can be adapted to
other domains. We show that using these techniques, Singe gener-
ates warp-specialized code that achieves speedups up to 3.75X over
heavily optimized but purely data-parallel combustion kernels.

In Section 2 we give a brief introduction to the mechanics of
warp specialization. Each of the following sections describe one of
our primary contributions.

• We present a case study of how Singe uses warp specialization
to partition the three most expensive kernels in a real-world
combustion application. We elucidate how warp-specialized
partitioning addresses the critical performance bottlenecks in
these kernels (Section 3).

• We describe the architecture of a warp-specializing compiler
including the necessary algorithms for managing data place-
ment, communication, and synchronization for general warp-
specialized kernels (Section 4).

• We cover three general techniques for generating high perfor-
mance warp-specialized code that are essential to avoiding in-
struction cache thrashing. We give code examples of how Singe
employs these techniques (Section 5).

• We investigate the performance advantages conferred by warp
specialization by examining the performance of the kernels
emitted by Singe on both Fermi and Kepler GPUs for two
different chemical mechanisms (Section 6).

Section 7 discusses implications of warp specialization, Section 8
describes related work, and Section 9 concludes.

2. Warp Specialization
While there are several APIs for programming GPUs, they all im-
plement variations of the same programming model. We use CUDA
as a proxy for the standard GPU programming model as it is the
only interface that currently supports the fine-grain synchroniza-
tion primitives necessary for warp specialization.

CUDA launches grids of thread blocks or cooperative thread
arrays (referred to as CTAs for the remainder of the paper) on the
GPU. This abstraction gives the hardware considerable flexibility
when executing a CUDA application. In current GPUs, the threads
within a CTA are broken into groups of 32 threads called warps.
All threads within a CTA (and therefore also within a warp) ex-
ecute the same program. If the threads within a warp diverge on
a branch instruction, the streaming multiprocessor (SM) on which
the warp is executing first executes the warp with all the threads not
taking the branch masked off. After the taken branch is handled,
the warp is re-executed for the not-taken branch with the comple-
mentary set of threads masked off from executing. Divergence is
severely detrimental to program performance because it serializes
potentially parallel thread execution within a warp.

The crucial insight for warp specialization is that while con-
trol divergence within a warp results in performance degradation,
divergence between warps does not. A warp-specialized kernel is
one in which dynamic branches, dependent on each thread’s warp
ID, create explicit inter-warp control divergence for the purpose of
executing different code in each warp. As long as all threads within
a warp execute the same instruction stream then the only execution
overhead is the cost of the warp-specific branch instructions.
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Figure 2. Producer-consumer named barriers example.

Warp-specialized programs also require more expressive syn-
chronization mechanisms. In traditional CUDA programs synchro-
nization is performed using barriers between all the threads within a
CTA. However, by using inline PTX statements, a CUDA program
has access to a more expressive set of intra-CTA synchronization
primitives referred to as named barriers[2]. Named barriers pro-
vide two operations: arrive and sync. Arrive is a non-blocking op-
eration which registers that a warp has arrived at a barrier and then
continues execution. Sync is a blocking operation that waits until
all the necessary warps have arrived or synced on the barrier.

Using arrive and sync operations, programmers can encode
producer-consumer relationships in warp-specialized programs.
Figure 2 illustrates using two named barriers to coordinate move-
ment of data from a producer warp (red) to a consumer warp (blue)
through a buffer in shared memory. The producer warp first waits
for a signal from the consumer warp that the buffer is empty. The
consumer warp signals the buffer is ready by performing a non-
blocking arrive operation. Since the arrive is non-blocking, the
consumer warp is free to perform additional work while waiting
for the buffer to be filled. At some point the consumer warp blocks
on the second named barrier waiting for the buffer to be full. The
producer warp signals when the buffer is full using a non-blocking
arrive operation on the second named barrier. It is important to
note that named barriers support synchronization between arbitrary
subsets of warps within a CTA, including allowing synchronization
between a single pair of warps as in this example.

3. Warp-Specialized Partitioning
Warp-specialized partitioning provides a useful mechanism for
DSL compilers when grappling with computations that exhibit
both irregularity and large working sets. While warp-specialized
partitioning is a useful tool, it is important to note that the partic-
ular method for partitioning a computation into specialized warps
relies on both domain specific knowledge and the target architec-
ture. Therefore the partitioning strategy must vary with each DSL
compiler and we cannot provide a general partitioning algorithm.
Instead, we provide a case study of coupling domain specific in-
formation with warp specialization to address performance prob-
lems in the domain of large and complex combustion applications.
Subsequent sections will cover generally applicable techniques for
mapping and scheduling computations after they have been parti-
tioned using domain specific knowledge.

We begin with a brief overview of the combustion domain in
Section 3.1. We then describe how warp-specialized partitioning
is used by Singe to address the performance challenges inherent
in the generation of three expensive combustion kernels: viscosity
(Section 3.2), diffusion (Section 3.3) and chemistry (Section 3.4).

3.1 Combustion Chemistry
Combustion simulations are described by chemical mechanisms
which consist of a set of reactions and the species involved in those
reactions. Chemical species range from single elements to very
large and complex hydro-carbons. Table 3 shows the characteristics
of the Dimethyl Ether (DME) and n-Heptane mechanisms used in



Mechanism Reactions Species QSSA Stiff
DME 175 39 9 22

Heptane 283 68 16 27

Figure 3. Chemical Mechanisms

this paper. These mechanisms were chosen for their relevance in
current combustion research[12].

Combustion mechanisms are described by a declarative data
DSL based on the CHEMKIN[9] standard. A mechanism in this
DSL is described by three input files:

• CHEMKIN file: a list of chemical reactions with stoichiometric
coefficients and reaction models (see Figure 4)

• TRANSPORT file: a table of diffusion and viscosity coeffi-
cients for all chemical species

• THERMO file: a table of thermodynamic coefficients for all
chemical species

Singe parses these files and emits CUDA code for each of the ker-
nels necessary to simulate combustion of the specified chemical
mechanism. Singe may also take an optional fourth input file de-
scribing the set of quasi-steady-state approximation (QSSA) and
stiffness (Stiff) species. QSSA species arise out of techniques that
reduce the total number of species across all phases of the simula-
tion at the expense of additional computation during the chemistry
phase of the application[12]. For example, in the heptane mecha-
nism, the 16 QSSA species are removed from the original group of
68 so that only a total of 52 species must be simulated, while re-
quiring a complex QSSA computation be performed in the chem-
istry kernel. Stiffness species allow the simulation to take longer
time steps, but require additional computations be performed in
the chemistry kernel. We describe how warp specialization handles
both the QSSA and stiffness computations in Section 3.4.

