
Community Epidemic Detection using
Time-Correlated Anomalies

Adam J. Oliner, Ashutosh V. Kulkarni, and Alex Aiken

Stanford University�

{oliner, ashutosh.kulkarni, aiken}@cs.stanford.edu

Abstract. An epidemic is malicious code running on a subset of a com-

munity, a homogeneous set of instances of an application. Syzygy is an
epidemic detection framework that looks for time-correlated anomalies,
i.e., divergence from a model of dynamic behavior. We show mathemat-
ically and experimentally that, by leveraging the statistical properties
of a large community, Syzygy is able to detect epidemics even under
adverse conditions, such as when an exploit employs both mimicry and
polymorphism. This work provides a mathematical basis for Syzygy, de-
scribes our particular implementation, and tests the approach with a
variety of exploits and on commodity server and desktop applications to
demonstrate its effectiveness.

Keywords: epidemic detection, anomalies, community

1 Introduction

Consider a set of instances of an application, which we call a community. Two
examples of communities are all the mail servers in an organization or all the
browsers on a cluster of workstations. Assume some subset of these instances,
or clients, are compromised and are running malicious code. The initial breach
(or breaches) went undetected and the existence of the exploit is unknown, so
the malicious code may continue running indefinitely, perhaps quietly stealing
computing resources (as in a zombie network), spoofing content, denying service,
etc. We present a method for detecting such situations by using properties of
the aggregate behavior of the community to reliably identify when a subset of
the community is not behaving properly.

A client is either healthy and exhibits correct behavior or infected and exhibits
incorrect behavior; our method detects epidemics, meaning when a subset of the
community is infected. The user specifies what constitutes correct operation for
individual clients by providing a model, which may be incomplete (omit correct
behaviors), or unsound (admit incorrect behaviors), or both. For example, a
community of web servers may be modeled by the typical distribution of response
times each provides. The class of attacks we want to detect are those that cause
undesirable deviation from normal behavior, regardless of the attack vector (e.g.,
� This work was supported in part by NSF grants CCF-0915766 and CNS-050955, and

by the DOE High-Performance Computer Science Fellowship.

2 Adam J. Oliner, Ashutosh V. Kulkarni, and Alex Aiken

buffer overrun, insider attack, or hardware tampering). Our focus is on detecting
epidemics in a community composed of instances of a specific application, rather
than the entire system or individual clients in the community, and this distinction
leads to a different approach.

We describe an implementation of an epidemic detector, called Syzygy, that
applies two main insights: (i) even if a single noisy model cannot reliably judge
the health of a client, we can reduce the noise by averaging the judgements of
many independent models and (ii) epidemics exhibit time-correlated behavior
that is impossible to detect on a single client. Our method effectively leverages
the statistical properties of a large community to turn noisy models into reliable
community detectors and uses the temporal properties of an epidemic as a means
for better detecting it.

Syzygy monitors each client’s behavior and reports anomaly scores, which
quantify the divergence of recent behavior from the model. For example, a client
whose recent response times are unusually high may report a score that is above
average (anomalous). Syzygy then computes the numerical average of all clients’
scores and checks whether this community score exceeds a threshold. By doing
these computations properly (see Section 3), we can make strong theoretical
guarantees about our ability to overcome model noise and detect epidemics.
Intuitively, we expect anomalies on individual clients in a large community to
be common, but we do not expect anomaly scores from multiple clients to be
strongly correlated in time, absent an epidemic.

We describe and analyze Syzygy’s detection algorithm mathematically in
Section 3. In our evaluation, we focus on the following questions:
—Can Syzygy detect epidemics under realistic conditions? In Section 4, we demon-
strate that our method can leverage the community to detect a variety of epi-
demics in a cluster of commodity web servers even given noisy, incomplete client
models. Syzygy does not require source code or specially compiled binaries.
—How do client and community characteristics affect performance (i.e., false

positives)? In Section 5, we deploy Syzygy on the web browsers of a campus
network and show that, despite very different client systems and user behav-
iors, healthy community behavior is a stable, reliable signal that is unlikely to
generate excessive false positives (our deployments generated none). Indeed, as
the community grows, Syzygy approaches a 100% detection rate with no false
positives; given a sufficiently large training set and community, one can specify
an acceptable false positive rate a priori and with high confidence. Even com-
munities of only a dozen clients exhibit desirable properties. See Sections 3.3,
4.2, and 5.2–5.3.
—What kinds of epidemics can Syzygy detect? In Section 6, we conduct simu-
lation experiments using commercial, off-the-shelf software and artificially pow-
erful exploits (e.g., capable of nearly perfect mimicry) and demonstrate that
the community enables Syzygy to detect epidemics under a variety of adverse
conditions. Exploits may change their source code, perform different malicious
actions, or even use a different vector of infection across clients (see Section 3.2).
—How good must client models be and how easy is it to acquire such models?

Community Epidemic Detection using Time-Correlated Anomalies 3

Syzygy works on top of existing client-based anomaly detectors, dampening noise
and providing sensitivity to time-correlated behavior. Syzygy requires only that
anomaly scores are mostly independent across healthy clients and higher, on
average, for infected clients; the method is agnostic to what measurements are
used to construct these scores.

Throughout the paper—using math, deployments, and simulations—we show
that, in a large community, even simple, noisy models are sufficient for reliable
epidemic detection. We conclude with a discussion of the issues involved with
building a larger-scale deployment (Section 7). Many real security infrastructures
are a constellation of tools; working in concert with other detection and response
tools, and with low overhead and few practical requirements, Syzygy provides
both new and more reliable information about epidemics.

2 Related Work

Syzygy detects malicious software running on clients in a community (epidemics)
even under typical real-world constraints: the client model is incomplete, infor-
mation about communication (network activity) is unavailable, and measure-
ments are noisy. It may be impossible, given social engineering and insider at-
tacks, to prevent all security breaches; a strength of Syzygy is that it can detect
the bad behavior that follows a breach. In situations where the total damage
is integral over time and the size of the infected community—such as when an
exploit is stealing resources—the ability to detect such epidemics is crucial.

Anomaly-based intrusion detection has a long history [5, 27, 28, 29, 31, 35].
A commonly held view is that anomaly detection is fundamentally limited by the
mediocre quality of the models that can be obtained in practice and therefore
must necessarily generate excessive false positives in realistic settings (see, e.g.,
[2]). We agree with the gist of this argument for single clients, but we show in
this paper that an appropriate use of a community can make strong guarantees
even with noisy models.

Crucial, however, is how the community is used. Most previous systems that
use a community at all use it only to correlate alarms generated locally on each
client—the difficulty is that the alarm/no alarm decision is still made on the basis
of a single client. Alert-correlation systems then try to suppress the resulting false
alarms by correlating alarms from other clients or different detectors [4, 13, 36].
Other collaborative detection efforts that raise alarms only on individual clients
include heterogeneous network overlays [44] and network anomaly detectors, such
as by using cumulative triggers [15, 16] or alarm aggregation and correlation
[1, 17, 32, 41]. Some work also uses correlation to characterize attack scenarios
and causal flow [19, 26, 34].

