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Abstract

We present an algorithm for automatic type checking of logic programs with respect to directional
types that describe both the structure of terms and the directionality of predicates. The type checking
problem is reduced to a decidable problem on systems of inclusion constraints over set expressions.
We discuss some properties of the reduction algorithm, complexity, and present a proof of correctness.



1 Introduction

Most logic programming languages are untyped. In Prolog, for example, it is considered meaningful
to apply any n-ary predicate to any n-tuple of terms. However, it is generally accepted that static
type checking has great advantages in detecting programming errors early and for generating efficient
executable code. Motivated at least in part by the success of type systems for procedural and functional
languages, there is currently considerable interest in finding appropriate definitions of type and well-
typing for logic languages. This paper explores the type checking problem for directional types, a recently
proposed, and very rich, idea for types that describe both the structure of terms and the directionality
of predicates.

Most type systems for logic programming languages define a type as a set of ground terms and adopt
the view that the purpose of type analysis is to compute an approximation to the success set of a pro-
gram; i.e., to describe the set of terms for which a predicate is true [Mis84, MR85, HJ90a, HJ92, DZ92].
While knowing something about the success set is useful, it lacks some basic properties expected of type
systems. In particular, knowing only the success set does not help in reasoning accurately about the
relationship between program inputs (initial goals) and program outputs (resolved goals). To do this
requires reasoning about the directionality of predicates. Procedural and functional languages are direc-
tional: some distinguished values are designated as input; other distinguished values are computed as
output. In contrast, logic programming is non-directional: conceptually, one can execute a logic program
that defines a predicate by specifying any subset of the predicate’s arguments as input; the remaining
arguments are computed as output. In practice most logic programs are directional since predicate def-
initions are often used only in one direction or at most a few directions [Deb89]. Further, directionality
greatly simplifies reasoning about termination and complexity properties of programs. Consequently,
so-called mode systems for logic programs have been developed to capture directionality of predicates.
Most mode systems distinguish between input and output arguments to predicates or between ground
arguments (these are considered input) and non-ground arguments (these are considered output). How-
ever, the input/output or ground/non-ground distinctions made by most mode systems do not permit
reasoning about the structure of terms.

Recently, Bronsard et. al. [BLR92] have proposed a combination of modes and types that we call
directional types. Directional types specify both the directionality of predicates and the structure of the
arguments to the predicate. The use of directional types by Apt and others for reasoning about partial
correctness [Apt93],and for use in compiler optimizations [AE93], suggests that a uniform view of types
and directionality is indeed useful. None of these previous works has addressed the type checking problem
for logic programs with directional types.

It is worthwhile to explain our introduction of the term directional type. What we call a directional
type is called a mode dependence in [BLR92] and a type in [Apt93]. Besides the problems caused by
having two terms for the same concept, there is the added complication that both terms have multiple
conflicting definitions in the literature. To avoid confusion over terminology, we prefer to introduce a

fresh and hopefully descriptive name.!

!The name “directional type” has also been adopted by Bronsard et. al. in their subsequent work [BLR93] on a

polymorphic type system and used for proving termination of logic programs with incomplete data structures.



(List(1), List(1),1) — (List(1), List(1), List(1))
append(nil,Y,Y). (1,1, List(1)) — (List(1), List(1), List(1))
append(W.X,Y,W.Z) < append(X,Y,Z).

(b) Directional types for appending and splitting

(a) The append predicate. lists.

Figure 1: A sample program and directional types.

Intuitively, a type is a set of terms 7T, and a term t has type T if t € T.? For example, let “1”
be the type denoting the set of all terms and let List(T") be the type denoting the set of all lists with
elements drawn from 7T'; i.e., List(T) = {nil, t;.nil, ¢5.t;.nil,...} where t; € T. A directional type is an
implication A — B, where A and B are types. Semantically, a directional type A — B is an assertion that
if a goal has type A and the program terminates successfully, then the result has type B. Two directional
types of the append predicate are given in Figure 1b. The first directional type in Figure 1b says that
if the initial goal has type (List(1), List(1),1), then either the result has type (List(1), List(1), List(1)),
i.e., the third component is bound to a list, or execution does not terminate successfully.

