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Abstract. Parallel programming languages that let multiple processors access
shared data provide a variety of sharing mechanisms and memory models. Under-
standing a language’s support for data sharing behavior is critical to understand-
ing how the language can be used, and is also a component for numerous program
analysis, optimization, and runtime clients. Languages that provide the illusion of
a global address space, but are intended to work on machines with physically dis-
tributed memory, often distinguish between different kinds of pointers or shared
data. The result can be subtle rules about what kinds of accesses are allowed
in the application programs and implicit constraints on how the language may
be implemented. This paper develops a basis for understanding the design space
of these sharing formalisms, and codifies that understanding in a suite of type
checking/inference systems that illustrate the trade-offs among various models.

1 Introduction

Parallel, distributed, and multithreaded computing environments are becoming increas-
ingly important, but such systems remain difficult to use and reason about. Data sharing
(the ability of multiple threads to hold references to the same object) is one source of
difficulty. Programming languages such as Java, Titanium, and UPC offer facilities for
sharing data that vary in subtle, often implicit, but semantically significant ways.

We take a type-based approach to characterizing data sharing in distributed pro-
gramming environments. This paper makes four principal contributions:

— We show that there is an essential difference between distributed pointers, which
may be eithelocal (within one address space)global (across address spaces) and
the patterns of access to data, which may be ejthigate (used by one processor)
or shared(used by many processors) [Section 2]. Earlier efforts have not clearly
distinguished these two concepts [Section 4].

— We show that there is more than one notion of data sharing, and that various sharing
models can be captured in a suite of type systems [Sections 3.1 through 3.3].

— We show that type qualifier inference can automatically add detailed sharing in-
formation to an otherwise unannotated program, and that such an approach can be
used with realistic distributed programming languages [Section 3.4].
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the Government and no official endorsement should be inferred.
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Fig. 1. Common grammar for expressions

— We report on the results of adding sharing inference to a real compiler for a par-
allel language, which highlights the strengths of our approach. We also present
unexpected results on the effect of the underlying memory consistency model on
program performance. Our experience in this area may be of independent interest
[Section 5].

2 Background

Parallel applications with a distributed address space have two distinct notions of data:

whether a pointer ikcal or globaland whether an object [ivateor shared Previous

work has not brought out the distinction between these two ideas (see Section 4). Our

primary thesis is that these should be separate concepts. This section explains what
these two ideas are and why they are distinct.

Figure 1 introduces a small data manipulation language of pointers and pairs. This
language extends one used by Liblit and Aiken [21] with new features to capture data
sharing behavior. For the sake of brevity, we omit a detailed formal semantics and
soundness proof. The semantics is unchanged from prior work, as our extensions here
serve only to restrict which programs are admitted by the type system without changing
how accepted programs behave at run time. Soundness is addressed briefly at the close
of Section 3.3, and follows as a straightforward adaptation of a more complete proof
previously published elsewhere for a related system [22].

A base expression may be an integer liteiabf a named variable from some pre-
defined environmentyd). Function calls f ¢) similarly assume that the functiorf)is
predefined. A sequencing operater, (¢) provides ordered evaluation. The language
has no facilities for defining functions, new types, or recursion. These features are un-
necessary to our exposition, though our techniques readily extend to realistic languages.

For our purposes, the essential aspects of the language are data structures (modeled
by pairs) and pointers. Data may be combined into pdirsef), which are unboxed
(held directly as an immediate, flat-structured value, with no intervening levels of in-
direction). Unboxed pairs and integers may be stored in memory using the allocation
operators{; ), which return boxed values stored in the local processor’'s memory (i.e.,
allocation is always on the local processor). The subsériptates whether a boxed
value is to besharedor private Informally, a private value can be accessed only by
the processor that allocated it. Thu$piae (5, 7)” produces a pointer to a private
memory cell holding the pair (5, 7). In contrast, shared values can be examined and
manipulated by multiple processors across the entire system.



If = holds the value of e (5,7), then “| 2" is the unboxed paiK5, 7). Each
pair selection operato@le or @2¢) accepts a pointer to a boxed pair, and produces
an offset pointer to the first or second component of the pair respectively. Thus, if
holds the value of ;. (5, 7), then “@2c” yields a pointer to the second component
within the boxed pair, and|“@2x" yields the unboxed value 7.

The left operand of an assignment e must be a pointer; the value given on the
right is placed in the memory location hamed by the pointer given on the left. The
explicit treatment of boxing and offset pointers allows us to model the update of com-
ponents of data structures. For example, the expression

(@ZTprivate <57 7>) =9

modifies the allocated pair frofs, 7) to (5, 9).

The remaining constructs model distributed memory systems. Allocation is local:
15 e always produces #cal pointer. A local pointer names memory local to a sin-
gle processor, and corresponds in practice to a simple memory address. It does not
make sense to transfer local pointers between processors; for that we geszhla
pointer, which names any location in the entire distributed system. This is akin to a
(processor, address) pair, whereprocessoruniquely identifies one processor in the
complete distributed system aaddressis a memory address within that processor’s
local address space. Local pointers are preferred when data is truly local, as global
pointers may be both larger as well as slower to use. The widen openatian( )
provides coercions from local to global pointers. For clarity we make these coercions
explicit. In practice, coercions would be inserted automatically by the compiler.

