
Verification as Learning Geometric Concepts

Rahul Sharma1, Saurabh Gupta2, Bharath Hariharan2,
Alex Aiken1, and Aditya V. Nori3

1 Stanford University, {sharmar,aiken}@cs.stanford.edu
2 University of California at Berkeley, {sgupta,bharath2}@eecs.berkeley.edu

3 Microsoft Research India, adityan@microsoft.com

Abstract. We formalize the problem of program verification as a learn-
ing problem, showing that invariants in program verification can be re-
garded as geometric concepts in machine learning. Safety properties de-
fine bad states: states a program should not reach. Program verification
explains why a program’s set of reachable states is disjoint from the set
of bad states. In Hoare Logic, these explanations are predicates that form
inductive assertions. Using samples for reachable and bad states and by
applying well known machine learning algorithms for classification, we
are able to generate inductive assertions. By relaxing the search for an
exact proof to classifiers, we obtain complexity theoretic improvements.
Further, we extend the learning algorithm to obtain a sound procedure
that can generate proofs containing invariants that are arbitrary boolean
combinations of polynomial inequalities. We have evaluated our approach
on a number of challenging benchmarks and the results are promising.

Keywords: loop invariants, verification, machine learning

1 Introduction

We formalize the problem of verification as a learning problem, showing that loop
invariants can be regarded as geometric concepts in machine learning. Informally,
an invariant is a predicate that separates good and bad program states and once
we have obtained strong invariants for all the loops, standard techniques can be
used to generate program proofs. The motivation for using machine learning for
invariant inference is twofold: guarantees and expressiveness.

Standard verification algorithms observe some small number of behaviors
of the program under consideration and extrapolate this information to (hope-
fully) get a proof for all possible behaviors of the program. The extrapolation
is a heuristic and systematic ways of performing extrapolation are unknown,
except for the cases where they have been carefully designed for a particular
class of programs. Slam [6] generates new predicates from infeasible counter-
example traces. Interpolant based techniques [37] extrapolate the information
obtained from proving the correctness of finite unwindings of loops. In abstract
interpretation [21], fixpoint iterations are performed for a few iterations of the
loop and this information is extrapolated using a widening operator. In any of

these heuristics, and others, there is no formal characterization of how well the
output of the extrapolation strategy approximates the true invariants.

Extrapolation is the fundamental problem attacked by machine learning: A
learning algorithm has some finite training data and the goal is to learn a func-
tion that generalizes for the infinite set of possible inputs. For classification, the
learner is given some examples of good and bad states and the goal is to learn a
predicate that separates all the good states from all the bad states. Unlike stan-
dard verification approaches that have no guarantees on extrapolation, learning
theory provides formal generalization guarantees for learning algorithms. These
guarantees are provided in learning models that assume certain oracles. However,
it is well known in the machine learning community that extrapolation engines
that have learning guarantees in the theoretical models tend to have good per-
formance empirically. The algorithms have been applied in diverse areas such as
finance, biology, and vision: we apply learning algorithms to the task of invariant
inference.

Standard invariant generation techniques find invariants of a restricted form:
there are restrictions on expressiveness that are not due to efficiency consid-
erations but instead due to fundamental limitations. These techniques espe-
cially have trouble with disjunctions and non-linearities. Predicate abstraction
restricts invariants to a boolean combination of a given set of predicates. Ex-
isting interpolation engines cannot generate non-linear predicates [1]. Template
based approaches for linear invariants like [35] require a template that fixes
the boolean form of the invariant and approaches for non-linear invariants [53]
can only find conjunctions of polynomial equalities. Abstract interpretation over
convex hulls [23] handles neither disjunctions nor non-linearities. Disjunctions
can be obtained by performing disjunctive completion [22, 26], but widening [3]
places an ad hoc restriction on the number of disjuncts. Our learning algorithm
is strictly more expressive than these previous approaches: It can generate arbi-
trary boolean combinations of polynomial inequalities (of a given degree). Hence
there are no restrictions on the number of disjuncts and we go beyond linear in-
equalities and polynomial equalities.

Unsurprisingly, our learning algorithm, with such expressive power, has high
computational complexity. Next, we show how to trade expressiveness for com-
putational speedups. We construct efficient machine learning algorithms, with
formal generalization guarantees, for generating arbitrary boolean combinations
of constituent predicates when these predicates come from a given set of predi-
cates (predicate abstraction), when the size of integer constants in the predicates
are bounded, or from a given abstract domain (such as boxes or octagons). Note
that these efficient algorithms with reduced expressiveness still generate arbi-
trary boolean combinations of predicates.

Our main insight is to view invariants as geometric concepts separating good
and bad states. This view allows us to make the following contributions:

– We show how to use a well known learning algorithm [13] for the purpose of
computing candidate invariants. This algorithm is a PAC learner: it has gen-
eralization guarantees in the PAC (probably approximately correct) learning

model. The learning algorithm makes no assumption about the syntax of the
program and outputs a candidate invariant that is as expressive as arbitrary
boolean combinations of linear inequalities.

– The algorithm of [13] is impractical. We parametrize the algorithm of [13]
by the abstract domain in which the linear inequalities constituting the in-
variants lie, allowing us to obtain candidates that are arbitrary boolean
combinations of linear inequalities belonging to the given abstract domain.
We obtain efficient PAC learning algorithms for generating such candidates
for abstract domains requiring few variables, such as boxes or octagons and
finite domains such as predicate abstraction.

– We augment our learning algorithms with a theorem prover to obtain a sound
procedure for computing invariants. This idea of combining procedures for
generating likely invariants with verification engines has been previously ex-
plored in [49, 55, 54] (see Section 6). We evaluate the performance of this
procedure on challenging benchmarks for invariant generation from the lit-
erature. We are able to generate invariants, using a small amount of data,
in a few seconds per loop on these benchmarks.

The rest of the paper is organized as follows: We informally introduce our tech-
nique using an example in Section 2. We then describe necessary background
material, including the learning algorithm of [13] (Section 3). Section 4 describes
the main results of our work. We first give an efficient algorithm for obtaining
likely invariants from candidate predicates (Section 4.1). Next, in Section 4.1,
we obtain efficient algorithms for the case when the linear inequalities constitut-
ing the invariant lie in a given abstract domain. In Section 4.2, we extend [13]
to generate candidates that are arbitrary boolean combinations of polynomial
inequalities. Finally, Section 4.3 describes our sound procedure for generating
invariants. Section 5 describes our implementation and experiments. We discuss
related work in Section 6 and conclude in Section 7.

2 Overview of the Technique

1: x := i; y := j;

2: while (x != 0) { x--; y--; }

3: if (i == j) assert (y == 0);

Fig. 1. Motivating example.

Consider the program in Figure 1 [37]. To prove that the assertion in line 3 is
never violated, we need to prove the following Hoare triple:

{x = i ∧ y = j}while (x != 0) do x--; y--{i = j ⇒ y = 0}

In general, to prove {P} while E do S {Q}, where E is the loop condition
and S is the loop body, we need to find a loop invariant I satisfying P ⇒ I,
{I ∧ E}S{I}, and I ∧ ¬E ⇒ Q. Thus, to verify that the program in Figure 1
does not violate the assertion, we need a loop invariant I such that (x = i∧ y =
j) ⇒ I, {I ∧ x 6= 0}S{I}, and I ∧ x = 0 ⇒ (i = j ⇒ y = 0). The predicate
I ≡ i = j ⇒ x = y is one such invariant [37].

