
Directional Type Checking of Logic ProgramsAlexander AikenComputer Science DivisionUniversity of California, Berkeley571 EvansBerkeley, CA 94720email: aiken@cs.berkeley.eduT. K. LakshmanDepartment of Computer ScienceUniversity of Illinois at Urbana-Champaign1304 W. Spring�eld Ave,Urbana, IL 61801email: lakshman@cs.uiuc.edu
Report No. UCB/CSD 94-791Computer Science Division (EECS)University of CaliforniaBerkeley, California 94720

AbstractWe present an algorithm for automatic type checking of logic programs with respect to directionaltypes that describe both the structure of terms and the directionality of predicates. The type checkingproblem is reduced to a decidable problem on systems of inclusion constraints over set expressions.We discuss some properties of the reduction algorithm, complexity, and present a proof of correctness.

1

1 IntroductionMost logic programming languages are untyped. In Prolog, for example, it is considered meaningfulto apply any n-ary predicate to any n-tuple of terms. However, it is generally accepted that statictype checking has great advantages in detecting programming errors early and for generating e�cientexecutable code. Motivated at least in part by the success of type systems for procedural and functionallanguages, there is currently considerable interest in �nding appropriate de�nitions of type and well-typing for logic languages. This paper explores the type checking problem for directional types, a recentlyproposed, and very rich, idea for types that describe both the structure of terms and the directionalityof predicates.Most type systems for logic programming languages de�ne a type as a set of ground terms and adoptthe view that the purpose of type analysis is to compute an approximation to the success set of a pro-gram; i.e., to describe the set of terms for which a predicate is true [Mis84, MR85, HJ90a, HJ92, DZ92].While knowing something about the success set is useful, it lacks some basic properties expected of typesystems. In particular, knowing only the success set does not help in reasoning accurately about therelationship between program inputs (initial goals) and program outputs (resolved goals). To do thisrequires reasoning about the directionality of predicates. Procedural and functional languages are direc-tional: some distinguished values are designated as input; other distinguished values are computed asoutput. In contrast, logic programming is non-directional: conceptually, one can execute a logic programthat de�nes a predicate by specifying any subset of the predicate's arguments as input; the remainingarguments are computed as output. In practice most logic programs are directional since predicate def-initions are often used only in one direction or at most a few directions [Deb89]. Further, directionalitygreatly simpli�es reasoning about termination and complexity properties of programs. Consequently,so-called mode systems for logic programs have been developed to capture directionality of predicates.Most mode systems distinguish between input and output arguments to predicates or between groundarguments (these are considered input) and non-ground arguments (these are considered output). How-ever, the input/output or ground/non-ground distinctions made by most mode systems do not permitreasoning about the structure of terms.Recently, Bronsard et. al. [BLR92] have proposed a combination of modes and types that we calldirectional types. Directional types specify both the directionality of predicates and the structure of thearguments to the predicate. The use of directional types by Apt and others for reasoning about partialcorrectness [Apt93],and for use in compiler optimizations [AE93], suggests that a uniform view of typesand directionality is indeed useful. None of these previous works has addressed the type checking problemfor logic programs with directional types.It is worthwhile to explain our introduction of the term directional type. What we call a directionaltype is called a mode dependence in [BLR92] and a type in [Apt93]. Besides the problems caused byhaving two terms for the same concept, there is the added complication that both terms have multiplecon
icting de�nitions in the literature. To avoid confusion over terminology, we prefer to introduce afresh and hopefully descriptive name.11The name \directional type" has also been adopted by Bronsard et. al. in their subsequent work [BLR93] on apolymorphic type system and used for proving termination of logic programs with incomplete data structures.2