Consider the append predicate in Figure 1. An initial goal such as append(1.2.nil,3.nil,C) has
type (List(1), List(1),1) since the first two arguments are lists and there is no restriction on the third
argument. When append is used to split a list, an initial goal such as append(4,B,1.2.3.nil) has type
(1,1, List(1)) since the type admits any terms in the first two arguments and the third argument is a list.

We give a formal syntax and semantics for types using set expressions [MR85, HJ90b, AW92, BGW93]
(Section 3). Set expressions can describe any regular set of tree-structured terms, including all of the
standard recursive data types such as lists, binary trees, etc. Despite their great expressive power,
many important properties of set expressions are decidable. This combination of expressiveness and
computational tractability make set expressions a natural and attractive language for types.

Set expressions allow us to reason about the directionality of logic programs with non-ground goals
as well as non-ground answers. For example, the type List(1) says that the structure is that of a list,
although the elements of the list can be anything (including variables). Previous work on modes for logic
programs focussed on distinguishing whether or not predicate arguments could be bound to something
other than a single variable (see Section 2). The types used in this paper distinguish not only whether
an argument may be bound or unbound, but also describe the degree to which the argument is bound.

Section 4 uses directional types to define well-typed programs. Intuitively, a predicate p is well-typed
with respect to a directional type A — B if for every t, € A, the goal p ¢, is resolved to a term t, € B.
The main result of this paper is a procedure for verifying that a program is well-typed with respect
to a given set of directional types. The essence of the procedure is to reduce the problem of checking
well-typedness to a decision problem on set constraints, which are systems of inclusion constraints over
set expressions. In Section 5 we present the reduction and prove its correctness.

When directional types are given using arbitrary set expressions, our procedure for well-typing is
sound but not complete. That is, our procedure only accepts well-typed programs, but not all well-typed
programs are accepted by our procedure. For the more restrictive class of discriminative directional types

2The complete definition is slightly more complex; see Section 4.



our procedure is both sound and complete: the procedure passes exactly the class of well-typed programs
(see Section 6). While not as general as arbitrary directional types, discriminative directional types are
still powerful enough to express all commonly used programming data types.

In addition to the algorithm for well-typing, we prove lower bounds on the complexity of the well-
typing problem. For the general case, we show that the problem is EXPTIME-hard; for programs written
with discriminative directional types we show that the problem remains PSPACE-hard.

The rest of this paper is organized as follows. Section 2 briefly surveys related work on modes and
types. Section 3 introduces basic definitions and notation used throughout the paper. Sections 4 and 5
give a formal definition of well-typedness and the reduction of well-typedness to a decision problem on set
constraints. Section 6 proves that the algorithm is a decision procedure for programs with discriminative
directional types. The lower bound results are given in Section 7. Finally, Section 8 concludes with
directions for future work.

2 Related Work

Our work touches on diverse research in type systems, mode systems, type checking and solving set
constraints. We discuss the significant differences between our work this related research.

Type systems for logic programs such as [Mis84, MR85, HJ90a, FSVY91, HJ92, DZ92, YFS92] inter-
pret types as sets of ground terms whereas we interpret types as sets of non-ground terms. Further, the
above type systems do not address the issue of directionality, which is an integral part of the definition of
directional types. Farly works on mode systems have considered only simple modes such as ground/non-
ground which do not specify the structure of terms. Subsequent work on moded type systems such as
[Jac92, ZY92, JB92] do permit richer types but these types do not express the directionality of predicates.

The work of Heintze and Jaffar [HJ90a, HJ90b] deals with the more general problem of inference of
types but over a more specific domain where types are interpreted as sets of ground terms. In addition,
they do not deal with directionality. While their work also reduces the typing problem to a decision
problem on set constraints, it is not clear if their technique can be adapted to our type checking problem.

