
Small Formulas for Large Programs:
On-line Constraint Simplification in

Scalable Static Analysis

Isil Dillig Thomas Dillig Alex Aiken
{isil, tdillig, aiken}@cs.stanford.edu

Department of Computer Science, Stanford University

Abstract. Static analysis techniques that represent program states as
formulas typically generate a large number of redundant formulas that
are incrementally constructed from previous formulas. In addition to
querying satisfiability and validity, analyses perform other operations on
formulas, such as quantifier elimination, substitution, and instantiation,
most of which are highly sensitive to formula size. Thus, the scalability
of many static analysis techniques requires controlling the size of the
generated formulas throughout the analysis. In this paper, we present
a practical algorithm for reducing SMT formulas to a simplified form
containing no redundant subparts. We present experimental evidence
that on-line simplification of formulas dramatically improves scalability.

1 Introduction
Software verification techniques have benefited greatly from recent advances in
SAT and SMT solving by encoding program states as formulas and determin-
ing the feasibility of these states by querying satisfiability. Despite tremendous
progress in solving SAT and SMT formulas over the last decade [1–5], the scala-
bility of many software verification techniques relies crucially on controlling the
size of the formulas generated by the analysis, because many of the operations
performed on these formulas are highly sensitive to formula size. For this reason,
much research effort has focused on identifying only those states and predicates
relevant to some property of interest. For example, predicate abstraction-based
approaches using counter-example guided abstraction refinement [6–8] attempt
to discover a small set of predicates relevant to verifying a property and only in-
clude this small set of predicates in their formulas. Similarly, many path-sensitive
static analysis techniques have successfully employed various heuristics to iden-
tify which path conditions are likely to be relevant for some property of interest.
For example, property simulation only tracks those branch conditions for which
the property-related behavior differs along the arms of the branch [9]. Other
path-sensitive analysis techniques attempt to improve their scalability by either
only tracking path conditions intraprocedurally or by heuristically selecting a
small set of predicates to track across function boundaries [10, 11].

All of these different techniques share one important underlying assumption
that has been validated by a large body of empirical evidence: Many program
conditions do not matter for verifying most properties of interest, making it
possible to construct much smaller formulas sufficient to prove the property.
If this is indeed the case, then one might suspect that even if we construct a

formula φ characterizing some program property P without being particularly
careful about what conditions to track, it should be possible to use φ to construct
a much smaller, equivalent formula φ′ for P since many predicates used in φ do
not affect its truth value.

In this paper, we present a systematic and practical approach for simplifying
formulas that identifies and removes irrelevant predicates and redundant subex-
pressions as they are generated by the analysis. In particular, given an input
formula φ, our technique produces an equivalent formula φ′ such that no simpler
equivalent formula can be obtained by replacing any subset of the leaves (i.e.,
syntactic occurrences of atomic formulas) used in φ′ by true or false. We call
such a formula φ′ simplified.

Like all the afore-mentioned approaches to program verification, our interest
in simplification is motivated by the goal of generating formulas small enough
to make software verification scalable. However, we attack the problem from a
different angle: Instead of restricting the set of predicates that are allowed to
appear in formulas, we continuously simplify the constraints generated by the
analysis. This approach has two advantages: First, it does not require heuristics
to decide which predicates are relevant, and second, this approach removes all
redundant subparts of a formula in addition to filtering out irrelevant predicates.

To be concrete, consider the following code snippet:
enum op_type {ADD=0, SUBTRACT=1, MULTIPLY=2, DIV=3};

int perform_op(op_type op, int x, int y) {

int res;

if(op == ADD) res = x+y;

else if(op == SUBTRACT) res = x-y;

else if(op == MULTIPLY) res = x*y;

else if(op == DIV) { assert(y!=0); res = x/y; }

else res = UNDEFINED;

return res; }

The perform_op function is a simple evaluation procedure inside a calculator
program that performs a specified operation on x and y. This function aborts
if the specified operation is division and the divisor is 0. Assume we want to
know the constraint under which the function returns, i.e., does not abort. This
constraint is given by the disjunction of the constraints under which each branch
of the if statement does not abort. The following formula, constructed in a
straightforward way from the program, describes this condition:

op = 0 ∨ (op 6= 0 ∧ op = 1) ∨ (op 6= 0 ∧ op 6= 1 ∧ op = 2)∨
(op 6= 0 ∧ op 6= 1 ∧ op 6= 2 ∧ op = 3 ∧ y 6= 0)∨

(op 6= 0 ∧ op 6= 1 ∧ op 6= 2 ∧ op 6= 3)

Here, each disjunct is associated with one branch of the if statement. In each
disjunct, a disequality constraint of the form op 6= 0, op 6= 1, . . . states that the
previous branches were not taken, encoding the semantics of an else statement.
In the fourth disjunct, the additional constraint y 6= 0 encodes that if this branch
is taken, y cannot be 0 for the function to return.