append(nil; Y; Y):append(W:X; Y; W:Z) append(X; Y; Z):(a) The append predicate. (List (1);List(1); 1) ! (List (1);List (1);List(1))(1; 1;List(1)) ! (List (1);List (1);List(1))(b) Directional types for appending and splittinglists.Figure 1: A sample program and directional types.Intuitively, a type is a set of terms T , and a term t has type T if t 2 T .2 For example, let \1"be the type denoting the set of all terms and let List (T) be the type denoting the set of all lists withelements drawn from T ; i.e., List (T) = fnil; t1:nil; t2:t1:nil; : : :g where ti 2 T . A directional type is animplication A! B, where A and B are types. Semantically, a directional type A! B is an assertion thatif a goal has type A and the program terminates successfully, then the result has type B. Two directionaltypes of the append predicate are given in Figure 1b. The �rst directional type in Figure 1b says thatif the initial goal has type (List (1);List (1); 1), then either the result has type (List (1);List(1);List (1)),i.e., the third component is bound to a list, or execution does not terminate successfully.Consider the append predicate in Figure 1. An initial goal such as append(1:2:nil;3:nil; C) hastype (List (1);List(1); 1) since the �rst two arguments are lists and there is no restriction on the thirdargument. When append is used to split a list, an initial goal such as append(A; B; 1:2:3:nil) has type(1; 1;List(1)) since the type admits any terms in the �rst two arguments and the third argument is a list.We give a formal syntax and semantics for types using set expressions [MR85, HJ90b, AW92, BGW93](Section 3). Set expressions can describe any regular set of tree-structured terms, including all of thestandard recursive data types such as lists, binary trees, etc. Despite their great expressive power,many important properties of set expressions are decidable. This combination of expressiveness andcomputational tractability make set expressions a natural and attractive language for types.Set expressions allow us to reason about the directionality of logic programs with non-ground goalsas well as non-ground answers. For example, the type List (1) says that the structure is that of a list,although the elements of the list can be anything (including variables). Previous work on modes for logicprograms focussed on distinguishing whether or not predicate arguments could be bound to somethingother than a single variable (see Section 2). The types used in this paper distinguish not only whetheran argument may be bound or unbound, but also describe the degree to which the argument is bound.Section 4 uses directional types to de�ne well-typed programs. Intuitively, a predicate p is well-typedwith respect to a directional type A ! B if for every ta 2 A, the goal p ta is resolved to a term tb 2 B.The main result of this paper is a procedure for verifying that a program is well-typed with respectto a given set of directional types. The essence of the procedure is to reduce the problem of checkingwell-typedness to a decision problem on set constraints, which are systems of inclusion constraints overset expressions. In Section 5 we present the reduction and prove its correctness.When directional types are given using arbitrary set expressions, our procedure for well-typing issound but not complete. That is, our procedure only accepts well-typed programs, but not all well-typedprograms are accepted by our procedure. For the more restrictive class of discriminative directional types2The complete de�nition is slightly more complex; see Section 4.3

our procedure is both sound and complete: the procedure passes exactly the class of well-typed programs(see Section 6). While not as general as arbitrary directional types, discriminative directional types arestill powerful enough to express all commonly used programming data types.In addition to the algorithm for well-typing, we prove lower bounds on the complexity of the well-typing problem. For the general case, we show that the problem is EXPTIME-hard; for programs writtenwith discriminative directional types we show that the problem remains PSPACE-hard.The rest of this paper is organized as follows. Section 2 brie
y surveys related work on modes andtypes. Section 3 introduces basic de�nitions and notation used throughout the paper. Sections 4 and 5give a formal de�nition of well-typedness and the reduction of well-typedness to a decision problem on setconstraints. Section 6 proves that the algorithm is a decision procedure for programs with discriminativedirectional types. The lower bound results are given in Section 7. Finally, Section 8 concludes withdirections for future work.2 Related WorkOur work touches on diverse research in type systems, mode systems, type checking and solving setconstraints. We discuss the signi�cant di�erences between our work this related research.Type systems for logic programs such as [Mis84, MR85, HJ90a, FSVY91, HJ92, DZ92, YFS92] inter-pret types as sets of ground terms whereas we interpret types as sets of non-ground terms. Further, theabove type systems do not address the issue of directionality, which is an integral part of the de�nition ofdirectional types. Early works on mode systems have considered only simple modes such as ground/non-ground which do not specify the structure of terms. Subsequent work on moded type systems such as[Jac92, ZY92, JB92] do permit richer types but these types do not express the directionality of predicates.The work of Heintze and Ja�ar [HJ90a, HJ90b] deals with the more general problem of inference oftypes but over a more speci�c domain where types are interpreted as sets of ground terms. In addition,they do not deal with directionality. While their work also reduces the typing problem to a decisionproblem on set constraints, it is not clear if their technique can be adapted to our type checking problem.The work of Rouzaud and Nguyen-Phong [RNP92] describes another type system based on set ex-pressions. Though they view types as sets of non-ground terms, they require types to be tuple-distributivesets. The general algorithm described in this paper does not require types to be tuple-distributive andhence is able to describe more precise types. Their work does not give a description of the type checkingalgorithm nor does it provide a characterisation of the programs for which type checking can be done.Our work presents a simple transformation from the type checking problem to a decision problem on setconstraints which not only enables us to give a simple description of type checking algorithm but also tocharacterise programs that can be type checked. Finally, we present bounds on the complexity of typechecking, an issue that none of the above-mentioned works on type systems have dealt with.The utility of the type checking algorithm is best illustrated by the work of Apt et al. [AE93, Apt93]which uses the directional type system [BLR92] to prove properties of well-typed programs. The typechecking algorithm presented in this paper is a step towards automatic proofs of properties such as partialcorrectness [Apt93], compile-time optimizations [AE93] and termination [BLR92].4