The work of Rouzaud and Nguyen-Phong [RNP92] describes another type system based on set ex-
pressions. Though they view types as sets of non-ground terms, they require types to be tuple-distributive
sets. The general algorithm described in this paper does not require types to be tuple-distributive and
hence is able to describe more precise types. Their work does not give a description of the type checking
algorithm nor does it provide a characterisation of the programs for which type checking can be done.
Our work presents a simple transformation from the type checking problem to a decision problem on set
constraints which not only enables us to give a simple description of type checking algorithm but also to
characterise programs that can be type checked. Finally, we present bounds on the complexity of type
checking, an issue that none of the above-mentioned works on type systems have dealt with.

The utility of the type checking algorithm is best illustrated by the work of Apt et al. [AE93, Apt93]
which uses the directional type system [BLR92] to prove properties of well-typed programs. The type
checking algorithm presented in this paper is a step towards automatic proofs of properties such as partial
correctness [Apt93], compile-time optimizations [AE93] and termination [BLR92].



3 Definitions and Notation

We will be dealing with terms, substitutions on terms, set expressions, and substitutions on set expres-
sions. To avoid confusion in subsequent sections, we define these concepts carefully here.

3.1 Terms

A term is defined by the grammar ¢t ::= X | ¢(t1,...,%,) | (t1,...,%,), where X is a logic variable. Every
constructor ¢ has a fixed arity, which can be zero (a constant). A ground term contains no variables. We
treat parenthesized terms without an associated constructor (#1,...,%,) as a distinguished constructor of
arity n. There is a family of such constructors of arity zero (), one (1), two (¢1,2), etc. This convention
allows us to write atoms f(t1,...,t,) as f ¢, where f is the predicate symbol and ¢t = (#1,...,%,). Terms
are denoted by ¢,t1,12,.... The set of all ground terms is H, the Herbrand Universe.

A term substitution is a function from variables to terms. A ground substitution is a function from
variables to ground terms. Such substitutions extend in a straightforward manner to apply to terms.
Substitutions on terms are denoted by lower-case Greek letters 8,0, .... The most general unifier of two
terms is denoted mgu(ty,t2), if it exists. (A unifier is a substitution o such that o(t1) = o(¢3).)

3.2 Logic Programs

A clause has the form foty — Aj<;<, fi ti, where f; is a predicate symbol, and ¢; = (¢;,,...,t;,) where
n is the arity of predicate f;. A p;og;mm is a set of clauses. A query has the form Ay, fi t;.

In keeping with the standard semantics of Prolog, we assume that subgoals are resolved in left-to-right
order (“LD resolution”). This is a departure from pure logic programming but is consistent with logic

programming languages used in practice.

3.3 Set Expressions

A setl expression is defined by the following grammar:
T = Oé|C(T1,...,Tn)|(Tl,...,Tn)|T1UT2|T1 ﬂT2|ﬁx OéT1|0|1

In this grammar, « is a set variable. Set expressions are denoted by capital Roman letters A, B, ... or
by t,t9,t1,... when the set expression is also a term. Set expressions can also include complement =7}
[HJ90a] but these are not needed for the purposes of this paper.

A set substitution is a function from variables to sets of ground terms. Set substitutions are denoted
by capital Greek letters ©,%,.... A set expression together with a set substitution ©® denotes a set of
ground terms, defined as follows:

O(c(Th,....,1,)) {e(ti, o tn) | 1 € O(T})}
O(Th,....T,)) = A{(t1,...,ty) | t; € O(T})}
O(ThUT;) = O(T)u0B(Ty)
O(ThynTy) = O(1)NO(T)
O(fir a.Ty) = least T s.t. T = Ola — T|(11)



00) = 0

o(l) = H
For example, consider the set expression fix a.(A.aUnil). Here we treat “.” as an infix binary
constructor. If we interpret “.” as a list constructor and “nil” as the empty list then the meaning of this

expression is List(A), the set of all lists whose elements are drawn from A. Throughout the rest of this
paper, List(A) abbreviates the set expression fiz a.(A.ac U nil).

A variable in a set expression is free if it is not bound by a surrounding fiz. A set expression with no
free variables is ground and has the same meaning under all substitutions. For a ground set expression

we drop the substitution and simply regard the expression as denoting a set of ground terms.