The transmission operatatrgnsmit  ¢) models sending a value to some other
machine. Transmission does not implicitly dereference pointers or serialize interlinked
data structures. H evaluates to an unboxed tuple, then both components of the tuple are
sent; ife evaluates to a pointer, then just a single pointer value (not the pointed-to data)
is sent. We intentionally leave the communication semantics unspeciiedmit
might correspond to a network broadcast, a remote procedure invocation, or any other
cross-machine data exchange. The important invariant igrdramit e must pro-
duce arepresentation ethat can be used safely on remote processors. For this reason,
it is typical to transmit widened values. Transmitting a local pointer without widening is
forbidden, as a local pointer value is meaningless on any but the originating processor.

2.1 Representation Versus Sharing

Consider the expression
Ti= Tprivate €
The referent ofr is supposed to be private: no other processor should ever have access
to the value ok. Thus, all pointers te, includingx, can use the cheaper local pointer
representation. In a single-threaded program, all data is both local and private.
Now consider
x:=transmit  (widen (Tgnareq €))

Here the value ot is declared to beshared and a global pointer to this value is
transmitted to a remote processor (or processors), where it is stored in a variable



For example, itransmit  broadcasts the value computed on processor 0, then each
running processor receives a pointer to processor 0's valueaofl stores this in its
own instance of the variable On each remote processor, thens a global pointer to
the same piece of shared data.

Finally, consider the following minor variation on the last example:

Y= Tshared €
x:=transmit  (widen (y))

As before,z is a global pointer that points to shared data. But what?ist points to
shared data, buj is on the same processor @asThus,y should be a local pointer to
shared data.

Itis this last case that distinguishlesal /global fromshared /private .The
distinction is thatocal /global determines the representation of pointers, while the
shared /private  determines how data is used. As illustrated in the examples above,
a local pointer may point either to shared or private data. Just having a local pointer
does not tell us whether concurrent access from other processors is possible.

Whilelocal /global isdistinctfromshared /private ,these two concepts are
not quite orthogonal. In particular, global pointers to private data are problematic: What
could it mean for a processor to hold a pointer to data that is supposed to be private to
another processor? As we show in Section 3, there are multiple possible answers to this
question.

2.2 Uses of Sharing Information

In later sections we show how to statically determine which data is private to a single
processor versus shared by multiple processors. Such information can support a number
of clients.Autonomous garbage collectiean reclaim private data as a strictly local op-
eration without coordinating with other processors [ERta location managemenan
be important when hardware constraints make shared memory a limited resource [26].
Cache coherence overhefit] can be avoided for private data that only one processor
ever seesRace condition detectiofl7, 24, 32] need never consider races on private
data.Program/algorithm documentatiocan be augmented by compiler validation of
programmers’ claimsConsistency model relaxati@llows more aggressive optimiza-
tions on data that other processors cannot see 88&jchronization eliminatiohoosts
performance for private monitors that can never come under contention £a6{rity
mandates careful treatment of private data in distributed systems without mutual trust.
Each of these clients depends upon identifying data accessed by only one processor.
Typically, this processor is the one in whose local memory the data lives; the data is
accessed by way of local pointers. However, local pointers alone do not suffice, because
of the possibility that a global pointer may alias the same location. Furthermore, even
if the data itself is only referenced by local pointers, transitive reachability is still a
concern: if we have a global pointer to a local pointer to a local pointer to the value 5, the
memory cell containing 5 could still be accessed by a remote processor via a sequence
of dereference operations that widen the local pointers to global on each dereference.



shared < mixed private < mixed

T == int |(r,7) | boxed wd T

w == local | global boxed wé T < boxed wd' 7 <= §<§

6 == shared | mixed | private (ri, ) < {71, 73) &= 1 <7 A <7
(a) Grammar for types (b) Subtyping relations

Fig. 2. Common properties of all type systems

Again, pointer representations are not the same as data sharing patterns, and the latter
cannot be trivially deduced from the former.

In Section 3 we show that some clients (in particular, autonomous GC and security)
require stronger privacy guarantees than others. This suggests a solution based not on a
single definition of privacy, but rather on a family of alternatives from which each client
can select according to its needs.

3 Type Systems

Figure 2 presents the types and the subtyping relation used in the following subsec-
tions. The basic types are unboxed integets and unboxed pairér, 7). Pointers
boxed w ¢ 7 to values of type- also carry qualifiers) andé, which respectively range
over{local ,global } and{shared ,mixed ,private }.

A local pointer may be widened into an equivalent global pointer. However, local
and global pointers have distinct physical representations and are manipulated using
very different machine-level operations. Therefore, widening is a coercion, not a sub-
typing relation, which is whyviden is included as an explicit operator in the language
in Figure 1. On the other hand, sharing qualifiers merely dictate which remote opera-
tions are permissible and which are forbidden. In general, shared and private pointers
can have identical physical representation and can be manipulated (where allowed at
all) by identical machine-level operations.

However, neither coercion nor simplistic subtyping is appropriate between shared
and private pointers. Shared pointers have functionality that private pointers do not: they
can be widened tglobal and used at a distance. Private pointers have unique func-
tionality of their own: they admit aggressive optimization that could violate language
invariants if observed by remote processors.

Furthermore, any sound type system must ensure that sharing qualifiers are consis-
tent across aliasing: local and global pointers may address the same location simultane-
ously, but no location may ever be considered to be both shared and private.