3 De�nitions and NotationWe will be dealing with terms, substitutions on terms, set expressions, and substitutions on set expres-sions. To avoid confusion in subsequent sections, we de�ne these concepts carefully here.3.1 TermsA term is de�ned by the grammar t ::= X j c(t1; : : : ; tn) j (t1; : : : ; tn), where X is a logic variable. Everyconstructor c has a �xed arity, which can be zero (a constant). A ground term contains no variables. Wetreat parenthesized terms without an associated constructor (t1; : : : ; tn) as a distinguished constructor ofarity n. There is a family of such constructors of arity zero (), one (t1), two (t1; t2), etc. This conventionallows us to write atoms f(t1; : : : ; tn) as f t, where f is the predicate symbol and t = (t1; : : : ; tn). Termsare denoted by t; t1; t2; : : :. The set of all ground terms is H , the Herbrand Universe.A term substitution is a function from variables to terms. A ground substitution is a function fromvariables to ground terms. Such substitutions extend in a straightforward manner to apply to terms.Substitutions on terms are denoted by lower-case Greek letters �; �; : : :. The most general uni�er of twoterms is denoted mgu(t1; t2), if it exists. (A uni�er is a substitution � such that �(t1) = �(t2).)3.2 Logic ProgramsA clause has the form f0 t0 V1�i�n fi ti, where fj is a predicate symbol, and tj = (tj1 ; : : : ; tjn) wheren is the arity of predicate fj . A program is a set of clauses. A query has the form V1�i�n fi ti.In keeping with the standard semantics of Prolog, we assume that subgoals are resolved in left-to-rightorder (\LD resolution"). This is a departure from pure logic programming but is consistent with logicprogramming languages used in practice.3.3 Set ExpressionsA set expression is de�ned by the following grammar:T ::= � j c(T1; : : : ; Tn) j (T1; : : : ; Tn) jT1 [T2 jT1 \ T2 j �x �:T1 j 0 j 1In this grammar, � is a set variable. Set expressions are denoted by capital Roman letters A;B; : : : orby t; t0; t1; : : : when the set expression is also a term. Set expressions can also include complement :T1[HJ90a] but these are not needed for the purposes of this paper.A set substitution is a function from variables to sets of ground terms. Set substitutions are denotedby capital Greek letters �;�; : : :. A set expression together with a set substitution � denotes a set ofground terms, de�ned as follows:�(c(T1; : : : ; Tn)) = fc(t1; : : : ; tn) j ti 2 �(Ti)g�((T1; : : : ; Tn)) = f(t1; : : : ; tn) j ti 2 �(Ti)g�(T1 [T2) = �(T1) [�(T2)�(T1 \ T2) = �(T1) \�(T2)�(�x �:T1) = least T s.t. T = �[� T](T1)5

�(0) = ;�(1) = HFor example, consider the set expression �x �:(A:�[nil). Here we treat \." as an in�x binaryconstructor. If we interpret \." as a list constructor and \nil" as the empty list then the meaning of thisexpression is List (A), the set of all lists whose elements are drawn from A. Throughout the rest of thispaper, List (A) abbreviates the set expression �x �:(A:� [nil).A variable in a set expression is free if it is not bound by a surrounding �x. A set expression with nofree variables is ground and has the same meaning under all substitutions. For a ground set expressionwe drop the substitution and simply regard the expression as denoting a set of ground terms.3.4 Systems of Set ConstraintsA system of set constraints is a conjunction of constraints V1�i�n Ai � Bi where the Ai and Bi are setexpressions. A solution of the constraints is a substitution � such that for all i, �(Ai) � �(Bi). The set ofall solutions of a system S of constraints is denoted Sol (S). For example, let A = B stand for the systemA � B ^ B � A. Then the constraint � = b:�[nil has a unique solution where � = fnil; b:nil; b:b:nil; : : :g,the set of all lists of b's.For brevity, we refer to both term substitutions and set substitutions as \substitutions". The kind ofsubstitution is always clear from the case of the Greek letter for the substitution (lower case for terms,upper case for set expressions). It is often useful to \lift" a ground term substitution to a set substitution.The lift of � is written � where �(�) = f�(�)g.4 Types and Well-TypingWe begin the development with a brief review of de�nitions of \type" and \well-typing" from [Apt93,BLR92, BLR93]. These de�nitions are independent of any particular representation of types.De�nition 4.1 A type is a set of terms closed under substitution.Give a term t and type T , we write t : T , read \t has type T", if t 2 T . The de�nition of a well-typedprogram relies on two subsidiary de�nitions of type judgement and directional type.De�nition 4.2 Let s1; : : : ; sn; t be terms and let S1; : : : ; Sn; T be types. A type judgement has the formV1�i�n si : Si) t : T . The judgement is true, written j= V1�i�n si : Si) t : T , if for all substitutions �,�(si) 2 Si for all i implies that �(t) 2 T .A type judgement is just an implication that holds in all substitutions.De�nition 4.3 A directional type for a predicate f has the form I ! O where I and O are types. Thetype I is the \input type" and type O is the \output type" of f .6