Most combustion simulations operate on a three dimensional
cartesian grid. Each point in the grid has an associated set of fields
with each field laid out contiguously in a separate array to en-
sure coalescing of global memory loads. In most GPU combus-
tion kernels[11], each thread is responsible for a single point in the
cartesian grid, which conforms to the traditional data-parallel GPU
programming model.

3.2 Viscosity
The viscosity kernel computes a viscosity coefficient for each point
in the cartesian grid as a function of the temperature and molar
fractions for each species. Per-species viscosities are first computed
by taking the exponent of a per-species third order polynomial
dependent on temperature (T ):

visi(T ) = eηi0+ηi1∗T+ηi2∗T2+ηi3∗T3

The final viscosity output ν for each cartesian grid point is then
computed as an interaction of the viscosity of each species with
every other species given by the following equation:

ν =
√

8 ∗
N∑
k=1


xk∗visk

N∑
j=1

xj ∗

(
1 +

√
visk
visj
∗
√

mj

mk

)2

√
1 + mk

mj


where N is the number of species and xi and mi are the molar
fraction and molecular mass of species i respectively. In an op-
timized CUDA implementation, this computation is performed in
logarithmic space to reduce the dependency on square root and di-
vide operations that are implemented using Newton’s method in the
absence of dedicated hardware on GPUs. After constant folding, for
each of the N2 pairs of species the viscosity kernel requires that 2

!1
ch3+h(+m) = ch4(+m) 2.138e+15 -0.40 0.000E+00

low / 3.310E+30 -4.00 2108. /
troe/0.0 1.E-15 1.E-15 40./ h2/2/ h2o/5/

!2
ch4+h = ch3+h2 1.727E+04 3.00 8.224E+03

rev / 6.610E+02 3.00 7.744E+03 /
!3
ch4+oh = ch3+h2o 1.930E+05 2.40 2.106E+03

rev / 3.199E+04 2.40 1.678E+04 /
...

Figure 4. Example CHEMKIN input file to Singe.

double precision constants be loaded and that 2 double precision
adds, 2 double precision multiplies, and 10 double precision fused
multiply-add (DFMA) operations be performed.

The viscosity computation is embarrassingly parallel as each
point in the grid can be computed independently, but it places a
significant strain on several GPU resources. First, the working set
for a cartesian grid point is difficult to fit on chip into a single
thread’s registers. For the heptane mechanism with 52 species,
storing the molar fractions and per-species viscosity values requires
104 double precision values, which would require 208 registers on
an NVIDIA GPU. Fermi GPUs only support 64 registers per thread,
while Kepler GPUs support 256 but at the cost of extremely low
warp occupancy and under-utilized math units. In this scenario, a
data parallel GPU programming model forces the DSL compiler
to choose between low-occupancy or spilling registers, which adds
additional memory latency to the kernel.

A second problem encountered by the viscosity kernel has to
do with the large number of constant values required for the com-
putation. Every pair of species requires two different double preci-
sion constants. GPU architectures include constant caches, but their
working set sizes are small. GPUs only have 8 KB of on-chip con-
stant cache[1]. The DME and Heptane mechanisms require 13.9
and 42.4 KB of constants respectively. Loading constants for the
viscosity kernel is therefore expensive since they are unlikely to
hit in the constant cache. The problem of hiding these long-latency
constant loads is exacerbated by the low occupancy of the kernel
caused by the large working set described earlier.

Singe uses warp-specialized partitioning to solve both of these
problems. The outer sum over the set of chemical species is broken
into individual computations each of which is mapped to a different
warp using the algorithm described in Section 4.1. Unlike data-
parallel CUDA where each thread handles a single point, all of the
warps in a CTA cooperate on a set of 32 points. A thread in lane l
of warp w handles the per-species computations assigned to warp
w for the l-th point. Warp specialization necessitates the sharing of
data between warps, therefore the molar fractions and per-species
viscosities are moved into shared memory. These values fit easily
because each CTA is only handling 32 grid points at a time.

Partitioning the computation for warp specialization also pro-
vides a solution to the problem of storing the large number of con-
stant values in on-chip memory. Since each warp is only performing
a subset of the computation, it only requires a subset of the con-
stant values. Furthermore, moving the working set to shared mem-
ory makes the registers available for storing constants. Using the
constant deduplication optimization described in Section 5.2, warp
specialization enables all the constant values to be stored in on-chip
registers. At the end of the computation, all the warps reduce their
values through shared memory and the threads in warp 0 perform
the write of the resulting values for each point. Using warp spe-
cialization, Singe is able to partition the viscosity computation so
that values better fit into the on-chip memories which we will show
leads to significant performance gains in Section 6.
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Figure 5. Diffusion partitioning between two warps for N=4,5.

3.3 Diffusion
The diffusion computation shares some characteristics with the vis-
cosity computation which leads to similar challenges, but requires
a more complex warp-specialized partitioning scheme. For every
pair of species i and j, a diffusive constant is computed from the
exponent of a third order polynomial dependent on the temperature
T where δ is a NxNx4 matrix of coefficients.

dij(T ) = eδij0+δij1∗T+δij2∗T2+δij3∗T3

The NxN matrix of these diffusive constants is then used in com-
puting the per-species diffusion outputs ∆i:

mass =

N∑
j=1

mj ∗ xj

clampi = max(ε, xi)

∆i =
Patmos
P

∗
−clampi ∗mi +

∑N
j=1 clampj ∗mj

mass ∗
∑N
j=1 clampj ∗ dij

where N is the number of species, P is the pressure, Patmos is at-
mospheric pressure, ε is the minimum molar fraction, and xi and
mi are the molar fraction and molecular mass of species i respec-
tively. Note that unlike the viscosity computation, which computed
a single output value per point, the diffusion kernel computes one
output value per species per point. Furthermore the dij matrix is
symmetric with zeros along the diagonal which implies that less
than half of the matrix must actually be computed. However, each
dij must contribute to both ∆i and ∆j .

Like viscosity, diffusion suffers from the same large working set
and constant problems. We again solve them using warp special-
ization, but with a different partitioning strategy. The NxN matrix
of dij values is partitioned by column. Columns are offset by one
from each other and only a subset of values in each column need be
computed because of the symmetric nature of the matrix. For odd
numbers of species, each column must compute bN

2
c dij values;

for even numbers of species the first N
2

columns compute N
2
dij

values and the second N
2

columns compute N
2
− 1 dij values. Fig-

ure 5 shows the assignment of dij value computations for matrices
with N = 4 and N = 5 for two warps. ‘X’ values indicate that the
point need not be computed because its symmetric point about the
diagonal has already been computed.