While this automatically generated constraint faithfully encodes the condi-
tion under which the function returns, it is far from concise. In fact, the above

constraint is equivalent to the much simpler formula:
op 6= 3 ∨ y 6= 0

This formula is in simplified form because it is equivalent to the original formula
and replacing any of the remaining leaves by true or false would not result in an
equivalent formula. This simpler constraint expresses exactly what is relevant to
the function’s return condition and makes no reference to irrelevant predicates,
such as op = 0, op = 1, and op = 2. Although the original formula corresponds
to a brute-force enumeration of all paths in this function, its simplified form
yields the most concise representation of the function’s return condition without
requiring specialized techniques for identifying relevant predicates.

The rest of the paper is organized as follows: Section 2 introduces preliminary
definitions. Section 3 defines simplified form and highlights some of its properties.
Section 4 presents a practical simplification algorithm, and Section 5 describes
simplification in the context of program analysis. Section 6 reports experimental
results, and Section 7 surveys related work. To summarize, this paper makes the
following key contributions:

– We propose on-line constraint simplification as an effective technique for
controlling the size of formulas generated while analyzing a program.

– We define what it means for a formula to be in simplified form and detail
some important properties of this form.

– We give a practical algorithm for reducing formulas to their simplified form
and show how this algorithm naturally integrates into the DPLL(T) frame-
work for solving SMT formulas.

– We demonstrate the effectiveness of our on-line simplification algorithm in
the context of a program verification framework and show that simplification
improves overall performance by orders of magnitude, often allowing analysis
runs that did not terminate within the allowed resource limits to complete
in just a few seconds.

2 Preliminaries
Any quantifier-free formula φT in theory T is defined by the following grammar:

φT := true | false | AT | ¬AT | φ′T ∧ φ′′T | φ′T ∨ φ′′T
In the above grammar, AT represents an atomic formula in theory T , such as
the boolean variable x in propositional logic or the inequality a + 2b ≤ 3 in
linear arithmetic. Observe that the above grammar requires formulas to be in
negation normal form (NNF) because only atomic formulas may be negated.
While the rest of this paper relies on formulas being in NNF, this restriction is
not important since any formula may be converted to NNF using DeMorgan’s
laws in linear time without increasing the size of the formula (see Definition 2).

Definition 1. (Leaf) We refer to each occurrence of an atomic formula AT or
its negation ¬AT as a leaf of the formula in which it appears.

It is important to note that different occurrences of the same (potentially negated)
atomic formula in φT form distinct leaves. For example, the two occurrences of
f(x) = 1 in f(x) = 1∨ (f(x) = 1∧ x+ y ≤ 1) correspond to two distinct leaves.

In the rest of this paper, we restrict our focus to quantifier-free formulas in
theory T , and we assume there is a decision procedure DT that can be used
to decide the satisfiability of a quantifier-free formula φT in theory T . Where
irrelevant, we omit the subscript T and denote formulas by φ.

Definition 2. (Size) The size of a formula φ is the number of leaves φ contains.

Definition 3. (Fold) The fold operation removes constant leaves (i.e., true,
false) from the formula. In particular, Fold(φ) is a formula φ′ such that (i)
φ⇔ φ′, (ii) φ′ is just true or false or φ′ mentions neither true nor false.

It easy to see that it is possible to construct this fold operation such that it
reduces the size of the formula φ at least by one if φ contains true or false but
φ is not initially true or false.

3 Simplified Form

In this section, we first define redundancy and describe what it means for a
formula to be in simplified form. We then highlight some important properties
of simplified forms. Notions of redundancy similar to ours have been studied in
other contexts, such as in automatic test pattern generation and vacuity detec-
tion; see Section 7 for a discussion.

Definition 4. (φ+(L),φ−(L)) Let φ be a formula and let L be a leaf of φ. φ+(L)
is obtained by replacing L by true and applying the fold operation. Similarly,
φ−(L) is obtained by replacing L by false and folding the resulting formula.

Example 1. Consider the formula:

x = y| {z }
L0

∧ (f(x) = 1| {z }
L1

∨ (f(y) = 1| {z }
L2

∧ x+ y ≤ 1| {z }
L3

))

Here, φ+(L1) = (x = y) and φ−(L2) = (x = y ∧ f(x) = 1).

Observe that for any formula φ, φ+(L) is an overapproximation of φ, i.e., φ ⇒
φ+(L), and φ−(L) is an underapproximation, i.e., φ−(L)⇒ φ. This follows im-
mediately from Definition 4 and the monotonicity of NNF. Also, by construction,
the sizes of φ+(L) and φ−(L) are at least one smaller than the size of φ.

Definition 5. (Redundancy) We say a leaf L is non-constraining in formula
φ if φ+(L) ⇒ φ and non-relaxing if φ ⇒ φ−(L). Leaf L is redundant if L is
either non-constraining or non-relaxing.

The following corollary follows immediately from definition:

Corollary 1. If a leaf L is non-constraining, then φ ⇔ φ+(L), and if L is
non-relaxing, then φ⇔ φ−(L).

Intuitively, if replacing a leaf L by true in formula φ results in an equivalent
formula, then L does not constrain φ; hence, we call such a leaf non-constraining.
A similar intuition applies for non-relaxing leaves.

Example 2. Consider the formula from Example 1. In this formula, leaves L0

and L1 are not redundant, but L2 is redundant because it is non-relaxing. Leaf
L3 is both non-constraining and non-relaxing, and thus also redundant.