De�nition 4.3 is taken from [BLR92], where it is called mode dependence. In [Apt93], a more restrictivede�nition of directional type is given, where it is called a type.Formally, a directional type is just a pair of types. Informally, however, it may be helpful to think ofa directional type as an assertion that for any goal f t where t : I , it follows that �(t) : O for any answersubstitution �. More succinctly, a directional type says that if the input is in I , then the output is in O.A directional type for the append predicate in Figure 1 is(List (1);List(1); 1)! (List (1);List(1);List (1))The dependence says that whenever the �rst two arguments of append are lists, then the third argumentis resolved to a list.De�nition 4.4 (Well-Typed) Consider a program with directional types Ij ! Oj for each predicatefj . � The clause f0 t0 V1�i�n fi ti is well-typed if the following two conditions hold:81�j�n j= t0 : I0 ^ ^1�i<j ti : Oi) tj : Ijj= t0 : I0 ^ ^1�i�n ti : Oi) t0 : O0� A program is well-typed if every clause is.� A query V1�i�n fi ti is well-typed if 81�j�n j= V1�k<j tk : Ok) tj : IjLD-resolution is type consistent for well-typed programs [BLR92]. That is, given a well-typed programwith directional types Ij ! Oj for each predicate fj and a well-typed query V1�i�n fi ti, for any answersubstitution � it is the case that V1�i�n �(ti) : Oi.In general it is undecidable whether a program is well-typed, primarily because under De�nition 4.1types can be very rich sets. Thus, to get algorithms for deciding well-typing, it is necessary to restrictthe set of permissible types. We explore the use of ground set expressions to denote types. A super�cialproblem with using ground set expressions for types is that the types contain only ground terms. Thismeans, for example, that a variable X has no type. The following de�nition gives a more generalinterpretation of the type denoted by a ground set expression: a ground set expression stands for termswhose ground instances are in the set.De�nition 4.5 (Sat) The set of terms satisfying a ground set expression A, written Sat(A), isftj8ground substitutions �: �(t) 2 AgRecall that the set expression 1 denotes the set of all ground terms. Therefore Sat(1) is the set of allterms and for any term t we have t : Sat(1). De�ne List (X) = �x �:(nil [�:X). (Recall that \." isan in�x binary constructor|see Section 3.) Since List (1) is the set of all ground lists, any list termt1: : : : :tn:nil : Sat(List (1)). 7

Lemma 4.6 For any ground set expression A, the set Sat(A) is a type.Proof: Let t1; t2 2 Sat(A), and de�ne �(�) = t2 and �(�) = � for any variable � 6= �. Now forany ground substitution �, we have �(�(t1)) 2 A, since t1 2 Sat(A) and � � � is a ground substitution.Therefore �(t1) 2 Sat(A). Since t1 and t2 were chosen arbitrarily, Sat(A) is closed under substitution andis therefore a type. 2For the remainder of this paper, all types are ground set expressions. For brevity in examples, weabuse our notation, writing t : A instead of t : Sat(A) and A! B instead of Sat(A)! Sat(B).5 Type CheckingIn this section we give a procedure for mapping the problem of checking that a program is well-typed to adecision problem on set constraints. The reduction takes as input a clause and a set of directional types,one for each predicate symbol in the clause, and produces conditions of the form N (S1) � N (S2), whereS1 and S2 are systems of set constraints and N (S1) (de�ned below) is a certain subset of the solutionsSol (S1) of S1.The reduction we present is sound: whenever the conditions are true, the program is well-typed. Iftypes are given by general set expressions, then the reduction is also conservative: if the conditions arefalse, then the program may or may not be well-typed. In Sections 6 we introduce discriminative setexpressions, which are a subset of the set expressions but still expressive enough for many purposes. Inthe case where all types are discriminative, our algorithm is a decision procedure.5.1 An Informal ExampleBefore presenting the formal development we give a high-level description of the algorithm. Informally,our algorithm reasons about well-typing as follows. Recall the program for the append predicate givenin Figure 1. Let append have the directional type (List (1);List(1); 1) ! (List (1);List(1);List (1)).This type says that for a goal append(A; B; C), if A and B are lists and the program succeeds, then C isinstantiated to a list. The goal of the algorithm is to prove that append is well-typed with respect to thisdirectional type.To begin, consider only the �rst clause of append. If (nil; X; X) has the input type (List (1);List(1); 1),then clearly X must be a list. To see this consider the components in order. For the �rst component,nil is a list, so nil satis�es List (1). For the second component, X satis�es List (1) only if X is a list of(possibly non-ground) terms. Finally, the third component of the input type imposes no constraints onX. The algorithm next checks that for every term that has the input type, the result has the output type.In this case it is easy to see that whenever X is a list, then all three components of the result are lists(i.e., nil and two occurrences of X), which satis�es the output type (List (1);List (1);List(1)).For the second clause of append the chain of reasoning is longer but just as simple. The new wrinkle isthe addition of subgoals. Our algorithm assumes that subgoals are well-typed and tries to prove that thisimplies that the clause is well-typed. If this can be done for every clause, then the program is well-typed.8