Syzygy is fundamentally different from all of these systems in that it uses
the aggregate behavior of the community to decide whether to raise an alarm for
the community, not individual clients. The ability to make alert decisions based
on analyzing the combined behavior of multiple clients is what gives Syzygy
strong theoretical and practical properties that are absent from all previous work.
There is prior work for file systems [43] and peer-to-peer networks [22, 23] that

4 Adam J. Oliner, Ashutosh V. Kulkarni, and Alex Aiken

generate alerts based on aggregate behavior, but these do so without utilizing
the statistical benefits of a large community.

Another category of work uses the community simply to gather data more
quickly or to spread the burden of monitoring among many clients. For example,
the Application Communities project [21] uses the community to distribute work;
everything could be done on a single client, given more time. Syzygy uses the
community in both these ways, as well; in contrast, however, it also looks for
time-correlated deviations from normal behavior, which is not possible on a
single client.

Syzygy was originally a detection component of the VERNIER security archi-
tecture [20]. Syzygy’s role is to monitor instances of a target application for signs
of infection: attacks on the security infrastructure or other applications within
the client system, problem diagnosis, and reaction to the intrusion are all the
responsibility of other VERNIER components. Among the various VERNIER
detectors, Syzygy is specifically looking for time-correlated activity, as might be
expected from a propagating worm or a coordinated attack. This specialization
allows Syzygy to be small, lightweight, and asymptotically ideal while using the
community in a novel way.

There are also uses of the community for tasks other than detection, such
as diagnosing problems by discovering root causes [39] and preventing known
exploits (e.g., sharing antibodies) [2, 3, 25]. Although other parts of VERNIER
employ such measures, our focus is on detection.

3 Syzygy

Consider a community of n clients in which we wish to detect epidemics. During
training, Syzygy observes the normal operation of the clients and builds a model

(see Section 3.1). It is important to note that the specific choice of model is
independent from the rest of Syzygy’s operation; the only requirement is that
the model produces an anomaly signal according to the constraints in Section 3.2.

While subsequently in monitoring mode, Syzygy periodically collects the
most recent value of the anomaly signal (the anomaly score) from each client and
checks whether the community’s average anomaly score exceeds a threshold V .
If so, Syzygy reports an epidemic. The properties of the anomaly signal are such
that, given a large community, Syzygy can compute the threshold automatically
at runtime and is insensitive to minor variations in this parameter. We explain
these properties mathematically in Section 3.3 and support them experimentally
in Sections 5.2 and 6.3.

3.1 Model

When applying our method to detect epidemics in a community, the user selects
an appropriate client model, which uses some combination of signals that can
be measured on individual clients to quantify how surprising (anomalous) recent
behavior is. We require only that the model generate anomaly scores that are
mostly independent across healthy clients and that it quantify how surprising
recent behavior is, compared with historical behavior or a theoretical baseline.

Community Epidemic Detection using Time-Correlated Anomalies 5

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

Anomaly Score
D

en
si

ty

X (healthy)
Y (infected)

µµX µµY

!!

Fig. 1. An illustration of anomaly signals.
Neither X nor Y are normally distributed,
but µY > µX , as required. The exploit
may sometimes look “normal”.

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

Community Score

D
en

si
ty

False Positives
V

Fig. 2. A distribution of healthy commu-
nity scores using hypothetical data. The
threshold V determines what fraction of
scores result in false positives.

The model for a community of servers might characterize normal behav-
ior according to performance (see an example using request response times in
Section 4), while the model for a community of web browsers might use code ex-
ecution paths (see examples using system calls in Sections 5 and 6). The example
models used in this paper could easily be refined or replaced with alternatives
to match the attacks we want to detect: call stack content [8], execution traces
[10], call arguments [24], remote procedure calls [12], etc.

3.2 Anomaly Signal

The anomaly signal decouples the choice of model from the rest of the system;
any model that satisfies the properties explained in this section may be used
with Syzygy. Each client keeps the server apprised of the client’s anomaly score,
the current value of the client’s anomaly signal. This score is a measure of how
unusual recent behavior is compared to a model of client behavior: a higher score
indicates more surprising behavior than a lower score. (This is sometimes called
the IS statistic [18] or behavioral distance [11].)

The distribution of anomaly scores generated by a healthy client (X) must
have a mean (µX) that is less than the mean (µY) of the anomaly score distribu-
tion of an infected client (Y), so we require µY > µX + δ. The larger the δ, the
better, though any positive δ will suffice. Figure 1 illustrates two valid anomaly
signal distributions, where X and Y are random variables such that both have
finite mean and finite, positive variance.

More generally, let the anomaly scores from healthy client i, denoted ai, be
distributed like Xi (written ai ∼ Xi) and let ai ∼ Yi when client i is infected.
Assume, without loss of generality, that all clients have the same distribution, i.e.,
let Xi ∼ X and Yi ∼ Y . The distributions may be standardized to enforce this
assumption, because only the mean and variance are relevant to our asymptotic
results. If infected behavior does not differ from normal behavior, then δ will be
unacceptably small (even negative); this can be resolved by refining the model
to include more relevant signals or adjusting the model to amplify surprising
behaviors. In this paper, we use two simple models (see Sections 4.1 and 5.1)
that share a similar anomaly score computation (see Section 4.1), and both
provided sufficiently large δ values to detect a variety of exploits.

6 Adam J. Oliner, Ashutosh V. Kulkarni, and Alex Aiken

3.3 Epidemic Detection

The Syzygy server computes the average anomaly score among the active clients;
this community score C represents the state of the community. If C > V , for a
tunable threshold V , the server reports an epidemic. Consider a healthy commu-
nity of n clients and let ai ∼ X. Then, by the Central Limit Theorem, as n→∞,
the community scores are distributed normally with mean µX and variance σ

2
X

n
:

C = average
i
(ai) =

1
n

�

i

(X) ∼ Norm(µX ,
σ

2
X

n
).

When E(|X|3) = ρ < ∞, where E() denotes expected value, convergence hap-
pens at a rate on the order of 1√

n
(Berry-Esséen theorem). Concretely, let

C
� = C − µX , and let Fn be the cumulative distribution function (cdf) of C

�√
n

σX

and Φ the standard normal cdf. Then there exists a constant B > 0 such that
∀x, n, |Fn(x)− Φ(x)| ≤ Bρ

σ
3
X

√
n
.

Consider now when some number of clients d ≤ n of the community have
been exploited. The community score, as n, d→∞, will be

C =
1
n

�
n−d�

i=1

X +
d�

i=1

Y

�
∼ Norm

�
(n− d)µX + dµY

n
,
(n− d)σ2

X
+ dσ

2
Y

n2

�
.

The rate of convergence guarantees that we get this asymptotic behavior at
relatively small values of n and d, and even when d << n; in Section 6 we
support this fact experimentally.

The threshold V must be set given the community size (n) and given the
mean (µX) and standard deviation (σX) of the healthy client anomaly scores,
but without knowing the size (d) and distribution (µY and σY) of the infected
population, because those are unknown at runtime. We can pick any positive
V between σ

2
X

/n and (σ2
X

/n) + δ and guarantee that there exist n and d that
give an arbitrarily high probability of perfect detection (FP=FN=0). Without
knowing δ, however, the best strategy is to pick the lowest value of V such that
the false positive rate is acceptable. Using the following analysis, we can compute
and adjust V at runtime based on known quantities and a specified false positive
rate; we do this using data from real deployments in Sections 4.2 and 5.2.