There is another way to view loop invariants. For simplicity of exposition,
we restrict our attention to correct programs that never violate assertions (e.g.,
Figure 1). A state is a valuation of the program variables, for example (i, j, x, y) =
(1, 0, 1, 0). Consider the set of states at the loop head (the while statement of
Figure 1) when the program is executed. All such states are good states, that is,
states that a correct program can reach. A bad state is one that would cause an
assertion violation. For example, if we are in the state (i, j, x, y) = (1, 1, 0, 1) at
the loop head, then execution does not enter the loop and violates the assertion.

An invariant strong enough to prove the program correct is true for all good
states and false for all bad states. Therefore, if one can compute the good states
and the bad states, an invariant will be a predicate that separates the good states
from the bad states. Of course, in general we cannot compute the set of all good
states and the set of all bad states. But we can always compute some good and
bad states by sampling the program.

To generate samples of good states, we simply run the program on some
inputs. If we run the program in Figure 1 with the initial state (1, 0, 1, 0), we
obtain the good samples (1, 0, 1, 0) and (1, 0, 0,−1). To compute bad states, we
can sample from predicates under-approximating the set of all bad states. For
Figure 1, (x = 0 ∧ i = j ∧ y 6= 0) is the set of bad states that do not enter the
loop body and violate the assertion, and (x = 1 ∧ i = j ∧ y 6= 1) is the set of
bad states that execute the loop body once and then violate the assertion. Note
that such predicates can be obtained from the program using a standard weakest
precondition computation. Finally, we find a predicate separating the good and
bad samples.

But how can we guarantee that a predicate separating the good samples from
the bad samples also separates all good states from all bad states? In machine
learning, formal guarantees are obtained by showing that the algorithm gener-
ating these predicates learns in some learning model. There are several learning
models and in this paper we use Valiant’s PAC (probably approximately correct)
model [56]. An algorithm that learns in the PAC model has the guarantee that
if it is given enough independent samples then with a high probability it will
come up with a predicate that will separate almost all the good states from the
bad states. Hence, under the assumptions of the PAC model, we are guaranteed
to find good candidate invariants with high probability. However, just like any
other theoretical learning model, the assumptions of PAC model are generally
impossible or at least very difficult to realize in practice. We emphasize that in
the variety of applications in which PAC learning algorithms are applied, the
assumptions of the PAC model are seldom met. Hence, the question whether
generalization guarantees in a learning model are relevant in practice is an em-

pirical one. PAC has intimate connections with complexity theory and cryptog-
raphy and is one of the most widely used models. We demonstrate empirically
in Section 5 that PAC learning algorithms successfully infer invariants.

Bshouty et al. [13] presented a PAC learning algorithm for geometric con-
cepts (see Section 3.2). This algorithm can produce predicates as expressive as
arbitrary boolean combinations of linear inequalities. In particular, the invariant
required for Figure 1 is expressible using this approach. However, this expres-
siveness has a cost: the algorithm of [13] is exponential in the number of program
variables. To obtain polynomial time algorithms in the number of samples and
program variables we must restrict the expressiveness. Assume, for example,
that we knew the invariant for the program in Figure 1 is a boolean combination
of octagons (which it is). For octagons, the linear inequalities are of the form
±x±y ≤ c, where x and y are program variables and c is a constant (Section 4.1).
We extend [13] to obtain a PAC learning algorithm for obtaining a predicate,
separating good and bad samples, that is an arbitrary boolean combination of
linear inequalities belonging to a given abstract domain. The time complexity of
our algorithm increases gracefully with the expressiveness of the chosen abstract
domain (Section 4.1). For example, the complexity for octagons is higher than
that for boxes.

We augment our learning algorithm with a theorem prover (Section 4.3),
obtaining a sound algorithm for program verification. Empirically, we show that
the predicates discovered by our approach are provably invariants using standard
verification engines (Section 5).

2.1 Finding Invariants for the Example

We now explain how our sound algorithm (Section 4.3) for program verification
(parametrized by octagons) proves the correctness of the program in Figure 1.
To sample the good states, assume we run the program on inputs where i, j ∈
{0, 1, 2}. As suggested above, we obtain bad states by sampling the predicate
representing violations of the assertion after going through at most one loop
iteration: x = 0∧ i = j ∧ y 6= 0∨x = 1∧ i = j ∧ y 6= 1. In total, for this example,
we generated 18 good samples and 24 bad samples. The algorithm of [13] first
generates a large set of candidate hyperplanes representing all linear inequalities
possibly occurring in the output predicate. We build this set by constructing all
possible hyperplanes (of the form ±x± y = c) passing through every state. For
instance, the state (2, 2, 0, 0) generates twenty four hyperplanes: x = 0, x = y,
i± x = 2,. . .. Section 4.1 justifies this choice of the set of candidates.

From this large set of hyperplanes, we pick a subset that successfully sepa-
rates the good and bad samples. Note that every good sample must be separated
from every bad sample. Several algorithms can be used to solve this problem.
We describe how a standard greedy approach would work. We keep track of the
pairs of samples, one good and the other bad, that have not yet been separated
by any hyperplane, and repeatedly select from the set of candidate hyperplanes
the one that separates the maximum number of remaining unseparated pairs,
repeating until no unseparated pairs remain.

Fig. 2. Candidate inequalities passing
through all states.

Fig. 3. Separating good states and bad
states using boxes.

We illustrate this process in Figures 2 and 3. The +’s are the good states, and
the−’s are the bad states. Assume that our abstract domain is the box or interval
domain, that is, the predicates are inequalities of the form ±x ≤ c. We first
generate our candidates, that is, hyperplanes of the form x = c passing through
all the good and bad states. These corresponds to all possible horizontal and
vertical lines passing through all the + and − states as shown in Figure 2. Next,
from this set of candidate lines, we initially select line 3, separating one good
state from three bad states, which is the maximum number of pairs separated by
any of the lines. Next, we select line 1 because it separates one good state from
two bad states. Finally, we select line 2, separating the final pair of one good
state and one bad state. The lines tesselate the space into cells, where each cell
is a conjunction of boxes bounding the cell and no cell contains both a good and
a bad state. Each shaded cell in Figure 3 represents a conjunction of boxes that
includes only the good states. The returned predicate is the set of all shaded
cells in Figure 3, which is a disjunction of boxes.

By a similar process, for the 42 states generated from Figure 1 and using
the octagon domain, our tool infers the predicate I ≡ i ≤ j + 1 ∨ j ≤ i + 1 ∨
x = y in 0.06 seconds. We annotated the loop of Figure 1 with this predicate
as a candidate loop invariant and gave it to the Boogie [7] program checker.
Boogie was successfully able to prove that I was indeed a loop invariant and
was able to show that the assertion holds. As another example, on parametrizing
with the Octahedron [16] abstract domain, our technique discovers the simpler
conjunctive loop invariant: i+ y = x+ j in 0.09s.

