
Polymorphi versus MonomorphiFlow-insensitive Points-to Analysis for CyJe�rey S. Foster1, Manuel F�ahndrih2, and Alexander Aiken11 University of California, Berkeley, 387 Soda Hall #1776, Berkeley, CA 94720fjfoster,aikeng�s.berkeley.edu2 Mirosoft Researh, One Mirosoft Way, Redmond, WA 98052maf�mirosoft.omAbstrat We arry out an experimental analysis for two of the de-sign dimensions of ow-insensitive points-to analysis for C: polymorphiversus monomorphi and equality-based versus inlusion-based. Holdingother analysis parameters �xed, we measure the preision of the four de-sign points on a suite of benhmarks of up to 90,000 abstrat syntax treenodes. Our experiments show that the bene�t of polymorphism variessigni�antly with the underlying monomorphi analysis. For our equality-based analysis, adding polymorphism greatly inreases preision, whilefor our inlusion-based analysis, adding polymorphism hardly makes anydi�erene. We also gain some insight into the nature of polymorphismin points-to analysis of C. In partiular, we �nd onsiderable polymor-phism available in funtion parameters, but little or no polymorphism infuntion results, and we show how this observation explains our results.1 IntrodutionWhen onstruting a onstraint-based program analysis, the analysis designermust weigh the osts and bene�ts of many possible design points. Two importanttradeo�s are:{ Is the analysis polymorphi or monomorphi? A polymorphi analysis sepa-rates analysis information by all site, while monomorphi analysis onatesall all sites. A polymorphi analysis is more preise but also more expensivethan a orresponding monomorphi analysis.{ What is the underlying onstraint relation? Possibilities inlude equalities(solved with uni�ation) or more preise and expensive inlusions (solvedwith dynami transitive losure), among many others.Intuitively, if we want the greatest possible preision, we should use a poly-morphi inlusion-based analysis, while if we are mostly onerned with eÆ-ieny, we should use a monomorphi equality-based analysis. But how muhy This researh was supported in part by the National Siene Foundation YoungInvestigator Award No. CCR-9457812, NASA Contrat No. NAG2-1210, an NDSEGfellowship, and an equipment donation from Intel.

MonomorphiSteensgaard'sPolymorphiSteensgaard's MonomorphiAndersen'sPolymorphiAndersen's
���+ QQQsQQQs ���+Figure 1. Relation between the four analyses. There is an edge from analysis x toanalysis y if y is at least as preise as x.more preision does polymorphism add, and what do we lose by using equal-ity onstraints? In this paper, we try to answer these questions for a partiularonstraint-based program analysis, ow-insensitive points-to analysis for C. Ourgoal is to ompare the tradeo�s between the four possible ombinations of poly-morphism/monomorphism and equality onstraints/inlusion onstraints.Points-to analysis omputes, for eah expression in a C program, a set ofabstrat memory loations (variables and heap) to whih the expression ouldpoint. Our monomorphi inlusion-based analysis (Set. 4.1) implements a ver-sion of Andersen's points-to analysis [4℄, and our monomorphi equality-basedanalysis (Set. 4.2) implements a version of Steensgaard's points-to analysis [29℄.To add polymorphism to Andersen's and Steensgaard's analyses (Set. 4.3), weuse Hindley-Milner style parametri polymorphism [21℄.Our analyses are designed suh that monomorphi Andersen's analysis is atleast as preise as monomorphi Steensgaard's analysis [16, 28℄, and similarlyfor the polymorphi versions. Given the onstrution of our analyses, it is atheorem that the hierarhy of preision shown in Fig. 1 always holds. The mainontribution of this work is the quanti�ation of the exat relationship amongthese analyses. A seondary ontribution of this paper is the development ofpolymorphi versions of Andersen's and Steensgaard's points-to analyses.Running the analyses on our suite of benhmarks, we �nd the following results(see Set. 5), where � is read \is signi�antly less preise than." In general,Monomorphi Steensgaard's�Polymorphi Steensgaard's�Polymorphi Andersen'sMonomorphi Steensgaard's�Monomorphi Andersen's �Polymorphi Andersen's

The exat relationships vary from benhmark to benhmark. These results arerather surprising|why should polymorphism not add muh preision to Ander-sen's analysis but bene�t Steensgaard's analysis? While we do not have de�nitiveanswers to these questions, Set. 5.3 suggests some possible explanations.Notie from this table that monomorphi Andersen's analysis is approxi-mately as preise as polymorphi Andersen's analysis, while polymorphi Steens-gaard's analysis is muh less preise than polymorphi Andersen's analysis. Note,however, that polymorphi Steensgaard's analysis and monomorphi Andersen'sanalysis are in general inomparable (see Set. 5.1). Still, given that polymorphianalyses are muh more ompliated to understand, reason about, and imple-ment than their monomorphi ounterparts, these results suggest that monomor-phi Andersen's analysis may represent the best design hoie among the fouranalyses. This may be a general priniple: in order to improve a program analysis,developing a more powerful monomorphi analysis may be preferable to addingontext-sensitivity, one example of whih is Hindley-Milner style polymorphism.Carrying out an experimental exploration of even a portion of the designspae for non-trivial program analyses is a painstaking task. In interpreting ourresults there are two important things to keep in mind. First, our exploration ofeven the limited design spae of ow-insensitive points-to analysis for C is stillpartial|there are dimensions other than the two that we explore that may notbe orthogonal and may lead to di�erent tradeo�s. For example, it may matterhow preisely heap memory is modeled, how strings are modeled, whether Cstruts are analyzed by �eld or all �elds are summarized together, and so on.Setion 5 details our hoies for these parameters. Also, Hindley-Milner stylepolymorphism is only one way to add ontext-sensitivity to a points-to analy-sis, and other approahes (e.g., polymorphi reursion [15℄) may yield di�erenttradeo�s.Seond, our experiments measure the relative preision of eah analysis. Theydo not measure the relative impat of eah analysis in a ompiler. For example, itmay be that some points-to sets are more important than others to an optimizer,and thus inreases in preision may not always lead to better optimizations. How-ever, a more preise analysis should not lead to worse optimizations than a lesspreise analysis. We should also point out that it is diÆult to separate the bene-�t of a pointer analysis in a ompiler from the design of the rest of the optimizer.Measures of relative preision have the advantage of being independent of thespei� hoies made in using the analysis information by a partiular tool.2 Related WorkAndersen's [4℄ and Steensgaard's [29℄ points-to analyses are only two hoies ina vast array of possible alias analyses, among them [5, 6, 7, 8, 9, 10, 11, 15, 19,20, 27, 28, 31, 33, 34℄. As our results suggest, the bene�t of polymorphism (moregenerally, ontext-sensitivity) may vary greatly with the partiular analysis.Hindley-Milner style polymorphism [21℄ has been studied extensively. Theonly diret appliations of Hindley-Milner polymorphism to C of whih we are