There are, however, good reasons to allow code that operates on either shared or
private data. For example, consider the typetbfs’ ” in the Object()  constructor
of a Java-like language. As observed earlier, there is no coerciongrivate to
shared orshared toprivate . If this isshared inthe constructorthen it can
never be called to construct a private object, whitki§ isprivate ,thenno shared



object may ever be built. Since every other constructor for every other class ultimately
callsObject() , any restrictions introduced here affect the entire system.

Reuse of constructor code, then, requires polymorphism. We find in Section 5.1
that basic utility code is also reused in many contexts and therefore imposes similar
requirements on the type system. In this paper we use subtyping polymorphism with
a “mixed ” sharing qualifiet A mixed datum may be eitheshared or private
code that manipulatesixed data may do so only in ways sound for both. The sub-
typing relation is defined in Figure 2(b). Note that subtyping does not cross pointers;
this restriction is necessary to avoid the well-known unsoundness problems that would
result with subtyping updatable references.

3.1 Late Enforcement

If we define “private” to mean neither read nor written by a remote processor, then
global pointers to private data may be freely created, but they cannot be dereferenced.
This section presents suchiete enforcemengystem.

Typing judgments A + ¢ : 7”7 are read “In environmend, it is provable that
expressiore has typer.” The auxiliary ezpand and pop functions defined in Figure 3
describe how types are transformed or constrained by widening and cross-processor
communication. Observe that type expansion recursively descends into pairs but never
crosses pointers; we expand only the immediate value directly being communicated
across processor boundaries. Integers and global pointers are the same everywhere.
Local pointers expand to global only at the topmost level of a typgand), but are
banned from appearing within expanding pajps).

(Global pointers are, in general, larger than local pointers. Therefore, expanding
local pointers to global pointers inside a pair would change the size and layout of the
pair. This is undesirable in practice for languages where each named structure type
(class) must have a single, consistent layout. An alternative would be to allow deep
local pointers to remain the same size, but mark them as invalid for use by the remote
processor. This possibility is explored in greater detail elsewhere [21], and is omitted
here for simplicity.)

Types for integers, variables, and function applications are completely standard.
Sequencing, pair construction, and subtyping are also given in the typical manner;

Alx) =T A(fy=7—-1 Al e:r
AF 7:int AF o7 AF fe:7
Ak e AF €7 Akl e:mm AF e:m
Al e;e:7 A F (e, es): (11, 72)

AFe:7 77
Al e: 71

Shared or private allocation creates an appropriately qualified local pointer:

1 An alternative is to use parametric polymorphism, which is more expressive, but subtype poly-
morphism is a little simpler to explain.



expand(boxed wé 7) = boxedglobal §7
(pop(71), pop(72))

expand(int ) = int

expand ({T1,72))

pop(boxed global § 7) = boxedglobal ¢ 7

pop((T1,72)) = (pop(T1), pop(72))
pop(int ) = int

Fig. 3. Supporting functions for late enforcement. Notice that is not defined for local pointers.

At e:7 §e{shared ,private }
A F 71se:boxedlocal &7

Notice late enforcement places no restrictions on the type of data to be boxed. One may,
for example, create a pointer to shared data containing embedded pointers to private
data.

Dereferencing of local pointers is standard, and is allowed regardless of the shar-
ing qualifier. For global pointers, we only allow dereferencing if the pointed-to data is
known to be shared, and apply pointer widening to the result:

A F e:boxedlocal o7 A F e : boxed global shared T
AF Je:7 A+ |e: expand(T)

This is the first instance in which late enforcement restricts program behavior: private
data may not be read across a global pointer. Private data is only visible to the owning
processor, by way of local pointers.

Assignment is similar, and represents the second instance in which late enforce-
ment restricts program behavior. A local pointer may be used to modify both shared
and private data, while a global pointer may only touch shared data. To enforce that
the assigned value embed no local pointers, global assignment carries an additional
requirement that the type being assigned be preserved by type expansion:

A F e:boxedlocal 7 AF €:7

AFe=¢€:7
A F e : boxed global shared T
AFée:7 expand(t) =T
Ak e=¢:71

Widening directly applies the type expansion function to coerce local pointers into
their global equivalents. Transmission across processor boundaries requires that type
expansion be the identity, just as for global assignment; typically, one would transmit a
value that had just been widened:

Ak e:T Ak e:r expand(t) =T
A F widen e : expand(T) A F transmit e : ezpand(T)




Selection propagates the sharing qualifier through pointer displacement in the obvi-
ous manner:
A F e:boxed wé (r,72) ne{l,2}
At @ve:boxed wiT,

Design Implications In the rules given above, it is only at the point of an actual deref-
erence or assignment that we add restrictions to implement late enforcement. Any pro-
gram that tries to read or write private or mixed data via a global pointer fails to type
check. In conjunction with thezpand function, these rules implicitly cover the case of
global pointers to local pointers as well. Suppose thata local pointer to private data,

and thaty is a global pointer to a shared location containinghen:

p : boxed local private T
q : boxed global shared boxed local private T
1l g : boxed global private T

Dereferencing does not yield local pointer, but rather an equivalent pointer widened
to global. Sincep points to private data, the widened pointer also points to private data
and cannot be dereferenced or assigned through.

In general, the late enforcement system forbids undesirable behavior only if a pri-
vate value is actually used by a remote processor. A global pointer to private data may
be created, copied, sent to other processors, placed into data structures, compared to
other pointers, and so on, but the memory location named by the pointer cannot be
examined or modified.