Brie
y, for the second clause of append, if the head of the clause (W:X; Y; W:Z) satis�es the input type(List (1);List(1); 1), then X and Y must be lists. If X and Y are lists, then the subgoal append(X; Y; Z)satis�es the input type and (by the assumption that subgoals are well-typed) the result satis�es theoutput type (List (1);List(1);List(1)). If the result satis�es the output type, then Z is also a list. Finally,if X, Y, and Z are all lists, then (W:X; Y; W:Z) satis�es the output type (List (1);List(1);List(1)) so appendis well-typed.5.2 The General CaseIn the general case, a clause has the form f0 t0 V1�i�n fi ti with directional type Ij ! Oj for eachpredicate fj . By De�nition 4.4 it is clear that we need consider only terms that have the input typeSat(I0). We can further restrict attention to those terms that unify with the head of the clause t0, forotherwise this clause would not be selected. Thus, the �rst problem is to characterize the set of termst such that �(t) : Sat(I0) where � = mgu(t; t0). Intuitively, this set is characterized by the solutions oft0 � I0, since the solutions include uni�ers of t and t0 that also satisfy I0. However, the set Sol (t0 � I0)may contain more solutions than necessary. For example a set constraint �:� � X has solutions where� = 0 (the empty set), even though in any successful computation � must be bound to some term. Werule out solutions where a variable is assigned no terms:De�nition 5.1 If S is a set of constraints, the non-zero solutions of S, written N (S), are the solutions� 2 Sol (S) such that j�(�)j � 1 for all �; i.e., each variable has at least one term.Using this de�nition, the following lemma characterizes Sat(A) in terms of constraints:Lemma 5.2 Let t be a term, � a substitution, and A a ground set expression.�(t) : Sat(A), 8 ground �: � � � 2 N (t � A)Proof: Recall from Section 3.4 that �(�) = f�(�)g is the lift of a ground term substitution to a setsubstitution. �(t) : Sat(A), 8 ground �: �(�(t)) 2 A def of Sat, 8 ground �: � � �(t) � A def of lift, 8 ground �: � � �(t) � � � �(A) since A is ground, 8 ground �: � � � 2 N (t � A)The last line follows because � � � is a ground term substitution, and therefore the cardinality of everyvariable in the lifted substitution is one. 2Theorem 5.3 gives a su�cient condition for a program to be well-typed: one simply replaces theconditions in De�nition 4.4 by the corresponding set constraint conditions.9

Theorem 5.3N (^1�i�n ti � Ai) � N (^1�j�m sj � Bj)) j= ^1�i�n ti : Sat(Ai)) ^1�j�m sj : Sat(Bj)Proof: By De�nition 4.2, the expression j= V1�i�n ti : Sat(Ai)) V1�j�m sj : Sat(Bj)) is equivalentto 8�:V1�i�n �(ti) : Sat(Ai)) V1�j�m �(sj) : Sat(Bj). We reason as follows:V1�i�n �(ti) : Sat(Ai), 8 ground �:� � � 2 N (V1�i�n ti � Ai) by applying Lemma 5.2 n times) 8 ground �:� � � 2 N (V1�j�m sj � Bj) by assumption, V1�j�m �(sj) : Sat(Bj) by applying Lemma 5.2 m times2 In the rest of this section we present two examples. First, we use Theorem 5.3 to prove that theappend program in Figure 1 is well-typed. Second, we give an example showing that Theorem 5.3 is nota necessary condition for a program to be well-typed.Returning to the append program in Figure 1, to check that append is well-typed we must check thatthe two clauses are well-typed. Since there are no subgoals in the �rst clause, the condition for well-typing(De�nition 4.4) isj= (nil; X;X) : Sat((List (1);List(1); 1))) (nil; X;X) : Sat((List (1);List (1);List(1)))Using Theorem 5.3, this condition holds ifN ((nil; X;X)� (List (1);List(1); 1)) � N ((nil; X;X)� (List (1);List(1);List(1)))It is easy to check that the set of non-zero solutions of both systems is N (X � List (1)), so the constraintholds. For the second clause, the conditions for well-typing arej= (W:X; Y;W:Z) : Sat((List (1);List(1); 1)))(X; Y; Z) : Sat((List (1);List(1); 1))j= (W:X; Y;W:Z) : Sat((List (1);List(1); 1))^ (X; Y; Z) : Sat((List (1);List(1);List(1))))(W:X; Y;W:Z) : Sat((List (1);List(1);List(1)))Using Theorem 5.3 again, we get N ((W:X; Y;W:Z)� (List (1);List(1); 1)) �N ((X; Y; Z)� (List (1);List(1); 1))N ((W:X; Y;W:Z)� (List (1);List(1); 1) ^ (X; Y; Z) � (List (1);List(1);List (1))) �N ((W:X; Y;W:Z)� (List (1);List(1);List (1)))10