3 Preliminaries

This section presents necessary background material, including the learning al-
gorithm of [13]. Our goal is to verify a Hoare triple {P}S{Q} for the simple
language of while programs defined as follows:

S ::= x:=M | S; S | if E then S else S fi | while E do S

The while program S is defined over integer variables, and we want to check
whether, for all states s in the precondition P , executing S with initial state s re-

sults in a state satisfying the postcondition Q. In particular, if L ≡ while E do S
is a while program, then to check {P}L{Q}, Hoare logic tells us that we need a
predicate I such that P ⇒ I, {I ∧ E}S{I}, and I ∧ ¬E ⇒ Q. Such a predicate
I is called an inductive invariant or simply an invariant of the loop L. Once we
have obtained invariants for all the loops, then standard techniques can generate
program proofs [7]. We first focus our attention on invariants in the theory of
linear arithmetic:

φ ::= wTx+ d ≥ 0 | true | false | φ ∧ φ | φ ∨ φ | ¬φ

where w = (w1, . . . , wn)T ∈ Qn is a point, an n-dimensional vector of rational
number constants. The vector x = (x1, . . . , xn)T is an n-dimensional vector of
variables. The inner product 〈w, x〉 of w and x is wTx = w1x1 + . . .+wnxn. The
equation wTx+ d = 0 is a hyperplane in n dimensions with slope w and bias d.
Each hyperplane corresponds to an intersection of two half-spaces: wTx + d ≥
0 and wTx + d ≤ 0. For instance, x − y = 0 is a 2-dimensional hyperplane,
x − y + 2z = 0 is a 3-dimensional hyperplane, and x ≥ y and x ≤ y are half-
spaces corresponding to the hyperplane x = y.

3.1 Invariants and Binary Classification

Assume that the Hoare triple {P}while E do S{Q} is valid. Let the loop L have
n variables x = {x1, . . . , xn}. Therefore, the precondition P (x) and postcondition
Q(x) are predicates over x. If the loop execution is started in a state satisfying
P and control flow reaches the loop head after zero or more iterations, then
the resulting state is said be reachable at the loop head. Denote the set of all
reachable states at the loop head by R. Since the Hoare triple is valid, all the
reachable states are good states. On the other hand, if we execute the loop from
a state y satisfying ¬E ∧ ¬Q, then we will reach a state at the end of the loop
that violates the postcondition, that is, y satisfies ¬Q. We call such a state a bad
state. Denote the set of all bad states by B. Observe that for a correct program,
R ⇒ ¬B. Otherwise, any state satisfying R ∧ B is a reachable bad state. R
is the strongest invariant, while ¬B is the weakest invariant sufficient to prove
the Hoare triple. Any inductive predicate I satisfying R ⇒ I and I ⇒ ¬B
suffices for the proof: I contains all the good states and does not contain any
bad state. Therefore, I separates the good states from the bad states, and thus
the problem of computing an invariant can be formulated as finding a separator
between R and B. In general, we do not know R and B – our objective is to
compute a separator I from under-approximations of R and B. For the Hoare
triple {P}while E do S{Q}, any subset of states reachable from P is an under-
approximation of R, while any subset of states satisfying, but not limited to,
the predicate ¬E ∧ ¬Q is an under-approximation of B.

Computing separators between sets of points is a well-studied problem in
machine learning and goes under the name binary classification. The input to
the binary classification problem is a set of points with labels from {1, 0}. Given
points and their labels, the goal of the binary classification is to find a classifier

C : points → {true, false}, such that C(a) = true, for every point a with label
1, and C(b) = false for every point b with label 0. This process is called training
a classifier, and the set of labeled points is called the training data.

The goal of classification is not to just classify the training points correctly
but also to be able to predict the labels of previously unseen points. In particular,
even if we are given a new labeled point w, with label l, not contained in the
training data, then it should be very likely that C(w) is true if and only if l = 1.
This property is called generalization, and an algorithm that computes classifiers
that are likely to perform well on unseen points is said to generalize well.

If C lies in linear arithmetic, that is, it is an arbitrary boolean combination
of half-spaces, then we call such a C a geometric concept. Our goal is to apply
machine learning algorithms for learning geometric concepts to obtain invariants.
The good states, obtained by sampling from R, will be labeled 1 and the bad
states, obtained by sampling from B, will be labeled 0. We want to use these
labeled points to train a classifier that is likely to be an invariant, separating all
the good states R from all the bad states B. In other words, we would like to
compute a classifier that generalizes well enough to be an invariant.

3.2 Learning Geometric Concepts

Let R and B be under-approximations of the good states R and the bad states
B, respectively, at a loop head. The classifier ∨r∈Rx = r trivially separates R
from B. However, this classifier has a large generalization error. In particular, it
will misclassify every state in R \ R; a candidate invariant misclassifies a good
state r when I(r) = false and a bad state b when I(b) = true. It can be shown if
a predicate or classifier grows linearly with the size of training data (∨r∈Rx = r
being such a predicate), then such a classifier cannot generalize well. On the
other hand, a predicate that is independent of the size of training data can be
proven to generalize well [11].

To reduce the size of the predicates, Bshouty et al. [13] frame the problem
of learning a general geometric concept as a set cover problem. Let X be a set
of n points. We are given a set F ⊆ 2X with k elements such that each element
Fi ∈ F is a subset of X. We say that an element x ∈ X is covered by the set Fi
if x ∈ Fi. The goal is to select the minimum number of sets Fi such that each
element of X is covered by at least one set. For example, if X = {1, 2, 3} and
F = {{1, 2}, {2, 3}, {1, 3}}, then {{1, 2}, {2, 3}} is a solution, and this minimum
set cover has a size of two. The set cover problem is NP-complete and we have to
be satisfied with approximation algorithms [12, 15]. Bshouty et al. [13] formalize
learning of geometric concepts as a set cover problem, solve it using [12], and
show that the resulting algorithm PAC learns. Note that experiments of [12]
show that the performance of the naive greedy algorithm [15] is similar to the
algorithm of [12] in practice. Hence, we use the simple to implement greedy set
cover for our implementation (Section 5).

We are given a set of samples V = {xi}i=1,...m, some of which are good and
some bad. We create a bipartite graph U where each sample is a node and there
is an edge between nodes x+ and x− for every good sample x+ and every bad

Fig. 4. Separating three points in two dimensions. The solid lines tessellate R2 into
seven cells. The −’s are the bad states and the +’s are the good states. The dotted
lines are the edges to be cut.

sample x−. In Figure 4, there is one good state, two bad states, and dotted
lines represent edges of U . Next, we look for hyperplanes that cut the edges of
the graph U . A hyperplane cuts an edge if the two endpoints of the edge lie on
different sides of the hyperplane. Note that for every solution, each good sample
needs to be separated from every bad sample. This implies that we will need
to “cut” every edge in graph U . Intuitively, once we have collected a set S of
hyperplanes such that every edge in graph U is cut by at least one hyperplane
in S we can perfectly separate the good and bad samples. The hyperplanes in S
tessellate Rd into a number of cells. (In Figure 4, the three solid lines tessellate
R2 into seven cells.) No cell contains both a good sample and a bad sample – if
it does, then the edge between a good sample and a bad sample in the cell is not
cut by any hyperplane in S. Thus, each cell contains only good samples, or only
bad samples, or no samples at all. We can therefore label each cell, as “good”
in the first case, “bad” in the second case, and with an arbitrary “don’t care”
label in the last case.

Each cell is bounded by a set of hyperplanes, and therefore corresponds to
an intersection of half-spaces. The “good” region of Rd (where d is the number
of variables in the program) is then a union of cells labeled “good”, and hence
a union of intersections of half-spaces, that we output. Thus, the union of inter-
sections of half-spaces we output contains all the good samples, no bad samples,
and separates all the good from all the bad samples.