We know of two situations in which the tygmoxed global private 7 could
be desirable. First, this pointer may be embedded in a tuple containing both shared and
private components. The shared portions of the data structure may be accessed remotely,
while the private portions are not. Type checking such a program requires that we allow
global pointers to private data to be formed and manipulated, provided that they are
never actually used.

Second, although a global pointer is conservatively assumed to address remote
memory, a global pointer may address local memory as well. Real distributed languages
typically allow dynamically checked conversion of global pointers back to local. A
global pointer to private data, then, might be converted back to a local pointer to private
data, whereupon it could be used freely.

Applicability and Limitations If we intend to use sharing qualifiers to make data
location management decisions, the weak guarantees offered by late enforcement are
sufficient. When memory is reserved usifigyaee  OF Tsharea » WE Can use the sub-
scripted qualifier to choose a suitable region of memory. Global pointers may escape to
distant processors, but the memory occupied by private data is never examined or mod-
ified remotely. Thus, private data can reside in memory that is not network-addressable.
Sharable memory, which may be slower or more scarce, is reserved for shared data.
Several other clients can make use of late enforcement guarantees. Distributed cache
coherence need not be maintained for data that is never examined remotely. Race condi-
tion detection systems need not concern themselves with global pointers to private data,



since these can never create races. Similarly, any sequence of operations on private data
may be reordered or optimized quite freely even under the strictest of consistency mod-
els, because changes to intermediate states are never observable by other processors.
Treating lock acquisition as a dereference, private locks can be eliminated at compile
time.

However, late enforcement is too late for other applications. Certain languages may
be unable to autonomously garbage collect using late enforcement. Security concerns
may also be unsatisfied by exposed pointers to private data. Our remaining type systems
incrementally impose stricter enforcement policies to accommodate these concerns.

3.2 Export Enforcement

In some languages, late enforcement is too weak to support autonomous garbage collec-
tion. As suggested earlier, many distributed programming environments support checked
conversion of global pointers back to local. In such a system, the following sequence of
actions could take place:

1. Processor A creates private data and sends its address to remote processor B. Pro-
cessor B now holds a global pointer to this private data.

2. Processor A destroys all of its own references to the private data. The global pointer
held by processor B is now the only live reference to this private data.

3. Some time later, the processor B sends the global private pointer back to processor
A.

4. Processor A uses a checked conversion to recover a local pointer to its own private
data, and subsequently dereferences that pointer.

Autonomous garbage collection requires that any live data have at least one live
local reference. If processor A were to autonomously garbage collect between steps 2
and 3, the private data would seem unreachable and the memory it occupies would be
reclaimed. Therefore, if a language allows narrowing casts from global to local, late
enforcement cannot be used to support autonomous garbage collection.

We modify the late enforcement system as follows. One possible source of global
pointers to private data is the initial environment)( We impose a well-formedness
requirement on the initial environment, stipulating thaked global private T
not appear within any part of the type for any variable or function. For compound ex-
pressions, the chief source of global pointers isvtiden operator, which relies upon
expand to expand local pointers to global. Figure 4 gives a revisgdnd function that
only produces global pointers to shared data. Notice that the new version is not defined
for pointers to private or mixed data. Thisgnsmit  can no longer send pointers to
private data across processor boundariesyliien coercion is similarly restricted, as
are global assignment and global dereferencing. Given a well-formed starting environ-
ment, the revisedzpand function ensures that no expression has tygeed global
private 7.

The newezpand function guarantees that the only pointers exported are those to
shared data. However, observe that when a pointer ofligged w shared 7 is ex-
panded, there are no restrictions on the typef the pointed-to data. In particular,



expand(boxed w shared 7) = boxed global shared T
expand((11,72)) = (pop(71), pop(72))

expand(int ) = int

Fig. 4. Revised type expansion function supporting export enforcement. The suborginate
function is unchanged from Figure 3.

one may freely transmit a pointer to a shared memory cell which, in turn, points to
private databoxed w shared (boxed o’ private 7') is an identity forezpand.

Thus, thisexport enforcemertiype system restricts only the actual, immediate values
being exported. It does not extend transitively beyond the first level of pointers. This
is sufficient to support autonomous garbage collection, as it guarantees that no remote
processor can hold the only live reference to any piece of private data.

This approach does not eliminate the need to manage memory used by objects which
genuinely are shared. Rather, it complements distributed garbage collection techniques
(e.g. stubs and scions [30]) by identifying a private subset of data which can be collected
aggressively using simpler, traditional, purely local collection algorithms.

3.3 Early Enforcement

In an untrusted environment, the address at which private data is stored may itself be
sensitive information. Security concerns may mandate that no private address ever es-
cape the owning processor. Neither late nor export enforcement can provide that kind
of protection. The vulnerability can be seen in the type checking rule for global deref-
erence, which requires that the pointed-to data be shared. In an untrusted environment,
a remote processor that willfully disregards this restriction may be able to transitively
walk across pointers and ultimately reach private data. Global assignment is similarly
vulnerable. Runtime checks could detect such misbehavior, but static (compile-time)
assurances may be a more attractive option.