The expected rate of false positives is the fraction of the community scores in
a community with no infected clients that falls above V . (See Figure 2.) This is
precisely the value of the parametrized Q-function, the complement of the normal
cdf: Q(α) ≡ 1√

2π

�∞
α

e
− x

2
2 dx. Let H ∼ Norm

�
µX ,

σ
2
X

n

�
be the distribution of

community scores in a healthy community of size n. The probability that a
randomly selected community score will be a false positive is FP = P (C > V) =
Q

�
(V−µH)

√
n

σH

�
. Table 1 lists the significant terms and metrics used in this paper.

This analysis relies on two modest assumptions. First, the parameters µX

and σX must characterize the future distribution of anomaly scores. A model

Community Epidemic Detection using Time-Correlated Anomalies 7

Term Meaning

n The total number of active clients in the community.
d The number of infected clients in the community.
Wi The size of the recent window on client i. We use Wi = 1000 measure-

ments.
Ti The silence threshold on client i. If the application records no measure-

ments for Ti seconds, Syzygy generates a hiaton; if a client reports no
anomaly scores for 2Ti seconds, the server marks it inactive.

ai Anomaly score. The instantaneous value of the anomaly signal Ai(t) on
client i.

X, Y The distributions of anomaly scores for healthy (X) and infected (Y)
clients.

C Community score: average of the most recent anomaly scores from active
clients.

V The epidemic threshold. If C > V , Syzygy reports an epidemic.
δ Defined as µY − µX . Intuitively, the average distance between anomaly

scores generated by healthy versus infected clients. One kind of mimicry
attack drives δ toward zero.

r The rate of a rate-limited mimicry attack: the application appears
healthy a fraction 1 − r of the time and infected a fraction r of the
time.

TP True positive rate or detection rate. P (E|¬H).
TN True negative rate. P (¬E|H).
FP False positive rate, or Type I classification error rate. P (E|H).
FN False negative rate, or Type II classification error rate. P (¬E|¬H).

F1 Measure A summary metric with precision and recall weighted equally:
2TP

2TP+FP+FN .

Table 1. A reference table of the terminology used in this paper. Let E be the event
that Syzygy reports an epidemic and let H be the event that the community is healthy.

that is out-of-date or produced with biased training data, for example, may pro-
duce anomaly scores inconsistent with the expected distribution. In Section 6.4
we explore the impact of using on one system a model produced for a different
one and in Section 5.2 we show that even relatively heterogeneous machines pro-
duce predictable community score distributions. It is straightforward to detect
when observed behavior disagrees with expectation, and the solution is to re-
train the model. Second, during normal operation, client anomaly scores should
be mostly independent. In situations like a network-distributed software upgrade,
innocuous dependencies may cause correlated behavior (i.e., correlated behavior
without a malicious cause, which is our definition of a false positive). Indeed,
it is indistinguishable from an attack except that one change to the software is
authorized and the other is not. Such false alarms are easily avoided by mak-
ing information about authorized changes to monitored applications available
to Syzygy. Other sources of accidentally correlated behavior are quite rare; we
observed no false alarms at all in a deployment with real users (see Section 5).

8 Adam J. Oliner, Ashutosh V. Kulkarni, and Alex Aiken

4 Detection Experiments

We first test Syzygy’s ability to detect epidemics in a community using a cluster
of 22 machines running unmodified instances of the Apache web server. Each
machine has four cores (two dual core AMD Opteron 265 processors), 7 GB of
main memory, and the Fedora Core 6 distribution of Linux. Each client serves
streams of requests generated by a workload script. The workload generator,
at exponentially distributed random times, makes requests from a list of 178
available HTML and PHP pages that includes several pages that do not exist
and two pages for which the requester does not have read permission. We run
the workload generator for 100,000 requests (∼2.8 hours) to train the model,
then use those same training traces to set V so that we expect to get one false
positive per week (see Section 3.3 for how we do this; also see Section 5.2 for
more on false positives). We use Apache’s existing logging mechanisms to record
measurements (e.g., response times).

For this community, we aim to detect the following classes of attack: denial
of service (DoS), resource exhaustion, content spoofing, and privilege escalation.
Thus, we pick a client model that is likely to detect such attacks (see Section 4.1).
We test Syzygy with two DoS attacks that prevent Apache from serving 1%
or 10% of requests, at random, respectively; two resource exhaustion attacks
that allow Apache to continue serving requests but gradually consume memory
or CPU time, respectively; three content spoofing attacks that cause (i) PHP
pages to be served in place of previously non-existent pages, (ii) PHP pages to
be served in the place of certain HTML pages, or (iii) HTML pages to be served
in place of certain PHP pages; and a privilege escalation attack that makes all
page accesses authorized (no 403 Errors). We find that Syzygy can achieve high
detection rates for these attacks with no false positives (see Section 4.2).

The clients in these experiments are homogeneous; in Section 5, we explore
the effects of heterogenous hardware and varying user behavior with a deploy-
ment using an interactive application (the Firefox web browser). Section 6 con-
tains additional experiments, in a more controlled environment, that explore the
properties of much larger communities (thousands of clients) and more advanced
exploits (capable of various degrees of mimicry).

4.1 Model

Assume that our security goal for this community is to ensure that clients are
serving requests according to expected performance; that is, the request response
behavior should be consistent over time. During training, the model computes
a frequency distribution of request response times and the maximum observed
time between consecutive requests. This is just one choice of model and is not
intrinsic to Syzygy.

When a request is made of the server, the model increments the counter asso-
ciated with the response time s in a table indexed by response times (10 µsecond
precision). From this frequency distribution, we compute a density function Si

by dividing each entry by the total number of observed response times. Thus,
Si(s) is the fraction of times that response time s was observed on client i.

Community Epidemic Detection using Time-Correlated Anomalies 9

To incorporate timing in the model, which can help identify the absence
of normal behavior (such as during a denial of service attack), we record the
time between the start of each consecutive pair of requests. The model measures
these times only when the application is active. A client is active when it reports
its first anomaly score and becomes inactive after reporting an anomaly score
accompanied by the END message. (See below for when this token is generated.)
From these data, we set a silence threshold Ti for each client i, which we initially
pick to be the maximum time between any two consecutive requests.

Monitoring On the client, Syzygy monitors all requests made to the applica-
tion. In addition, Syzygy may inject two kinds of artificial measurements into
the sequence. The first, called END, indicates that the application has terminated
(switched to inactive); Syzygy generates an END token when the application exits
cleanly, terminates abruptly such as due to an error, or when the Syzygy client
is closed cleanly. If an active client stops reporting scores for longer than the
timeout threshold, currently set to 2Ti seconds, then the Syzygy server marks
that client inactive without fabricating a token. The second artificial measure-
ment, a hiaton [37] denoted X, indicates that no measurements were generated
for longer than Ti seconds, including any Xs produced via this process. In other
words, at the start of each request, a timer starts; when this timer exceeds Ti,
Syzygy generates a hiaton and resets the timer.

Each client maintains a window of the most recent Wi request response times,
including the fabricated hiatons and END tokens. From this window, we compute
the density function Ri, analogous to Si, above. Thus, Ri(s) is the fraction of
times measurement s appears in the previous Wi measurements on client i.