Warps are assigned adjacent columns to maximize locality.
Each warp traverses its set of columns and maintains a partial sum
for the species in each of its columns. Additional partial sums for
each species are also maintained in shared memory. For a given
row, the warp computes the dij values and reduces them into the
partial sums stored in registers for each column. The warp also
computes a row partial sum and reduces it into the location for
the corresponding row species in shared memory. To avoid data
races when accessing shared memory, named barriers are used to
synchronize access to different regions of shared memory.

At the end of the computation, each warp reads the partial sums
out of shared memory for the species that it owns and sums the
results with the partial sums stored in the warp’s registers. The
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pressure scaling ratio is then applied and each warp writes out
results for its owned species. In this scenario, the warp-specialized
partitioning of the diffusion computation results in a hybrid storage
of the working set using both shared memory and registers that
enables additional parallelism to be extracted. We describe the
algorithm for placing data in further detail in Section 4.1.

3.4 Chemistry
The chemistry computation is the most complex kernel that Singe
emits because it requires multiple phases, some of which can exe-
cute in parallel. The first phase computes forward and reverse re-
action rates for every reaction using an Arrhenius, Lindermann, or
Landau-Teller reaction model[9], requiring between 6 and 15 dou-
ble precision constants per reaction. The second phase computes
the QSSA scaling factors and then applies them to all reactions in-
volving a QSSA species. A similar computation is performed in
the third phase for the stiff species. The output phase sums the con-
tributions from each reaction and computes the resulting rate of
change for each species based on stoichiometric coefficients.

While the chemistry kernel could be fissioned into separate
kernels, each such kernel would read and write a forward and
reverse reaction rate for every reaction at every point. Kernels for
the heptane mechanism would each require 566 double precision
reads and 566 double precision writes per cartesian grid point,
which would be memory bandwidth limited and therefore slow.

Instead we employ warp-specialized partitioning to break apart
the computation and the working set so it fits in on-chip memory.
However, unlike viscosity and diffusion, for all interesting mecha-
nisms the number of reaction rates is too large to store in shared
memory. Instead we partition the reaction computations across
warps and store the resulting forward and reverse reaction rates in
each warp’s registers. When reaction rates are needed for computa-
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tions, they are exchanged in passes by writing subsets of the rates
into shared memory and having the needed values read out before
progressing to the next pass. While this adds latency to the kernel,
it is significantly less latency than going to off-chip global memory
and well within the bandwidth limits of shared memory.

The chemistry kernel also suffers from another performance
challenge: the QSSA phase is both computationally expensive and
difficult to parallelize. Singe uses warp specialization at two dif-
ferent granularities to address this problem. First, the QSSA com-
putation usually requires between half and two-thirds of the reac-
tion rates. Singe assigns these reactions to warps first. A subset of
the warps are then siphoned off to perform the QSSA computation
while the remaining warps complete the reaction computations.
Figure 6 shows an example of this partitioning of the warps for
the chemistry kernel. A producer-consumer named barrier is used
to indicate to the QSSA warps when the needed values from the
non-QSSA warps have been written into shared memory. Note that
because this barrier is non-blocking warp specialization enables the
QSSA computation to be overlapped with the remaining reaction
rate computations, which cannot be done in the data-parallel ver-
sion of the kernel.

Warp specialization is also used to further parallelize the QSSA
computation. The QSSA computation performs many divide oper-
ations and consequently requires between 20 and 60 DFMA op-
erations for each QSSA species. Data dependences exist between
species further complicating parallelization. Singe uses a heuristic
for partitioning the directed acyclic graph (DAG) of a QSSA com-
putation across a set of QSSA warps. For every edge that crosses
a warp boundary, a producer-consumer named barrier is allocated.
Figure 7 shows an example of one such partitioning for the QSSA
computation for the heptane mechanism across two warps. In Sec-
tion 4.2 we describe a general algorithm for synchronizing and
scheduling these dataflow DAGs that avoids deadlock.

4. Warp-Specializing Compiler Architecture
We now describe the general architecture and compilation stages of
a warp-specializing DSL compiler as seen in Figure 8. We are pri-
marily interested in the transformations necessary for performing
warp specialization and therefore assume a source-to-source com-
piler that will rely on a lower-level compiler like the PTX assembler
to perform optimizations on sequential code within a single thread.
Input for a warp-specializing compiler consists of a DSL file de-
scribing the computation to be performed and a set of command
line flags indicating the number of warps to target as well as any
explicit mapping decisions (described in Section 4.1).

Our experience with Singe has shown it is valuable for a warp-
specializing compiler to generate correct code for any number of
warps and choice of mapping decisions. This property enables au-
totuning and significantly reduces the complexity of the compiler
by removing specialized logic for trying to compute an optimal
mapping of a computation onto an arbitrary architecture. In prac-
tice, the search space for Singe was never more than a few hundred
points because warp-specialized decisions dealt with very coarse-
grained properties such as the number of target warps. Conse-
quently, we used a brute-force exhaustive autotuning script to drive
Singe when tuning our kernels.

The first stage of any warp-specializing compiler partitions the
primary computation into sub-computations. As we have seen with
the three kernels discussed in Section 3, how to partition and at
what granularity is domain specific and will therefore be deter-
mined by each DSL compiler individually. The first stage outputs a
dataflow graph with nodes corresponding to units of computation,
which we refer to as operations, and edges indicating data depen-
dences between operations. Section 4.1 describes the second stage
of compilation which maps operations onto warps and determines
where data is stored. The output of the second stage is another
dataflow graph with each operation assigned to a specific warp
and inputs and outputs of operations assigned either to registers or
shared memory. The third compiler stage described in Section 4.2
performs named barrier placement and scheduling. The result of the
third stage is an abstract syntax tree (AST) for each warp which en-
codes the chosen schedule and necessary synchronization for each
warp’s operations. Code is generated directly from these ASTs in
the last compilation stage, but requires several non-standard traver-
sal techniques which we cover in detail in Section 5.

4.1 Computation and Data Mapping
The mapping compilation stage is responsible for taking in an
arbitrary dataflow graph of operations and mapping it onto the
specified number of warps and available GPU memories. This
is accomplished in two steps: first, operations must be assigned
to warps, and second, the data values produced and consumed
by operations must be assigned to one of the available software-
managed on-chip GPU memories (e.g. registers, shared).

When performing the first step there are three primary (and
often conflicting) metrics to consider when assigning operations to
warps. First, the mapping stage should aim to achieve a balanced
computational load across all the warps as imbalance can lead
to under-utilized computational resources. In Singe, we use the
number of floating point operations (FLOPS) in each operation as
a proxy for computational load, and attempt to balance the total
number of FLOPS assigned to each warp.