For complete control over private addresses, we refine export enforcement to addi-
tionally require that no private data be transitively reachable from shared memory. For
variables and functions, we extend the well-formedness requirements on initial envi-
ronments in the obvious manner. For compound expressions, the only change required
is in the type checking rules for allocation. Late and export enforcement allowed either
shared or private boxing of any type For early enforcement, we impose an additional
restriction on shared allocation:

AFe:T
A F Tpivae € : boxed local private T

AkFe:T allShared(T)
A F Tsnareq € : boxed local shared T




The newallShared predicate holds if and only if all pointers directly embedded
within a type are shared:

allShared(boxed w § 7) = (6 = shared )
allShared({T1, 7)) = allShared(r) A allShared(72)
allShared(int ) = true

Thus, no pointer to private data may ever be placed in shared memory. If we require
that the initial environment4) obey similar restrictions, then in general no private stor-
age is transitively reachable from shared or global memory. The universe of shared data
is transitively closed. A consequence of this is that the sharing constraint in the global
dereference and assignment rules is always trivially satisfied: because all data transi-
tively reachable from a global pointer must be shared, it is impossible for a malicious
remote processor to disregard the sharing constraint and transitively reach private data.

Applicability and Trade-offs Clearly, export enforcement is more restrictive than late
enforcement, and early enforcement is more restrictive still. By accepting fewer pro-
grams, export and early enforcement allows us to make progressively stronger guaran-
tees about the meaning of “private” in those programs that do type check. Thus, early
enforcement can also support all late enforcement clients, such as race detectors or re-
ordering optimizers, as well as autonomous garbage collection. The effectiveness of
some clients may be reduced, though, as early enforcement treats some data as shared
which late or export enforcement could have taken as private.

The set of programs accepted under each system is a strict subset of those accepted
under the one before. We have adapted an earlier prdotaf /global soundness
[22] to show that the late enforcement system is sound, from which the soundness of the
other two systems follows. The additional requirements imposed by each system (e.g.
no access to private data by way of a global pointer) are enforced directly by the type
checking rules; correctness of these restrictions is verifiable by direct inspection of the
type checking rules for the corresponding operations.

3.4 Type Inference

The type systems described above are easily converted from type checking to type in-
ference. We illustrate late enforcement inference here. Inference for export and early
enforcement is similar, but has been omitted for the sake of brevity.

We assume that the program is known to type check disregarding sharing quali-
fiers. Thelocal /global qualifiers can also be inferred [21], and one may wish to
infer all qualifiers simultaneously. For simplicity we assume hereltitai /global
inference has already taken place separately.

Our type inference rules produce a system of constraints that must be solved. Rules
are given in Figure 5; additional sharing constraints arise fronethend function as
defined in Figure 6. For clarity of presentation, the rules use several abbreviations:

1. Constraint sets are not explicitly propagated up from subexpressions; the complete
constraint set is the union of all sets of constraints induced by all subexpressions.



Alz) =71

Al i:int Al x:7T
Alfy=71—717 Are:r "<7r Al e:T
AF fe:r A F T5e:boxedlocal 4§71
A F e: boxed global shared T
A+ e:boxedlocal &7 expand(T,7")
AF le:T AF le:7
A F e:boxedlocal 47
Akl et AFe:7 AkF e 7 T <r
AFe;ée:7 AFe=¢€:71
A F e: boxed global shared T
AF 7 <71 expand(r,T) AbFe:mm AF es:To
AFe=¢:71 A F (e1,e2) : (11, T2)
A F e:boxed wé (r,72) ne{l,2} AF e:7  expand(t,T)
A F @ve:boxed wé T, A F widen e: 7’

AF e:r  expand(r,T)
A+ transmit  e: T

Fig. 5. Type inference rules for late enforcement

2. A nontrivial rule hypothesis such as
e : boxed global shared T
should be read as an equality constraint
e: Ty 70 = boxed global shared T

3. All constraint variables are fresh.

Any solution to the constraints induced by these rules gives a valid typing for the
program. We note that setting all possible variablesthtared always produces one
legitimate solution. Thus, languages that assume all data to be shared are safe, albeit

expand(boxed w d 7,boxed W' &' 7)) = {§ =6, 7=7"}
expand((T1,T2), (11,73)) = expand(r1,71) U expand (T2, Ts)

expand(int ,int ) = 0

Fig. 6. Additional constraints induced by supporting functions. We assloval /global
qualifiers have already been assigned; these functions cover only the additional sharing con-
straints.
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private ) shared

Fig. 7. Constraint graph requiring choice between shared and private. An arrewy encodes
the constraint: < y

overly conservative. Because our sharing qualifier lattice has nthere is no least
solution. Rather, we are interested in the “best” solution, defined as the one having
the largest number gfrivate  qualifiers. This maximally-private solution may be
computed efficiently as follows:

1. Assume that initially we have a static typing showing what is a pointer, pair, or
integer, as well as which pointers are local or global.

2. Using the equivalences in Figure 2(b), expand type constraiatsr’ andr < 7/
to obtain the complete set of sharing constraints.

3. Identify the set of qualifier constants that are transitive lower bounds of each qual-
ifier variable. Collect the sef of all constraint variables that have eittgrared
or mixed as a transitive lower bound. These variables canngptrivate

4. For each sharing qualifier variablenot in S, set§ = private . This may cause
private  to appear as a transitive lower bound on a variable where it was not
present earlier.

5. For each sharing qualifiér, let d be the least upper bound of its constant transitive
lower bounds. Leb = d in the final solution.