Anomaly Signal Let ai be the most recent anomaly score and Wi be the size
of the recent window for client i. The units of ai and Wi may depend on the par-
ticular choice of model, but should be consistent across clients. In this paper, we
measure the anomaly signal in bits and the window size in number of measure-
ments. Our implementation computes ai using Kullback-Liebler (KL) divergence
with a base-2 logarithm. Roughly, this measures the information gained by seeing
the recent window, having already observed the historical behavior. Specifically,
over the measurements s in the density function for the recent window (s ∈ Ri),
we have ai =

�
s
Ri(s) log Ri(s)

Si(s)
.

This computation can be updated incrementally in constant time as one
measurement leaves the recent window and another enters it. To prevent division
by zero, the measurements in the recent window are included in the distribution
Si. By default, each client reports this score whenever there is new information
available to the model (e.g., a request or hiaton), but it is straightforward to add
feedback or batching to the client-server protocol to curb communication traffic
(we do so in Section 5.3).

4.2 Results

Figure 3 shows the results of our detection experiments; there were no false
positives in these experiments and detection latency was never more than a

10 Adam J. Oliner, Ashutosh V. Kulkarni, and Alex Aiken

0 5 10 15 20 25 30
0.

42
0.

46
0.

50
Infected Clients (d)

M
ax

 C
om

m
un

ity
 S

co
re

 (C
)

!
!

!
! !

! ! ! ! !
!

! !
!

!
!

!
!

!
!

!
!

! DoS (1%)
DoS (10%)
Content Spoof (i)
Content Spoof (ii)
Content Spoof (iii)
Privilege Escalation
Memory Thief
CPU Thief

Fig. 3. Syzygy detected all of the attacks
once the infection size was sufficiently
large. The horizontal line is the epidemic
threshold V .

0.30 0.35 0.40 0.45 0.50 0.55

0
5

10
15

Client or Community Score

D
en

si
ty

Client Scores
Community Scores
Epidemic Threshold (V)

Fig. 4. Our client model is incomplete
and noisy; anomalous behavior is com-
mon. The community scores, however, are
extremely steady.

couple of seconds. Although some attacks are difficult to detect when only a few
machines are infected (low d), Syzygy is able to correctly detect each attack once
a sufficiently large number of clients are infected. In the case of the third (iii)
content spoof attack, the behavior is anomalous enough on even a single client
for our simple response time model to detect it; this is not true for most of the
other attacks, meaning the community was crucial.

We achieved these high detection rates despite the fact that our behav-
ior model was incomplete and noisy. Figure 4 shows part of the distribution
of anomaly scores reported by individual healthy clients. In fact, these values
ranged as high as 0.8 but we have truncated the graph for readability. In con-
trast, however, note that the healthy community scores stayed within a very
small range (the dashed red line is actually a very slim Gaussian). The epidemic
threshold V is the dotted line to the right of the cluster of community scores.
Because the community scores are such a stable signal, they enable Syzygy both
to reliably provide a low false positive rate and to be sensitive to minor—but
not isolated—changes in client behavior.

In the subsequent sections, we discuss the benefits of distributed training, the
effects of heterogenous hardware and user behavior, performance and overhead
on a real network deployment, predicting and setting the false positive rate,
performance in communities with thousands of clients, and Syzygy’s robustness
against tainted training data and advanced exploit behavior (like mimicry).

5 Deployment Experiments

For practical use, our method assumes that (i) a real deployment can scale to
large numbers of clients across a realistic network topology and (ii) despite mi-
nor client variations, such as hardware and configuration differences, healthy
anomaly score distributions are similar across clients. We verify that these as-
sumptions hold in practice by deploying Syzygy on several dozen Linux work-
stations on a university campus. Most of these machines were 3.0 GHz Intel
Core2 Duos with 2 GB RAM and the CentOS 5 operating system; exceptions
include two laptops and (briefly) the Syzygy server, itself. Syzygy monitored the
Firefox web browser via strace on Linux. Over the course of these two weeks
of experiments, Syzygy reported no false positives.

Community Epidemic Detection using Time-Correlated Anomalies 11

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fraction of Training Set

Fr
ac

tio
n

of
 U

ni
qu

e
Se

qu
en

ce
s

Fig. 5. Distributed training happens
quickly: 25% of the data exhibits 90% of
the unique sequences. Retraining a model
(e.g., after a software upgrade) is efficient.

0 5 10 15 20 25 30 35

0.
0

1.
0

2.
0

3.
0

Community Size (n)

St
an

da
rd

 D
ev

ia
tio

n
(s

d(
C)

)

Community Makeup:
Actual
Outliers Removed
High SD Removed
Homogeneous
Homogeneous (High SD)

Fig. 6. Community scores converge in
real data; variance comes from client vari-
ance, not system configuration or work-
load heterogeneity.

5.1 Model

In the next two sections, we use a model of client behavior (different from Sec-
tion 4) that uses short sequences of a program’s system calls. This information
can be gathered with low overhead and has been shown to be useful [9, 14]. We
use sequences of six system calls to be consistent with previous work [7, 14, 22],
but instead of using one of the existing stide or t-stide algorithms [33], the
model uses an information theoretic approach with several additional modifica-
tions. During training, Syzygy computes a frequency distribution of system call
sequences of length six and the maximum observed time between consecutive sys-
tem call invocations. The computations are extremely similar to Section 4.1, but
use system call sequences as measurements, instead of request response times.

Whenever a system call is invoked, the model concatenates the name of the
call onto a sequence consisting of the previous five and increments the counter
associated with that sequence. For example, on Mac OS X, while executing the
command echo hi, we generate the following period-delimited sequence:
s = sigaction.writev.read.select.select.exit.
Even when idle, many applications will continue to invoke system calls (e.g.,
polling for new work or user input). This behavior acts as a kind of heartbeat
for the program, and its absence indicates unusual behavior just as much as
the presence of, say, unusual system call sequences. For example, during one
such execution of echo hi, the maximum time between system call invocations,
according to dtrace, was 375 µs.

Using this kind of information about call sequences and timing, we construct
a model analogous to the one for request response times in Section 4.1. The
only differences are that the tables used to construct Si and Ri are indexed by
sequences and the recent window Wi has units of sequences. The anomaly signal
is computed as described in Section 4.1.

5.2 Distributed Training

Over a period of roughly two weeks, we collected normal usage traces from 35
active clients. During the day, a median of 8 clients were active at a time. The
first week of these traces is our training data and contains more than 2.2 billion
sequences, of which approximately 180,000 are unique. As shown in Figure 5,
most of the sequences were seen quickly (90% within the first 25% of the trace).

12 Adam J. Oliner, Ashutosh V. Kulkarni, and Alex Aiken

1e−06 1e−04 1e−02

0
1

2
3

4
5

False Positive Rate (log scale)
Th

re
sh

ol
d

(V
)

n=
1
2
4
8
16
35

Fig. 7. For a given false positive rate
and community size, we can compute the
threshold V . The vertical red line, for
instance, corresponds to about one false
positive per six days.

0e+00 2e−04 4e−04 6e−04 8e−04 1e−03

0e
+0

0
4e
−0

4
8e
−0

4

Predicted FP Rate

Ac
tu

al
 F

P
R

at
e

n=
30
31
32
33
34

Fig. 8. The training data is a good pre-
dictor of the false positive rates seen in
monitoring data. The threshold V can be
set as high as necessary to achieve an ac-
ceptable rate of false positives.