This discussion shows that all we need to do is to come up with the set S of
hyperplanes that together cut every edge of graph U . To achieve this goal, we
consider a universal set of hyperplanes F corresponding to all possible partitions
of states. Every hyperplane defines a partition of states: some states lie above
the plane and some lie below it. F contains one hyperplane for every possible
partition. By Sauer’s lemma, such a set F has cardinality O(md) [13]. We say
that an edge is covered by a hyperplane from F if the hyperplane cuts it. We
want to cover all edges of graph U by these hyperplanes. This set cover problem
can be solved in several ways that have comparable performance in practice [15,
12]. The simplest solution is to greedily select the hyperplane from F that covers
the maximum number of uncovered edges of graph U , and repeating the greedy

selection until all edges in U are cut. For Figure 4, F contains three hyperplanes,
and graph U has two edges (edges between −’s and +’s.). The horizontal plane
cuts both the edges and divides the space into two cells: one above and one
below. Since the cell above the horizontal plane contains a ‘+’, we will label it
“good”. Similarly, the cell below is labeled “bad”. The output predicate is the
half-space above the horizontal hyperplane. If the good and bad samples, total m
in number, require a minimum number of s hyperplanes to separate them, then
the greedy approach has the guarantee that will compute a predicate that uses
O(s logm) hyperplanes. Using [12], we can obtain a predicate using O(sd log sd)
hyperplanes. This implies that the number of inequalities of the classifier ap-
proximates the number of the inequalities of the simplest true invariant by a
logarithmic factor. Such a relationship between candidate and true invariants
appears to be new in the context of invariant inference.

3.3 PAC Learning

By enumerating a plane for each partition and performing a set cover, the al-
gorithm of [13] finds a geometric concept that separates the good samples from
the bad samples. But how well does it generalize? Bshouty et al. [13] showed
that under the assumptions of the PAC model [56] this process is likely to pro-
duce a geometric concept that will separate all the good states from all the bad
states with high probability. The major assumption of the PAC model is that
there is an oracle that knows the true classifier and it generates training data
by drawing independent and identically distributed samples from a distribution
and assigning them labels, either good or bad, using the true classifier.

Independent samples are theoretically justified as otherwise one can construct
data with an arbitrary number of samples by duplicating one sample an arbitrary
number of times and then the term “amount of training data” is not well de-
fined. Practically, if one draws a sample randomly from some distribution, then
deciding whether it is good or bad is undecidable. Hence such an oracle cannot
be implemented and in our experiments we make do with a simple technique for
obtaining samples, where the samples are not necessarily independent.

The proof of PAC learning in [13] uses the following result from the seminal
paper of Blumer et al. [11].

Theorem 1. If an algorithm outputs f consistent with a sample of size max(
4
ε log 2

δ ,
8V C
ε log 13

ε

)
then f has error at most ε with probability at least 1− δ.

Intuitively, this theorem states that if an algorithm can separate a large number
of good and bad samples then the classifier has a low probability of misclassifying
a new sample. Here V C is the Vapnik-Chervonenkis dimension, a quantity deter-
mined by the number of hyperplanes in the geometric concepts we are learning
and the number of variables. In [13], by using algorithms for set cover that have
a good approximation factor [12], Bshouty et al. are able to bound the number of
planes in the output predicate f , and hence the quantity V C. Since the output
of [13] is consistent with all good and bad samples, given enough samples the

algorithm outputs a predicate that is very likely to separate all the good states
from all the bad states. For the full proof the reader is referred to [13].

Hence, [13] can produce predicates that are likely to separate all good states
and bad states, under PAC assumptions. This is a formal guarantee on the
extrapolation we have performed using some good and bad samples, that is, using
some finite behaviors of the program. Although this guarantee is in a model, we
are unaware of any previous program verification engine with any guarantee, in
a model or otherwise, on the heuristic extrapolation they perform. Even though
this guarantee is not the best possible guarantee that one would desire, the
undecidability of program verification prevents strong results for the problem we
consider. It is well known that the PAC learners tend to have good performance
in practice for a variety of learning tasks. Our experiments show that the PAC
learners we construct have good performance for the task of invariant inference.
We believe that by finding candidate invariants separating all good samples from
all bad samples and misclassifying unseen points with low probability leads our
technique to produce true invariants.

3.4 Complexity

If we have m states in d dimensions, then we need to cover O(m2) edges of
graph U using O(md) hyperplanes of F . Greedy set cover has a time complexity
of O(m2|F|). Considering O(md) hyperplanes is, however, impractical. With a
thousand samples for a four variable program, we will need to enumerate 1012

planes. Hence this algorithm has a very high space complexity and will run out
of memory on most benchmarks of Section 5.

Suppose the invariant has s hyperplanes. Hence the good states and bad
states can be separated by s hyperplanes. To achieve learning, we require that
F should contain s hyperplanes that separate the good samples and the bad
samples – since the planes constituting the invariant could be any arbitrary
set, in general we need to select a lot of candidates to ensure this. By adding
assumptions about the invariant, the size of F can be reduced. Say for octagons,
for thousand samples and four variables, the algorithm of Section 4.1 considers
24000 candidates.

3.5 Logic Minimization

The output of the algorithm of Section 3.2 is a set S of hyperplanes separat-
ing every good sample from every bad sample. As described previously, these
hyperplanes tessellate Rd into cells. Recall that S has the property that no cell
contains both a good state and a bad state.

Now we must construct a predicate containing all good samples and excluding
all bad samples. One obvious option is the union of cells labeled “good”. But
this might result in a huge predicate since each cell is an intersection of half-
spaces. Our goal is to compute a predicate with the smallest number of boolean
operators such that it contains all the “good” cells and no “bad” cells. Let H be

the set of half-spaces constituting the “good” cells. Define a boolean matrix M
with m rows and |H| columns, and an m-dimensional vector y as follows.

M(i, j) = true ⇔ {ithstate ∈ jth half-space of H}
y(i) = true ⇔ {ithstate is a good state}

This matrix M together with the vector y resembles a partial truth table – the ith

row of M identifies the cell in which the ith state lies and y(i) (the label of the ith

state) gives the label for the cell (whether it is a cell containing only good states
or only bad states). Now, we want to learn the simplest boolean function (in
terms of the number of boolean operators) f : {true, false}|H| → {true, false},
such that f(Mi) = y(i) (Mi is the ith row of M). This problem is called logic
minimization and is NP-complete. Empirically, however, S has a small number of
hyperplanes, at most eight in our experiments, and we are able to use standard
exponential time algorithms like the Quine-McCluskey algorithm [44] to get a
small classifier.

In summary, we use set covering for learning geometric concepts (Section 3.2)
to compute predicates with a small number of hyperplanes. Combining this with
logic minimization, we compute a predicate with a small number of boolean
connectives. Empirically, we find that these predicates are actual invariants for all
the benchmarks that have an arbitrary boolean combination of linear inequalities
as an invariant.

4 Practical Algorithms

The algorithm discussed in Section 3.2, although of considerable interest, has
limited practical applicability because its space and time complexity is expo-
nential in the dimension, which in our case, is the number of program variables
(Section 3.4). This complexity is not too surprising since, for example, abstract
interpretation over the abstract domain of convex hulls [23] is also exponential
in the number of variables. In this paper, we make the common assumption
that the invariants come from a restricted class, which amounts to reducing the
number of candidate sets for covering in our set cover algorithm. Therefore, we
are able to obtain polynomial time algorithms in the number of samples and the
dimension to generate classifiers under mild restrictions (Section 4.1).

4.1 Restricting Generality

Let s denote the number of hyperplanes in the invariant. Then for PAC learning,
we say the set F of candidate hyperplanes is adequate if it contains s hyperplanes
that completely separate the good samples from the bad samples. Recall that
the complexity of the procedure of Section 3.2 is O(m2|F|), and therefore a
polynomial size set F makes the algorithm polynomial time. In addition, the set
covering step can be parallelized for efficiency [8].