The meat of this algorithm devolves to graph reachability flowing forward along
constraint edges from nodes representing each of the three type qualifiers. The solution,
therefore, is computable in time linear with respect to the number of sharing qualifiers
in the fully typed program [16, 19]. Abcal /global inference is also linear, this
gives language designers great flexibility. One may expose all of these type choices in
the source language, or one may present a simpler source-level model augmented by
fast compiler-driven type inference to fill in the details.

The critical feature of this algorithm is that it first identifies all qualifiers that cannot
possibly be private, then binds all other variables to private, and lastly chooses between
shared and mixed for the variables that could not be made private. This strategy maxi-
mizes the number gfrivate  qualifiers in exchange for driving some other qualifiers
to mixed instead ofshared . In the example in Figure 7, our algorithm bindgo
private , which means thai; can beprivate  as well butd, must bemixed . An
alternative is to sed to shared , which would drived; to mixed but allowd, to be
shared . In either case, somg, must bemixed . Our algorithm resolves such choices
in favor of maximizing the number of variables boupivate , as this is most useful
to the clients of interest.



4 Related Work

The static type systems of previous proposals have not dealtae#h /global and
shared /private in a general way. As a result, they are all either less general than
is possible, unsafe, or both. Lack of generality prevents programmers from enforcing
that data should be private, which makes it more difficult to reason about program cor-
rectness and results in missed opportunities for optimization. Lack of safety exhibits
itself in unsafe (often implicit) casts among pointer types that impede optimization,
or in under-specified semantics where optimization may change program behavior in
unexpected ways.

One group of languages guarantees safety but has no facility for declaring private
heap data. In these languages the stack is private but the entire heap must be treated
as potentially shared. Java, Olden [9], and Titanium (prior to this work) [20] are in this
category. For these languages, our techniques provide a basis for automatically inferring
private heap data. We also believe it is important for programmers to be able to declare
private data explicitly, as knowledge of what data is private is critical in understanding
parallel and distributed programs.

Jade is a safe language that distinguishes local from global pointers, and which al-
lows some heap data to be private. This private data can never be transitively reachable
from the shared heap [31], which corresponds to our early enforcement system (Sec-
tion 3.3). Our results show that where security is not a primary concern, significantly
more flexible sharing of data is possible, allowing for more data to be statically identi-
fied as private and thereby making privacy-dependent analyses more effective.

EARTH-C explicitly offers both local/global and shared/private type qualifiers. Lo-
cal/global may be inferred [36], but shared/private must be given explicitly [18]. Our ap-
proach shows that shared/private is amenable to inference as well, operating either fully
automatically or to augment programmer directives. The broader EARTH-C project has
also clearly demonstrated the value of identifying local private data to drive analyses
such as redundant read/write removal and communication optimization [37].

Among the unsafe (C-derived) languages, AC [10], PCP [8], and UPC [11] offer
shared and private data. However, their type systems do not distinguish the addresses
of private data from narrowed global pointers to shared data. In effect, these languages
offer only global shared  andlocal mixed . Although private data exists at run
time, the static type system cannot identify it in a useful manner, and many of the clients
listed in Section 2.2 cannot be deployed.

Also in the C family, CC++ [12] and Split-C [14] do not directly address the notion
of private data. This may mean that all data is presumed shared, but it is difficult to know
exactly what semantics are required, especially with regard to code reordering and other
aggressive optimizations. Cilk explicitly treats all memory as shared, and states that the
programmer is responsible for understanding the underlying memory model provided
by the host hardware [34]. We believe that sharing inference can support aggressive
optimization without the added burden of under-specified semantics.

Our type systems are similar to escape analysis. Previous research has focused on
identifying data that does not escape a stack frame or a thread of execution [3,6, 7,
13, 35]. The early enforcement system may be thought of as identifying data that does
not escape a local address space. Considered in this light, the late enforcement system



is unusual: escape of addresses is permitted, provided that the data referenced by an
escaped address is never actually examined or modified from a distance. This is more
permissive than escape analysis, yet it is strong enough to support certain traditional

escape analysis clients, such as synchronization removal.

To our knowledge, only one earlier study takes an approach that is similar to late
enforcement. The “thread-local analysis” presented by Aldrich et al. [3] defings
tithreaded objectas objects that escape from one thread and are also written to by a
(conservatively defined) distinct thread. An escaped object that is never written to need
not be considered multithreaded. This is similar in spirit to late enforcement: a globally
reachable piece of data that is not actually accessed remotely need not be considered
shared. The question of whether something akin to late enforcement can be applied
directly to stack and thread escape analyses warrants further study.

5 Experimental Findings

We have added sharing qualifiers to Titanium, an experimental Java dialect for high per-
formance parallel computing [20]. Unqualified references are assumedsttabed ;
programmers may declare referencepidgate  or mixed subject to validation by

the type checker. Stronger (more private) qualifiers are added automatically using type
inference. To highlight the bounds of the design space, both late and early enforcement
are available. (Export enforcement would yield performance results between these two.)
Our inference engine is based on tigpial  qualifier inference engine [15].

Our benchmarks are single-program multiple-d&BND codes with no explicit
sharing qualifiers. All benchmarks are designed for execution on distributed memory
multiprocessors, and reflect the scientific focus of SPMD programming. The appli-
cations include Monte Carlo integratiopi(), sorting éample-sort ), dense lin-
ear algebralg-fact , cannon ), a Fourier transform3d-fft ), particle methods
(n-body , particle-mesh ,ib [28]), and solvers for computational fluid dynamics
(gsrb , pps [4], amr [29], gas [5]).