Note that if two leaves L1 and L2 are redundant in formula φ, this does
not necessarily mean we can obtain an equivalent formula by replacing both L1

and L2 with true (if non-constraining) or false (if non-relaxing). This is the case
because eliminating L1 may render L2 non-redundant and vice versa.

Definition 6. (Simplified Form) We say a formula φ is in simplified form if
no leaf mentioned in φ is redundant.

Lemma 1. If a formula φ is in simplified form, replacing any subset of the
leaves used in φ by true or false does not result in an equivalent formula.

Proof. The proof is by induction. If φ contains a single leaf, the property trivially
holds. Suppose φ is of the form φ1 ∨ φ2. Then, if φ has a simplification φ′1 ∨ φ′2
where both φ′1 and φ′2 are simplified, then either φ′1 ∨ φ2 or φ1 ∨ φ′2 is also
equivalent to φ. This is the case because (φ⇔ φ′1 ∨ φ′2) ∧ (φ 6⇔ φ′1 ∨ φ2) ∧ (φ 6⇔
φ1 ∨ φ′2) is unsatisfiable. An similar argument applies if the connective is ∧. ut

The following corollary follows directly from Lemma 1:

Corollary 2. A formula φ in simplified form is satisfiable if and only if it is
not syntactically false and valid if and only if it is syntactically true.

This corollary is important in the context of on-line simplification in pro-
gram analysis because, if formulas are kept in simplified form, then determining
satisfiability and validity becomes just a syntactic check.

Observe that while a formula φ in simplified form is guaranteed not to con-
tain redundancies, there may still exist a smaller formula φ′ equivalent to φ.
In particular, a non-redundant formula may be made smaller, for example, by
factoring common subexpressions. We do not address this orthogonal problem
in this paper, and the algorithm given in Section 4 does not change the structure
of the formula.

Example 3. Consider the propositional formula (a∧ b)∨ (a∧ c). This formula is
in simplified form, but the equivalent formula a ∧ (b ∨ c) contains fewer leaves.

As this example illustrates, it is not possible to determine the equivalence
of two formulas by checking whether their simplified forms are syntactically
identical. Furthermore, as illustrated by the following example, the simplified
form of a formula φ is not always guaranteed to be unique.

Example 4. Consider the formula x = 1 ∨ x = 2 ∨ (1 ≤ x ∧ x ≤ 2) in the theory
of linear integer arithmetic. The two formulas x = 1 ∨ x = 2 and 1 ≤ x ∧ x ≤ 2
are both simplified forms that can be obtained from the original formula.

Lemma 2. If φ is a formula in simplified form, then ¬φ is also in simplified
form after converting ¬φ to negation normal form.

Proof. Suppose ¬φ was not in simplified form. Then, it would be possible to
replace one leaf, say L, by true or false to obtain a strictly smaller, but equivalent
formula. Now consider negating the simplified form of ¬φ to obtain φ′ which is
equivalent to φ. Note that the ¬L is a leaf in φ, but not in φ′. Thus, φ could not
have been in simplified form. ut

Hence, if a formula is in simplified form, then its negation does not need to be
resimplified, an important property for on-line simplification in program analysis.
However, simplified forms are not preserved under conjunction or disjunction.

Lemma 3. For every formula φ, there exists a formula φ′ in simplified form
such that (i) φ⇔ φ′, and (ii) size(φ′) ≤ size(φ).

Proof. Consider computing φ′ by checking every leaf L of φ for redundancy and
replacing L by true if it is non-constraining and by false if it is non-relaxing. If
this process is repeated until there are no redundant leaves, the resulting formula
is in simplified form and contains at most as many leaves as φ. ut

The above lemma states that converting a formula to its simplified form
never increases the size of the formula. This property is desirable because, unlike
other representations like BDDs that attempt to describe the formula compactly,
computing a simplified form is guaranteed not to cause a worst-case blow-up. In
the experience of the authors, this property is crucial in program verification.

4 Algorithm to Compute Simplified Forms

While the proof of Lemma 3 sketches a naive way of computing the simplified
form of a formula φ, this approach is suboptimal because it requires repeatedly
checking the satisfiability of a formula twice as large as φ until no more redundant
leaves can be identified. In this section, we present a practical algorithm to
compute simplified forms. For convenience, we assume formulas are represented
as trees; however, the algorithm is easily modified to work on directed acyclic
graphs, and in fact, our implementation uses DAGs to represent formulas. A
node in the tree represents either an ∧ or ∨ connective or a leaf. We assume
connectives have at least two children but may have more than two.

4.1 Basic Algorithm

Recall that a leaf L is non-constraining if and only if φ+(L) ⇒ φ and non-
relaxing if and only if φ ⇒ φ−(L). Since the size of φ+(L) and φ−(L) may be
only one less than φ, checking whether L is non-constraining or non-relaxing
using Definition 5 requires checking the validity of formulas twice as large as φ.