The fact that training speeds up with community size is consistent with pre-
vious work [21]; Syzygy’s distinctive use of the community occurs during the
monitoring phase (Section 5.3).

During this training period, while the clients were reporting both the com-
plete sequences and timestamps at an average of 100 KB/s, the average band-
width usage at the server was 1160 KB/s (the peak was 3240 KB/s). The clients
required less than 1% CPU each for the strace process and Syzygy script. With
all 35 clients active, the server-side script was using 13% of the processor, on
average, with peaks as high as 32%.

Even though the training data includes machines that are unlike most of the
cluster, such as two laptops, we still find that the distribution of community
anomaly scores within the training community converges toward a tight normal
distribution. Figure 6 shows the standard deviation of the community score for
increasing numbers of clients; in the figure, the clients “join” the community in
reverse order of average anomaly score (so n = 1 represents the client with the
highest average anomaly score). To evaluate the impact of heterogeneity, we also
plot four hypothetical communities: “Outliers Removed,” where the two laptops
and the Syzygy server were replaced with the client with the lowest standard
deviation, “High SD Removed,” where the five clients with the highest standard
deviations were replaced with five clones of the machine with the lowest stan-
dard deviation, and “Homogeneous” and “Homogeneous (High SD),” which are
communities of n clones of the client with the lowest average anomaly score and
highest standard deviation, respectively. The results show that variance in the
community score comes not from client heterogeneity (the client in “Homoge-
neous (High SD)” was a normal cluster machine) but from client variance. The
results also show that a larger community can compensate for client variance.

Section 3.3 shows how to compute the threshold V , given a desired false
positive rate and the training data; these analytical results correspond well with
what we observe experimentally. Using the data from our deployment, Figure 7
plots the appropriate choice of V for a desired false positive rate (note the log
scale) and community size (n). The units of the false positive rate, for this
deployment, are expected false positives per five seconds. The vertical line is a
hypothetical target rate: 1 × 10−5 (about six days). The y-value at which this
line intercepts each community size line is the threshold for that value of n.

Community Epidemic Detection using Time-Correlated Anomalies 13

5.3 Distributed Monitoring

After training is complete, Syzygy switches to monitoring mode. For these ex-
periments, we set Ti = ∞ to prevent hiatons from being introduced. (We omit
the exploration of Ti values for space reasons.) Over the course of a week, we
collected just under 10 billion anomaly scores from the community. Five clients
seen during training were not heard from again, while four new ones appeared.
There were no epidemics nor other coordinated events during the monitoring
period; the machines are part of the campus computing infrastructure, so we
could not obtain permission to stage an epidemic.

The strace process on the client requires an average of 1–2% CPU overhead,
and the Syzygy client script requires another 2–3% to calculate the anomaly
scores and send them to the server. The server-side Syzygy process uses less
than 1% of the CPU for a single client; our experiments suggest a server could
easily handle more than a hundred clients (see Section 7).

Syzygy can either send one packet per anomaly score or buffer some number
before reporting them. At an average rate of 2000 system calls per second, send-
ing one packet per call would be inefficient. Buffering 100 scores with a short
timeout to ensure freshness, for example, reduces the bandwidth requirements
to 20 packets per second at 1.5 KB per packet (∼ 30 KB/s), including the over-
head of transmitting timestamps along with the anomaly scores, which we did
for experimental purposes. Communicating the scores alone would require less
than half this bandwidth.

Section 3.3 notes that achieving the target false positive rate requires that µX

and σX accurately describe the future distribution of anomaly scores. Figure 8
quantifies that statement using the deployment data collected while Syzygy was
in monitoring mode (data not used to build the model). The diagonal red line
indicates perfect agreement. Even at very low false positive rates and small
community sizes, the modeling data was sufficient to allow good prediction of
the false positive rate on real monitoring data.

6 Controlled Experiments

In this section, we test Syzygy in a controlled environment under various adverse
conditions, using trace data from commodity applications and exploits capable
of sophisticated behaviors.

An experiment is a binary classification problem in which Syzygy is given a
sequence of anomaly scores for n clients and must decide whether 0 of them are
infected (healthy) or whether d ≥ 1 of them have been exploited (infected). Thus,
an example is a set of n score vectors of length Wi. Ideally, Syzygy should report
an epidemic iff one or more of the score vectors was produced by an infected
client. We use standard metrics to evaluate performance on this classification
problem: false positive rate (FP), false negative rate (FN), true positive rate
(TP), true negative rate (TN), and F1 Measure (2TP

2TP+FP+FN
), which combines

precision and recall, weighting each equally.

14 Adam J. Oliner, Ashutosh V. Kulkarni, and Alex Aiken

!!!!!!
!!!!!
!!!!!!
!!!!!
!!!!!!!
!!!!!!!!!
!!!

!!!!!!!!!!!!!!!!!!!!!!
!!!

!!
!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!!!
!!!!!!!!
!!!!!!
!!!

!!
!!!!!
!!!!!!!
!!!

!!
!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!
!!!!!!!!
!!

!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!
!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!
!!!!!!
!!!!!!!!
!!!!!!!!!
!!!!!!!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!
!!!!!!!
!!!!!!!!!
!!!

!!!
!!!!!!!!!!!!
!!!!!!!!!!!
!!

!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!
!!

!!!!!
!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!
!!!

!!!!!!
!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!
!!!!!!!
!!!!!!!!!!!

0 500 1000 1500 2000
1.

4
1.

6
1.

8
2.

0
2.

2

Healthy Infected

Score Index

C
om

m
un

ity
 S

co
re

 (C
)

Threshold (V)
Infection Point

Fig. 9. A pair of examples, using Camino
and the showpages exploit with n = 100
and d = 5, showing a TN and a TP.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
2

4
6

8
10

Anomaly Score

D
en

si
ty

Adium (mean= 2.5976 , sd= 1.3218)
Camino (mean= 1.5645 , sd= 1.9471)
Mail (mean= 1.3196 , sd= 1.9982)
TextEdit (mean= 1.9679 , sd= 1.3489)

Fig. 10. Healthy anomaly distributions,
plotted with a kernel density estima-
tor. The bump at around 2.75 suggests
Adium’s model is imperfect.

For example, say we are measuring Syzygy’s performance on a community of
size n = 100 and epidemic of size d = 5. We produce an example of an infected
community as follows. Say that we have already constructed models for all n

clients and have the associated system call traces. To construct each of the n−d

healthy score vectors, we pick a window from the application trace, uniformly
at random, and compute the anomaly scores as described in Section 4.1. (The
sample window determines Ri.) Using exploit traces, we construct d infected
score vectors. Syzygy then takes the n vectors of anomaly scores and computes
the elementwise averages. If C > V for any element C of the resulting community
score vector, then Syzygy classifies the example as infected; otherwise, it classifies
it as healthy. Using data described in Section 6.1, we plot the community scores
for a pair of examples in Figure 9; a healthy example is on the left and an infected
example on the right. In other words, in the plot, the first 1000 scores are from
a healthy community, while the next 1000 are from an infected community—
Syzygy classifies them based on V , reporting an epidemic when it sees the first
score from the infected community.