3.4 Systems of Set Constraints

A system of set constraints is a conjunction of constraints A;.,.,, A; C B; where the A; and B; are set
expressions. A solution of the constraints is a substitution © such that for all i, O(A;) C O(B;). The set of
all solutions of a system 5 of constraints is denoted Sol(.5). For example, let A = B stand for the system
A C B A B C A. Then the constraint @ = b.aUnil has a unique solution where o = {nil, b.nil, b.b.nil, .. .},
the set of all lists of b’s.

For brevity, we refer to both term substitutions and set substitutions as “substitutions”. The kind of
substitution is always clear from the case of the Greek letter for the substitution (lower case for terms,
upper case for set expressions). It is often useful to “lift” a ground term substitution to a set substitution.
The lift of ¢ is written @ where (o) = {o(a)}.

4 Types and Well-Typing

We begin the development with a brief review of definitions of “type” and “well-typing” from [Apt93,
BLR92, BLR93]. These definitions are independent of any particular representation of types.

Definition 4.1 A type is a set of terms closed under substitution.

Give a term ¢ and type T, we write t : T, read “t has type T7,if t € T. The definition of a well-typed

program relies on two subsidiary definitions of type judgement and directional type.

Definition 4.2 Let sq,...,8,,t be terms and let Sy,...,5,,T be types. A type judgement has the form
Ni<icn 8i 25 = t:T. The judgement is true, written = Ajc;<,, 8; 15 = t: T, if for all substitutions o,
o(s;) € 5; for all i implies that o(t) € T.

A type judgement is just an implication that holds in all substitutions.

Definition 4.3 A directional type for a predicate f has the form I — O where I and O are types. The
type I is the “input type” and type O is the “output type” of f.



Definition 4.3 is taken from [BLR92], where it is called mode dependence. In [Apt93], a more restrictive
definition of directional type is given, where it is called a type.

Formally, a directional type is just a pair of types. Informally, however, it may be helpful to think of
a directional type as an assertion that for any goal f ¢ where ¢ : I, it follows that ¢(¢) : O for any answer
substitution . More succinctly, a directional type says that if the input is in I, then the output is in O.

A directional type for the append predicate in Figure 1 is
(List(1), List(1),1) — (List(1), List(1), List(1))

The dependence says that whenever the first two arguments of append are lists, then the third argument

is resolved to a list.

Definition 4.4 (Well-Typed) Consider a program with directional types I; — O; for each predicate
Ji-
o The clause fo to — Aj<i<y, fi ti is well-typed if the following two conditions hold:

vlﬁjﬁn |It0210/\ /\ ti:0¢:>tj:lj
1<i<j
Eto:Ion \ ti:0i=1o: 00
1<i<n

o A program is well-typed if every clause is.
o A query AlSiSn fi ti is well-typed if Vi<j<, |= /\lﬁk<j tp: O =t 1;

LD-resolution is type consistent for well-typed programs [BLR92]. That is, given a well-typed program
with directional types I; — O; for each predicate f; and a well-typed query A,<;<,, fi ti, for any answer
substitution o it is the case that Ay<;<, o(t;) : O;. o

In general it is undecidable whether a program is well-typed, primarily because under Definition 4.1
types can be very rich sets. Thus, to get algorithms for deciding well-typing, it is necessary to restrict
the set of permissible types. We explore the use of ground set expressions to denote types. A superficial
problem with using ground set expressions for types is that the types contain only ground terms. This
means, for example, that a variable X has no type. The following definition gives a more general
interpretation of the type denoted by a ground set expression: a ground set expression stands for terms

whose ground instances are in the set.

Definition 4.5 (Sat) The set of terms satisfying a ground set expression A, written Sa#( A), is
{t|Vground substitutions o. o(t) € A}

Recall that the set expression 1 denotes the set of all ground terms. Therefore Saf(1) is the set of all
terms and for any term ¢ we have ¢ : Sat(1). Define List(X) = fir a.(nilUa.X). (Recall that “.” is
an infix binary constructor—see Section 3.) Since List(1) is the set of all ground lists, any list term
tio.e.. tn.nil 2 Sat(List(1)).