The second metric which must be balanced is the total registers
required for each warp. The need for this metric is an artifact of
the use of data-parallel programming models: current GPU archi-
tectures and compilers do not support per-warp register allocation
schemas. Consequently, the warp requiring the most registers dic-
tates the number of registers allocated for all warps in the kernel.
If there is a large imbalance in required registers between warps,
then significant fractions of the register file can go unused, limiting
the total working set size for warp-specialized kernels and reducing
total occupancy. In Singe, we assume intermediate values in an op-
eration consume no registers because they are short-lived, but the
values generated by operations consume registers as long as they
are live. Singe stores values generated by an operation in the regis-
ters of the thread that computed the operation to avoid duplicating
values and consuming additional registers.

The third metric which must be considered is locality. A warp-
specializing compiler should attempt to maximize locality by min-
imizing the number of dataflow edges with operations assigned to
different warps. This reduces the amount of communication that
must occur through shared memory and also reduces the number of
barrier synchronizations which must be performed.
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There are many possible algorithms for mapping operations
onto warps that consider all three metrics, including some which
may opt to use domain- or architecture-specific knowledge. The
Singe compiler uses a general greedy algorithm for performing
mapping. Operations are weighted based on their FLOP counts,
register needs, and locality to warps based on the current mapping.
Singe maps operations in order of cost from the most expensive to
the least in a way that locally minimizes overall cost. Singe makes
mapping visible to the autotuner by allowing weights to be assigned
to each of the three metrics using command line flags. Exposing
these design dimensions to the autotuner also significantly reduces
the complexity of the compiler implementation.

The second step of mapping consists of assigning variables to
registers or shared memory. A command line flag specifies the
target number of CTAs per SM which places an upper bound on
the amount of shared memory and number of registers available to
any one CTA. Shared memory is considered first as it is usually the
more constrained resource. There are three ways shared memory
can be used by a warp-specializing compiler, each of which is
illustrated by a Singe kernel:

• Store - there are few enough values shared between operations
that they can all be stored in shared memory (viscosity).

• Buffer - due to extremely large working sets, values are kept
in registers and shared memory is only used as a buffer for
communicating values between different warps (chemistry).

• Mixed - some values are stored in shared memory, while the
remaining fraction of shared memory functions as a buffer for
communication between different warps (diffusion).

The choice of where to place data and how to use shared mem-
ory may also be application or architecture dependent. Singe uses
a simple working set analysis that attempts to keep values in regis-
ters unless they are accessed by many threads in which case they are
assigned to shared memory. If the total number of registers needed
exceeds the number budgeted by the target number of CTAs, then
Singe emits a warning indicating that spilling is likely to occur.
Singe also makes the choice of data placement available to the au-
totuner via command line flags which specify how shared memory
and registers should be employed.

4.2 Named Barrier Placement and Scheduling
Traditional data-parallel GPU programming models present a very
simple coarse-grain barrier for synchronization within a CTA.
Named barriers provide a finer granularity of synchronization be-
tween individual warps, but can lead to poor performance and dead-
lock if placed incorrectly. In this section we describe an algorithm

for placing named barrier synchronization calls that guarantees a
deadlock-free schedule. We also present a class of transformations
on the schedule that can safely be performed by the compiler during
optimization passes.

In order to guarantee correct synchronization of communication
between different warps we rely on the following algorithm:

1. Tag every data dependence between two operations assigned to
different warps as requiring a synchronization point, with the
producer warp needing to perform an arrival and the consumer
warp needing to perform a wait.

2. Construct a partial order of the synchronization points based on
their transitive data dependences.

3. Linearize the partial order of all synchronization points and then
number each synchronization point, defining a total order on
synchronization points.

4. For each warp, create a static schedule of all the operations in
that warp that obeys operational data dependences and obeys
the total ordering on synchronization points so that an operation
with a lower numbered synchronization point comes before an
operation with a higher numbered synchronization point.

We now prove that using this algorithm guarantees the existence of
at least one schedule that is deadlock-free.

Theorem 1. A schedule for each warp that obeys the initial data
dependences and a total ordering on synchronization points exists
and is deadlock-free.

Proof. Initially the graph of operations is a DAG which defines
a partial ordering on the operations. For every operation which
requires a synchronization point we add an additional edge to
every operation that requires a synchronization point with a larger
number. By construction, these edges also obey the partial order of
the original DAG since the total order on synchronization points
was constrained by the original data dependences. Therefore a
partial order still exists on the graph which guarantees that the
graph is still a DAG. From any partial order, there exists at least one
total ordering on all the operations. An initial schedule for a warp
can be then be found by removing the operations assigned to each
warp in order from any total ordering of all operations. The DAG
nature of the resulting graph ensures the absence of any cycles on
control resources which could result in deadlock and therefore the
resulting schedule is deadlock-free.

After an initial deadlock-free schedule has been generated for
each warp, there are several re-ordering transformations permitted
that do not invalidate Theorem 1.

• Operations arriving at a synchronization point can be re-ordered
up the schedule arbitrarily far, or can be moved down the sched-
ule if they are not re-ordered with respect to an operation that
waits on a higher-numbered synchronization point.

• Operations waiting at a synchronization point can be re-ordered
up the schedule if they are not re-ordered with respect to a
lower-numbered synchronization point, or can be re-ordered
down the schedule if they are not re-ordered with respect to
operations on a higher-numbered synchronization point.

These two transformations on the schedule are useful for several
purposes. First, they can be used to hoist operations which lie on
the kernel’s critical dataflow path so they are performed before
less important operations. Second, using these transformation, mul-
tiple synchronization points between common sets of warps can
be grouped together. This allows for bulk communication through
shared memory between warps and reduces the total number of
named barrier synchronizations. Singe uses scheduling heuristics
to achieve both of these goals.



1 const int warp id = (threadIdx.x >> 5);
2 const int lane id = (threadIdx.x & 0x1f);
3 ...
4 if ((1 << warp id) & 0x000005D7) {
5 int troe idx = troe index 0[0+step∗step stride][warp id];
6 double fcent = scratch[TROE OFFSET+troe idx][lane id];
7 double flogpr = log10(pr)− 0.4− 0.67 ∗ fcent;
8 double fdenom = 0.75− 1.27 ∗ fcent− 0.14 ∗ flogpr;
9 double fquan = flogpr / fdenom;

10 fquan = fcent / (1.0 + fquan ∗ fquan);
11 rr f 0 = rr kinf ∗ pr/(1.0 + pr) ∗ exp(fquan ∗ DLn10);
12 } else {
13 rr f 0 = rr kinf ∗ pr/(1.0 + pr);
14 }

Listing 1. Overlaid bit-mask code emitted by Singe.