We repeat this randomized process 1000 times per example to get statistically
meaningful metrics. We always present Syzygy with an equal number of healthy
and infected examples, though Syzygy does not use this fact in any way. This
is not meant to reflect the base rate of intrusions in a system, but increases the
precision of the metrics. As the size of the training set goes to infinity, it becomes
irrelevant as to whether or not we remove the current trace file from the training
set because its influence goes to zero. It is sufficient to select random windows
from the traces because Syzygy is memoryless outside of each sample. Unless
noted otherwise, we set Wi = 1000 sequences and V = µH + 2σH , where H is
the distribution of community scores for a community of size n, as in Section 3.3.
We present the results of our controlled experiments in Sections 6.2–6.5.

6.1 Data

We collect system call and timing traces from commercial, off-the-shelf software
under normal usage by the authors, using the utility dtrace. We use several
desktop applications: a chat program (Adium), a web browser (Camino), a mail
client (Mail), and a simple text editor (TextEdit). A summary of these data

Community Epidemic Detection using Time-Correlated Anomalies 15

Application Version Calls Time (sec) Rate (calls/sec) Unique Ti (sec)

Adium 1.2.7 6,595,834 33,278 198.204 50,514 54.451
Camino 1.6.1Int-v2 113,341,557 57,385 1975.11 103,634 7.2605

Mail 3.3 106,774,240 48,630 2195.65 126,467 896.85
TextEdit 1.5 (244) 176,170 31,794 5.54098 4469 6031.4

Table 2. Training data. The Unique column indicates the number of unique length-six
sequences. Ti is the maximum time from the beginning of one system call to the start
of the next.

is provided in Table 2. When compared to the real deployments in Sections 4
and 5, we find that our simulations are a reasonable approximation. Note that,
although Syzygy must build a dynamic model of application behavior, it does
not need to learn exploit signatures.

Many exploits currently found in the wild are brazen about their misbehavior
(large δ) and are therefore easy for Syzygy to detect (see Section 3.3). Instead, we
focus in this section on Syzygy’s distinguishing ability to detect next-generation
exploits under adverse conditions. These exploits can infect the application at
any execution point (i.e., multiple infection vectors), are privy to all of Syzygy’s
data and parameters, and can perform skillful mimicry. The adverse conditions
include client heterogeneity and tainted training data.

In order to simulate such behavior, we use four next-generation exploits:
mailspam infects Mail, then composes and sends a large number of emails (based
on the open mail relay in the Sobig worm’s trojan payload); prompttext infects
TextEdit, then asks the user for input that it writes to a file (based on file creation
and deletion seen in SirCam, Chernobyl, or Klez [40]); screenshot infects Adium,
then takes a snapshot of the current display (like prompttext but without user
interaction); and showpages infects Camino, then loads a series of web pages
(based on HTML proxies like Sobig’s trojan, DoS payloads like Code Red and
Yaha, and self-updating payloads like W32/sonic and W32/hybris [6]).

Except where noted, we gathered data using an Apple MacPro with two 2.66
GHz Dual-Core Intel Xeons and 6 GB of memory running Mac OS X 10.5.4,
and the results we present are representative. Using the resulting model, we
compute the distribution X of healthy client anomaly scores for each program
(Figure 10). The results of Section 5.2 show that behavioral variance comes from
client behavior over time, rather than client heterogeneity; the smartest way to
gather a good data set was, therefore, to monitor a single client for a long time.
Section 6.4 provides experiments supporting the merit of that decision.

We use the phrase “normal usage” to mean that no artificial workloads were
generated nor were certain activities prescribed. As is evident from the rate of
new sequences seen during training, plotted in Figure 11, we made no effort
to train until convergence, nor to exercise the rarer features of these programs.
We also do not separate sequences by thread, instead ordering them strictly
by time of invocation. The resulting models are therefore small, imprecise, and

16 Adam J. Oliner, Ashutosh V. Kulkarni, and Alex Aiken

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fraction of Training Set

Fr
ac

tio
n

of
 U

ni
qu

e
Se

qu
en

ce
s

Adium
Camino
Mail
TextEdit

Fig. 11. The applications generate new
sequences throughout training, with oc-
casional bursts (e.g., program launches).

0 5 10 15 20

0.
2

0.
4

0.
6

0.
8

1.
0

Infected Clients (d)

F1
 M

ea
su

re

!

!

!

!

!

!
! ! ! ! ! ! ! ! ! ! ! ! ! !

! Mail / mailspam
TextEdit / prompttext
Adium / screenshot
Camino / showpages

Fig. 12. F1 measure with n = 100 and
varying infection size (d) using each of the
four pairs of programs and exploits.

20 50 100 200 500 1000 2000

0.
2

0.
4

0.
6

0.
8

1.
0

Community Size (n)

F1
 M

ea
su

re

! ! !
!

! ! !

! f=0.5
f=0.2
f=0.1
f=0.05

Fig. 13. F1 measure with varying com-
munity size and constant fraction f = d/n

infected, using TextEdit and prompttext.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
0

0.
4

0.
8

Threshold Multiplier k (V=mean+k*sd)

F1
 M

ea
su

re

!
!

!

!

!
!

!

!

d =
1
2
4

6
8
10

Fig. 14. F1 measure with n = 100 and
varying threshold multiplier using traces
from Mail and the mailspam exploit.

incomplete, as we might expect to achieve in practice; the Syzygy performance
numbers we present would only improve with better models.

6.2 Detection Performance

We first consider Syzygy’s ability to detect epidemics for various sizes of com-
munity and infected population. Consider the experiments plotted in Figure 12
wherein a fixed-size community is being infected. Syzygy’s performance improves
with infection size, peaking, in this experiment, at around 10 exploited clients
(10% of the community). Figure 13 shows, however, that with a sufficiently
large community we require a vanishingly small fraction of the population to be
sacrificed before we detect the exploit. Although the community and infected
population are growing at the same rate, Syzygy’s ability to detect the infection
outpaces that growth.

6.3 Parameter Sensitivity

We next evaluate Syzygy’s sensitivity to the threshold V . Figure 14 shows per-
formance for various choices of V . Once the community and infected population
are sufficiently large, we see the performance curve reach a maximum at a point
between V = µX and µY . Increasing the multiplier tends to increase precision,
decrease recall, and decrease the false positive rate (which falls off like the tail of
the normal distribution). To further visualize this, see Figure 15. As the number
of clients grows, the normal and infected distributions become more clearly sep-
arated. This increasing noise margin suggests that the exact placement of the

Community Epidemic Detection using Time-Correlated Anomalies 17

0 1 2 3 4 5 6

0.
0

0.
4

0.
8

1.
2

Anomaly Score (n=1)
D

en
si

ty

TextEdit
Prompttext

1 2 3 4 5

0
1

2
3

Average Anomaly Score (n=20)

D
en

si
ty

TextEdit
Prompttext

Fig. 15. The left plot shows anomaly signal density estimates for TextEdit and the
prompttext exploit. There is no ideal position on the x-axis to set a threshold. On the
right, we see that averaging scores across a number of clients yields a clearer separation.