aware are the analyses in this paper, the polymorphi reursive analysis proposedin [15℄ (see below), and the Lakwit system [23℄. Lakwit, a software engineeringtool, omputes ML-style types for C and appears to sale very well to largeprograms.Mossin [22℄ develops a polymorphi ow analysis based on polymorphi re-ursion and atomi subtyping onstraints. Mossin's system starts with a type-annotated program and infers atomi ow onstraints, whereas we infer the typeand ow annotations simultaneously and do not have an atomi subtyping sys-tem. [15℄ develops an eÆient algorithm for both subtyping and equality-basedpolymorphi reursive ow analyses, and shows how to onstrut a polymorphireursive version of Steensgaard's analysis. (In ontrast, in this paper we useHindley-Milner style polymorphism, whih an be less preise.) We believe thatthe tehniques of [15℄ an also be adapted to Andersen's analysis.Other researh has explored making monomorphi inlusion-based analysessalable. [14℄ desribes an online yle-elimination algorithm for simplifying in-lusion onstraints. [30℄ desribes a related optimization tehnique, projetionmerging, whih merges multiple projetions of the same set variable. Our ur-rent implementation uses both of these tehniques, whih makes it possible torun the polymorphi inlusion-based analysis on our larger benhmarks.Finally, we disuss a seletion of related analyses. Wilson and Lam [31℄ pro-pose a ow-sensitive alias analysis that distinguishes alls to the same funtionin di�erent aliasing ontexts. Their system analyzes a funtion one for eahaliasing pattern of its atual parameters. In ontrast, we analyze eah funtiononly one, independently of its ontext, by onstruting types that summarizefuntions' points-to e�ets in any ontext.Ruf [26℄ studies the tradeo� between ontext-sensitivity and ontext-insen-sitivity for a partiular dataow-style alias analysis, disovering that ontext-sensitivity makes little appreiable di�erene in the auray of the results. Ourresults partially agree with his. For Andersen's inlusion-based analysis we �ndthe same trend. However, for Steensgaard's equality-based analysis, whih issubstantially less preise than Ruf's analysis, adding polymorphism makes asigni�ant di�ereneEmami, Ghiya, and Hendren [11℄ propose a ow-sensitive, ontext-sensitiveanalysis. The salability of this analysis is unknown.Landi and Ryder [20℄ study a very preise ow-sensitive, ontext-sensitiveanalysis. Their ow-sensitive system has diÆulty saling to large programs;reent work has foused on ombined analyses that apply di�erent alias analysesto di�erent parts of a program [35℄.Chatterjee, Ryder, and Landi [6℄ propose an analysis for Java and C++ thatuses a ow-sensitive analysis with onditional points-to relations whose validitydepends on the aliasing and type information provided by the ontext. Whilethe style of polymorphism used in [6℄ appears related to Hindley-Milner stylepolymorphism, the exat relationship is unlear.Das [7℄ proposes a monomorphi alias analysis with preision lose to An-dersen's analysis but ost lose to Steensgaard's analysis. The e�et of adding

polymorphism to Das's analysis is urrently unknown but annot yield morepreision than polymorphi Andersen's analysis.3 ConstraintsOur analyses are formulated as non-standard type systems for C. We followthe usual approah for onstraint-based program analysis: As the analyses infertypes for a program's expressions, a system of typing onstraints is generatedon the side. The solution to the onstraints de�nes the points-to graph of theprogram.Our analyses are implemented with the Berkeley Analysis Engine (BANE)[1℄, whih is a framework for onstruting onstraint-based analyses. BANE sup-ports analyses involving multiple sorts of onstraints, two of whih are used byour points-to analyses. Our implementation of Andersen's analysis uses inlusion(or set) onstraints [2, 18℄. Our implementation of Steensgaard's analysis uses amixture of equality (or term) and inlusion onstraints. The rest of this setionprovides bakground on the onstraint formalisms.Eah sort of onstraint omes equipped with a onstraint relation. The rela-tion between set expressions is �, and the relation between term expressions is=. For our purposes, set expressions se onsist of set variables X ;Y ; : : : from afamily of variables Vars (aligraphi text denotes variables), terms onstrutedfrom n-ary onstrutors 2 Con , a speial form proj (; i; se), an empty set 0,and a universal set 1.se ::= X j (se1; : : : ; sen) j proj (; i; se) j 0 j 1Similarly, term expressions are of the formte ::= X j (te1; : : : ; ten) j 0Here 0 represents a speial, distinguished nullary onstrutor.Eah onstrutor is given a signature S speifying the arity, variane, andsort of . If S is the set of sorts (in this ase, S = fTerm;Setg), then onstrutorsignatures are of the form : �1 � � � � � �arity() ! Swhere �i is s (ovariant) or s (ontravariant) for some s 2 S. Intuitively, a on-strutor is ovariant in an argument X if the set denoted by a term (: : : ;X ; : : :)beomes larger as X inreases. Similarly, a onstrutor is ontravariant in anargument X if the set denoted by a term (: : : ;X ; : : :) beomes smaller as Xinreases. To improve readability, we mark ontravariant arguments with over-bars.One example onstrutor from Andersen's analysis islam : Set�Set� Set! Set

The lam onstrutor models funtion types. The �rst (ovariant) argument namesthe funtion, the seond (ontravariant) argument represents the domain, andthe third (ovariant) argument represents the range.Steensgaard's analysis uses a onstrutorref : Set�Term�Term! Termto model loations. The �rst �eld models the set of aliases of this loation, andthe seond and third �elds model the ontents of this loation. See Set. 4.2 fora disussion of why a set is needed for the �rst �eld. More disussion of mixedonstraints an be found in [12, 13℄.Our system also inludes onditional equality onstraints L � R (de�ned onterms) to support Steensgaard's analysis (see Set. 4.2). The onstraint L � Rholds if either L = R or L = 0 holds. Intuitively, if L is ever uni�ed with aonstruted term, then the onstraint L � R beomes L = R. Otherwise L � Rmakes no onstraint on R.Our language of set onstraints has no expliit operation to selet omponentsof a onstrutor. Instead we use onstraints of the formL � (: : : ;Yi; : : :) (�)to make Yi ontain �i(L) if is ovariant in i, and to make �i(L) ontain Yiif is ontravariant in i. However, suh a onstraint is inonsistent if L ontainsterms whose head onstrutor is not . To overome this limitation, we de�neonstraints of the form L � proj (; i;Yi)This onstraint has the same e�et as (�) on the elements of L onstruted with, and no e�et on the other elements of L.Solving a system of onstraints involves omputing an expliit solved form ofall solutions or of a partiular solution. See [3, 12, 13℄ for a thorough disussionof the onstraint solver used in BANE.4 The AnalysesThis setion develops monomorphi and polymorphi versions of Andersen's andSteensgaard's analyses. The presentation of the monomorphi version of Ander-sen's analysis mostly follows [14, 30℄ and is given primarily to make the paperself ontained.For a C program, points-to analysis omputes a set of abstrat memory loa-tions (variables and heap) to whih eah expression ould point. Andersen's andSteensgaard's analyses ompute a points-to graph [11℄. Graph nodes representabstrat memory loations, and there is an edge from a node x to a node y ifx may ontain a pointer to y. Informally, the analyses begin with some initialpoints-to relationships and lose the graph under the ruleFor an assignment e1 = e2, anything in the points-to set for e2 must alsobe in the points-to set for e1.

a = &b;a = &;*a = &d;a b d����1PPPPq PPPPq����1 a b, d- -(a) Andersen's Analysis (b) Steensgaard's AnalysisFigure 2. Example points-to graphFor Andersen's analysis, eah node in the points-to graph may have diretededges to any number of other nodes. For Steensgaard's analysis, eah node mayhave at most one out-edge, and graph nodes are oalesed if neessary to enforethis requirement. Figure 2 shows the points-to graph for a simple C programomputed by Andersen's analysis (a) and Steensgaard's analysis (b).4.1 Andersen's AnalysisIn Andersen's analysis, types � represent sets of abstrat memory loations andare desribed by the following grammar:� ::= Px j lx� ::= X j ref (�; �; �) j lam(�; � ; �)Here the onstrutor signatures areref : Set�Set�Set! Setlam : Set�Set� Set! SetX and Px are set variables, and lx is a onstant (a onstrutor of arity 0).Contravariant arguments are marked with overbars. Note that funtion typeslam(� � �) are ontravariant in the domain (seond argument) and ovariant inthe range (third argument).Memory loations an be thought of as abstrat data types with two oper-ations, one to get the value stored in the loation and one to set it. Intuitively,the get and set operations have types{ get : void! X{ set : X ! voidwhere X is the type of data held in the memory loation. Dereferening a loationorresponds to applying the get operation, and updating a loation orrespondsto applying the set operation. Note that the type variable X appears ovari-antly in the type of the get operation and ontravariantly in the type of the setoperation.