After the schedule for each warp has been fixed, a warp-
specializing compiler must map the set of synchronization points
onto the set of 16 named barriers per SM available on both Fermi
and Kepler architectures1. The problem of mapping synchroniza-
tion points onto named barriers is isomorphic to the problem of
register allocation for static single-assignment (SSA) code and can
be performed in polynomial time[7]. In practice, only the heptane
chemistry kernel has required the use of all 16 named barriers. The
final output of this stage is a forest of ASTs (one AST for each
warp) which codify the chosen schedule of operations and include
code to perform the necessary synchronizations.

5. Warp-Specialized Code Generation
In this section we describe techniques for emitting high-performance
warp-specialized code. The primary obstacle to overcome when
generating warp-specialized code is the performance of the GPU’s
instruction cache. GPUs are built assuming all threads run the same
code with minimal stretches of control divergence. The naı̈ve code
generation strategy of using a top-level switch statement on the
warp ID to send each warp to a different block of code violates this
assumption and results in severe performance degradation. Figure 9
(on previous page) shows a comparison of naı̈ve warp-specialized
code with code emitted by Singe for a DME viscosity kernel over a
range of warps per CTA. The naı̈ve approach begins thrashing the
instruction cache at six different warp code paths, while the code
emitted by Singe continues to improve with peaks for warp counts
that evenly divide the number of species in the DME mechanism.
It is therefore imperative that common code paths be maintained
across warps and that branching on warp IDs be done at a fine
enough granularity to avoid thrashing the instruction cache.

5.1 Overlaying Computation
In order to minimize instruction cache thrashing, a warp-specializing
compiler must overlay code from different warps whenever warps
are performing similar computations. To achieve this goal we mod-
ify the standard approach to generating code from an AST. Code
generation from an AST traditionally involves traversing the AST
from top to bottom, emitting code at a node and then emitting
code for each of a node’s children in program order. In a warp-
specializing compiler, code must be generated from a forest of
ASTs with each AST describing the code to be executed for a
different warp. To generate code from this forest of ASTs, a warp-
specializing compiler traverses all the ASTs simultaneously. As
long as the AST nodes across all warps are identical (with the ex-
ception of different constant values and indexing offsets, discussed
in Sections 5.2 and 5.3), the compiler emits a single instance of

1 If the desired occupancy is more than one CTA per SM, then the maximum
number of named barriers per CTA is 16 divided by the desired number of
CTAs per SM since named barriers are a conserved resource and, similar to
shared memory and registers, can restrict occupancy.

1 shared volatile double real mirror[NUM WARPS];
2 const int warp id = (threadIdx.x >> 5);
3 const int lane id = (threadIdx.x & 0x1f);
4 ...
5 if (lane id == 3)
6 real mirror[warp id] = real constants[0];
7 double arrhenius = real mirror[warp id] ∗ vlntemp;
8 if (lane id == 4)
9 real mirror[warp id] = real constants[0];

10 arrhenius = fma rn(real mirror[warp id], ortc, arrhenius);

Listing 2. Example Fermi constant broadcasts.

1 int hi part, lo part;
2 hi part = shfl( double2hiint(real constants[0]),3,32);
3 lo part = shfl( double2loint(real constants[0]),3,32);
4 double arrhenius = hiloint2double(hi part,lo part) ∗ vlntemp;
5 hi part = shfl( double2hiint(real constants[0]),4,32);
6 lo part = shfl( double2loint(real constants[0]),4,32);
7 arrhenius = fma rn( hiloint2double(hi part,lo part), ortc, arrhenius);

Listing 3. Example Kepler constant broadcasts.

code for all the warps in the kernel to execute2. When the structure
of the ASTs differs, the compiler uses branches dependent on warp
ID to differentiate code blocks for warps.

Singe uses two different approaches to branching on warp ID. In
the first case, if there are no similarities between the code required
for each warp, Singe emits an indirect branch dependent on warp
ID to jump to the correct block of code for a given warp. For cases
with longer sequences of instructions, the single indirect branch
statement is fissioned into multiple indirect branch statements. In
our experience this approach does not degrade performance pro-
vided the regions of code along each path of an indirect branch
are less than a few hundred instructions long. Under these circum-
stance the instruction cache prefetching mechanism is capable of
handling the inter-warp divergence.

In cases where there is still some structure shared among a sub-
set of the warps, Singe uses bit-masks to indicate which warps
should enter a block of code. Bit-masks are constructed using one-
hot encoding with each bit in the mask indicating whether a warp
should take the branch or not. Listing 1 shows an example of over-
laid code generated by Singe for computing Laundau-Teller and
Lindermann reaction rates simultaneously in the chemistry kernel.
By overlaying code with bit-mask warp filters, Singe minimizes the
number of different paths warps can take during execution, thereby
improving performance of the GPU instruction cache.

In general we have found that branching many ways for a few
hundred instructions or less, or only branching a few ways for
longer stretches of code, is necessary to avoid thrashing the GPU’s
instruction cache. This is consistent with earlier results on using
warp specialization that only contained two or three different warp-
specialized code paths[3]. The penalty for thrashing the instruction
cache is routinely performance degradation of an order of magni-
tude or worse. Therefore it is crucial that any warp-specializing
compiler overlay warp-specialized code on current GPUs.

5.2 Constant Arrays and Constant Deduplication
One of the challenges in generating overlaid warp-specialized code
is that often warps require different constant values. We describe a
technique that avoids branching on different constant values.

After a computation has been partitioned for warp specializa-
tion, each warp requires only a subset of the total constants needed
for the full computation. The DSL compiler can then allocate an
array for storing the constants needed by each warp that is as large
as the largest number of constants needed by any warp. The com-
piler emits code so that all warps access the same locations in the

2 Care must also be taken to standardize variable names wherever possible
between different warps to avoid creating false AST differences.



Mechanism Viscosity Diffusion Chemistry
DME 8 18 6

Heptane 28 28 8

Figure 10. Constant registers per thread on Kepler.

constant array at all times. After code generation is complete, the
compiler lays out constants in memory to ensure the right values are
in the correct locations of the array for each warp. In some cases for
divergent code, this may involve emitting padding values into the
array for some warps. However, the cost of loading a few padded
values is small compared to the cost of dynamic branching.

In practice, we have discovered that these constant arrays are
often quite large for a single warp and can consume more than an
entire thread’s worth of registers. We therefore have developed an-
other optimization for deduplicating constants between the threads
within a warp. All the threads within a warp require the same set
of constants and a single thread can broadcast a constant value to
the other threads within a warp with no synchronization. Instead of
each thread holding all the constants required for computation, the
constants for a warp are statically striped across the threads within
a warp, requiring each thread hold only 1

32
of all the constants.