2 4 6 8 10

0.
0

0.
4

0.
8

1.
2

Anomaly Score (n=1)

D
en

si
ty

Adium (System A)
Adium (System B)
Screenshot

2 3 4 5 6 7 8

0.
0

0.
4

0.
8

1.
2

Average Anomaly Score (n=20)

D
en

si
ty

Adium (System A)
Adium (System B)
Screenshot

Fig. 16. Similar to Figure 15, except using the Adium program and giving data for
both our primary system (System A) and the laptop (System B). All curves are based
on the Adium model built using only System A.

threshold does not strongly affect Syzygy’s performance. Indeed, in the limit, all
choices of threshold µX < V < µY yield perfect detection.

6.4 Client Variation

We expect clients to differ in machine specifications and configurations, and for
these to change over time. To test this situation, we ran the same applications
as on our primary test machine (System A) on a second system (System B)
with different specifications: an Apple PowerBook G4 with a single 1.33 GHz
PowerPC processor and 1.25 GB of memory running Mac OS X 10.5.4. The
data is summarized in Table 3. In Figure 16, we compare the anomaly scores for
these Adium traces against those from the training system and the screenshot
exploit. Although System B’s average score is higher by ∆ (its model is from
another system), the programs behave similarly enough on both systems that
unusual but healthy clients are not easily confused with exploits.

As the community grows, however, System B begins looking like an exploit.
The healthy community score distribution variance, σH , shrinks, so V moves
closer to µX , slowly passing below System B’s average anomaly score. This
contrived problem is easily remedied by using a model constructed from System
B’s behavior rather than System A’s, or by normalizing the anomaly scores from
System B as prescribed in Section 3.2. In practice, such a situation may arise
when a client upgrades the application but does not retrain the model; if a client’s
anomaly signal remains high for long periods of time, this may indicate that the
model is no longer valid—only when many clients make such changes would we
expect spurious epidemic reports. Section 5 contains additional results related
to client variation that suggest heterogeneity is not a problem in practice.

18 Adam J. Oliner, Ashutosh V. Kulkarni, and Alex Aiken

Program Version Time (sec) Rate (calls/sec) Unique Ti (sec) ≈ ∆

Adium 1.2.7 2093 54.8839 6749 47.457 0.31589
Camino 1.6.1Int-v2 3901 868.294 21,619 1.84077 0.60442

Mail 3.3 (926.1/926) 1126 16.2869 7963 421.645 0.53272
TextEdit 1.5 (244) 2506 92.8204 2925 528.164 1.17758

Table 3. Data from OS X apps on a different client. The Unique column indicates the
number of unique length-six sequences, and Ti is the maximum time from the begin-
ning of one system call to the start of the next. The ∆ column shows the empirically
estimated average difference between anomaly scores on Systems A and B.

0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

Delta

F1
 M

ea
su

re

! ! !
! ! !

! !
! !

!

n =
20
50
100
200

500
1000
2000

Fig. 17. Varying δ using Adium, with
d/n = 0.1. Mimicry makes detection more
difficult, but, at higher δs, performance
improves logarithmically with n.

0.0 0.1 0.2 0.3 0.4 0.5

0.
2

0.
4

0.
6

0.
8

1.
0

Rate of Exploit Behavior (r)

F1
 M

ea
su

re

!

!
!

! !

! ! ! ! !

!

n =
20
50
100
200
500
1000
2000

Fig. 18. Varying rate of bad behavior (r)
using Camino and showpages, with d/n =
0.1. A sufficiently large community guar-
antees that bad behavior will overlap.

6.5 Mimicry and Tainting

An exploit can avoid detection if its behavior is sufficiently similar to the ap-
plication’s, from the perspective of a given model [38]. There are two ways an
exploit might mimic application behavior: (i) by ensuring that the distribution
of anomaly scores is sufficiently similar or (ii) by limiting the rate at which it
exhibits bad behavior. Perfect mimicry, in which exploit behavior is indistin-
guishable from application behavior, can never be detected, by definition, using
any behavior-based epidemic detector; however, we can show Syzygy is robust
against a very high degree of mimicry and against rate-limiting an attack.

Scenario (i), mimicking the distribution, is quantified in Syzygy by the pa-
rameter δ. Recall that a lower value for δ means the two distributions are more
similar. Tainted training data is symmetric to mimicry: raising µX instead of
lowering µY . Either way, δ is decreased and the following results hold. Intu-
itively, these experiments simulate an exploit that makes system call sequences
in similar (but not identical) proportions to the application. This is done com-
putationally by generating anomaly scores from the application’s distribution,
then shifting them positively by δ. (Y ∼ X + δ.)

Figure 17 gives results from these experiments. Syzygy is able to detect fairly
well even for low δ. The poor performance at the lowest δs, despite large com-
munities, is almost exclusively a result of false negatives: V is set too high. With
a lower V , we can get F1 > 0.6 even when δ = 0.1, n = 10, and d = 1.

We now consider scenario (ii), limiting bad behavior to a fixed rate. Specifi-
cally, if the exploit spreads bad behavior out over time, in bursts that cumula-
tively account for a fraction r of the runtime per client, such that the community

Community Epidemic Detection using Time-Correlated Anomalies 19

signal does not deviate above µX +V , no epidemic will be reported. Mathemat-
ically, this attack corresponds to decreasing the effective infection size from d to
dr. This, in itself, may be considered a victory under certain circumstances, such
as when a worm may be contained so long as it does not spread too quickly [42].
In our experiment, we splice windows of infected anomaly scores into sequences
of healthy anomaly scores, in proportions determined by the rate r. Figure 18
shows how Syzygy performs against this rate-limiting attack. Again, false neg-
atives dominate the metric—with a better-chosen V , we can get F1 above 0.68
at r = 0.05 with as few as 10 clients.

7 Scalability

Mathematically, Syzygy’s accuracy improves as the community grows, so it is
crucial that the implementation scales well. This issue is independent of the anal-
ysis in Section 3. We described the infrastructure as using a central server, and
demonstrated that it works for as many as 35 clients (Section 5). Communication
is one-way (client to server) and there is no consensus or agreement protocol, so
the total community traffic scales linearly with the number of clients.

This central server may be replaced, however, with alternatives that would
increase scalability and avoid a single point of failure. One option is a server hi-
erarchy; each server computes the community score for its children and reports
this value and the size of that sub-community to a parent server. This arrange-
ment works precisely because the function used to compute the community score,
mean(), is associative (when weighted by sub-community size).

In addition to communication overhead, there is monitoring overhead on the
clients. This is typically a consequence of model choice and unaffected by com-
munity size. In our controlled experiments, the primary monitoring tool, dtrace,
required less than 10% of one CPU even during heavy activity by the monitored
application; the average usage was below 1%. In our deployment experiments
with Firefox, Syzygy required less than 5% of the CPU on average, and 7% peak,
including strace overhead (see Section 5.3). Using our strace-based implemen-
tation for Windows, however, the slowdown was noticeable. The overhead in our
Apache deployment (see Section 4), which took advantage of the web server’s
built-in logging mechanism, was negligible. If overhead becomes problematic,
then it may be worth changing the model to measure less costly signals. For
example, Sharif et al [30] implemented control-flow monitoring with overhead
comparable to our system call-based approach—this optimization would likely
yield greater precision at lower overhead.