In the following two sections we will give two PAC learning algorithms. The
formal proofs that these algorithms learn in the PAC model are beyond the

scope of this paper and are similar to the proofs in [13]. However, we do show
the construction of adequate sets F that coupled with a good approximation
factor of set cover [12] give us PAC learning guarantees.

Predicate Abstraction Suppose we are given a set of predicates P where each
predicate is a half-space. Assume that the invariant is a boolean combination
of predicates in P, and checking whether a given candidate I is an invariant is
co-NP-complete. If the invariant is an intersection or disjunction of predicates
in P, then Houdini [27] can find the invariant in time PNP (that is, it makes a
polynomial number of calls to an oracle that can solve NP problems). When the
predicates are arbitrary boolean combinations of half-spaces from P, then the
problem of finding the invariant is much harder, NPNP -complete [39]. We are
not aware of any previous approach that solves this problem.

Now suppose that instead of an exact invariant, we want to find a PAC
classifier to separate the good states from the bad states. If the set of candidates
F is P, then this trivially guarantees that there are s hyperplanes in F that do
separate all the good states from the bad states – all we need to do now to obtain
a PAC algorithm is to solve a set cover problem [12]. This observation allows us
to obtain a practical algorithm. By using the greedy algorithm on m samples,
we can find a classifier in time O(m2|P|). Therefore, by relaxing our problem to
finding a classifier that separates good samples from bad samples, rather than
finding an exact invariant, we are able to solve a NPNP complete problem in
time O(m2|P|) time, a very significant improvement in time complexity.

Abstract Interpretation Simple predicate abstraction can be restrictive be-
cause the set of predicates is fixed and finite. Abstract interpretation is another
approach to finding invariants that can deal with infinite sets of predicates. For
scalable analyses, abstract interpretation assumes that invariants come from re-
stricted abstract domains. Two of the most common abstract domains are boxes
and octagons. In boxes, the predicates are of the form ±x+ c ≥ 0, where x is a
program variable and c is a constant. In octagons, the predicates are of the form
±x ± y + c ≥ 0. Note that, by varying c, these form an infinite family of pred-
icates. These restricted abstract domains amount to fixing the set of possible
slopes w of the constituent half-spaces wTx+ b ≥ 0 (the bias b that corresponds
to c, is however free).

Suppose now that we are given a finite set of slopes, that is, we are given a
finite set of weight vectors Σ = {wi | i = 1, . . . , |Σ|}, such that the invariant
only involves hyperplanes with these slopes. In this case, we observe that we
can restrict our attention to hyperplanes that pass through one of the samples,
because any hyperplane in the invariant that does not pass through any sample
can be translated until it passes through one of the samples and the resulting
predicate will still separate all the good samples from the bad samples. In this
case, the set F is defined as follows:

F = {(w, b) | w ∈ Σ and wTxi + b = 0 for some sample xi ∈ V } (1)

The size of F is |Σ|m. Again, this set contains s hyperplanes that separate all
the good samples from all the bad samples (the s hyperplanes of the invariant,
translated to where they pass through one of the samples), and therefore this set
is adequate and coupled with set covering [12] gives us a PAC learning algorithm.

The time complexity for greedy set cover in this case also includes the time
taken to compute the bias for each hyperplane in F . There are |F| = |Σ|m such
hyperplanes, and finding the bias for each hyperplane takes O(d) time. The time
complexity is therefore O(m2|F|+ d|F|) = O(m3|Σ|).

If we want to find classifiers over abstract domains such as boxes and oc-
tagons, then we can work with the appropriate slopes. For boxes |Σ| is O(d) and
for octagons |Σ| is O(d2). Interestingly, the increase in complexity when learning
classifiers as we go from boxes to octagons mirrors the increase in complexity
of the abstract interpretation. By adding more slopes we can move to more ex-
pressive abstract domains. Also note that the abstract domain over which we
compute classifiers is much richer than the corresponding abstract interpreta-
tion. Conventional efficient abstract interpretation can only find invariants that
are conjunctions of predicates, but we learn arbitrary boolean combinations of
half-spaces, that allows us to learn arbitrary boolean combinations of predicates
in abstract domains.

Again, we observe that by relaxing the requirement from an invariant to a
classifier that separates good and bad samples, we are able to obtain predicates in
polynomial time that are richer than any existing symbolic program verification
tool we are familiar with.

4.2 Non-linear Invariants

Our geometric method of extracting likely invariants carries over to polynomial
inequalities. Assume we are given a fixed bound k on the degree of the poly-
nomials. Consider a d-dimensional point ~x = (x1, . . . , xd). We can map ~x to a(
d+k−1
k

)
-dimensional space by considering every possible monomial involving the

components of ~x of maximum degree k as a separate dimension. Thus,

φ(~x) = (xα1
1 xα2

2 . . . xαd

d |
∑
i

αi ≤ k, αi ∈ N) (2)

Using the mapping φ, we can transform every point ~x into a higher dimensional
space. In this space, polynomial inequalities of degree k are linear half-spaces,
and so the entire machinery above carries through without any changes. In the
general case, when we have no information about the invariant then we will take
time exponential in d. When we know the slopes or the predicates constituting
the invariants then we can get efficient algorithms by following the approach of
Section 4.1. Therefore, we can infer likely invariants that are arbitrary boolean
combinations of polynomial inequalities of a given degree.

4.3 Recovering Soundness

Once we obtain a classifier, we want to use it to construct proofs for programs.
But the classifier is not guaranteed to be an invariant. To obtain soundness, we

augment our learning algorithm with a theorem prover using a standard guess-
and-check loop [55, 54]. We sample, perform learning, and propose a candidate
invariant using the set cover approach for learning geometric concepts as de-
scribed in Section 3.2 (the guess step). We then ask a theorem prover to check
whether the candidate invariant is indeed an invariant (the check step). If the
check succeeds we are done. Otherwise, the candidate invariant is not an invari-
ant and we sample more states and guess again. When we terminate successfully,
we have computed a sound invariant. For a candidate invariant I, we make the
following queries:

1. The candidate invariant is weaker than the pre-condition P ⇒ I.

2. The candidate invariant implies the post-condition I ∧ ¬E ⇒ Q.

3. The candidate invariant is inductive {I ∧ E}S{I}.

If all three queries succeed, then we have found an invariant. Note that since
we are working with samples, I is neither an under-approximation nor an over-
approximation of the actual invariant. If the first constraint fails, then a counter-
example is a good state that I classifies as bad. If the second constraint fails, then
a counter-example is a bad state that I classifies as good. If the third constraint,
representing inductiveness, fails then we get a pair of states (x, y) such that I
classifies x as good, y as bad, and if the loop body starts its execution from
state x then it can terminate in state y. Hence if x is good then so is y and (x, y)
refutes the candidate I. However, x is unlabelled, i.e., we do not know whether
it is a good state or not and we cannot add x and y to samples directly.

Now, we want our learning algorithm to generate a classifier that respects
the pair (x, y) of counter-example states: if the classifier includes x then it also
includes y. If the invariant has s hyperplanes then the greedy set cover can be ex-
tended to generate a separator between good and bad samples that respects such
pairs. The basic idea is to greedily select the hyperplanes which make the most
number of pairs consistent. Moreover the number of hyperplanes in the output
is guaranteed to be O(s(logm)2): the size of the predicate can increase linearly
with the number of pairs. This algorithm can be used to guide our learning algo-
rithm in the case it finds an invariant that is not inductive. Note that the need
for this extension did not arise in our experiments. Using a small amount of data,
greedy set cover was sufficient to find an invariant. For buggy programs, a good
state g, a bad state b, and a sequence of pairs (x1, x2), (x2, x3), . . . , (xk−1, xk)
such that g = x1 and b = xk is an error trace, i.e., certificate for a bug.