Whenever a constant is needed, it is broadcast from the owning
thread to the other threads within the warp.

This broadcast takes different forms depending on the architec-
ture. For Fermi GPUs, the broadcast is performed using an allo-
cation of shared memory with one location per warp. One thread
writes data into shared memory and then the other threads in the
warp read the value; no explicit synchronization is required because
all the threads within a warp execute in lock step. Listing 2 shows
example code emitted by Singe employing this technique.

On Kepler GPUs the broadcast is performed more efficiently
using shuffle instructions. Shuffle instructions allow an exchange of
32 bits between all threads in a warp. By breaking double precision
constants into their upper and lower halves they can be broadcast
from the owning thread and then re-assembled. The two shuffle
instructions are faster on Kepler because they do not stall pipelined
loads in the shared memory pipeline, which happens during the
shared memory write for the Fermi broadcast. Listing 3 shows an
example of exchanging constants using shuffle instructions.

Figure 10 shows the number of registers required per thread
for storing constants values across both mechanisms on the Kepler
architecture. Note that they are small enough to allow the majority
of registers to remain free for general purpose computation while
still holding more constants on chip than can even be addressed by
the constant cache, let alone fit in its working set[1].

This approach to storing constant values in registers can yield
further performance gains when coupled with a streaming execu-
tion model. When multiple sets of points are mapped onto a single
CTA, the CTA performs a loop to handle all of its points. By hoist-
ing the loads for the constants outside of this loop, a DSL compiler
can amortize the cost of loading constants into registers, resulting
in very low overhead constant access.

5.3 Warp Indexing
For applications with irregular memory access patterns, warp spe-
cialization can result in warps needing to access different locations
in memory. One of the many examples of this occurring in Singe is
in the stiffness computations for the chemistry kernel described in
Section 3.4. Each of the different warps needs to load different dif-
fusion rates from global memory and different molar fractions from
shared memory. The need to access different memory locations by
different warps runs counter to the DSL compiler’s goal of over-
laying as much code as possible. To support code overlay without
dynamic branching, a compiler can use warp indexing constants
when doing memory accesses.

1 shared volatile double scratch[192][32];
2 const int lane id = threadIdx.x & 0x1f;
3 ...
4 int index = shfl(index constants[0],1,32);
5 asm volatile(”ld.global.nc.cg.f64 %0, [%1];” : ”=d”(stif diffusion 0) :
6 ”l”(diffusion array+index∗spec stride) : ”memory”);
7 stif mole frac 0 = scratch[index][lane id];

Listing 4. Stiffness warp indexing on Kepler.

Warp indexing is a technique where each warp stores integer
offset values for indexing into memory that are specific to that
warp. All warps can then perform their address calculations us-
ing the same index variable even though the variable stores dif-
ferent values for different warps. As with the constant arrays, this
extra level of indirection enables the compiler to overlay warp-
specialized code without requiring dynamic branching for irregular
memory access patterns.

Similar to constant deduplication, if the number of warp index-
ing constants is large, they can be deduplicated by striping them
across the threads within a warp using the same approach described
in Section 5.2. The only difference is that the index constants are
not directly involved in computation, but are instead only used for
address indexing. Listing 4 shows an example of warp indexing on
Kepler from the stiffness computation where the same index is used
to load a diffusion value from global memory and a molar fraction
from shared memory.

One important caveat to warp indexing is that it only applies to
data that is stored in dynamically indexable GPU memories, specif-
ically global, shared, and constant memories. Arrays allocated in
registers are not dynamically indexable and any attempt to index
them with a dynamic variable causes the CUDA compiler to spill
the array to much slower local memory. Ideally future GPUs will
allow dynamic indexing of the register file as well.

6. Experimental Results
In this section we quantify the performance gains that result from
applying warp specialization in Singe. We compare against base-
line versions of the kernels emitted by an earlier version of Singe in
the traditional CUDA data-parallel programming model. The base-
line versions of the kernels were fully optimized using a combina-
tion of domain- and architecture-specific optimizations, including
the use of logarithmic-space computations, exposure of additional
instruction level parallelism, and the use of LDG texture loads us-
ing inline PTX for higher memory bandwidth on the Kepler archi-
tecture. In addition, a brute-force autotuner exhaustively explored
the space of occupancy-register tradeoffs on all architectures. Con-
sequently, the baseline CUDA kernels were already up to 2X faster
than the OpenACC versions currently used by the production ver-
sion of S3D[11]. The same set of optimizations were also applied
to the warp-specialized versions of the kernels to ensure that all
performance gains are directly attributable to warp specialization.

All experiments were run on two different architectures. The
first was an NVIDIA Tesla C2070 Fermi GPU with 14 SMs, a
1147 MHz SM clock frequency, and a 1494 MHz DRAM clock
frequency. The second architecture was a Tesla K20c Kepler GPU
with 13 SMs, a 705 MHz SM clock frequency, and a 2600 MHz
DRAM clock frequency. ECC was disabled on both architectures
to make the memory-bound baseline kernels perform as well as
possible against the kernels emitted by Singe. Singe kernels are
primarily limited by on-chip resources and therefore achieve even
larger speedups relative to the baseline kernels with ECC enabled.
All kernels were compiled with the default version of nvcc from
CUDA 5.0 and were run with version 304.54 of the CUDA driver.

For all experiments, we report throughput for three different
grid problem sizes 323, 643, and 1283 to illustrate any scaling ef-
fects. Absolute times for each experiment can be computed by di-
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Figure 11. Viscosity performance results for DME.
viding the number of points in each grid by the reported throughput.
In all cases the reported throughput is computed using the harmonic
mean of the throughputs for twenty iterations of each experiment.
In addition to reporting performance results for each kernel, we
also analyze the underlying SASS machine code for each kernel to
determine the limiting factor for each of the different kernels.

6.1 Viscosity
Figures 11 and 12 show performance results comparing warp-
specialized versions of the viscosity kernel to the baseline versions
for the DME and heptane mechanisms respectively. Speedups for
the warp specialization kernels ranged from 1.2X to 3.75X over
the baseline kernels. Significantly larger speedups over the baseline
versions were achieved on the Kepler architecture.

To understand the underlying reasons for these results we in-
vestigated the underlying SASS machine code generated for both
the baseline and warp-specialized versions of the code. From the
SASS we were able to determine the total number of double preci-
sion floating point operations required per warp for both the base-
line and warp-specialized versions on Fermi and Kepler. For the
DME mechanism on Fermi the baseline and warp-specialized ker-
nels achieved 197.9 and 257.3 billion double precision floating
point operations per second (GFLOPS) respectively; on Kepler they
achieved 220.6 and 617.7 GFLOPS respectively.