For the �rst condition, it is easy to see that the set of non-zero solutions of both systems is fX �List (1) ^ Y � List (1)g. For the second condition, the set of non-zero solutions of both systems isfX � List (1) ^ Y � List (1)^ Z � List (1)g. Since both conditions hold, the second clause of append iswell-typed. Since both clauses are well-typed, append is well-typed.While Theorem 5.3 is su�cient, it is not a necessary condition, so the reduction is only conservative:if the set constraint conditions hold, then the program is well-typed, otherwise it may or may not be well-typed. Section 6 gives a necessary and su�cient condition for a more restrictive class of set constraints,the discriminative constraints. The following example shows why Theorem 5.3 is not enough to provethat a program is well-typed.Example 5.4 Consider the program p(X; X) p(X; X)and let p have directional type (a [b; a[b)! (a; a) [(b; b)By De�nition 4.4, this program is well-typed ifj= p(X;X) : (a [b; a[b)) p(X;X) : (a; a)[(b; b)The program is well-typed, because the only two terms in the input type that match the head of theclause are (a; a) and (b; b) and both of these terms are in the output type. Converting the conditionabove to a set constraint condition using Theorem 5.3, we get:N ((X;X)� (a [b; a[b)) � N ((X;X)� (a; a) [(b; b))This is false, since X = a [b is a solution of the �rst system but not of the second.6 Discriminative ConstraintsThis section introduce discriminative types and proves that our algorithm is a decision procedure forwell-typing if all types are discriminative.De�nition 6.1 The discriminative set expressions are the smallest set D satisfying:� f0; 1g � D� � 2 D for every variable �� f(x1; : : : ; xn) 2 D if 81�i�n xi 2 D� �x �:x 2 D if x 2 D� S1�i�n fi(xi1 ; : : : ; xin) 2 D if 81�i�n fi(xi1 ; : : : ; xin) 2 D and fi 6= fj for i 6= j.11

The important restrictions of discriminative set expressions are that there are no intersection op-erations and all unions are formed from expressions with distinct outermost constructors. Commonlyused data types can be described as discriminative set expressions. For example, the type List (A) =�x �:(nil [�:A) is discriminative whenever A is discriminative.De�nition 6.2 A system of discriminative set constraints is a conjunction of constraints V1�i�n Ai � Biwhere the Ai and Bi are discriminative set expressions.Theorem 6.3 Let var(t) be the set of variables in term t. Let t1; : : : ; tn be terms, A1; : : : ; An be dis-criminative ground set expressions, and let var(t1) [: : :[var(tn) = fX1; : : : ; Xmg. ThenN (^1�i�n ti � Ai) = N (^1�j�mXj � Bj)for some ground set expressions B1; : : : ; Bm. Furthermore, B1; : : : ; Bm are computable.The proof of Theorem 6.3 follows from analysis of an algorithm to solve a more general class ofset constraints in [MR85]. The advantage of using discriminative set expressions for types is that thesolutions of the set constraints have more structure. We require the following de�nition:De�nition 6.4 Let Z be a set of ground substitutions. (FZ)(�) = S�2Z �(�)Given two ground substitutions � and �0, de�ne � � �0 if � t �0 = �0.Lemma 6.5 Let Z be a set of ground substitutions and let S = V1�i�m �i � Ai where Ai is ground.Then Z � Sol (S),GZ 2 Sol (S)Proof: Let Z � Sol (S). Then (FZ)(�i) = S�2Z �(�i) � Ai since �(�i) � Ai for all � 2 Z. For theother direction, assume FZ 2 Sol (S) and let � 2 Z. Then �(�) � (FZ)(�i) � Ai. 2Lemma 6.5 says that the solutions of the set constraints in Theorem 6.6 are closed under upperbounds if types are discriminative. This is enough to make the reduction of well-typing to set constraintsa necessary and su�cient condition.Theorem 6.6 Let A1; : : : ; An; B1; : : : ; Bm be discriminative ground set expressions. ThenN (^1�i�n ti � Ai) � N (^1�j�m sj � Bj) , j= ^1�i�n ti : Sat(Ai)) ^1�j�m sj : Sat(Bj)Proof: The forward direction follows from Theorem 5.3. For the backward direction,� 2 N (V1�i�n ti � Ai), Ff�0j�0 � �g 2 N (V1�i�n ti � Ai) since � = Ff�0j�0 � �g, 8�0�� �0 2 N (V1�i�n ti � Ai) by Lemma 6.5, 8�0�� V1�i�n �0(ti) : Sat(Ai) by Lemma 5.2 using �0 is ground) 8�0�� V1�j�m �0(sj) : Sat(Bj) by assumption, 8�0�� �0 2 N (V1�j�n sj � Bj) by Lemma 5.2 using �0 is ground, Ff�0j�0 � �g 2 N (V1�j�n sj � Bj) by Lemma 6.5, � 2 N (V1�j�n sj � Bj) since � = Ff�0j�0 � �g12