When we applied guess-and-check in our previous work [55, 54] to infer rel-
evant predicates for verification, we checked for only two out of the three con-
straints listed above (Section 6). Hence, these predicates did not prove any pro-
gram property and moreover they were of limited expressiveness (no disjunctions
among other restrictions). Checking fewer constraints coupled with reduced ex-
pressiveness made it straightforward to incorporate counter-examples. In con-
trast, we now must deal with the kinds of counter-examples (good, bad, and
unlabeled) for an expressive class of predicates. Handling all three kinds is nec-
essary to guarantee progress, ensuring that an incorrect candidate invariant is

never proposed again. However, if the candidates are inadequate then the guess-
and-check procedure will loop forever: Inadequacy results in candidate invariants
that grow linearly with the number of samples.

If we want to analyze a single procedure program with multiple loops, then
we process the loops beginning with the last, innermost loop and working out-
wards and upward to the first, outermost loop. The invariants of the processed
loops become assertions or postconditions for the to-be-processed loops. While
checking the candidate invariants, the condition that the candidate invariant
should be weaker than the pre-condition is only checked for the topmost outer-
most loop L and not for others. If this check generates a counter-example then
the program is executed from the head of L with the variables initialized using
the counter-example. This execution generates new good states for the loops it
reaches and invariant computation is repeated for these loops.

5 Experimental Evaluation

We have implemented and evaluated our approach on a number of challenging C
benchmarks. Greedy set cover is implemented in one hundred lines of MATLAB
code. We use Havoc [5] to generate BoogiePL programs from C programs
annotated with candidate invariants. Next, Boogie [7] verification condition
generator operates on the BoogiePL programs to check the candidate invariants
by passing the verification conditions to Z3 theorem prover [45]. All experiments
were performed on a 2.67GHz Intel Xeon processor system with 8 GB RAM
running Windows 7 and MATLAB R2010b.

Implementation notes Our implementation analyzes single procedure C pro-
grams with integer variables and assertions. Since all these programs contain
loops, we need to compute invariants that are strong enough to prove the asser-
tions. For every loop, our technique works as follows: first, we instrument the
loop head to log the values of the variables in scope. Next, we run the program till
termination on some test inputs to generate data. All internal non-deterministic
choices, such as non-deterministic tests on branches, are randomly selected. All
states reaching the loop head are stored in a matrix good. We then compute
the null space of good to get the sub-space J in which the good states lie: J
represents the equality relationships that the good states satisfy. Working in the
lower dimensional sub-space J improves the performance of our algorithms by
effectively reducing d, the number of independent variables.

Next, from the loop body, we statically identify the predicate B representing
the states that will violate some assertion after at most one iteration of the loop.
We then sample the bad states from the predicate B ∧ J . The good and bad
samples are then used to generate the set of candidate hyperplanes F using the
specified slopes – octagons are sufficient for all programs except seq-len.

We perform another optimization: we restrict the candidates to just the oc-
tagons passing through the good states, thus reducing the number of candidates.
Note that this optimization still leads to an adequate set of candidates and we

Table 1. Program is the name, LOC is lines, #Loops is the number of loops, and #Vars

is the number of variables in the benchmark. #Good is the maximum number of good
states, #Bad is the maximum number of bad states, and Learn is the maximum time of
the learning routine over all loops of the program. Check is time by Boogie for proving
the correctness of the whole program and Result is the verdict: OK is verified, FAIL is
failure of our learning technique, and PRE is verified but under certain pre-conditions.

Program LOC #Loops #Vars #Good #Bad Learn(s) Check(s) Result

fig6 [31] 16 1 2 3 0 0.030 1.04 OK

fig9 [31] 10 1 2 1 0 0.030 0.99 OK

prog2 [31] 19 1 2 10 0 0.034 1.00 OK

prog3 [31] 29 1 4 8 126 0.106 1.05 OK

test [31] 30 1 4 20 0 0.162 1.00 OK

ex23 [36] 20 1 2 111 0 0.045 1.05 OK

sas07 [29] 20 1 2 103 6112 2.64 1.02 OK

popl07 [32] 20 1 2 101 10000 2.85 0.99 OK

get-tag [35] 120 2 2 6 28 0.092 1.04 OK

hsort [35] 47 2 5 15 435 0.19 1.05 OK

maill-qp [35] 92 1 3 9 253 0.11 1.05 OK

msort [35] 73 6 10 9 77 0.093 1.12 OK

nested [35] 21 3 4 49 392 0.24 0.99 OK

seq-len1 [35] 44 6 5 36 1029 0.32 1.04 PRE

seq-len [35] 44 6 5 224 3822 4.39 1.04 OK

spam [35] 57 2 5 11 147 1.01 1.05 OK

svd [35] 50 5 5 150 1708 4.92 0.99 OK

split 20 1 5 36 4851 FAIL NA FAIL

div [53] 28 2 6 343 248 2.03 1.04 OK

retain our learning guarantees. Next, using the greedy algorithm, we select the
hyperplanes that separate the good from the bad states, and return a set of half-
spaces H and a partial boolean function f : f(b1, . . . , b|H|) that represents the
label of the cell that lies inside the half-spaces for which bi’s are true and outside
the half-space for which bi is false. This algorithm is linear in the number of
bad states and its complexity is governed almost entirely by the number of good
states. For our benchmarks, |H| was at most 8. We use the Quine-McCluskey
algorithm for logic minimization (Section 3.5) that returns the smallest total
boolean function g that agrees with f . Conjoining the predicate obtained us-
ing g and H with J yields a candidate invariant. This invariant is added as an
annotation to the original program that is checked with Boogie for assertion
violations.

Evaluation An important empirical question is how much data is sufficient to
obtain a sound invariant. To answer this question, we adopt the following method

for generating data: we run the programs on all possible inputs s.t. all input
variables have their values between [−1, N] where N is initially zero. This process
generates good states at the loop head. Next we generate bad states and check
whether our first guess is an invariant. If not then we continue generating more
bad states and checking if the guess is an invariant. If we have generated 10,000
bad states and still have not found an invariant then we increment N by one and
repeat the process. We are able to obtain a sound invariant within four iterations
of this process for our linear benchmarks; div needs ten iterations: it needs more
data as the (non-linear) invariant is found in a higher dimensional space.

Now we explain our approach of sampling bad states given a set of good
states. Each variable x at the loop head takes values in some range [Lx,Mx] for
the good states. To sample the bad states, we exhaustively enumerate states (in
the subspace in which the good states lie) where the value of each variable x
varies over the range [Lx,Mx]. For deterministic programs with finite number of
reachable states, any enumerated state that is unreachable is labeled bad. For
others, bad states are generated by identifying the enumerated states satisfying
the predicate B representing bad states. Because this process can enumerate a
very large number of states unless the range or number of variables is small,
we incrementally enumerate the states until we generate 10,000 bad states. The
results in Table 1 show the number of good states (column 5) and bad states
(column 6) that yield a sound invariant.

We observe that only a few good states are required for these benchmarks,
which leads us to believe that existing test suites of programs should be sufficient
for generating sound invariants. We observe that our sampling strategy based
on enumeration generates many bad states that are not useful for the algorithm.
The candidate invariant is mainly determined by the bad states that are close
to the good states and not those that are further away and play no role in
determining the good state/bad state boundary. The complexity of our algorithm
is governed mainly by the good states, due to our optimizations, and hence
generating superfluous bad states is not an issue for these benchmarks. Since
the candidate inequalities are determined by the good and bad states, the good
and bad samples should be generated with the goal of including the inequalities
of the invariants in the set of candidates. Note that we use a naive strategy for
sampling. Better strategies directed towards the above goal are certainly possible
and may work better.