Using these numbers along with an understanding of the Fermi
and Kepler architectures we were able to discern the limiting fac-
tors for each kernel. In theory, a Fermi GPU can issue 1 DFMA
instruction per SM every other clock cycle. For the C2070 GPU in
these experiments this yields a theoretical math throughput of 513
GFLOPS. In practice, optimized Fermi kernels such as DGEMM
can reach around 300 GFLOPS[1]. Achieving 257.3 GFLOPS on
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Figure 12. Viscosity performance results for heptane.

the warp-specialized viscosity kernel is near optimal math through-
put on Fermi when the overhead of dynamic branching and shared
memory accesses are included. The baseline CUDA version how-
ever does not come as close to the practical peak math throughput
for two reasons. First, the working set of molar fractions and per-
species viscosities does not fit in registers and is spilled to local
memory. Second, the large number of constants do not fit in the
constant cache. Both these issues add latency and account for the
slowdown relative to the warp-specialized kernels.

For the Kepler architecture, the theoretical math throughput is
significantly higher. On Kepler each quad of an SM can issue one
DFMA every other cycle, yielding a theoretical throughput of 1173
GFLOPS on a K20c with 13 SMs. The 617.7 GFLOPS achieved
by the warp-specialized viscosity kernel is more than half of the-
oretical peak. We hypothesized that this kernel is actually lim-
ited by the throughput of DFMA operations whose third operand
is loaded from the constant cache, which is the case for the 12
DFMA operations in the Taylor series expansion of the exponen-
tial function which dominates viscosity performance. To verify
this hypothesis we modified Singe to emit an incorrect exponen-
tial function that instead relied on constants stored in registers. Ex-
periments showed these kernels were capable of performance near
750 GFLOPS, indicating that our warp-specialized viscosity ker-
nels were also compute-bound on Kepler. The baseline CUDA ver-
sion improved marginally from Fermi, but still suffered from severe
register spilling and constant cache misses. The highest performing
baseline CUDA version used the larger on-chip register file on Ke-
pler to avoid spilling and not to increase occupancy which meant
that the latency of loading constants was still exposed.

These results demonstrate that warp specialization enables
Singe to partition the viscosity kernel in a way that better maps



32x32x32 64x64x64 128x128x128
0

2

4

6

8

10

12

Th
ro

ug
hp

ut
(M

po
in

ts
/s

)

6.348
6.647 6.675

11.272 11.422 11.433

Data-Parallel CUDA
Warp-Specialized

(a) Fermi

32x32x32 64x64x64 128x128x128
0

5

10

15

20

25

Th
ro

ug
hp

ut
(M

po
in

ts
/s

)

12.455 13.010 13.090

17.347

23.399

24.944

Data-Parallel CUDA
Warp-Specialized

(b) Kepler

Figure 13. Diffusion performance results for DME.

onto both Fermi and Kepler GPUs. Both warp-specialized kernels
approach the limits of math throughput on their architectures. The
higher potential math throughput on Kepler explains why the Ke-
pler warp-specialized kernel performs significantly better than the
Fermi warp-specialized kernel relative to the baseline.

6.2 Diffusion
Figures 13 and 14 show performance results for the diffusion ker-
nels for the DME and heptane mechanisms respectively. Speedups
for the warp-specialized kernels ranged from 1.33X to 2.58X over
the baseline CUDA kernels. Again larger speedups were achieved
on the Kepler architecture than the Fermi architecture due to the
higher ceiling of math instruction throughput.

To confirm that the performance of the warp-specialized ker-
nels was again limited by math throughput, we again analyzed the
SASS machine code. We were surprised to discover that for the
DME mechanism the warp-specialized version of the kernel was
only achieving 212.8 GFLOPS on Fermi and 526.6 GFLOPS on
Kepler. After examining the SASS, we determined that the degra-
dation in performance was caused by the additional named barrier
calls that were needed to synchronize access to the partial sums
stored in shared memory. A larger number of barriers resulted in
excessive cycles waiting for straggler warps to arrive at the barrier
which consequently reduced math throughput. Unsafely removing
the barriers resulted in performance around 250 GFLOPS on Fermi
and 625 GFLOPS on Kepler, which is consistent with the actual
peak math throughput observed in Section 6.1.

Another interesting effect can be observed in Figures 13(b) and
14(b). For smaller problem sizes the speedup over the baseline
kernels is smaller. Due to the large number of constants required
for the diffusion kernel, the cost of loading these constants into
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Figure 14. Diffusion performance results for heptane.

registers is significant. However, for larger problem sizes it is more
easily amortized. This effect is only noticeable on Kepler where the
math performance is much higher and exposes the constant loading
phase. A problem size of at least 643 is therefore required to fully
amortize the cost of loading the constants into registers.

6.3 Chemistry
Figures 15 and 16 show performance results for the chemistry
kernels for both the DME and heptane mechanisms respectively.
Speedups for the warp-specialized kernels ranged from 1.01X to
1.50X over the baseline CUDA kernels. Unlike the viscosity and
diffusion kernels, the performance characteristics of the chemistry
kernels are very different. The very large working set places ex-
treme pressure on the architectural resources of any GPU. Using
warp specialization Singe was able to emit code using an alterna-
tive allocation of resources which yielded performance gains.

The baseline CUDA chemistry kernels spill significant amounts
of memory due to the large working sets required. For the heptane
mechanism 8736 bytes are spilled per thread on Fermi and 8500
bytes per thread are spilled on Kepler. With enough occupancy
all this latency can be hidden, but results in a memory bandwidth
limited kernel. After analyzing the SASS for the baseline CUDA
kernels, we measured memory bandwidths of 85 GB/s on Fermi
and 100 GB/s on Kepler, which are consistent with actual peak
memory bandwidths for these architectures3.

3 We have measured read bandwidths of 165 GB/s on a Kepler K20c with
five GDDR5 memory partitions when using LDG texture loads, but this path
is not available to local memory since local memory is not constant. 100
GB/s load bandwidth is consistent with measured load bandwidths through
the much smaller pipe in the L1 cache with only 13 SMs.
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Figure 15. Chemistry performance results for DME.

Alternatively, the warp-specialized kernels emitted by Singe
for heptane spill only 276 bytes on Fermi and 44 bytes on Ke-
pler (mostly infrequently accessed pointer data). Almost the entire
working set of the computation including all forward and reverse
reaction rates remain in registers at the cost that they must be re-
peatedly exchanged through shared memory. Neither the Fermi nor
the Kepler warp-specialized kernels have enough warps to hide the
30 cycles of shared memory access latency with only 20 and 16
warps per SM respectively. As a result, the warp-specialized ver-
sions of the kernel are shared memory latency limited. However,
the performance results demonstrate that this is significantly better
than being global memory bandwidth limited.