Lemma 4.6 For any ground set expression A, the set Sat(A) is a type.

Proof:  Let t¢1,t; € Saf(A), and define o(a) = ¢, and o(3) = § for any variable § # «. Now for
any ground substitution 6, we have 8(c(t1)) € A, since t; € Sat(A) and 6 o 0 is a ground substitution.
Therefore o(t;) € Sat(A). Since ¢ and t; were chosen arbitrarily, Sat( A) is closed under substitution and
is therefore a type. O

For the remainder of this paper, all types are ground set expressions. For brevity in examples, we
abuse our notation, writing ¢ : A instead of ¢ : Sat(A) and A — B instead of Sat(A) — Sat(B).

5 Type Checking

In this section we give a procedure for mapping the problem of checking that a program is well-typed to a
decision problem on set constraints. The reduction takes as input a clause and a set of directional types,
one for each predicate symbol in the clause, and produces conditions of the form N(57) C N(52), where
51 and Sy are systems of set constraints and N(.57) (defined below) is a certain subset of the solutions
Sol(51) of 5.

The reduction we present is sound: whenever the conditions are true, the program is well-typed. If
types are given by general set expressions, then the reduction is also conservative: if the conditions are
false, then the program may or may not be well-typed. In Sections 6 we introduce discriminative set
expressions, which are a subset of the set expressions but still expressive enough for many purposes. In

the case where all types are discriminative, our algorithm is a decision procedure.

5.1 An Informal Example

Before presenting the formal development we give a high-level description of the algorithm. Informally,
our algorithm reasons about well-typing as follows. Recall the program for the append predicate given
in Figure 1. Let append have the directional type (List(1), List(1),1) — (List(1), List(1), List(1)).
This type says that for a goal append(A,B,C), if A and B are lists and the program succeeds, then C is
instantiated to a list. The goal of the algorithm is to prove that append is well-typed with respect to this
directional type.

To begin, consider only the first clause of append. If (nil,X,X) has the input type (List(1), List(1),1),
then clearly X must be a list. To see this consider the components in order. For the first component,
nil is a list, so nil satisfies List(1). For the second component, X satisfies List(1) only if X is a list of
(possibly non-ground) terms. Finally, the third component of the input type imposes no constraints on
X. The algorithm next checks that for every term that has the input type, the result has the output type.
In this case it is easy to see that whenever X is a list, then all three components of the result are lists
(i.e., nil and two occurrences of X), which satisfies the output type (List(1), List(1), List(1)).

For the second clause of append the chain of reasoning is longer but just as simple. The new wrinkle is
the addition of subgoals. Our algorithm assumes that subgoals are well-typed and tries to prove that this

implies that the clause is well-typed. If this can be done for every clause, then the program is well-typed.



Briefly, for the second clause of append, if the head of the clause (W.X,Y,W.Z) satisfies the input type
(List(1), List(1),1), then X and Y must be lists. If X and Y are lists, then the subgoal append(X,Y,Z)
satisfies the input type and (by the assumption that subgoals are well-typed) the result satisfies the
output type (List(1), List(1), List(1)). If the result satisfies the output type, then Z is also a list. Finally,
if X, Y, and Z are all lists, then (W.X,Y,W.Z) satisfies the output type (List(1), List(1), List(1)) so append
is well-typed.

5.2 The General Case

In the general case, a clause has the form fo tg — Aj<;<, fi ti with directional type I; — O; for each
predicate f;. By Definition 4.4 it is clear that we need consider only terms that have the input type
Sat(ly). We can further restrict attention to those terms that unify with the head of the clause g, for
otherwise this clause would not be selected. Thus, the first problem is to characterize the set of terms
t such that o(t) : Sat(ly) where ¢ = mgu(t,to). Intuitively, this set is characterized by the solutions of
to C Iy, since the solutions include unifiers of ¢ and #o that also satisfy Iy. However, the set Sol(ty C Ip)
may contain more solutions than necessary. For example a set constraint . C X has solutions where
a = 0 (the empty set), even though in any successful computation @ must be bound to some term. We

rule out solutions where a variable is assigned no terms:

Definition 5.1 If S is a set of constraints, the non-zero solutions of 5, written N (.9), are the solutions
O € Sol(5) such that |O(a)| > 1 for all a; i.e., each variable has at least one term.