Translating this intuition into a set onstraint formulation, the loation of avariable x is modeled with the type ref (lx;X ;X), where lx is a onstant repre-senting the name of the loation, the ovariant ourrene of X represents theget method, and the ontravariant ourrene of X (marked with an overbar)represents the set method. For onveniene, we hoose not to represent the voidomponents of the get and set methods' types.We also assoiate with eah loation x a set variable Px and add the on-straints X � proj (ref ; 1;Px) and X � proj (lam ; 1;Px). This onstrains Px toontain the set of abstrat loations, inluding funtions, in the points-to set X .The points-to graph is then de�ned by the least solution of Px for every loationx. In the set formulation, the least solution for the points-to graph shown inFig. 2a is Pa = flb; lg Pb = fldg P = fldgIn addition to referene types we also must model funtion types, sine Callows pointers to funtions to be stored in memory. The type lam(lf; �1; �2)represents the funtion named f (every C funtion has a name) with argument�1 and return value �2. For simpliity the grammar allows only one argument. Inour implementation, arguments are modeled with an ordered reord f�1; : : : ; �ng[25℄.1Figure 3 shows a fragment of the type rules for the monomorphi versionof Andersen's analysis. Judgments are of the form A ` e : � ;C, meaning thatin typing environment A, expression e has type � under the onstraints C. Forsimpliity we present only the interesting type rules. The full rules for all of Can be found in [16℄.We briey disuss the rules. To avoid having separate rules for l- and r-values, we model all variables as l-types. Thus the type of a variable x is ourrepresentation of its loation, i.e., a ref type.{ Rule (VarA) states that typings in the environment trivially hold.{ The address-of operator (AddrA) adds a level of indiretion to its operandby adding a ref onstrutor. The loation (�rst) and set (third) �elds of theresulting type are 0 and 1, respetively, beause &e is not itself an l-valueand annot be updated.{ The dereferening operator (DerefA) removes a ref and makes the freshvariable T a superset of the points-to set of � . Note the use of proj in ase� also ontains a funtion type.{ The assignment rule (AsstA) uses the same tehnique as (DerefA) to get theontents of the right-hand side, and then uses the ontravariant set �eld ofthe ref onstrutor to store the ontents in the left-hand side loation. See[16℄ for detailed explanations and examples.1 Note that we do not handle variable-length argument lists (varargs) orretly evenwith reords. Handling varargs requires ompiler- and arhiteture-spei� knowl-edge of the layout of parameters in memory. See Set. 5.

A ` x : A(x); ; (VarA)A ` e : � ;CA ` &e : ref (0; �; 1);C (AddrA)A ` e : � ;CC0 = C ^ � � proj (ref ; 2; T)A ` *e : T ;C0 (DerefA)A ` e1 : �1;C1 A ` e2 : �2;C2C = C1 ^ C2 ^�1 � proj (ref ; 3; T) ^�2 � proj (ref ; 2; T)A ` e1=e2 : �2;C (AsstA)A[x 7! ref (lx;X ;X)℄ ` e : � ;CA ` let x in e ni : � ;C (LetRefA)�f = ref (0; lam(lf;X ;Rf); 1)�x = ref (lx;X ;X)A[f 7! �f ; x 7! �x℄ ` e : � ;CC0 = C ^ � � proj (ref ; 2;Rf)A ` fun f x = e : �f ;C0 (LamA)A ` *e1 : �1;C1 A ` e2 : �2;C2C = C1 ^ C2 ^�2 � proj (ref ; 2; T) ^�1 � proj (lam; 2; T) ^�1 � proj (lam; 3;R)A ` e1 e2 : ref (0;R; 1);C (AppA)Figure 3. Constraint generation rules for Andersen's analysis. T and R stand for freshvariables{ The rule (LetRefA) introdues new variables. Sine this is C, all variablesare in fat updateable referenes, and we allow them to be uninitialized.{ The rule (LamA) de�nes a possibly-reursive funtion f whose result is e.We lift eah funtion type to an l-type by adding a ref as in (AsstA). Forsimpliity the C issues of promotions from funtion types to pointer types,and the orresponding issues with * and & applied to funtions, are ignored.These issues are handled orretly by our implementation. Notie a funtiontype ontains the value of its parameter, X , not a referene ref (lx;X ;X).Analogously the range of the funtion type is also a value.{ Funtion appliation (AppA) onstrains the formal parameter of a funtiontype to ontain the atual parameter, and makes the return type of thefuntion a lower bound on fresh variable R. Notie the use of *e1 in thehypothesis of this rule, whih we need beause the funtion, an r-type, has

been lifted to an l-type in (LamS). The result R, whih is an r-type, is liftedto an l-type by adding a ref onstrutor, as in (AddrA).4.2 Steensgaard's AnalysisIntuitively, Steensgaard's analysis replaes the inlusion onstraints of Ander-sen's analysis with equality onstraints. The type language is a small modi�a-tion of the previous system: � ::= Px j Lx j lx� ::= X j ref (�; �; �)� ::= X j lam(�; �)with onstrutor signaturesref : Set�Term�Term! Termlam : Term�Term! TermAs before, � denotes loations and � denotes updateable referenes. Following[29℄, in this system funtion types � are always struturally within ref (� � �) typesbeause in a system of equality onstraints we annot express a union ref (: : :)[lam(: : :). For a similar reason loation sets � onsist solely of variables Px or Lxand are modeled as sets (see below).Eah program variable x is modeled with the type ref (Lx;X ;Fx), where Lxis a Set variable. For eah loation x we add a onstraint lx � Lx, where lx is anullary onstrutor (as in Andersen's analysis). We also assoiate with loationx another set variable Px and add the onstraint X � ref (Px; �; �), where �stands for a fresh unnamed variable.We ompute the points-to graph by �nding the least solution of the Pxvariables. For the points-to graph in Fig. 2b, the result isPa = flb; lg Pb = fldg P = fldgNotie that b and are inferred to be aliased, i.e., Lb = L. If we had insteadused nullary onstrutors diretly in the � �eld of ref , or had the � �eld been aTerm sort, then the onstraints would have been inonsistent, sine lb 6= l.In Steensgaard's formulation [29℄, the relation between loations x and theirorresponding term variables Px is impliit. While this suÆes for a monomor-phi analysis, in a polymorphi analysis maintaining this map is problemati, asgeneralization, simpli�ation, and instantiation (see Set. 4.3) all ause variablesto be renamed.Mixed onstraints provide an elegant solution to this problem. By expliitlyrepresenting the mapping from loations to loation names in a onstraint for-mulation, we guarantee that any sound onstraint manipulations preserve thismapping.Figure 4 shows the onstraint generation rules for Steensgaard's analysis. Therules are similar to the rules for Andersen's analysis. Again, we briey disussthe rules. As before, all variables are modeled as l-types.

A ` x : A(x); ; (VarS)A ` e : � ;CA ` &e : ref (�; �; �);C (AddrS)A ` e : � ;CC0 = C ^ � � ref (�; T ; �)A ` *e : T ;C0 (DerefS)A ` e1 : �1;C1 A ` e2 : �2;C2C = C1 ^ C2 ^�1 � ref (�; T1; �) ^ �2 � ref (�; T2; �) ^T2 � T1A ` e1=e2 : �2;C (AsstS)A[x 7! ref (Lx;X ;Fx)℄ ` e : � ;CA ` let x in e ni : � ;C (LetRefS)�f = ref (�; ref (Lf; Tf; lam(X ;Rf)); �)�x = ref (Lx;X ;Fx)A[f 7! �f ; x 7! �x℄ ` e : � ;CC0 = C ^ � � ref (�; T ; �) ^ T � RfA ` fun f x = e : �f ;C0 (LamS)A ` *e1 : �1;C1 A ` e2 : �2;C2C = C1 ^ C2 ^�1 � ref (�; �;F) ^ F � lam(Y;R) ^�2 � ref (�; T ; �) ^ T � YA ` e1 e2 : ref (�;R; �);C (AppS)Figure 4. Constraint generation rules for Steensgaard's analysis. T ; T1; T2;Y, and Rare fresh variables. Eah ourrene of � is a fresh, unnamed variable{ Rules (VarS) and (LetRefS) are unhanged from Andersen's analysis.{ Rule (AddrS) adds a level of indiretion to its operand.{ Rule (DerefS) removes a ref and makes fresh variable T ontain the points-toset of � .{ The assignment rule (AsstS) makes fresh variables Ti ontain the points-tosets of eah ei. (AsstS) onditionally equates T1 with T2, i.e., if e2 is a pointer,its points-to set is uni�ed with the points-to set of e1. Using onditionaluni�ation inreases the auray of the analysis [29℄.{ Funtion de�nition (LamS) behaves as in Andersen's analysis. Here, ref (Lf;Tf; lam(X ;Rf)) represents the funtion type and the outermost ref lifts thefuntion type to an l-type. Again a funtion type ontains the r-types of itsparameter and return value rather than their l-types. Notie that the typeof the funtion f points to is stored in the seond (�) �eld of f's type �f, notin the third (�) �eld. Thus in the assignment rule (AsstS), the Ti variablesontain both the funtions and memory loations that the ei point to.