27 ComplexityThis section presents three results. First, we show that predicates of the form N (A) � N (B) aredecidable for arbitrary systems of set constraints A and B. This shows that Theorem 5.3 gives a semi-decision procedure for well-typing when types are given by ground set expressions, and (by Theorem 6.6)a decision procedure for well-typing when types are given by discriminative ground set expressions.Since the satis�ability of set constraints is complete for NEXPTIME, this gives an NEXPTIME upperbound for the discriminative case. Second, we show that well-typing where types are arbitrary groundset expressions is hard for EXPTIME. Third, we show that well-typing where types are discriminativeground set expressions is still hard for PSPACE. The exact complexity of the discriminative case remainsopen; for the non-discriminative case, no upper bound is known.For set expressions s1 and s2, a negative constraint has the form s1 6� s2 and Sol (s1 6� s2) = f�j�(s1) 6��(s2)g. For a systems of set constraints A and B, let Sol (A) \ Sol (B), Sol (A) [Sol (B), and � Sol (A)denote the intersection, union, and complement of the solution sets respectively. The following theoremis proven in [AKW93, GTT93].Theorem 7.1 Let A be any boolean combination (i.e., intersection, union, or complement) of systemsof set constraints with positive and negative constraints. It is decidable whether A denotes the emptyset of solutions.We use Theorem 7.1 to show that the predicate N (A) � N (B) is decidable. First, N (A) = Sol (A) \Sol (V1�i�n Xi 6� 0) where var(A) = fX1; : : : ; Xng. Thus, N () can be replaced by Sol () with someadditional negative constraints. To �nish, note that Sol (X) � Sol (Y) if and only if Sol (X)\ � Sol (Y) =;.Theorem 7.2 If types are given by ground set expressions, well-typing is hard for EXPTIME.Proof: [sketch] Consider the program P (X) P (X) with directional type I ! O. The program iswell-typed i� O � I . For every tree automaton T , there is a ground set expression S (with size polynomialin the size of the automaton) such that the language accepted by T is the set denoted by S. Thus, testinginclusion of ground set expressions is at least as hard as testing inclusion of languages accepted by treeautomata, which is EXPTIME-complete [Sei90]. 2Theorem 7.3 If types are given by discriminative ground set expressions, well-typing is hard for PSPACE.Proof: [sketch] It is known that testing whether the intersection of n deterministic �nite automata(DFA) is non-empty is PSPACE-complete [Koz77]. For every DFA T; there is a discriminative setexpression S (with size polynomial in the size of the automaton) such that the language accepted byT is the set denoted by S. Consider the program P (X; : : :; X) P (X; : : : ; X) where X is repeated ntimes. Let the directional type be (T1; : : : ; Tn) ! 0, where Ti is an encoding of a DFA. The program iswell-typed if and only if T1 \ : : :\ Tn = 0. 2 13

8 Conclusions and Future WorkSet expressions provide a very expressive framework for de�ning directional types. In this paper, we haveshown that type checking of directionally typed logic programs can be reduced naturally to a decisionproblem on set constraints. Type checking is performed by a separate analysis of each clause in theprogram. The examples in this paper have been checked by running our algorithm by hand. We hope toimplement the algorithm to �nd out how useful it is on large logic programs.An obvious area for future work is to perform type inference instead of type checking; that is, toautomatically infer the types used without the need for the programmer to supply directional types forpredicates. This seems like a di�cult problem, since a predicate can have many directional types describedby set expressions, only a few of which are probably interesting. It is not clear how to automaticallyidentify the \right" directional types for a predicate.Another direction for future work is to explore applying these techniques to other problems in logicprogramming that depend on type information. For example, the techniques for analyzing control insequential [Nai86], concurrent [Sha89] and parallel [Gre87] logic programming languages rely on knowledgeabout predicate types.AcknowledgementsWe would like to thank Saumya Debray, Nevin Heintze, Uday Reddy, Moshe Vardi, and Ed Wimmersfor discussions and comments on some of the ideas presented in this paper.References[AE93] K. R. Apt and Sandro Etalle. On the Uni�cation-free Prolog Programs. In Proceedings of the1993 Conference on Mathematical Foundations of Computer Science, June 1993.[AKW93] A. Aiken, D. Kozen, and E. Wimmers. Decidability of systems of set constraints with negativeconstraints. Technical Report 93-1362, Cornell University, June 1993.[Apt93] K. R. Apt. Declarative Programming in Prolog. In D. Miller, editor, Proceedings of theInternational Logic Programming Symposium. MIT Press, November 1993.[AW92] A. Aiken and E. Wimmers. Solving systems of set constraints. In Symposium on Logic inComputer Science, pages 329{340, June 1992.[BGW93] L. Bachmair, H. Ganzinger, and U. Waldmann. Set constraints are the monadic class. InSymposium on Logic in Computer Science, pages 75{83, June 1993.[BLR92] F. Bronsard, T. K. Lakshman, and U. S. Reddy. A framework of directionality for proving ter-mination of logic programs. In Logic Programming: Proceedings of the 1992 Joint InternationalConference and Symposium, pages 321{335, November 1992.14