Using this definition, the following lemma characterizes Sat(A) in terms of constraints:

Lemma 5.2 Let ¢ be a term, ¢ a substitution, and A a ground set expression.
o(t): Sat(A) < ¥ ground 0. fo o € N(t C A)

Proof:  Recall from Section 3.4 that 7(a) = {o(a)} is the lift of a ground term substitution to a set

substitution.

o(t): Sat(A)

& Vground 6. O(o(t)) € A def of Sat
& Vground 6. foo(t) C A def of lift
< Vground 0. foo(t) CHoo(A) since A is ground

& VYeground . oo e N(t C A)

The last line follows because € o ¢ is a ground term substitution, and therefore the cardinality of every

variable in the lifted substitution is one. O

Theorem 5.3 gives a sufficient condition for a program to be well-typed: one simply replaces the

conditions in Definition 4.4 by the corresponding set constraint conditions.



Theorem 5.3

N( /\ t; QAZ) Q/\/'( /\ S QB]‘) = |I /\ ti:Sat(Ai)i /\ Sj:Sat(B]‘)

1<i<n 1<5<m 1<i<n 1<5<m

Proof: By Definition 4.2, the expression | Ay, ti + Sat(A;) = Ni<jcpn 85 1 Sat(B;)) is equivalent
to Vo. Nycic, 0(ti) 2 Sat(A;) = Njcjcm 0(85) : Sat(B;). We reason as follows:

Ni<i<n o(t;) : Sat(A;)
& Vground 8.8o00 € N(Aj<;<,ti € A;) by applying Lemma 5.2 n times
= Vground #.0o0c € N(/\l;];m s; € B;) by assumption
& Nigjom 0(85) 1 Sal(B;) by applying Lemma 5.2 m times

In the rest of this section we present two examples. First, we use Theorem 5.3 to prove that the
append program in Figure 1 is well-typed. Second, we give an example showing that Theorem 5.3 is not
a necessary condition for a program to be well-typed.

Returning to the append program in Figure 1, to check that append is well-typed we must check that
the two clauses are well-typed. Since there are no subgoals in the first clause, the condition for well-typing

(Definition 4.4) is

= (nil, X, X) : Sat((List(1), List(1),1)) = (nil, X, X) : Sat(( List(1), List(1), List(1)))
Using Theorem 5.3, this condition holds if

N((nil, X, X) C (List(1), List(1),1)) C N((nil, X, X)C (List(1), List(1), List(1)))

It is easy to check that the set of non-zero solutions of both systems is N (X C List(1)), so the constraint

holds. For the second clause, the conditions for well-typing are
E (WX, Y, W.Z): Sat((List(1), List(1),1)) =
(X,Y,Z): Sat((List(1), List(1),1))
E (WX, Y, W.Z): Sat((List(1), List(1), 1)) AN (X,Y, Z) : Sat((List(1), List(1), List(1))) =
(W.X,Y,W.Z): Sat((List(1), List(1), List(1)))

Using Theorem 5.3 again, we get

N((W.X,Y,W.Z) C (List(1), List(1),1)) C
N((X,Y, Z) C (List(1), List(1),1))
N((W.X,Y,W.Z) C (List(1), List(1),1) A (X,Y, Z) -

C (List(1), List(1), List(1)))
C (Lis

N(W.X,Y,W.Z) C (List(1), List(1), List(1)))

10



For the first condition, it is easy to see that the set of non-zero solutions of both systems is {X C
List(1) NY C List(1)}. For the second condition, the set of non-zero solutions of both systems is
{X C List(1) NY C List(1) N Z C List(1)}. Since both conditions hold, the second clause of append is
well-typed. Since both clauses are well-typed, append is well-typed.