Whole-program sharing inference including the Java class library (roughly an ad-
ditional 16,000 lines) takes no more than one second on a 1.3 GHz Pentium 4 Linux
workstation. As the inference algorithm itself is linear, it should scale well to much
larger code bases.

We studied several of the sharing based analyses and optimizations in Section 2.2.
Detailed results appear in a companion report, which also provides additional details
on incorporating sharing analysis into a complete programming language [23]. Here
we focus on three areas: the static prevalence of various inferred types; dynamic tal-
lies of shared versus private allocation to support data location management; and the
performance impact of sharing inference on consistency model relaxation.

5.1 Static Metrics

Table 1 shows the number of static reference declaration sites in each benchmark: places
where some sharing qualifier could syntactically appear. The Titanium stack is trivially



Table 1.Benchmark sizes and relative counts of inferred qualifiers.

benchmark lines siteg k.ite . egrly .
shared mixed private'shared mixed private
pi 56 12 25% 0% 75%| 25% 0% 75%
sample-sort 321 73 38% 1% 60%| 38% 1% 60%
lu-fact 420 150 54% 3% 43%| 54% 3%  43%
cannon 518 162 36% 2% 61%| 36% 2% 61%
3d-fft 614 191 37% 1% 63%| 3% 1% 63%
n-body 826 113 76% 1% 23%| 6% 1% 23%
gsrb 1090 281 48% 1% 51%| 48% 1% 51%
particle-grid 1095 201 83% < 1% 16%| 84% 0% 16%
pps 3673 551 41% 5% 54%| 44% 6% 50%
ib 3777 1094 56% 1% 43%| 58% 1% 41%
amr 5206 1353 57% 1% 42%| 59% 1% 40%
gas 8841 1699 50% < 1% 50%| 51% < 1% 49%

private, so we exclude local variables and tabulate only heap data. Although whole pro-
gram inference was used, we include here only those sites appearing in the benchmark
application code (not in libraries). For each style of enforcement, we show the fraction
of static references inferred abared , mixed , andprivate

In our review of related work, we saw that several distributed languages either have
only a private stack or else have no notion of private data at all. We believe that this is an
important omission. Regardless of which system is used, we consistently identify large
amounts of private heap data in all benchmarks of all sizes. The largest benchmark,
gas, has private data at half of all declaration sites. Other benchmarks range from 16%
to 75%, and overall 46% of all sites in all benchmarks are infepracate . This is
encouraging news for analysis clients which may want to exploit such information. It
also reinforces the need for inference: it is unlikely that any human programmer could
correctly place all such qualifiers by hand, or maintain such qualifiers over time.

A small number ofmixed qualifiers appear in nearly every benchmark. In many
casesmixed is found in utility code shared by distinct parts of the application; para-
metric polymorphism could certainly be used here instead of subtyping. Elsewhere
we find code, not isolated within methods, that performs complex operations on ei-
ther shared or private data based on complex run time control decisionsniXee
qualifier works well here, whereas method-based parametric polymorphism would be
difficult to apply without nontrivial code factoring. In both cases, the code is clearly
polymorphic with respect to sharing, and without a polymorphic type system signifi-
cantly more data would be forced to bleared . Polymorphism may be more impor-
tant to the overall system than the snmalked counts would suggest.

When heap data is shared by several processors, the obvious choice is to address
it using global pointers; it is not clear that local pointers to shared data are needed.
However, other thapi , all programs show heavy use of local pointers to shared data:
24%—-53% of all shared heap data is addressed by local pointers, and these numbers
remain high (42% foamr, 32% forgas) even for the largest benchmarks. A local
shared pointer often represents the locally allocated portion of some larger, distributed



Table 2.Kilobytes allocated in shared or private memory. We agsitb  andib due to unrelated
Titanium bugs which prevent them from running to completion.

benchmark late . early .
shared private shared private

pi 74 (75%) 25 (25%) 74 (75%) 25 (25%)

sample-sort 3306 (5%) 66453 (95%) 3347 (5%) 67843 (95%)
cannon 8771 (60%) 5768 (40%) 8771 (60%) 5768 (40%)
3d-fft 4755 (52%) 4328 (48%) 4755 (52%) @ 4328 (48%)
n-body 368 (< 1%) 101700 (100%) 368 (< 1%) 101700 (100%)

particle-grid 9511 (99%) 123 (1%) 9513 (99%) 123 (1%)

pps 19459 (26%) 55360 (74%) 60518 (81%) 14302 (19%)
amr 36455 (88%) 4841 (12%) 40990 (99%) 306 (1%)

gas 2587611 (55%) 2157523 (4598b87866 (55%) 2157267 (45%)

data structure. Each processor retains a local pointer to the data that it created, and
may use that pointer for efficient access to the data which it “owns”. Earlier work has
demonstrated that use of local pointers is critical to performance [21]; if a quarter to
half of all statically shared data references were forced to be global, performance can
only suffer.

5.2 Data location management

Shared memory may be a scarce or costly resource. We have instrumented each bench-
mark to tally the number of shared and private allocations over the course of an entire
run. Table 2 gives these totals, in bytes, for each of late and early enforcement. Observe
that we see slight differences between the two enforcement schemes even on small
benchmarks which reported identical results in Table 1. This is because that earlier table
examined only application code and excluded libraries, whereas these allocation counts
apply to the entire program. Slight differences in inference results for library code are
visible here as slight differences in allocation counts for late versus early enforcement.