[BLR93] F. Bronsard, T. K. Lakshman, and U. S. Reddy. Directionally Typed Prolog: Unifying no-tions of Types and Directionality. Technical Report submitted to ICLP '94 and available viaanonymous ftp from a.cs.uiuc.edu: in directory pub/reddy/tkl, November 1993.[Deb89] S. K. Debray. Static inference of modes and data dependencies in logic programs. ACMTransactions on Programming Languages and Systems, 11(3):418{450, July 1989.[DZ92] P. W. Dart and J. Zobel. A Regular Type Language for Logic Programs, chapter in Types inLogic Programming, Frank Pfenning (ed.), pages 157{187. MIT Press, Cambridge, MA, 1992.[FSVY91] T. Fr�uwirth, E. Shapiro, M. Vardi, and E. Yardeni. Logic programs as types for logic programs.In Symposium on Logic in Computer Science, pages 300{309, July 1991.[Gre87] S. Gregory. Parallel Logic Programming in PARLOG. Addison-Wesley, 1987.[GTT93] R. Gilleron, S. Tison, and M. Tommasi. Solving Systems of Set Constraints with NegatedSubset Relationships. In Foundations of Computer Science, pages 372{380, November 1993.[HJ90a] N. Heintze and J. Ja�ar. A Finite Presentation Theorem for approximating logic programs. InProceedings of the Annual ACM Symposium on Principles of Programming Languages, pages197{209, January 1990.[HJ90b] N. Heintze and J. Ja�ar. A decision procedure for a class of set constraints. In Symposium onLogic in Computer Science, pages 42{51, June 1990.[HJ92] N. Heintze and J. Ja�ar. Semantic Types for Logic Programs, chapter in Types in LogicProgramming, Frank Pfenning (ed.), pages 141{155. MIT Press, Cambridge, MA, 1992.[Jac92] D. Jacobs. A Pragmatic View of Types for Logic Programs, chapter in Types in Logic Pro-gramming, Frank Pfenning (ed.), pages 217{228. MIT Press, Cambridge, MA, 1992.[JB92] G. Janssens and M. Bruynooghe. Deriving descriptions of possible values of program variablesby means of abstract interpretation. Journal of Logic Programming, 13(2):205{258, July 1992.[Koz77] D. Kozen. Lower bounds for natural proof systems. In IEEE Symposium on the Foundationsof Computer Science, pages 254{266. IEEE Computer Society, 1977.[Mis84] P. Mishra. Towards a theory of types in PROLOG. In Proceedings of the First IEEE Sympo-sium in Logic Programming, pages 289{298, 1984.[MR85] P. Mishra and U. S. Reddy. Declaration-free type checking. In Proceedings of the Annual ACMSymposium on Principles of Programming Languages, pages 7{21, January 1985.[Nai86] Lee Naish. Negation and control in Prolog. Lecture Notes in Computer Science 238. Springer-Verlag, 1986.[RNP92] Yann Rouzaud and Lan Nguyen-Phoung. Integrating Modes and Subtypes into a Prolog Type-Checker. In Logic Programming: Proceedings of the 1992 Joint International Conference andSymposium, pages 85{97, November 1992.[Sei90] H. Seidl. Deciding equivalence of �nite tree automata. SIAM Journal of Computing, 19(3):424{437, June 1990. 15

[Sha89] E. Shapiro. The family of concurrent logic programming languages. ACM Computing Surveys,21(3):412{510, May 1989.[YFS92] E. Yardeni, T. Fruhwirth, and E. Shapiro. Polymorphically Typed Logic Programs, chapter inTypes in Logic Programming, Frank Pfenning (ed.), pages 63{90. MIT Press, Cambridge, MA,1992.[ZY92] J. L. Zachary and K. Yelick. Moded Type Systems to Support Abstraction, chapter in Types inLogic Programming, Frank Pfenning (ed.), pages 217{228. MIT Press, Cambridge, MA, 1992.

16