A ` e : � ;C ~X 62 fv(A)A ` e : 8 ~X :�nC;C (Quant)A ` e : 8 ~X :�nC0;C ~Y freshA ` e : � [~X 7! ~Y℄;C ^ C0[~X 7! ~Y℄ (Inst)Figure 5. Rules for quanti�ation{ Funtion appliation (AppS) onditionally equates the formal and atualparameters of a funtion type and evaluates to the return type. Note the useof *e1 in the hypothesis of this rule, whih is needed sine the funtion typehas been lifted to an l-type. Intuitively, this rule expands the appliation(fun f x = e) e2 into the sequene x = e2; e.4.3 Adding PolymorphismThis setion desribes how the monomorphi analyses are extended to poly-morphi analyses. While ultimately we �nd polymorphism unpro�table for ourpoints-to analyses, this setion douments a number of pratial insights for theimplementation of polymorphism in analysis systems onsiderably more elabo-rate than the Hindley/Milner system.The rules in Figs. 3 and 4 trak the onstraints generated in the analysis ofeah expression. The monomorphi analyses have one global onstraint system.In the polymorphi analyses, eah funtion body has a distint onstraint system.We introdue polymorphi onstrained types of the form 8 ~X :�nC. The type8 ~X :�nC represents any type of the form � [~X 7! ~se ℄ under onstraints C[~X 7! ~se ℄,for any hoie of ~se. Figure 5 shows the additional rules for quanti�ation. Thenotation fv(A) stands for the free variables of environment A. Rule (Quant)states that we may quantify a type over any variables not free in the type en-vironment. (Inst) allows us to instantiate a quanti�ed type with fresh variables,adding the onstraints from the quanti�ed type to the system. These rules arestandard [24℄.We restrit quanti�ation to non-ref types to avoid well-known problemswith mixing updateable referenes and polymorphism [32℄. In pratial terms,this means that after analyzing a funtion de�nition, we an quantify over itsparameters and its return value. The rule (Inst) says that we may instantiate aquanti�ed type with fresh variables, adding the onstraints from the quanti�edtype to the environment.If used na��vely, rule (Quant) amounts to analyzing a program in whih allfuntion alls have been inlined. In order to make the polymorphi analysestratable, we perform a number of simpli�ations to redue the sizes of quanti�edtypes. See [17℄ for a disussion of the simpli�ations we use.As an example of the potential bene�t of polymorphi points-to analysis,onsider the following atypial C program:int *id(int *x) { return x; }

int main() {int a, b, *, *d; = id(&a); d = id(&b);}In the notation in this paper id is de�ned as fun id x = x. In monomorphiAndersen's analysis all inputs to id ow to all outputs. Thus we disover that and d both point to a and b. Polymorphi Andersen's analysis assigns id type8X ;Rid: lam(lid;X ;Rid)nref (lx;X ;X) � proj (ref ; 2;Rid)Solving these onstraints and simplifying (see [17℄) yields8X : lam(lid;X ;X)n;In other words, id is the identity funtion. Beause this type is instantiated foreah all of id, the points-to sets are omputed exatly: points to a and dpoints to b.There are several important observations about the type system. First, fun-tion pointers do not have polymorphi types. Consider the following example:int *f(...) { ... }int foo(int *(*g)()) { x = g(...); y = g(...); z = f(...); }int main() { foo(f); }Within the body of foo, the type of g appears in the environment (with amonomorphi type), so variables in the type of g annot be quanti�ed. Heneboth alls to g use the same instane of f's type. The all diretly through f anuse a polymorphi type for f, and hene is to a fresh instane.Seond, we do not allow the types of mutually reursive funtions to bepolymorphi within the reursive de�nition. Thus we analyze sets of mutuallyreursive funtions monomorphially and then generalize the types afterwards.Finally, we require that funtion de�nitions be analyzed before funtion uses.We formally state this requirement using the following de�nition:De�nition 1. The funtion dependene graph (FDG) of a program is a graphG = (V;E) with verties V and edges E. V is the set of all funtions in the pro-gram, and there is an edge in E from f to g i� funtion f ontains an ourreneof the name of g.A funtion's suessors in the FDG for a program must be analyzed before thefuntion itself. Note that the FDG is trivial to ompute from the program text.Figure 6 shows the algorithm for analyzing a program polymorphially. Eahstrongly-onneted omponent of the FDG is visited in �nal depth-�rst order.We analyze eah mutually-reursive omponent monomorphially and then applyquanti�ation. We merge the simpli�ed system C 0 into the top-level onstraintsystem Glob , replaing Glob by Glob ^ C 0. Notie that we do not require a allgraph for the analysis, but only the FDG, whih is statially omputable.

1. Make a fresh global onstraint system Glob2. Construt the funtion dependene graph G3. For eah non-root strongly-onneted omponent S of G in �nal depth-�rst order3a. Make a fresh onstraint system C3b. Analyze eah f 2 S monomorphially in C3. Quantify eah f 2 S in C, applying simpli�ations3d. Compute C0 = C simpli�ed and merge C0 into Glob4. Analyze the root SCC in GlobFigure 6. Algorithm 1: Bottom-up pass4.4 Reonstruting Loal InformationAfter applying the bottom-up pass of Fig. 6, the analysis has orretly omputedthe points-to graph for the global variables and the loal variables of the out-ermost funtion, usually alled main. (There is no need to quantify the type ofmain, sine its type an only be used monomorphially.) At this point we havelost alias information for loal variables, for two reasons. First, applying simpli-�ations during the analysis may eliminate the points-to variables orrespondingto loal variables ompletely. Seond, whenever we apply (Inst) to instantiate thetype of a funtion f, we deliberately lose information about the types of f's loalvariables by replaing their points-to type variables with fresh type variables.The points-to set of a loal variable depends on the ontext(s) in whih fis used. To reonstrut points-to information for loals, we keep trak of theinstantiated types of funtions and use these to ow ontext information bakinto the original, unsimpli�ed onstraint system.Figure 7 gives the algorithm for reonstruting the points-to information forthe loal variables of funtion f on a partiular path or set of paths P in theFDG. Note that Algorithm 2 requires f 2 P . The onstraints given are forAndersen's analysis. For Steensgaard's analysis we replae � onstraints by theappropriate � onstraints. (Note that for Steensgaard's analysis there may bemore preise ways of omputing summary information. See [15℄.) In Algorithm2, the onstraint systems along the FDG path are merged into a fresh onstraintsystem, and then the types of the atual parameters from eah instane arelinked to the types of the formal parameters of the original type. We also linkthe return values of the original type to the return values of the instanes.This algorithm omputes the points-to sets for the loal variables of f alongFDG path P . Beause this algorithm is parameterized by the FDG path, it letsthe analysis lient hoose the preision of the desired information. An interativesoftware engineering tool may be interested in a partiular use of a funtion(orresponding to a single path from f to the root), while a ompiler, whihmust produe ode that works for all instanes, would most likely be interestedin all paths from f to the root of the FDG.In our experiments (Set. 5), to ompute information for funtion f we hooseP to be all of f's anestors in the FDG. This orresponds exatly to a points-to