8 Contributions

Syzygy is an epidemic detection framework that looks for time-correlated anoma-
lies in a homogeneous software community—precisely the behavior that would
accompany an exploit as it executes among a set of clients. Our results show
that Syzygy is effective at automated detection of epidemics, is practical to de-
ploy, and scales well. Syzygy takes advantage of the statistical properties of large
communities in a novel way, asymptotically approaching perfect detection.

20 Adam J. Oliner, Ashutosh V. Kulkarni, and Alex Aiken

Acknowledgments

The authors thank the members of the VERNIER team, especially Elizabeth
Stinson, Patrick Lincoln, Steve Dawson, Linda Briesemeister, Jim Thornton,
John Mitchell, and Peter Kwan. Thanks to Sebastian Gutierrez and Miles Davis
for help deploying Syzygy, to Naeim Semsarilar for his invaluable contributions
to the early stages of this work, and to Xuân Vũ for her input and support.

References

[1] A. Bouloutas, S. Calo, and A. Finkel. Alarm correlation and fault identification
in communication networks. In IEEE Transactions on Communications, 1994.

[2] D. Brumley, J. Newsome, and D. Song. Sting: An end-to-end self-healing system
for defending against internet worms. Malware Detection and Defense, 2007.

[3] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang, and
P. Barham. Vigilante: End-to-end containment of internet worms. In SOSP,
2005.

[4] F. Cuppens and A. Miege. Alert correlation in a cooperative intrusion detection
framework. In IEEE Symposium on Security and Privacy, pages 202–215, 2002.

[5] H. Debar, M. Becker, and D. Siboni. A neural network component for an intrusion
detection system. In IEEE Symposium on Security and Privacy, 1992.

[6] D. Ellis. Worm anatomy and model. In WORM, 2003.
[7] E. Eskin. Anomaly detection over noisy data using learned probability distribu-

tions. In ICML, 2000.
[8] H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and W. Gong. Anomaly detection

using call stack information. In IEEE Symposium on Security and Privacy, 2003.
[9] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A sense of self for

unix processes. In IEEE Symposium on Security and Privacy, 1996.
[10] D. Gao, M. K. Reiter, and D. Song. Gray-box extraction of execution graphs for

anomaly detection. In CCS, 2004.
[11] D. Gao, M. K. Reiter, and D. Song. Behavioral distance for intrusion detection.

In RAID, 2006.
[12] J. T. Giffin, S. Jha, and B. P. Miller. Detecting manipulated remote call streams.

In USENIX Security, pages 61–79, 2002.
[13] G. Gu, A. A. Cárdenas, and W. Lee. Principled reasoning and practical applica-

tions of alert fusion in intrusion detection systems. In ASIACCS, 2008.
[14] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detection using sequences

of system calls. Journal of Computer Security, 6(3):151–180, 1998.
[15] L. Huang, M. Garofalakis, A. D. Joseph, and N. Taft. Communication-efficient

tracking of distributed cumulative triggers. In Intl. Conf. on Distributed Comput-

ing Systems (ICDCS), June 2007.
[16] L. Huang, X. L. Nguyen, M. Garofalakis, J. Hellerstein, M. Jordan, A. Joseph,

and N. Taft. Communication-efficient online detection of network-wide anomalies.
In IEEE INFOCOM, 2007.

[17] G. Jakobson and M. Weissman. Alarm correlation. In IEEE Network, 1993.
[18] H. S. Javitz and A. Valdes. The SRI IDES statistical anomaly detector. In IEEE

Symposium on Security and Privacy, 1991.
[19] S. T. King, Z. M. Mao, D. G. Lucchetti, and P. M. Chen. Constructing attack

scenarios through correlation of intrusion alerts. In CCS, 2002.
[20] P. Lincoln, et al. Virtualized Execution Realizing Network Infrastructures En-

hancing Reliability (VERNIER). http://www.sdl.sri.com/projects/vernier/.

Community Epidemic Detection using Time-Correlated Anomalies 21

[21] M. E. Locasto, S. Sidiroglou, and A. D. Keromytis. Software self-healing using
collaborative application communities. In NDSS, 2005.

[22] D. J. Malan and M. D. Smith. Host-based detection of worms through peer-to-
peer cooperation. In ACM Workshop on Rapid Malcode, 2005.

[23] D. J. Malan and M. D. Smith. Exploiting temporal consistency to reduce false
positives in host-based, collaborative detection of worms. In WORM, 2006.

[24] D. Mutz, F. Valeur, G. Vigna, and C. Kruegel. Anomalous system call detection.
In TISSEC, 2006.

[25] J. Newsome, D. Brumley, and D. Song. Vulnerability-specific execution filtering
for exploit prevention on commodity software. In NDSS, 2006.

[26] P. Ning, Y. Cui, and D. S. Reeves. Constructing attack scenarios through corre-
lation of intrusion alerts. In CCS, 2002.

[27] V. Paxson. Bro: a system for detecting network intruders in real-time. In Com-

puter Networks, volume 31, 1999.
[28] P. A. Porras and P. G. Neumann. Emerald: event monitoring enabling re-

sponses to anomalous live disturbances. In National Computer Security Con-

ference (NIST/NCSC), 1997.
[29] M. M. Sebring and R. A. Whitehurst. Expert systems in intrusion detection: a

case study. In National Computer Security Conference, 1988.
[30] M. Sharif, K. Singh, J. Giffin, and W. Lee. Understanding precision in host based

intrusion detection. In RAID, 2007.
[31] S. Smaha. Haystack: an intrusion detection system. In Aerospace Computer

Security Applications Conference, 1988.
[32] S. Staniford-chen, S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagl,

K. Levitt, C. Wee, R. Yip, and D. Zerkle. Grids—a graph based intrusion detec-
tion system for large networks. In NIST/NCSC, 1996.

[33] K. M. C. Tan and R. A. Maxion. “Why 6?” Defining the operational limits of
stide, an anomaly-based intrusion detector. In IEEE Symposium on Security and

Privacy, 2002.
[34] J. Ullrich. http://www.dshield.org. DShield—distributed intrusion detection

system.
[35] H. Vaccaro and G. Liepins. Detection of anomalous computer session activity. In

IEEE Symposium on Security and Privacy, 1989.
[36] A. Valdes and K. Skinner. Probabilistic alert correlation. In RAID, 2001.
[37] W. W. Wadge and E. A. Ashcroft. Lucid, the dataflow programming language.

A.P.I.C. Studies in Data Processing, 1985.
[38] D. Wagner and P. Soto. Mimicry attacks on host-based intrusion detection sys-

tems. In CCS, 2002.
[39] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang. Automatic mis-

configuration troubleshooting with PeerPressure. In OSDI, 2004.
[40] N. Weaver, V. Paxson, S. Staniford, and R. Cunningham. A taxonomy of computer

worms. In WORM, 2003.
[41] N. Weaver, S. Staniford, and V. Paxson. Very fast containment of scanning worms.

In USENIX Security, 2004.
[42] M. M. Williamson. Throttling viruses: Restricting propagation to defeat malicious

mobile code. In ACSAC, 2002.
[43] Y. Xie, H. Kim, D. O’Hallaron, M. Reiter, and H. Zhang. Seurat: a pointillist

approach to anomaly detection. In RAID, September 2004.
[44] V. Yegneswaran, P. Barford, and S. Jha. Global intrusion detection in the

DOMINO overlay system. In NDSS, 2004.