Overall, we see wide variation between benchmarks, ranging from 99% of allo-
cations sharedpgrticle-grid ) to nearly 100% of allocations private-pody ).
We have examples at both extremes among both the large and small benchmarks. Our
largest benchmarlgas, is also the most memory intensive, and we find that 45% of
allocated bytes can be placed in private memory.

Most byte counts do not vary appreciably between late and early enforcement,
thoughamr sees an 11% shift. The most dramatic shift is foungps : late enforce-
ment allows 74% private allocation, while early enforcement drops that to merely 19%.
In Table 1 we observe thaips shows a relatively large difference in static private
declaration counts as well. Clearly those differences encompass data structures which
account for a preponderancepyds ’'s runtime memory consumption. When running on
machines with costly shared memopps stands to benefit greatly from data location
management guided by sharing inference.
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Fig. 8. Performance cost of sequential consistency. We turiact  andgsrb due to unre-
lated Titanium bugs which prevent them from running to completion.

5.3 Consistency Model Relaxation

Titanium uses a fairly weak consistency model, which allows the compiler or hard-
ware to reorder memory operations [20]. A stronger model would be a more attractive
programming target if it did not unacceptably harm performance. As suggested in Sec-
tion 2.2, we can use sharing inference to allow private data accesses to be reordered
while ensuring the stronger semantics at the language level. We have implemented such
an optimization for a sequentially consistent variant of Titanium.

Figure 8 presents benchmark running times using each of four configuraigine.
uses no inference: all data is assumed shared, and sequential consistency is enforced
everywhereEarly andlate enforce sequential consistency except where private data is
inferred using the corresponding type syst&#eakis the weak consistency model used
in Titanium, which is an upper bound on the speedup from allowing reordering.

Because the benchmarks have very different raw performance, we present the run-
ning times normalized by the running time of théweimplementation of sequential
consistency. Measurements were taken on an SMP Linux workstation with four Pen-
tium IIl, 550 MHz CPU’s and 4GB of DRAM.

The large speedup for wegh confirms that sequential consistency is costly if
bluntly applied. Sharing inference is able to identify enough private data, though, to
erase that penalty in the late and early variants. Hand inspection shows that sharing
inference foipi is perfect: all data in the main computational loop is infepadate
and no restrictions are needed on optimizations to enforce sequential consistency. The
early, late, and weak versiongif yield identical machine code; apparent performance
here are measurement noise.

For most of the other benchmarks, there is only modest improvement between the
naive implementation and the weak consistency model, so the potential speedup from
sharing inference is limited. This defies conventional wisdom, which says that sequen-



tial consistency is too expensive. There are two potential sources of inefficiency in the
sequentially consistent versions: lost optimization opportunities (e.g., loop transforma-
tions) and additional memory fences between load and store instructions. Neither of
these appear to be significant in our benchmarks. This highlights a limitation of our

experimental environment: neither the Titanium compiler nor the Pentium hardware is
taking advantage of weak consistency’s looser requirements to significantly boost per-
formance over sequential consistency.

Among the larger benchmarksannon , 3d-fft , andamr show the largest per-
formance gap between theima and weak models. These, then, stand to benefit the
most from sharing inference. 18d-fft , inference (either late or early) is able to
nearly match the weak model. Modest benefits are seearinon , where the larger
slowdown is only partly offset by inference. Late and early enforcement yield identi-
cal results forcannon ; the difference between the late and early slowdown factors is
measurement noise.

The results foamr are interesting. None of the key performance-critical data struc-
tures can be inferred private using our current system. Like many SPMD programs,
amr has an alternating-phase structure: all processors exchange boundary information,
then each processor updates its own local portion of the shared grid, then all processors
communicate again, and so on. Data is shared widely dwmgs communication
phase, but we would like to treat that same data as private during local computation
phases. These phases are delimited by global barrier operations, so no processor looks
at another processors’ data while the local computations are taking place. For sharing
inference to be effective here, it would need to allow for a limited form of flow sensitiv-
ity keyed to these phases. Because the structure of barriers is quite regular in practice
[2], we believe such an extension of our techniques should be feasible.

Observe that two benchmarkspody andparticle-grid exhibit unexpected
speedups under nee sequential consistency. Because the direct penalty of sequential
consistency here is so small, measurement noise due to secondary effects (such as cache
alignment and code layout) becomes more noticeable.

6 Conclusions

We have presented a general approach to describing the data sharing behavior of dis-
tributed programming languages, and codified that approach in a suite of type systems.
Early enforcement resembles earlier work on escape analysis. Export and late enforce-
ment are unusual in enforcing privacy closer to the point of use, rather than at the point
of escape, allowing them to identify more private data in exchange for weaker guar-
antees as to what “private” actually means. We have considered these type systems in
light of the optimizations they would permit, and present experimental data on two such
optimizations: data layout management and consistency model relaxation.

The approach is conducive to efficient type qualifier inference, and can be adapted
to suit realistic languages. Our survey of related languages suggests that most fall into
two categories: those which under-specify the behavior of shared data, and those which
equate shared with global and private with local. Our approach points out that other
combinations, such as mixed pointers and local shared pointers, have a role to play.
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