The benchmarks that we used for evaluating our technique are shown in the
first column (labeled Program) of Table 1. Lee-Yannakakis partition refine-
ment algorithm [42] does not work well on fig6; Synergy [31] fails to termi-
nate on fig9; prog2 has a loop with a large constant number of iterations and
predicate abstraction based tools like Slam take time proportional to the num-
ber of loop iterations. The program prog3 requires a disjunctive invariant. For
test we find the invariant y = x + lock: Slam finds the disjunctive invariant
(x = y ⇒ lock = 0 ∧ x 6= y ⇒ lock = 1). For ex23, we discovered the invariant
z = counter + 36y. This is possible because the size of constants are bounded
only for computing inequalities: the equalities in J have no restriction on the

size of constants. Such relationships are beyond the scope of tools performing
abstract interpretation over octagons [40]. The equalities in J are sufficient to
verify the correctness of the benchmarks containing a zero in column #Bad of
Table 1. The programs sas07 and popl07 are deterministic programs requiring
disjunctive invariants. We handle these without using any templates [35]. The
programs get-tag through svd are the benchmarks used to evaluate the tem-
plate based invariant generation tool InvGen [35]. As seen from Table 1, we are
faster than InvGen on half of these programs, and slower on the other half.

We modify seq-len to obtain the benchmark seq-len1; the program seq-len1

assumes that all inputs are positive. We are able to find strong invariants for
the loops, using octagons for slopes, that are sufficient to prove the correctness
of this program. These invariants include sophisticated equalities like i + k =
n0 + n1 + n2. Since we proved the correctness by assuming a pre-condition on
inputs, the Result column says PRE. Next, we analyze seq-len, that has no
pre-conditions on inputs, using octagons as slopes. We obtain a separator that
has as many linear inequalities as the number of input states; such a predicate
will not generalize. For this example, there is no separator small in size if we
restrict the domain of our slopes to octagons. Therefore, we add slopes of hy-
perplanes that constitute invariants of seq-len1 and similar slopes to our bag
of slopes. We are then able to prove seq-len correct by discovering invariants
like i+ k ≥ n0 + n1 + n2. This demonstrates how we can find logically stronger
invariants in specialized contexts.

The split program requires an invariant that uses an interpreted function
iseven. Our approach fails on this program as the desired invariant cannot be
expressed as an arbitrary boolean combinations of half-spaces. For the div pro-
gram, the objective is to verify that the computed remainder is less than the
divisor and the quotient times divisor plus remainder is equal to dividend. Using
the technique described in Section 4.2 with a degree bound of 2, we are able to
infer a invariant that proves the specification. We are unaware of any previous
technique that can prove the specification of this benchmark.

6 Related Work

In this section, we compare our approach with existing techniques for linear and
non-linear invariant generation. Since the literature on invariant inference is rich,
we only discuss the techniques closest to our work.

6.1 Comparison with Linear Invariant Generation

Invariant generation tools that are based on either abstract interpretation [23,
21], or constraint solving [19, 35], or their combination [18], cannot handle arbi-
trary boolean combinations of half-spaces. Similar to us, Clousot [41] improves
its performance by conjoining equalities and inequalities over boxes. Some ap-
proaches like [25, 26, 52, 32, 34, 29, 43] can handle disjunctions, but they restrict

the number of disjunctions by widening, manual input, or trace based heuristics.
In contrast, [28] handles disjunctions of a specific form.

Predicate abstraction based tools are geared towards computing arbitrary
boolean combinations of predicates [6, 9, 31, 1, 10, 30]. Among these, Yogi [31]
uses test cases to determine where to refine its abstraction. However, just like [47],
it uses the trace and not the concrete states generated by a test. InvGen [35]
uses test cases for constraint simplification, but does not generalize from them
with provable generalization guarantees. Amato et al. [2] analyze data from pro-
gram executions to tune their abstract interpretation. Recently, we ran support
vector machines [20], a widely used machine learning algorithm, in a guess-and-
check loop to obtain a sound interpolation procedure [55]. However, [55] cannot
handle disjunctions and computed interpolants need not be inductive.

Daikon [24] is a tool for generating likely invariants using tests. Candidate
invariants are generated using templates, and candidates that violate some test
case are removed. Since the invariants are based on templates, Daikon is less
expressive than our approach. It is interesting to note that our empirical results
are consistent with those reported in [49]: a small number of states can cover
most program behaviors. Random interpretation [33] trade-offs complexity of
program analysis for unsoundness. In contrast, our guarantees are sound and we
trade expressiveness for efficiency.

6.2 Comparison with Tools for Non-linear Invariants

Existing sound tools for non-linear invariant generation can produce invariants
that are conjunctions of polynomial equalities [51, 38, 50, 14, 46, 53, 17]. However,
by imposing strict restrictions on syntax (such as no nested loops) [51, 38] do
not need to assume the degree of polynomials as the input. Bagnara et al. [4]
introduce new variables for monomials and generate linear invariants over them
by abstract interpretation over convex polyhedra. Our domain is more expressive:
arbitrary boolean combinations of polynomial inequalities.

Nguyen et al. [48] give an unsound algorithm for generation of likely invari-
ants that are conjunctions of polynomial equalities or inequalities. For equali-
ties, they compute the null space of good samples (obtained from tests) in the
higher dimensional space described in Section 4.2, that is also one of the steps
of our technique. For generation of candidate polynomial inequalities they find
the convex hull of the good samples in the higher dimensional space. In addi-
tion to limiting the expressiveness to just conjunction of polynomial inequalities,
this step is computationally very expensive. In a related work, we ran [48] in a
guess-and-check loop to obtain an algorithm [54], with soundness and termina-
tion guarantees, for generating polynomial equalities as invariants. A termination
proof was possible as [54] can return the trivial invariant true: it is not required
to find invariants strong enough to prove some property of interest. This tech-
nique can handle only the benchmarks that require zero bad states in Table 1,
whereas our current technique can handle all the benchmarks of [54].

7 Conclusion

We have presented a machine learning perspective to verifying safety properties
of programs and demonstrated how it helps us achieve guarantees and expres-
siveness. The learning algorithm performs a set cover and given an adequate
set of candidate inequalities, it has the guarantee that the output candidate
invariant uses at most a logarithmic number of inequalities more than the sim-
plest true invariant. Hence the algorithm is biased towards simple invariants
and hence parsimonious proofs. The PAC learning guarantees for this algorithm
formally capture the generalization properties of the candidate invariants. Dis-
junctions and non-linearities are handled naturally with no a priori bound on
the number of disjunctions. We trade expressiveness for efficiency by changing
the abstract domains and demonstrate our approach on challenging benchmarks.
The literature on classification algorithms is rich and it will be interesting to see
how different classification algorithms perform on the task of invariant inference.
Learning algorithms for data structures manipulating programs and for inferring
quantified invariants are left as future work.

Acknowledgements We thank Hongseok Yang and the anonymous reviewers
for their constructive comments. Praneeth Netrapalli, Divya Gupta, and Prateek
Jain helped in extending the classification algorithm to handle pairs. Sharma per-
formed part of the work reported here during a summer internship at Microsoft
Research India. This material is based on research sponsored by NSF grant
CCF-0915766 and the Air Force Research Laboratory, under agreement num-
ber FA8750-12-2-0020. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright
notation thereon.