A key idea underlying our algorithm is that it is possible to check for re-
dundancy of a leaf L by checking the validity of formulas no larger than φ. In
particular, for each leaf L, our algorithm computes a formula α(L), called the
critical constraint of L, such that (i) α(L) is no larger than φ, (ii) L is non-
constraining if and only if α(L) ⇒ L, and (iii) L is non-relaxing if and only
if α(L) ⇒ ¬L. This allows us to determine whether each leaf is redundant by
determining the satisfiability of formulas no larger than the original formula φ.

Fig. 1: The representation of the formula
from Example 1. The critical constraint at
each node is shown in red. Observe that the
critical constraint for L3 is false, making
L3 both non-constraining and non-relaxing.
The critical constraint of L2 implies its
negation; hence, L2 is non-relaxing.

Definition 7. (Critical constraint)
– Let R be the root node of the tree. Then, α(R) = true.
– Let N be any node other than the root node. Let P denote the parent of N

in the tree, and let S(N) denote the set of siblings of N . Let ? denote ¬ if
P is an ∨ connective, and nothing if P is an ∧ connective. Then,

α(N) = α(P) ∧
∧

Si∈S(N)

?Si

Intuitively, the critical constraint of a leaf L describes the condition under
which L will be relevant for either permitting or disallowing a particular model
of φ. Clearly, if the assignment to L is to determine whether φ is true or false
for a given interpretation, then all the children of an ∧ connective must be true
if this ∧ node is an ancestor of L; otherwise φ is already false regardless of the
assignment to L. Also, observe that L is not relevant in permitting or disallowing
a model of φ if some other path not involving L is satisfied because φ will already
be true regardless of the truth value of L. Hence, the critical constraint includes
the negation of the siblings at an ∨ connective while it includes the siblings
themselves at an ∧ node. The critical constraint can be viewed as a context
in the general framework of contextual rewriting [12, 13]; see Section 7 for a
discussion.
Example 5. Figure 1 shows the representation of the formula from Example 1
along with the critical constraints of each node.

Lemma 4. A leaf L is non-constraining if and only if α(L)⇒ L.

Proof. (Sketch) Suppose α(L) ⇒ L, but L is constraining, i.e., the formula
γ = (φ+(L)∧¬φ) is satisfiable. Then, there must exist some model M of γ that
satisfies φ+(L) but not φ. For M to be a model of φ+(L) but not φ, it must (i)
assign all the children of any ∧ node that is an ancestor of L to true, (ii) it must
assign L to false, and (iii) it must assign any other children of an ∨ node that is
an ancestor of L to false. By (i) and (iii), such a model must also satisfy α(L).
Since α(L) ⇒ L, M must also satisfy L, contradicting (ii). The other direction
is analogous. ut
Lemma 5. A leaf L is non-relaxing if and only if α(L)⇒ ¬L.
Proof. Similar to the proof of Lemma 4.

simplify(N , α)

– If N is a leaf:
• If α⇒ N return true
• If α⇒ ¬N return false
• Otherwise return N

– If N is a connective, let C denote the ordered set of children of N , and let C′

denote the new set of children of N .
• For each ci ∈ C:

αi = α ∧ (
V

cj∈C>i
?cj) ∧ (

V
c′

k
∈C′

<i
?c′k)

c′i = simplify(ci, αi)
C′ = C′ ∪ c′i

• Repeat the previous step until ∀i.ci = c′i
• If N is an ∧ connective, return

V
c′

i∈C′ c
′
i

• If N is an ∨ connective, return
W
c′i ∈ C′c′i

Fig. 2: The basic algorithm to reduce a formula N to its simplified form

We now formulate a simple recursive algorithm, presented in Figure 2, to
reduce a formula φ to its simplified form. In this algorithm, N is a node repre-
senting the current subpart of the formula, and α denotes the critical constraint
associated with N . If C is some ordered set, we use the notation C<i and C>i

to denote the set of elements before and after index i in C respectively. Finally,
we use the notation ? as in Definition 7 to denote ¬ if the current node is an ∨
connective and nothing otherwise.

Observe that, in the algorithm of Figure 2, the critical constraint of each
child ci of a connective node is computed by using the new siblings c′k that have
been simplified. This is crucial for the correctness of the algorithm because, as
pointed out in Section 3, if two leaves L1 and L2 are both initially redundant,
it does not mean L2 stays redundant after eliminating L1 and vice versa. Using
the simplified siblings in computing the critical constraint of ci has the same
effect as rechecking whether ci remains redundant after simplifying sibling ck.

Another important feature of the algorithm is that, at connective nodes,
each child is simplified as long as any of their siblings change, i.e., the recursive
invocation returns a new sibling not identical to the old one. The following
example illustrates why this is necessary.

Example 6. Consider the following formula: x 6= 1| {z }
L1

∧ (x ≤ 0| {z }
L2

∨x > 2| {z }
L3

∨x = 1| {z }
L4

)

| {z }
N

The simplified form of this formula is x ≤ 0 ∨ x > 2. Assuming we process
child L1 before N in the outer ∧ connective, the critical constraint for L1 is
computed as x ≤ 0 ∨ x > 2 ∨ x = 1, which implies neither L1 nor ¬L1. If we
would not resimplify L1 after simplifying N , the algorithm would (incorrectly)
yield x 6= 1 ∧ (x ≤ 0 ∨ x > 2) as the simplified form of the original formula.
However, by resimplifying L1 after obtaining a simplified N ′ = (x ≤ 0 ∨ x > 2),
we can now simplify the formula further because the new critical constraint of
L1, (x ≤ 0 ∨ x > 2), implies x 6= 1.