1. Let C = Glob ^Vg2P Cg be a fresh system2. For eah funtion g 2 P2a. Let lam(lg;G1;R1); : : : ; lam(lg; Gn;Rn) be the instanes of g's funtion type.2b. Let lam(lg;G;R) be g's original funtion type2. Add onstraints Gi � G and R � Ri for i 2 [1::n℄.3. Compute the points-to sets for f's loals in C.Figure 7. Algorithm 2: Top-down pass for funtion f on FDG path or set of FDGpaths Panalysis in whih f and its anestors are monomorphi and all other funtionsare polymorphi. Clearly there are ases in whih this hoie will lead to a loss ofpreision. However, the other natural alternative, to ompute alias informationfor eah of f's instanes separately, would yield an exponential algorithm. Bytreating f monomorphially, in an FDG of size n Algorithm 2 requires opyingO(n2) (unsimpli�ed) onstraint systems.5 ExperimentsWe have implemented our analyses using BANE [1℄. BANE manages the detailsof onstraint representation and solving, quanti�ation, instantiation, and sim-pli�ation. Our analysis tool generates onstraints and deides when and whatto quantify, instantiate, and simplify.Our analysis handles almost all features of C, following [29℄. The only exep-tions are that we do not orretly model expressions that rely on ompiler-spei�hoies about the layout of data in memory, e.g., variable-length argument listsor absolute addressing.Our experiments over the four possible ombinations of polymorphism (poly-morphi or monomorphi) and analysis preision (inlusion-based or equality-based). Table 1 lists the suite of C programs on whih we performed the anal-yses.2 The size of eah program is listed in terms of preproessed soure linesand number of AST nodes. The AST node ount is restrited to those nodes theanalysis traverses, e.g., this ount ignores delarations.As with most C programs, our benhmark suite makes extensive use of stan-dard libraries. After analyzing eah program we also analyze a speial �le ofhand-oded stubs modeling the points-to e�ets of all library funtions usedby our benhmark suite. These stubs are not inluded in the measurements ofpoints-to set sizes, and we only proess the stubs orresponding to library fun-tions that are atually used by the program. The stubs are modeled in the sameway that regular funtions are modeled. Thus they are treated monomorphiallyin the monomorphi analyses, and polymorphially in the polymorphi analyses.2 We modi�ed the tar-1.11.2 benhmark to use the built-in mallo rather than auser-de�ned mallo in order to model heap usage more aurately.

Table 1. Benhmark programsName AST Nodes Prepro Lines Name AST Nodes Prepro Linesallroots 700 426 less-177 15179 11988di�.di�h 935 293 li 16828 5761anagram 1078 344 ex-2.4.7 29960 9345geneti 1412 323 pmake 31148 18138ks 2284 574 make-3.72.1 36892 15213ul 2395 441 tar-1.11.2 38795 17592ft 3027 1180 inform-5.5 38874 12957ompress 3333 651 sgmls-1.1 44533 30941ratfor 5269 1532 sreen-3.5.2 49292 23919ompiler 5326 1888 vs-1.3 51223 31130assembler 6516 2980 espresso 56938 21537ML-typehek 6752 2410 gawk-3.0.3 71140 28326eqntott 8117 2266 povray-2.2 87391 59689simulator 10946 4216To model heap loations, we generate a fresh global variable for eah syntatiourrene of a mallo-like funtion in a program. In ertain ases it may bebene�ial to distinguish heap loations by all path, though we did not performthis experiment. We model strutures as atomi, i.e., every �eld of a strutureshares the same loation. Reent results [33℄ suggest some eÆient alternativeapproahes.For the polymorphi analyses, when we apply Algorithm 2 (Fig. 7) to om-pute the analysis results for funtion f, we hoose P to be the set of all pathsfrom f to the root of the FDG.5.1 PreisionFigures 8 and 9 graph for eah benhmark the average size of the points-to setsat the dereferene sites in the program. A higher average size indiates lowerpreision. Missing data points indiate that the analysis exeeded the memoryapaity of the mahine (2GB).We also measure the preision of the analyses both when eah string is mod-eled as a distint loation and when strings are ompletely ignored (modeled as0). Note the di�erent sales on di�erent graphs. For the purposes of this exper-iment, funtions are not ounted in points-to sets, and multi-level dereferenesare ounted separately (e.g., in **x there are two dereferenes). Array indexingon known arrays (expressions of type array) is not ounted as dereferening.Table 2 gives the numeri values graphed in Figs. 8 and 9 and more detailedinformation about the distribution of points-to sets. Due to lak of spae, weonly give the data for the experiments that model strings as distint loations.See [17℄ for the data when strings are modeled as 0. For eah analysis style, welist the running time, the average points-to set sizes at dereferene sites, and

allroots

0
0.5

1
1.5

2
2.5

Mono
Ste

Poly
Ste

Mono
And

Poly
And

diff.diffh

0
2
4
6
8

10
12

Mono
Ste

Poly
Ste

Mono
And

Poly
And

anagram

0
2
4
6
8

Mono
Ste

Poly
Ste

Mono
And

Poly
And

genetic

0

2

4

6

Mono
Ste

Poly
Ste

Mono
And

Poly
And

ks

0
10
20
30
40

Mono
Ste

Poly
Ste

Mono
And

Poly
And

ul

0
0.5

1
1.5

2
2.5

Mono
Ste

Poly
Ste

Mono
And

Poly
And

ft

0

1

2

3

4

Mono
Ste

Poly
Ste

Mono
And

Poly
And

compress

0
0.5

1
1.5

2
2.5

Mono
Ste

Poly
Ste

Mono
And

Poly
And

ratfor

0
10
20
30
40
50
60

Mono
Ste

Poly
Ste

Mono
And

Poly
And

compiler

0.9
0.95

1
1.05
1.1

1.15
1.2

Mono
Ste

Poly
Ste

Mono
And

Poly
And

assembler

0
20
40
60
80

100
120

Mono
Ste

Poly
Ste

Mono
And

Poly
And

ML-typecheck

0
20
40
60
80

100

Mono
Ste

Poly
Ste

Mono
And

Poly
And

eqntott

0
5

10
15
20
25
30

Mono
Ste

Poly
Ste

Mono
And

Poly
And

simulator

0

50

100

150

200

Mono
Ste

Poly
Ste

Mono
And

Poly
And

less-177

0

50

100

150

200

Mono
Ste

Poly
Ste

Mono
And

Poly
And

li

0

200

400

600

800

Mono
Ste

Poly
Ste

Mono
And

Poly
And

flex-2.4.7

0

500

1000

1500

2000

Mono
Ste

Poly
Ste

Mono
And

Poly
And

pmake

0
100
200
300
400
500
600

Mono
Ste

Poly
Ste

Mono
And

Poly
AndFigure 8. Average points-to sizes at dereferene sites. The blak bars give the resultswhen strings are modeled; the white bars give the results when strings are not modeled