While Theorem 5.3 is sufficient, it is not a necessary condition, so the reduction is only conservative:
if the set constraint conditions hold, then the program is well-typed, otherwise it may or may not be well-
typed. Section 6 gives a necessary and sufficient condition for a more restrictive class of set constraints,
the discriminative constraints. The following example shows why Theorem 5.3 is not enough to prove

that a program is well-typed.

Example 5.4 Consider the program
p(X,X) — p(X,X)

and let p have directional type
(aUb,aUb)— (a,a)U(b,b)

By Definition 4.4, this program is well-typed if
EpX,X):(aUb,aUb)= p(X,X): (a,a)U(b,b)

The program is well-typed, because the only two terms in the input type that match the head of the
clause are (a,a) and (b,b) and both of these terms are in the output type. Converting the condition

above to a set constraint condition using Theorem 5.3, we get:
N((X,X)C (aUb,aub)) € N(X,X)C (a,a)U(b,b))

This is false, since X = a U b is a solution of the first system but not of the second.

6 Discriminative Constraints

This section introduce discriminative types and proves that our algorithm is a decision procedure for

well-typing if all types are discriminative.

Definition 6.1 The discriminative set expressions are the smallest set D satisfying:
e {0,1}C D
o a € D for every variable «

o f(xi,...,zp) € Dif Vicicp ;€ D

firaxeDifzeD

Ulgign fi(wila .. .,xin) e Dif vlﬁiﬁn fi(wila .. .,xin) €D and f; 75 f]‘ for ¢ 75 7.

11



The important restrictions of discriminative set expressions are that there are no intersection op-
erations and all unions are formed from expressions with distinct outermost constructors. Commonly
used data types can be described as discriminative set expressions. For example, the type List(A) =

fiz a.(nil U a.A) is discriminative whenever A is discriminative.

Definition 6.2 A system of discriminative set constraintsis a conjunction of constraints A, .,.,, 4; C B;

where the A; and B; are discriminative set expressions.

Theorem 6.3 Let var(t) be the set of variables in term ¢. Let t1,...,¢, be terms, A;y,..., A, be dis-

criminative ground set expressions, and let var(ty) U ... U var(t,) = {X1,..., X, }. Then
NON tCA)=N( N\ X;CB)
1<i<n 1<5<m
for some ground set expressions By, ..., B,,. Furthermore, By,..., B, are computable.

The proof of Theorem 6.3 follows from analysis of an algorithm to solve a more general class of
set constraints in [MR85]. The advantage of using discriminative set expressions for types is that the

solutions of the set constraints have more structure. We require the following definition:
Definition 6.4 Let Z be a set of ground substitutions. (|| Z)(a) = U,cz o(a)
Given two ground substitutions o and o', define 0 < ¢’ if c U0’ = o'.

Lemma 6.5 Let Z be a set of ground substitutions and let S = A;<;«,, & € A; where A; is ground.
Then o
Z C Sol(S) & | |7 € Sol(5)
Proof: Let Z C Sol(S5). Then (|| Z)(a;) = U,ez0(i) C A; since o(a;) C A; for all 0 € Z. For the
other direction, assume | |Z € Sol(9) and let ¢ € Z. Then o(a) C (| Z)(a;) C A;. O
Lemma 6.5 says that the solutions of the set constraints in Theorem 6.6 are closed under upper
bounds if types are discriminative. This is enough to make the reduction of well-typing to set constraints

a necessary and sufficient condition.

Theorem 6.6 Let Ay,..., A,. By,..., B, be discriminative ground set expressions. Then
N( /\ t; C AZ) - N( /\ 8; € B]‘) & |I /\ t;: Sat(Ai) = /\ 85 Sat(B]‘)
1<i<n 1<5<m 1<i<n 1<5<m

Proof:  The forward direction follows from Theorem 5.3. For the backward direction,

o€ N(/\lgign t; C Az)

& LHoolo5 < 0} € N Argign ti € As)  since o = [ |{og[s < o)
& Vag<o 00 € N(/\1<i<nlf_¢ c A)) by Lemma 6.5

& Var<o Ni<i<n U_o(gi)_: Sat( A;) by Lemma 5.2 using o is ground
= Vag<o /\1;]‘;m Go(s;) : Sat(B;) by assumption