Lemma 6. The number of validity queries made in the algorithm of Figure 2 is
bound by 2n2 where n denotes the number of leaves in the initial formula.

Proof. First, observe that if any call to simplify yields a formula different from
the input, the size of this formula must be at least one less than the original
formula (see Lemma 3). Furthermore, the number of validity queries made in
formula of size k without any simplifications is 2k. Hence, the total number of
validity queries is bound by 2n+ 2(n− 1) + . . .+ 2 which is bound by 2n2. ut

4.2 Making Simplification Practical

In the previous section, we showed that reducing a formula to its simplified
form may require making a quadratic number of validity queries. However, these
queries are not independent of one another in two important ways: First, all
the formulas that correspond to validity queries share exactly the same set of
leaves. Second, the simplification algorithm given in Figure 2 has a push-and-pop
structure, which makes it possible to incrementalize queries. In the rest of this
section, we discuss how we can make use of these observations to substantially
reduce the cost of simplification in practice.

The first observation that all formulas whose satisfiability is queried during
the algorithm share the same set of leaves has a fundamental importance when
simplifying SMT formulas. Most modern SMT solvers use the DPLL(T) frame-
work to solve formulas [14]. In the most basic version of this framework, leaves in
a formula are treated as boolean variables, and this boolean overapproximation is
then solved by a SAT solver. If the SAT solver generates a satisfying assignment
that is not a valid assignment when theory-specific information is accounted for,
the theory solver then produces (an ideally minimal) set of conflict clauses that
is conjoined with the boolean overapproximation to prevent the SAT solver from
generating at least this assignment in the future. Since the formulas solved by
the SMT solver during the algorithm presented in Figure 2 share the same set of
leaves, theory-specific conflict clauses can be gainfully reused. In practice, this
means that after a small number of conflict clauses are learned, the problem
of checking the validity of an SMT formula quickly converges to checking the
satisfiability of a boolean formula.

The second important observation is that the construction of the critical con-
straint follows a push-pop stack structure. This is the case because the critical
constraint from the parent node is reused, and additional constraints are pushed
on the stack (i.e., added to the critical constraint) before the recursive call and
(conceptually) popped from the stack after the recursive invocation. This styl-
ized structure is important for making the algorithm practical because almost
all modern SAT and SMT solvers support pushing and popping constraints to
incrementalize solving. In addition, other tasks that often add overhead, such as
CNF construction using Tseitin’s encoding for the SAT solver, can also be incre-
mentalized rather than done from scratch. In Section 6, we show the expected
overhead of simplifying over solving grows sublinearly in the size of the formula
in practice if the optimizations described in this section are used.

5 Integration with Program Analysis
We implemented the proposed algorithm in the Mistral constraint solver [15].
To tightly integrate simplification into a program analysis system, we design the

interface of Mistral such that instead of giving a “yes/no” answer to satisfiability
and validity queries, it yields a formula φ′ in simplified form. Recall that φ is
satisfiable (valid) if and only if φ′ is not syntactically false (true); hence, in
addition to obtaining a simplified formula, the program analysis system can
check whether the formula is satisfiable by syntactically checking if φ′ is not
false. After a satisfiability query is made, we then replace all instances of φ with
φ′ such that future formulas that would be constructed by using φ are instead
constructed using φ′. This functionality is implemented efficiently through a
shared constraint representation. Hence, Mistral’s interface is designed to be
useful for program analysis systems that incrementally construct formulas from
existing formulas and make many intermediary satisfiability or validity queries.
Examples of such systems include, but are not limited to, [10, 16, 7–9, 17].
6 Experimental Results
In this section, we report on our experience using on-line simplification in the
context of program analysis. Since the premise of this work is that simplification
is useful only if applied continuously during the analysis, we do not evaluate
the proposed algorithm on solving off-line benchmarks such as the SMT-LIB.
In particular, the proposed technique is not meant as a preprocessing step before
solving and is not expected to improve solving time on individual constraints.

6.1 Impact of On-line Simplification on Analysis Scalability
In our first experiment, we integrate Mistral into the Compass program verifi-
cation system. Compass [16] is a path- and context-sensitive program analysis
system for analyzing C programs, integrating reasoning about both arrays and
contents of the heap. Compass checks memory safety properties, such as buffer
overruns, null dereferences, casting errors, and uninitialized memory; it can also
check user-provided assertions. Compass generates constraints in the combined
theory of uninterpreted functions and linear integer arithmetic, and as typi-
cal of many program analysis systems [18, 10, 16, 17], constraints generated by
Compass become highly redundant over time, as new constraints are obtained
by combining existing constraints. Most importantly, unlike other systems that
employ various (usually incomplete) heuristics to control formula size, Com-
pass tracks program conditions precisely without identifying a relevant set of
predicates to track. Hence, this experiment is used to illustrate that a program
analysis system can be made scalable through on-line simplification instead of
using specialized heuristics, such as the ones discussed in Section 1, to control
formula size.