make-3.72.1

0
200
400
600
800

1000

Mono
Ste

Poly
Ste

Mono
And

Poly
And

tar-1.11.2

0

200

400

600

800

Mono
Ste

Poly
Ste

Mono
And

Poly
And

inform-5.5

0

500

1000

1500

2000

Mono
Ste

Poly
Ste

Mono
And

sgmls-1.1

0
200
400
600
800

1000
1200

Mono
Ste

Poly
Ste

Mono
And

Poly
And

screen-3.5.2

0
200
400
600
800

1000
1200

Mono
Ste

Poly
Ste

Mono
And

Poly
And

cvs-1.3

0
200
400
600
800

1000

Mono
Ste

Poly
Ste

Mono
And

espresso

0
100
200
300
400
500

Mono
Ste

Poly
Ste

Mono
And

Poly
And

gawk-3.0.3

0
200
400
600
800

1000

Mono
Ste

Mono
And

Poly
And

povray-2.2

0
100
200
300
400
500
600

Mono
Ste

Poly
Ste

Mono
And

Poly
AndFigure 9. Continuation of Fig. 8. Average points-to sizes at dereferene sites. Theblak bars give the results when strings are modeled; the white bars give the resultswhen strings are not modeledthe number of dereferene sites with points-to sets of size 1, 2, and 3 or more,plus the total number of non-empty dereferene sites. (Most programs have someempty dereferene sites beause of dead ode.) We also list the size of the largestpoints-to set.Reall from the introdution that for a given dereferene site, it is a theoremthat the points-to sets omputed by the four analyses are in the inlusion rela-tions shown in Fig. 1. More preisely, there is an edge from analysis x in Fig. 1to analysis y if for eah expression e, the points-to set omputed for e by anal-ysis x ontains the points-to set omputed for e by analysis y. Two issues arisewhen interpreting the average points-to set size metri. First, when two analy-ses are related by inlusion the average size of points-to sets is a valid measureof preision. Thus we an use our metri to ompare any two analyses exeptpolymorphi Steensgaard's analysis and monomorphi Andersen's analysis.For these two analyses there is no diret inlusion relationship. For a givenexpression e, if eS is the points-to set omputed by polymorphi Steensgaard'sanalysis and eA is the points-to set omputed by monomorphi Andersen's anal-ysis, it may be that eS 6� eA and eS 6� eA. Detailed examination of the points-tosets omputed by polymorphi Steensgaard's analysis and monomorphi Ander-sen's analysis reveals that this does our in pratie, and thus the two analyses

Table 2. Data for string modeling experiments graphed in Fig. 8. The running timesare the average of three for the monomorphi experiments, while the polymorphiexperiments were only performed one.Name Monomorphi Steensgaard's Polymorphi Steensgaard'sTime Av. Num. deref sites Up Tm Dn Tm Av. Num. deref sites(s) 1 2 3+ tot max (s) (s) 1 2 3+ tot maxallroots 0.17 2.00 0 42 0 42 2 0.27 0.29 2.00 0 42 0 42 2diff.diffh 0.23 11.25 12 1 23 36 17 0.29 0.55 2.36 14 13 9 36 5anagram 0.25 6.74 11 1 30 42 9 0.37 1.00 5.45 12 0 30 42 8geneti 0.36 4.95 22 8 46 76 15 0.45 1.18 1.43 62 10 4 76 10ks 0.43 33.83 3 13 99 115 39 0.53 1.38 8.86 3 13 99 115 10ul 0.49 2.22 55 129 54 238 4 0.59 2.97 2.16 55 137 46 238 4ft 0.65 3.39 29 8 133 170 4 1.05 4.58 3.35 37 0 133 170 4ompress 0.73 2.13 181 44 36 261 8 0.94 5.32 1.44 181 44 36 261 3ratfor 1.65 53.41 36 4 125 165 80 2.71 30.90 18.65 36 7 122 165 62ompiler 1.15 1.17 65 13 0 78 2 2.47 5.76 1.17 65 13 0 78 2assembler 2.54 108.03 79 31 273 383 213 5.22 58.96 2.98 223 36 124 383 120ML-typehek 2.92 88.41 28 0 285 313 97 3.92 60.87 70.33 28 27 258 313 85eqntott 2.70 27.82 68 110 436 614 42 3.45 54.17 6.17 76 133 405 614 11simulator 3.78 150.11 24 13 259 296 223 5.70 118.20 33.71 105 5 186 296 89less-177 5.66 185.55 69 13 490 572 219 18.28 321.89 114.13 80 14 478 572 173li 18.67 643.88 8 0 933 941 657 33.33 695.71 629.01 8 0 933 941 644flex-2.4.7 64.33 1431.68 13 0 1613 1626 1445 22.09 818.25 43.83 15 2 1609 1626 1226pmake 20.98 556.19 40 2 2501 2543 570 373.97 4416.16 151.69 100 9 2434 2543 218make-3.72.1 40.05 863.25 90 222 3170 3482 975 265.43 1045.70 556.94 311 158 3013 3482 666tar-1.11.2 26.10 597.13 87 70 2031 2188 656 23.16 776.65 356.20 183 114 1888 2185 434inform-5.5 47.81 1618.62 21 0 1268 1289 1648 2601.61 67608.52 408.47 28 0 1261 1289 601sgmls-1.1 69.70 987.71 96 11 2382 2489 1046 126.08 3961.22 749.20 123 15 2351 2489 867sreen-3.5.2 64.79 1093.00 27 9 4915 4951 1110 65.37 1991.28 656.86 112 36 4803 4951 768vs-1.3 47.42 894.44 97 680 2276 3053 1242 124.80 2949.33 100.18 1159 141 1753 3053 367espresso 34.40 391.59 101 530 5479 6110 456 104.65 3368.75 86.78 1238 595 4277 6110 171gawk-3.0.3 78.30 927.57 139 50 4930 5119 966 | | | | | | | |povray-2.2 64.72 515.85 761 407 8044 9212 618 111.38 6606.45 299.41 1027 659 7526 9212 434Name Monomorphi Andersen's Polymorphi Andersen'sTime Av. Num. deref sites Up Tm Dn Tm Av. Num. deref sites(s) 1 2 3+ tot max (s) (s) 1 2 3+ tot maxallroots 0.18 1.57 18 24 0 42 2 0.14 0.22 1.57 18 24 0 42 2diff.diffh 0.18 1.56 25 2 9 36 3 0.21 0.49 1.56 25 2 9 36 3anagram 0.24 1.10 38 4 0 42 2 0.16 0.72 1.10 38 4 0 42 2geneti 0.22 1.43 62 10 4 76 10 0.21 0.76 1.43 62 10 4 76 10ks 0.37 3.58 9 22 84 115 5 0.33 0.98 3.58 9 22 84 115 5ul 0.24 1.61 184 8 46 238 4 0.23 0.91 1.61 184 8 46 238 4ft 0.42 2.12 75 0 95 170 3 0.56 2.25 2.12 75 0 95 170 3ompress 0.34 1.18 215 46 0 261 2 0.41 1.42 1.18 215 46 0 261 2ratfor 0.63 6.27 56 9 100 165 47 1.22 5.99 6.27 56 9 100 165 47ompiler 0.57 1.17 65 13 0 78 2 0.96 5.07 1.17 65 13 0 78 2assembler 1.07 2.87 225 36 122 383 120 3.02 80.46 2.87 225 36 122 383 120ML-typehek 0.99 45.87 101 30 182 313 78 1.79 14.81 45.87 101 30 182 313 78eqntott 1.03 1.92 239 199 176 614 5 1.50 11.20 1.92 239 199 176 614 5simulator 1.35 28.53 107 10 179 296 72 2.32 51.70 27.78 107 10 179 296 71less-177 2.55 12.98 221 92 259 572 110 4.35 184.03 12.72 238 101 233 572 110li 4.44 421.23 28 0 913 941 465 189.49 9929.88 421.23 28 0 913 941 465flex-2.4.7 4.81 6.22 734 204 688 1626 1226 8.61 173.97 6.21 735 204 687 1626 1226pmake 5.11 129.16 401 98 2044 2543 175 21.38 682.71 88.64 452 98 1993 2543 144make-3.72.1 9.02 250.85 619 268 2595 3482 494 13.18 390.35 230.12 652 264 2566 3482 487tar-1.11.2 6.89 69.07 330 741 1117 2188 200 7.74 327.48 66.11 336 742 1107 2185 194inform-5.5 6.95 80.51 657 20 612 1289 227 | | | | | | | |sgmls-1.1 8.14 224.11 687 321 1481 2489 506 40.52 1121.89 205.63 703 323 1463 2489 492sreen-3.5.2 7.45 206.48 339 39 4573 4951 241 1277.15 2028.85 195.83 342 44 4565 4951 232vs-1.3 10.82 71.27 1281 192 1580 3053 203 | | | | | | | |espresso 12.89 101.21 1824 300 3986 6110 175 28.81 967.64 56.34 1973 304 3833 6110 152gawk-3.0.3 12.40 157.28 1177 226 3716 5119 237 22.14 763.62 148.77 1184 228 3707 5119 225povray-2.2 22.40 223.61 2474 588 6150 9212 402 169.51 5574.82 223.61 2474 588 6150 9212 402are inomparable in our metri. The best we an do is observe that monomorphiAndersen's analysis is almost as preise as polymorphi Andersen's analysis, andpolymorphi Steensgaard's analysis is less preise than polymorphi Andersen'sanalysis.Seond, it is possible for a polymorphi analysis to determine that a monomor-phially non-empty points-to set is in fat empty, and thus have a larger aver-age points-to set size than its monomorphi ounterpart (sine only non-empty