7. Discussion
While we have shown that warp specialization is effective on
NVIDIA GPUs, we believe that similar benefits could be realized
on other wide-vector SIMD architectures, such as Intel’s Xeon Phi.
Conceptually, a warp is a single instruction stream issuing 32-wide
vector instructions, which is not far removed from a thread on a
Xeon Phi issuing 8-wide double-precision vector instructions. In-
stead of partitioning and mapping computations onto warps, com-
putations could be mapped onto vectorized threads. Identical to
warp specialization, the techniques presented in this paper could
be used to fit large working sets into on-chip memories and han-
dle irregularity. There are currently two absent hardware features
on the Xeon Phi that inhibit this approach. First, there are no fast
hardware synchronization primitives equivalent to named barriers
present (heavy-weight software mutexes are currently necessary).
Second, there are no on-chip software-managed memories to be
used for fast data exchange buffers. Instead the hardware-managed
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Figure 16. Chemistry performance results for heptane.

L1 cache must be used which is subject to interference and eviction
by other data movement operations.

The presence of hardware-managed caches on GPUs also hin-
ders the performance of warp-specializing compilers like Singe.
Hardware-managed caches consume transistors which could have
been used to fit larger working sets in on-chip software-managed
memories. Hardware-managed caches are also difficult resources
for compilers to reason about. An earlier version of Singe attempted
to store the large number of constant values in the GPUs hardware-
managed L2 cache. However, writes from other threads kept evict-
ing constants off-chip despite Singe annotating all global writes
with the PTX cache-streaming qualifier cs. The current Singe com-
piler completely ignores the L2 cache which wastes significant on-
chip memory (768 KB on Fermi and 1536 KB on Kepler). Finally,
hardware-managed caches add overhead to the kernels emitted by
Singe both in terms of performance (tag look-ups on all memory ac-
cesses) and power (unnecessary data movement between cache lev-
els). Ideally, future GPUs and other wide-vector architectures will
consist primarily of software-managed caches which will enable
compilers like Singe to directly orchestrate data movement leading
to both higher performance and power efficiency.

The poor performance of current GPU instruction caches makes
warp specialization infeasible without overlaying code paths. In-
struction caches designed for handling many divergent warps in
future GPUs would remove the need for overlaying code using
the techniques described in Section 5. This would improve the
performance of Singe kernels by significantly reducing the num-
ber of necessary warp-specific branch instructions. Additionally, it
would greatly reduce the complexity of the code generation stage
for warp-specializing compilers. It would also make writing warp-
specialized code practical for human programmers.



Finally, a common misconception regarding warp specializa-
tion is that it will be made obsolete by Moore’s law because more
transistors in future chips will allow current large working sets to
fit on-chip. Ideally, more on-chip storage could lead to higher oc-
cupancy and would only require a simple data-parallel program-
ming model to achieve high performance. Unfortunately, this view
fails to consider that many computational science domains, includ-
ing combustion, cosmology, and molecular dynamics, all limit the
scope of their simulations in order to execute efficiently on current
hardware. For example, the combustion mechanisms described in
this paper are considered reduced mechanisms because they only
simulate tens of chemical species instead of the hundreds and thou-
sands of species in real mechanisms[12]. In our experience, com-
putational scientists will always use additional hardware to perform
higher fidelity but more computationally expensive simulations in-
stead of making current simulations perform better. As machines
become more powerful, scientists will devise more complex sim-
ulations that place intense pressure on both programming systems
and hardware. Under such conditions, data-parallel programming
models such as CUDA, OpenCL, and especially OpenACC will
struggle to take full advantage of future hardware. Ultimately, pro-
gramming models such as warp specialization will become essen-
tial for managing large working sets, handling irregularity, and ex-
ploiting task-level parallelism to fully leverage forthcoming archi-
tectures for general purpose computing.

8. Related Work
The most closely related work to Singe is CudaDMA[3], a li-
brary that uses warp specialization to optimize data movement be-
tween on-chip and off-chip memories. CudaDMA kernels special-
ize warps into compute warps for application code, and DMA warps
for data movement. Synchronization is performed via a simple in-
terface using named barriers. There are many differences between
CudaDMA and Singe. For example, with only two warp code paths,
CudaDMA programs do not require Singe’s optimizations to avoid
instruction cache thrashing. As another example, all CudaDMA
kernels use the same partitioning scheme: application code runs
on compute warps and CudaDMA code executes on DMA warps.
Avoiding the partitioning problem faced by Singe reduces the im-
plementation complexity of CudaDMA. The focus is also different:
CudaDMA is a general purpose library for CUDA users, while the
techniques presented here are for warp-specializing compilers.

Green-Marl is a DSL and compiler for implementing graph
analyses[8] on GPUs. The Green-Marl compiler makes use of the
concept of virtualized warps to handle the irregularity inherent in
graph algorithms. While the creation of virtualized warps is similar
to the partitioning operation required for warp specialization, the
Green-Marl compiler maps virtualized warps onto physical warps
to conform to the data-parallel GPU programming model.

G-Streamline is a framework that dynamically detects compu-
tational and memory access irregularities in GPU kernels[14]. Us-
ing this information G-Streamline rewrites kernels on the fly to re-
duce the overheads associated with irregularity. In this work we’ve
shown how warp-specializing DSL compilers like Singe can handle
irregularity without any dynamic overheads.

Halide is a high-level DSL and autotuning framework for
two dimensional image processing pipelines[13]. Halide performs
many interesting optimization techniques for taking advantage of
various GPU resources similar to how a DSL compiler might lever-
age warp specialization. However, Halide does not consider warp
specialization as an approach for optimizing GPU programs.

There have been many DSL languages that target GPUs for high
performance[4, 6, 8]. To the best of our knowledge, we are the only
ones who demonstrate the necessary techniques for constructing a
warp-specializing DSL compiler.

9. Conclusion
We have introduced warp specialization as an effective compiler
technique for generating GPU code for applications with both ir-
regular computation and memory accesses as well as large working
sets. We have also presented Singe, a DSL compiler that leverages
warp specialization in conjunction with domain specific knowledge
to produce GPU combustion kernels that perform better than is
possible in standard data-parallel GPU programming models. We
described the general architecture and compilation techniques nec-
essary for constructing a warp-specializing DSL compiler. Using
warp specialization, Singe emits kernels that are up to 3.75X faster
than previously optimized but purely data-parallel GPU code.
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