In this experiment, we run Compass on 811 program analysis benchmarks,
totalling over 173,000 lines of code, ranging from small programs with 20 lines
to real-world applications, such as OpenSSH, with over 26,000 lines. For each
benchmark, we fix a time-out of 3600 seconds and a maximum memory of 4 GB.
Any run exceeding either limit was aborted and assumed to take 3600 seconds.

Figure 3 compares Compass’s running times on these benchmarks with and
without on-line simplification. The x-axis shows the number of lines of code for
various benchmarks and the y-axis shows the running time in seconds. Observe
that both axes are log scale. The blue (dotted) line shows the performance of

0.01

0.1

1

10

100

1000

10 100 1000 10000

Analysis time with online simplification
Analysis time without simplification

Fig. 3: Running times with and with-
out simplification

Compass without on-line simplification
while the red (solid) line shows the per-
formance of Compass using the simplifica-
tion algorithm presented in this paper and
using the improvements from Section 4.2.
In the setting that does not use on-line
simplification, Mistral returns the formula
unchanged if it is satisfiable and false
otherwise. As this figure shows, Compass
performs dramatically better with on-line
simplification on any benchmark exceed-
ing 100 lines. For example, on benchmarks

with an average size of 1000 lines, Compass performs about two orders of mag-
nitude better with on-line simplification, and can analyze programs of this size
in just a few seconds. Furthermore, using on-line simplification, Compass can
analyze benchmarks with a few ten thousand lines of code, such as OpenSSH,
in the order of just a few minutes without employing any heuristics to identify
relevant conditions.

6.2 Redundancy in Program Analysis Constraints

This dramatic impact of simplification on scalability is best understood by con-
sidering how redundant formulas become when on-line simplification is disabled
when analyzing the same set of 811 program analysis benchmarks. Figure 4(a)
plots the size of the initial formula vs. the size of the simplified formula when
formulas generated by Compass are not continuously simplified. The x = y line
is plotted as a comparison to show the worst-case when the simplified formula
is no smaller than the original formula. As this figure shows, while formula sizes
grow very quickly without on-line simplification, these formulas are very redun-
dant, and much smaller formulas are obtained by simplifying them. We would
like to point out that the redundancies present in these formulas cannot be de-
tected through simple syntactic checks because Mistral still performs extensive
syntactic simplifications, such as detecting duplicates, syntactic contradictions
and tautologies, and folding constants.

20

40

60

80

100

120

50 100 150 200 250 300 350 400 450 500

S
iz

e
 o

f
s
im

p
lif

ie
d
 f
o
rm

u
la

Size of initial formula

data
y=x

(a) Size of initial formula vs. size of simplified
formula in Compass without simplification

5

10

15

20

25

30

35

40

45

50

20 40 60 80 100 120 140 160 180 200

S
iz

e
 o

f
s
im

p
lif

ie
d
 f
o
rm

u
la

Size of initial formula

data
y=x

(b) Size of initial formula vs. size of simplified
formula in Saturn

Fig. 4: Reduction in the Size of Formulas

5

10

15

20

25

30

35

40

45

10 20 30 40 50 60 70

R
a
ti
o
 o

f
s
im

p
lif

y
 t
im

e
 t
o
 s

o
lv

e
 t
im

e

Size of formula

data
y=x

2

y=x
y=2.70log(x)

(a)

50

100

150

200

250

300

0 100 200 300 400 500 600

R
a
ti
o
 o

f
s
im

p
lif

y
 t
im

e
 t
o
 s

o
lv

e
 t
im

e

Size of formula

data
y=x

2

y=x
y=2.96log(x)

(b)

50

100

150

200

250

300

10 20 30 40 50 60

R
a
tio

 o
f
si

m
p
lif

y
tim

e
 t
o
 s

o
lv

e
 t
im

e

Size of formula

data
y=x2

y=x
y=2.70log(x)

(c)

50

100

150

200

250

300

50 100 150 200 250 300 350 400 450

R
a
tio

 o
f
si

m
p
lif

y
tim

e
 t
o
 s

o
lv

e
 t
im

e

Size of formula

data
y=x2

y=x
y=2.96log(x)

(d)

Fig. 5: Complexity of Simplification in Practice

To demonstrate that Compass is not the only program analysis system that
generates redundant constraints, we also plot in Figure 4(b) the original formula
size vs. simplified formula size on constraints obtained on the same benchmarks
by the Saturn program analysis system [10]. First, observe that the constraints
generated by Saturn are also extremely redundant. In fact, their average size after
simplification is 1.93 whereas the average size before simplification is 73. Second,
observe that the average size of simplified constraints obtained from Saturn is
smaller than the average simplified formula size obtained from Compass. This
difference is explained by two factors: (i) Saturn is significantly less precise than
Compass, and (ii) it adopts heuristics to control formula size.