points-to sets are inluded in this average). However, we an eliminate this pos-sibility by ounting the total number of nonempty dereferene sites. (A polymor-phi analysis annot have more nonempty dereferene sites than its monomor-phi ounterpart.) The data in Table 2 shows that for all benhmarks exepttar-1.11.2, the total number of non-empty dereferene sites is the same arossall analyses, and the di�erene between the polymorphi and monomorphi anal-yses for tar-1.11.2 is minisule. Therefore we know that averaging the sizes ofnon-empty dereferene sites is a valid measure of preision.5.2 SpeedTable 2 also lists the running times for the analyses. The running times inludethe time to ompute the least model of the Px variables, i.e., to �nd the points-tosets. For the polymorphi analyses, we separate the running times into the timefor the bottom-up pass and the time for the top-down pass.For purposes of this experiment, whose goal is to ompare the preision ofmonomorphi and polymorphi points-to analysis, the running times are largelyirrelevant. Thus we have made little e�ort to make the analyses eÆient, andthe running times should all be taken with a grain of salt.5.3 DisussionThe data presented in Figs. 8 and 9 and Table 2 shows two striking and onsistentresults:1. Polymorphi Andersen's analysis is hardly more preise than monomorphiAndersen's analysis.2. Polymorphi Steensgaard's analysis is muh more preise than monomorphiSteensgaard's analysis.The only exeptions to these trends are some of the smaller programs (all-roots, ul, ft, ompiler, li), for whih polymorphi Steensgaard's analysis isnot muh more preise than monomorphi Steensgaard's analysis, and one largerprogram, espresso, for whih Polymorphi Andersen's analysis is notieablymore preise than Monomorphi Andersen's analysis. Additionally, notie thatfor all programs exept espresso, polymorphi Steensgaard's analysis has ahigher average points-to set size than monomorphi Andersen's analysis. (Reallthat this does not neessarily imply stritly inreased preision.)To understand these results, onsider the following ode skeleton:void f() { ... h(a); ... }void g() { ... h(b); ... }void h(int *) { ... }In Steensgaard's equality-based monomorphi analysis, the types of all argu-ments for all alls sites of a funtion are equated. In the example, this resultsin a = b = , where a is a's points-to type, b is b's points-to type, and is 's

Table 3. Potential polymorphism. The measurements inlude library funtions.Name Call Sites % Void Name Call Sites % Voidallroots 55 69 less-177 1091 56di�.di�h 67 58 li 1243 37anagram 59 75 ex-2.4.7 1205 79geneti 79 75 pmake 1943 56ks 101 84 make-3.72.1 1955 50ul 103 74 tar-1.11.2 1586 54ft 152 70 inform-5.5 2593 72ompress 138 73 sgmls-1.1 1614 62ratfor 306 75 sreen-3.5.2 2632 75ompiler 448 89 vs-1.3 3036 55assembler 519 66 espresso 2729 51ML-typehek 430 31 gawk-3.0.3 2358 51eqntott 364 61 povray-2.2 3123 59simulator 677 75points-to type. In the polymorphi version of Steensgaard's analysis, a and ban be distint. Our measurements show that separating funtion parameters isimportant for points-to analysis.In ontrast, in Andersen's monomorphi inlusion-based system, the points-to types of arguments at all sites are potentially separated. In the example, wehave a � and b � . However, funtion results are all onated (i.e., every allsite has the same result, the union of points-to results over all all sites). The fatthat polymorphi Andersen's analysis is hardly more preise than monomorphiAndersen's analysis suggests that separating funtion parameters is by far themost important form of polymorphism present in points-to analysis for C.Thus, we onlude that polymorphism for points-to analysis is useful pri-marily for separating inputs, whih an be ahieved very nearly as well by amonomorphi inlusion-based analysis. This onlusion begs the question: Whyis there so little polymorphism in points-to results available in C? Diretly mea-suring the polymorphism available in output side e�ets of C funtions is diÆult,although we hypothesize that C funtions tend to side-e�et global variables andheap data (whih our analyses model as global) rather than stak-alloated data.We an measure the polymorphism of result types fairly diretly. Table 3 listsfor eah benhmark the number of all sites and perentage of alls that ourin void ontexts. These results emphasize that most C funtions are alled fortheir side e�ets: for 25 out of 27 benhmarks, at least half of all alls are invoid ontexts. Thus, there is a greatly redued hane that polymorphism anbe bene�ial for Andersen's analysis.It is worth pointing out that the lient for a points-to analysis an also havea signi�ant, and often negative, impat on the polymorphism that atually anbe exploited. In the example above, when omputing points-to sets for h's loal

variables we onate information for all of 's ontexts. This summarizatione�etively removes muh of the �ne detail about the behavior of h in di�erentalling ontexts. However, many appliations require points-to information thatis valid in every alling ontext. In addition, if we attempt to distinguish all allpaths, the analysis an quikly beome intratable.6 ConlusionWe have explored two dimensions of the design spae for ow-insensitive points-to analysis for C: polymorphi versus monomorphi and inlusion-based versusequality-based. Our experiments show that while polymorphism is potentiallybene�ial for equality-based points-to analysis, it does not have muh bene�t forinlusion-based points-to analysis. Even though we feel that added engineeringe�ort an make the running times of the polymorphi analyses muh faster, thepreision would still be the same.Monomorphi Andersen's analysis an be made fast [30℄ and often providesfar more preise results than monomorphi Steensgaard's analysis. PolymorphiSteensgaard's analysis is in general muh less preise than polymorphi Ander-sen's analysis, whih is in turn little more preise than monomorphi Andersen'sanalysis. Additionally, as disussed in Set. 4.3, implementing polymorphism isa ompliated and diÆult task. Thus, we feel that monomorphi Andersen'sanalysis may be the best hoie among the four analyses.Aknowledgements We thank the anonymous referees for their helpful om-ments. We would also like to thank Manuvir Das for suggestions for the imple-mentation.Referenes[1℄ A. Aiken, M. F�ahndrih, J. S. Foster, and Z. Su. A Toolkit for ConstrutingType- and Constraint-Based Program Analyses. In X. Leroy and A. Ohori, edi-tors, Proeedings of the seond International Workshop on Types in Compilation,volume 1473 of Leture Notes in Computer Siene, pages 78{96, Kyoto, Japan,Mar. 1998. Springer-Verlag.[2℄ A. Aiken and E. L. Wimmers. Solving Systems of Set Constraints. In Proeedings,Seventh Annual IEEE Symposium on Logi in Computer Siene, pages 329{340,Santa Cruz, California, June 1992.[3℄ A. Aiken and E. L. Wimmers. Type Inlusion Constraints and Type Inferene.In FPCA '93 Conferene on Funtional Programming Languages and ComputerArhiteture, pages 31{41, Copenhagen, Denmark, June 1993.[4℄ L. O. Andersen. Program Analysis and Speialization for the C ProgrammingLanguage. PhD thesis, DIKU, Department of Computer Siene, University ofCopenhagen, May 1994.[5℄ M. Burke, P. Carini, J.-D. Choi, and M. Hind. Flow-Insensitive InterproeduralAlias Analysis in the Presene of Pointers. In K. Pingali, U. Banerjee, D. Gelern-ter, A. Niolau, and D. Padua, editors, Proeedings of the Seventh Workshop on