References

1. Albarghouthi, A., Gurfinkel, A., Chechik, M.: Craig interpretation. In: SAS. pp.
300–316 (2012)

2. Amato, G., Parton, M., Scozzari, F.: Discovering invariants via simple component
analysis. J. Symb. Comput. 47(12), 1533–1560 (2012)

3. Bagnara, R., Hill, P.M., Zaffanella, E.: Widening operators for powerset domains.
STTT 9(3-4) (2007)

4. Bagnara, R., Rodŕıguez-Carbonell, E., Zaffanella, E.: Generation of basic semi-
algebraic invariants using convex polyhedra. In: SAS. pp. 19–34 (2005)

5. Ball, T., Hackett, B., Lahiri, S.K., Qadeer, S., Vanegue, J.: Towards scalable mod-
ular checking of user-defined properties. In: VSTTE. pp. 1–24 (2010)

6. Ball, T., Rajamani, S.K.: The SLAM toolkit. In: CAV. pp. 260–264 (2001)
7. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A

modular reusable verifier for object-oriented programs. In: FMCO. pp. 364–387
(2005)

8. Berger, B., Rompel, J., Shor, P.W.: Efficient NC algorithms for set cover with
applications to learning and geometry. J. Comput. Syst. Sci. 49(3), 454–477 (1994)

9. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
blast. STTT 9(5-6), 505–525 (2007)

10. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Path invariants. In:
PLDI. pp. 300–309 (2007)

11. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Learnability and the
Vapnik-Chervonenkis dimension. JACM 36(4), 929–965 (October 1989)

12. Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite VC-
dimension. In: SoCG. pp. 293–302 (1994)

13. Bshouty, N.H., Goldman, S.A., Mathias, H.D., Suri, S., Tamaki, H.: Noise-tolerant
distribution-free learning of general geometric concepts. In: STOC. pp. 151–160
(1996)

14. Cachera, D., Jensen, T.P., Jobin, A., Kirchner, F.: Inference of polynomial invari-
ants for imperative programs: A farewell to Gröbner bases. In: SAS. pp. 58–74
(2012)

15. Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Op-
erations Research 4(3), 233–235 (1979)

16. Clarisó, R., Cortadella, J.: The octahedron abstract domain. In: SAS. pp. 312–327
(2004)

17. Colón, M.: Approximating the algebraic relational semantics of imperative pro-
grams. In: Static Analysis Symposium (SAS). pp. 296–311 (2004)

18. Colón, M., Sankaranarayanan, S.: Generalizing the template polyhedral domain.
In: ESOP. pp. 176–195 (2011)

19. Colón, M., Sankaranarayanan, S., Sipma, H.: Linear invariant generation using
non-linear constraint solving. In: CAV. pp. 420–432 (2003)

20. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297
(1995)

21. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL. pp.
238–252 (1977)

22. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
POPL. pp. 269–282 (1979)

23. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL. pp. 84–96 (1978)

24. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The Daikon system for dynamic detection of likely invariants. Sci. Com-
put. Program. 69(1–3), 35–45 (2007)

25. Fähndrich, M., Logozzo, F.: Static contract checking with abstract interpretation.
In: FoVeOOS. pp. 10–30 (2010)

26. Filé, G., Ranzato, F.: Improving abstract interpretations by systematic lifting to
the powerset. In: GULP-PRODE (1). pp. 357–371 (1994)

27. Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for ESC/Java. In:
FME. pp. 500–517 (2001)

28. Ghorbal, K., Ivancic, F., Balakrishnan, G., Maeda, N., Gupta, A.: Donut domains:
Efficient non-convex domains for abstract interpretation. In: VMCAI. pp. 235–250
(2012)

29. Gopan, D., Reps, T.W.: Guided static analysis. In: SAS. pp. 349–365 (2007)
30. Gulavani, B.S., Chakraborty, S., Nori, A.V., Rajamani, S.K.: Automatically refin-

ing abstract interpretations. In: TACAS. pp. 443–458 (2008)
31. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: Synergy:

a new algorithm for property checking. In: FSE. pp. 117–127 (2006)

32. Gulwani, S., Jojic, N.: Program verification as probabilistic inference. In: POPL.
pp. 277–289 (2007)

33. Gulwani, S., Necula, G.C.: Discovering affine equalities using random interpreta-
tion. In: POPL. pp. 74–84 (2003)

34. Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving.
In: PLDI. pp. 281–292 (2008)

35. Gupta, A., Majumdar, R., Rybalchenko, A.: From tests to proofs. In: TACAS. pp.
262–276 (2009)

36. Ivancic, F., Sankaranarayanan, S.: NECLA Static Analysis
Benchmarks http://www.nec-labs.com/research/system/systems SAV-
website/small static bench-v1.1.tar.gz

37. Jhala, R., McMillan, K.L.: A practical and complete approach to predicate refine-
ment. In: TACAS. pp. 459–473 (2006)

38. Kovács, L.: A complete invariant generation approach for p-solvable loops. In:
Ershov Memorial Conference. pp. 242–256 (2009)

39. Lahiri, S.K., Qadeer, S.: Complexity and algorithms for monomial and clausal
predicate abstraction. In: CADE. pp. 214–229 (2009)

40. Lalire, G., Argoud, M., Jeannet, B.: The Interproc Analyzer. http://pop-
art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/index.html

41. Laviron, V., Logozzo, F.: Subpolyhedra: a family of numerical abstract domains
for the (more) scalable inference of linear inequalities. STTT 13(6), 585–601 (2011)

42. Lee, D., Yannakakis, M.: Online minimization of transition systems (extended ab-
stract). In: STOC. pp. 264–274 (1992)

43. Mauborgne, L., Rival, X.: Trace partitioning in abstract interpretation based static
analyzers. In: ESOP. pp. 5–20 (2005)

44. McCluskey, E.J.: Minimization of boolean functions. Bell Systems Technical Jour-
nal 35(6), 1417–1444 (1956)

45. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS. pp. 337–340
(2008)

46. Müller-Olm, M., Seidl, H.: Computing polynomial program invariants. Information
Processing Letters 91(5), 233–244 (2004)

47. Naik, M., Yang, H., Castelnuovo, G., Sagiv, M.: Abstractions from tests. In: POPL.
pp. 373–386 (2012)

48. Nguyen, T., Kapur, D., Weimer, W., Forrest, S.: Using dynamic analysis to discover
polynomial and array invariants. In: ICSE (2012)

49. Nimmer, J.W., Ernst, M.D.: Automatic generation of program specifications. In:
ISSTA. pp. 229–239 (2002)

50. Rodŕıguez-Carbonell, E., Kapur, D.: Automatic generation of polynomial invari-
ants of bounded degree using abstract interpretation. Sci. Comput. Program. 64(1),
54–75 (2007)

51. Rodŕıguez-Carbonell, E., Kapur, D.: Generating all polynomial invariants in simple
loops. J. Symb. Comput. 42(4), 443–476 (2007)

52. Sankaranarayanan, S., Ivancic, F., Shlyakhter, I., Gupta, A.: Static analysis in
disjunctive numerical domains. In: SAS. pp. 3–17 (2006)

53. Sankaranarayanan, S., Sipma, H., Manna, Z.: Non-linear loop invariant generation
using Gröbner bases. In: POPL. pp. 318–329 (2004)

54. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Liang, P., Nori, A.V.: A data
driven approach for algebraic loop invariants. In: ESOP. pp. 574–592 (2013)

55. Sharma, R., Nori, A., Aiken, A.: Interpolants as classifiers. In: CAV. pp. 71–87
(2012)

56. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)