The reader may not find it surprising that the redundant formulas generated
by Compass can be dramatically simplified. That is, of course, precisely the point.
Compass gains both better precision and simpler engineering from constructing
straightforward formulas and then simplifying them because it does not need
to heuristically decide in advance which predicates are important. But these
experiments also show that the formulas generated by Compass are not unusually
redundant to begin with: As the Saturn experiment shows, because analysis
systems build formulas compositionally guided by the structure of the program,
even highly-engineered systems like Saturn, designed without the assumption of
pervasive simplification, can construct very redundant formulas.

6.3 Complexity of Simplification in Practice
In another set of experiments, we evaluate the performance of our simplifica-
tion algorithm on over 93,000 formulas obtained from our 811 program analysis

benchmarks. Recall from Lemma 6 that simplification may require a quadratic
number of validity checks. Since the size of the formulas whose validity is checked
by the algorithm is at most as large as the original formula, the ratio of simpli-
fying to solving could, in the worst case, be quadratic in the size of the original
formula. Fortunately, with the improvements discussed in Section 4.2, we show
empirically that simplification adds sub-linear overhead over solving in practice.

Figure 5 shows a detailed evaluation of the performance of the simplification
algorithm. The data used in graphs 5a and 5c is obtained from analysis runs
where simplification is performed, while graphs 5b and 5d are from experiments
where no simplification is performed. We include the data from runs where no
simplification is performed to demonstrate that the simplification algorithm also
performs well on larger constraints with several hundred leaves. In all of these
graphs, the red line marks data points, the blue line marks the function best
fitting the data, the green line marks y = x, and the pink line marks y = x2. The
top two graphs are obtained from runs that employ the improvements described
in Section 4.2 whereas the two bottom graphs are obtained from runs that do
not. Observe that in graphs 5a and 5b, the average ratio of simplification to solve
time seems to grow sublinearly in formula size. In fact, from among the family
of formulas y = cx2, y = cx, and y = c · log(x), the data in figures 4a and 4b
are best approximated by y = 2.70 · log(x) and y = 2.96 · log(x) with asymptotic
standard errors 1.98% and 2.42% respectively. On the other hand, runs that do
not exploit the dependence between different implication queries exhibit much
worse performance, often exceeding the y = x line. These experiments show
the importance of exploiting the interdependence between different implication
queries and validate our hypothesis that simplifying SMT formulas converges
quickly to simplifying SAT formulas when queries are incrementalized. These
experiments also show that the overhead of simplifying vs. solving can be made
manageable since the ratio of simplifying to solving seems to grow very slowly
in the size of the formula.

7 Related Work

Finding simpler representations of boolean circuits is a well-studied problem
in logic synthesis and automatic test pattern generation (ATPG) [19–21]. Our
definition of redundancy is reminiscent of the concept of undetectable faults in
circuits, where pulling an input to 0 (false) or 1 (true) is used to identify re-
dundant circuitry. However, in contrast to the definition of size considered in
this paper, ATPG and logic synthesis techniques are concerned with minimizing
DAG size, representing the size of the circuit implementing a formula. As a result,
the notion of redundancy considered in this paper is different from the notion
of redundancy addressed by these techniques. In particular, in our setting, one
subpart of the formula may be redundant while another syntactically identical
subpart may not. In this paper, we consider different definitions of size and re-
dundancy because except for a few operations like substitution, most operations
performed on constraints in a program analysis system are sensitive to the “tree
size” of the formula, although these formulas are represented as DAGs internally.
Therefore, formulas we consider do not exhibit reconvergent fanout and every

leaf has exactly one path from the root of the formula. This observation makes
it possible to formulate an algorithm based on critical constraints for simplify-
ing formulas in an arbitrary theory. Furthermore, we apply this simplification
technique to on-line constraint simplification in program analysis.

The algorithm we present for converting formulas to simplified form can be
understood as an instance of a contextual rewrite system [12, 13]. In contextual
rewriting systems, if a precondition, called a context, is satisfied, a rewrite rule
may be applied. In our algorithm, the critical constraint can be seen as a context
that triggers a rewrite rule L→ true if L is implied by the critical constraint α,
and L → false if α implies ¬L. While contextual rewriting systems have been
used for simplifying constraints within the solver [13], our goal is to generate an
equivalent (rather than equisatisfiable) formula that is in simplified form. Fur-
thermore, we propose simplification as an alternative to heuristic-based predicate
selection techniques used for improving scalability of program analysis systems.

Finding redundancies in formulas has also been studied in the form of vacuity
detection in temporal logic formulas [22, 23]. Here, the goal is to identify vacu-
ously valid subparts of formulas, indicating, for example, a specification error.
In contrast, our focus is giving a practical algorithm for on-line simplification of
program analysis constraints.

The problem of representing formulas compactly has received attention from
many different angles. For example, BDDs attempt to represent propositional
formulas concisely, but they suffer from the variable ordering problem and are
prone to a worst-case exponential blow-up [24]. BDDs have also been extended to
other theories, such as linear arithmetic [25, 26]. In contrast to these approaches,
a formula in simplified form is never larger than the original formula. Loveland
and Shostak address the problem of finding a minimal representation of formulas
in normal form [27]; in contrast, our approach does not require formulas to be
converted to DNF or CNF.