Languages and Compilers for Parallel Computing, volume 892 of Leture Notes inComputer Siene, pages 234{250. Springer-Verlag, 1994.[6℄ R. Chatterjee, B. G. Ryder, and W. A. Landi. Relevant Context Inferene. In Pro-eedings of the 26th Annual ACM SIGPLAN-SIGACT Symposium on Priniplesof Programming Languages, pages 133{146, San Antonio, Texas, Jan. 1999.[7℄ M. Das. Uni�ation-based Pointer Analysis with Diretional Assignments. InProeedings of the 2000 ACM SIGPLAN Conferene on Programming LanguageDesign and Implementation, Vanouver B.C., Canada, June 2000. To appear.[8℄ S. Debray, R. Muth, and M. Weippert. Alias Analysis of Exeutable Code. In Pro-eedings of the 25th Annual ACM SIGPLAN-SIGACT Symposium on Priniplesof Programming Languages, pages 12{24, San Diego, California, Jan. 1998.[9℄ A. Deutsh. Interproedural May-Alias Analysis for Pointers: Beyond k-limiting.In Proeedings of the 1994 ACM SIGPLAN Conferene on Programming LanguageDesign and Implementation, pages 230{241, Orlando, Florida, June 1994.[10℄ N. Dor, M. Rodeh, and M. Sagiv. Deteting Memory Errors via Stati PointerAnalysis. In Proeedings of the ACM SIGPLAN/SIGSOFT Workshop on ProgramAnalysis for Software Tools and Engineering, pages 27{34, Montreal, Canada,June 1998.[11℄ M. Emami, R. Ghiya, and L. J. Hendren. Context-Sensitive InterproeduralPoints-to Analysis in the Presene of Funtion Pointers. In Proeedings of the1994 ACM SIGPLAN Conferene on Programming Language Design and Imple-mentation, pages 242{256, Orlando, Florida, June 1994.[12℄ M. F�ahndrih. BANE: A Library for Salable Constraint-Based Program Analysis.PhD thesis, University of California, Berkeley, 1999.[13℄ M. F�ahndrih and A. Aiken. Program Analysis using Mixed Term and Set Con-straints. In P. V. Hentenryk, editor, Stati Analysis, Fourth International Sym-posium, volume 1302 of Leture Notes in Computer Siene, pages 114{126, Paris,Frane, Sept. 1997. Springer-Verlag.[14℄ M. F�ahndrih, J. S. Foster, Z. Su, and A. Aiken. Partial Online Cyle Elimina-tion in Inlusion Constraint Graphs. In Proeedings of the 1998 ACM SIGPLANConferene on Programming Language Design and Implementation, pages 85{96,Montreal, Canada, June 1998.[15℄ M. F�ahndrih, J. Rehof, and M. Das. Salable Context-Sensitive Flow Analysisusing Instantiation Constraints. In Proeedings of the 2000 ACM SIGPLAN Con-ferene on Programming Language Design and Implementation, Vanouver B.C.,Canada, June 2000. To appear.[16℄ J. S. Foster, M. F�ahndrih, and A. Aiken. Flow-Insensitive Points-to Analysiswith Term and Set Constraints. Tehnial Report UCB//CSD-97-964, Universityof California, Berkeley, Aug. 1997.[17℄ J. S. Foster, M. F�ahndrih, and A. Aiken. Polymorphi versus Monomorphi Flow-insensitive Points-to Analysis for C. Tehnial report, University of California,Berkeley, Apr. 2000.[18℄ N. Heintze and J. Ja�ar. A Deision Proedure for a Class of Set Constraints. InProeedings, Fifth Annual IEEE Symposium on Logi in Computer Siene, pages42{51, Philadelphia, Pennsylvania, June 1990.[19℄ M. Hind and A. Pioli. Assessing the E�ets of Flow-Sensitivity on Pointer AliasAnalyses. In G. Levi, editor, Stati Analysis, Fifth International Symposium,volume 1503 of Leture Notes in Computer Siene, pages 57{81, Pisa, Italy, Sept.1998. Springer-Verlag.

[20℄ W. Landi and B. G. Ryder. A Safe Approximate Algorithm for InterproeduralPointer Aliasing. In Proeedings of the 1992 ACM SIGPLAN Conferene on Pro-gramming Language Design and Implementation, pages 235{248, San Franiso,California, June 1992.[21℄ R. Milner. A Theory of Type Polymorphism in Programming. Journal of Com-puter and System Sienes, 17:348{375, 1978.[22℄ C. Mossin. Flow Analysis of Typed Higher-Order Programs. PhD thesis, DIKU,Department of Computer Siene, University of Copenhagen, 1996.[23℄ R. O'Callahan and D. Jakson. Lakwit: A Program Understanding Tool Based onType Inferene. In Proeedings of the 19th International Conferene on SoftwareEngineering, pages 338{348, Boston, Massahusetts, May 1997.[24℄ M. Odersky, M. Sulzmann, and M. Wehr. Type Inferene with Constrained Types.In B. Piere, editor, Proeedings of the 4th International Workshop on Foundationsof Objet-Oriented Languages, Jan. 1997.[25℄ D. R�emy. Typeheking reords and variants in a natural extension of ML. In Pro-eedings of the 16th Annual ACM SIGPLAN-SIGACT Symposium on Priniplesof Programming Languages, pages 77{88, Austin, Texas, Jan. 1989.[26℄ E. Ruf. Context-Insensitive Alias Analysis Reonsidered. In Proeedings of the1995 ACM SIGPLAN Conferene on Programming Language Design and Imple-mentation, pages 13{22, La Jolla, California, June 1995.[27℄ M. Sagiv, T. Reps, and R. Wilhelm. Parametri Shape Analysis via 3-ValuedLogi. In Proeedings of the 26th Annual ACM SIGPLAN-SIGACT Symposiumon Priniples of Programming Languages, pages 105{118, San Antonio, Texas,Jan. 1999.[28℄ M. Shapiro and S. Horwitz. Fast and Aurate Flow-Insensitive Points-To Anal-ysis. In Proeedings of the 24th Annual ACM SIGPLAN-SIGACT Symposium onPriniples of Programming Languages, pages 1{14, Paris, Frane, Jan. 1997.[29℄ B. Steensgaard. Points-to Analysis in Almost Linear Time. In Proeedings of the23rd Annual ACM SIGPLAN-SIGACT Symposium on Priniples of ProgrammingLanguages, pages 32{41, St. Petersburg Beah, Florida, Jan. 1996.[30℄ Z. Su, M. F�ahndrih, and A. Aiken. Projetion Merging: Reduing Redun-danies in Inlusion Constraint Graphs. In Proeedings of the 27th AnnualACM SIGPLAN-SIGACT Symposium on Priniples of Programming Languages,Boston, Massahusetts, Jan. 2000. To appear.[31℄ R. P. Wilson and M. S. Lam. EÆient Context-Sensitive Pointer Analysis for CPrograms. In Proeedings of the 1995 ACM SIGPLAN Conferene on Program-ming Language Design and Implementation, pages 1{12, La Jolla, California, June1995.[32℄ A. K. Wright. Simple Imperative Polymorphism. In Lisp and Symboli Compu-tation 8, volume 4, pages 343{356, 1995.[33℄ S. H. Yong, S. Horwitz, and T. Reps. Pointer Analysis for Programs with Stru-tures and Casting. In Proeedings of the 1999 ACM SIGPLAN Conferene on Pro-gramming Language Design and Implementation, pages 91{103, Atlanta, Georgia,May 1999.[34℄ S. Zhang, B. G. Ryder, and W. A. Landi. Program Deomposition for PointerAliasing: A Step toward Pratial Analyses. In Fourth Symposium on the Foun-dations of Software Engineering, Ot. 1996.[35℄ S. Zhang, B. G. Ryder, and W. A. Landi. Experiments with Combined Analysisfor Pointer Aliasing. In Proeedings of the ACM SIGPLAN/SIGSOFT Workshopon Program Analysis for Software Tools and Engineering, pages 11{18, Montreal,Canada, June 1998.