& Vag<o 30 € N(Ai1<j<n 8i € Bj) by Lemma 5.2 using o is ground
& | Hogleo <o} € /\7(7\199 s; € B;) by Lemma 6.5

& o€ N(Nigj<nsi € Bj) since o = | {7o|o0 < o}

12



7 Complexity

This section presents three results. First, we show that predicates of the form N(A) C N(B) are
decidable for arbitrary systems of set constraints A and B. This shows that Theorem 5.3 gives a semi-
decision procedure for well-typing when types are given by ground set expressions, and (by Theorem 6.6)
a decision procedure for well-typing when types are given by discriminative ground set expressions.
Since the satisfiability of set constraints is complete for NEXPTIME, this gives an NEXPTIME upper
bound for the discriminative case. Second, we show that well-typing where types are arbitrary ground
set expressions is hard for EXPTIME. Third, we show that well-typing where types are discriminative
ground set expressions is still hard for PSPACE. The exact complexity of the discriminative case remains
open; for the non-discriminative case, no upper bound is known.

For set expressions s; and sz, a negative constraint has the form s; € sp and Sol(sy € s3) = {o|o(s1)
o(sz)}. For a systems of set constraints A and B, let Sol(A) N Sol(B), Sol(A)U Sol(B), and ~ Sol(A)
denote the intersection, union, and complement of the solution sets respectively. The following theorem

is proven in [AKW93, GTT93].

Theorem 7.1 Let A be any boolean combination (i.e., intersection, union, or complement) of systems
of set constraints with positive and negative constraints. It is decidable whether A denotes the empty

set of solutions.

We use Theorem 7.1 to show that the predicate N(A) C N(B) is decidable. First, N(A) = Sol(A) N
Sol(Mi<icn Xi € 0) where var(A) = {Xy,..., X,}. Thus, N() can be replaced by Sol() with some
additional negative constraints. To finish, note that Sol(X) C Sol(Y') if and only if Sol(X )N ~ Sol(Y) =
0.

Theorem 7.2 If types are given by ground set expressions, well-typing is hard for EXPTIME.

Proof: [sketch] Consider the program P(X) < P(X) with directional type I — O. The program is
well-typed iff O C I. For every tree automaton T, there is a ground set expression S (with size polynomial
in the size of the automaton) such that the language accepted by 7' is the set denoted by 5. Thus, testing
inclusion of ground set expressions is at least as hard as testing inclusion of languages accepted by tree
automata, which is EXPTIME-complete [Sei90]. O

Theorem 7.3 If types are given by discriminative ground set expressions, well-typing is hard for PSPACE.

Proof: ([sketch] It is known that testing whether the intersection of n deterministic finite automata
(DFA) is non-empty is PSPACE-complete [Koz77]. For every DFA T, there is a discriminative set
expression S (with size polynomial in the size of the automaton) such that the language accepted by
T is the set denoted by 5. Consider the program P(X,..., X )< P(X,...,X) where X is repeated n
times. Let the directional type be (11,...,7,) — 0, where T; is an encoding of a DFA. The program is
well-typed if and only if Ty N...NT, =0. O

13



8 Conclusions and Future Work

Set expressions provide a very expressive framework for defining directional types. In this paper, we have
shown that type checking of directionally typed logic programs can be reduced naturally to a decision
problem on set constraints. Type checking is performed by a separate analysis of each clause in the
program. The examples in this paper have been checked by running our algorithm by hand. We hope to
implement the algorithm to find out how useful it is on large logic programs.

An obvious area for future work is to perform type inference instead of type checking; that is, to
automatically infer the types used without the need for the programmer to supply directional types for
predicates. This seems like a difficult problem, since a predicate can have many directional types described
by set expressions, only a few of which are probably interesting. It is not clear how to automatically
identify the “right” directional types for a predicate.

Another direction for future work is to explore applying these techniques to other problems in logic
programming that depend on type information. For example, the techniques for analyzing control in
sequential [Nai86], concurrent [Sha89] and parallel [Gre87] logic programming languages rely on knowledge
about predicate types.
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