Various rewrite-based simplification rules have also been successfully applied
as a preprocessing step for solving, usually for bit-vector arithmetic [28, 29].
These rewrite rules are syntactic and theory-specific; furthermore, they typi-
cally yield equisatisfiable rather than equivalent formulas and give no goodness
guarantees. In contrast, the technique described in this paper is not meant as a
preprocessing step for solving and guarantees non-redundancy.

The importance of on-line simplification of program analysis constraints has
been studied previously in the very different setting of set constraints [18]. Sim-
plification based on syntactic rewrite-rules has also been shown to improve the
performance of a program analysis system significantly in [30].

References

1. Een, N., Sorensson, N.: MiniSat: A SAT solver with conflict-clause minimization.
8th SAT (2005)

2. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. TACAS (2008) 337–340
3. Dutertre, B., De Moura, L.: The yices smt solver. Technical report, SRI (2006)
4. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: The Math-

SAT 4 SMT Solver. In: CAV, Springer-Verlag (2008) 299–303

5. Barrett, C., Tinelli, C.: CVC3. In: CAV. Volume 4590 of Lecture Notes in Com-
puter Science., Springer-Verlag (July 2007) 298–302 Berlin, Germany.

6. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. JACM 50(5) (2003) 752–794

7. Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL,
ACM New York, NY, USA (2002) 58–70

8. Ball, T., Rajamani, S.: The SLAM project: debugging system software via static
analysis. In: POPL, NY, USA (2002) 1–3

9. Das, M., Lerner, S., Seigle, M.: ESP: Path-sensitive program verification in poly-
nomial time. ACM SIGPLAN Notices 37(5) (2002) 57–68

10. Xie, Y., Aiken, A.: Scalable error detection using boolean satisfiability. In: POPL.
Volume 40., ACM New York, NY, USA (2005) 351–363

11. Bugrara, S., Aiken, A.: Verifying the safety of user pointer dereferences. In: IEEE
Symposium on Security and Privacy, 2008. SP 2008. (2008) 325–338

12. Lucas, S.: Fundamentals of Contex-Sensitive Rewriting. Lecture Notes in Com-
puter Science (1995) 405–412

13. Armando, A., Ranise, S.: Constraint contextual rewriting. Journal of Symbolic
Computation 36(1) (2003) 193–216

14. Tinelli, C.: A DPLL-based calculus for ground satisfiability modulo theories. Lec-
ture notes in computer science (2002) 308–319

15. Dillig, I., Dillig, T., Aiken, A.: Cuts from proofs: A complete and practical tech-
nique for solving linear inequalities over integers. In: CAV, Springer (2009)

16. Dillig, I., Dillig, T., Aiken, A.: Fluid updates: Beyond strong vs. weak updates.
In: To appear in ESOP. (2010)

17. Babić, D., Hu, A.J.: Calysto: Scalable and Precise Extended Static Checking. In:
ICSE, New York, NY, USA, ACM (May 2008) 211–220

18. Faehndrich, M., Foster, J., Su, Z., Aiken, A.: Partial online cycle elimination in
inclusion constraint graphs. In: PLDI, ACM (1998) 96

19. Mishchenko, A., Chatterjee, S., Brayton, R.: DAG-aware AIG rewriting: A fresh
look at combinational logic synthesis. In: DAC. (2006) 532–535

20. Mishchenko, A., Brayton, R., Jiang, J., Jang, S.: SAT-based logic optimization
and resynthesis. Proc. IWLS’07 358–364

21. Kim, J., Silva, J., Savoj, H., Sakallah, K.: RID-GRASP: Redundancy identification
and removal using GRASP. In: International Workshop on Logic Synthesis. (1997)

22. Kupferman, O., Vardi, M.: Vacuity detection in temporal model checking. Inter-
national Journal on Software Tools for Technology Transfer 4(2) (2003) 224–233

23. Armoni, R., Fix, L., Flaisher, A., Grumberg, O., Piterman, N., Tiemeyer, A., Vardi,
M.: Enhanced vacuity detection in linear temporal logic. LNCS (2003) 368–380

24. Bryant, R.: Symbolic Boolean manipulation with ordered binary-decision dia-
grams. ACM Computing Surveys (CSUR) 24(3) (1992) 293–318

25. Bryant, R., Chen, Y.: Verification of arithmetic functions with BMDs (1994)
26. Clarke, E., Fujita, M., Zhao, X.: Hybrid decision diagrams overcoming the limita-

tions of MTBDDs and BMDs. In: ICCAD. (1995)
27. Loveland, D., Shostak, R.: Simplifying interpreted formulas. In: Proc. 5th Conf.

on Automated Deduction (CADE). Volume 87., Springer (1987) 97–109
28. Ganesh, V., Dill, D.: A decision procedure for bit-vectors and arrays. Lecture

Notes in Computer Science 4590 (2007) 519
29. Jha, S., Limaye, R., Seshia, S.: Beaver: Engineering an Efficient SMT Solver for

Bit-Vector Arithmetic. In: In CAV Lecture Notes in Comp. Sc., Springer (2009)
30. Chandra, S., Fink, S.J., Sridharan, M.: Snugglebug: a powerful approach to weakest

preconditions. SIGPLAN Not. 44(6) (2009) 363–374

