
Control Replication: Compiling Implicit Parallelism to Efficient
SPMD with Logical Regions

Elliott Slaughter
Stanford University

SLACNational Accelerator Laboratory
slaughter@cs.stanford.edu

Wonchan Lee
Stanford University

wonchan@cs.stanford.edu

Sean Treichler
Stanford University

NVIDIA
sean@nvidia.com

Wen Zhang
Stanford University

zhangwen@cs.stanford.edu

Michael Bauer
NVIDIA

mbauer@nvidia.com

Galen Shipman
Los Alamos National Laboratory

gshipman@lanl.gov

Patrick McCormick
Los Alamos National Laboratory

pat@lanl.gov

Alex Aiken
Stanford University

aiken@cs.stanford.edu

ABSTRACT
We present control replication, a technique for generating high-
performance and scalable SPMD code from implicitly parallel pro-
grams. In contrast to traditional parallel programming models that
require the programmer to explicitly manage threads and the com-
munication and synchronization between them, implicitly parallel
programs have sequential execution semantics and by their nature
avoid the pitfalls of explicitly parallel programming. However, with-
out optimizations to distribute control overhead, scalability is often
poor.

Performance on distributed-memory machines is especially sen-
sitive to communication and synchronization in the program, and
thus optimizations for these machines require an intimate un-
derstanding of a program’s memory accesses. Control replication
achieves particularly effective and predictable results by leverag-
ing language support for first-class data partitioning in the source
programming model. We evaluate an implementation of control
replication for Regent and show that it achieves up to 99% parallel
efficiency at 1024 nodes with absolute performance comparable to
hand-written MPI(+X) codes.

CCS CONCEPTS
• Software and its engineering→ Parallel programming lan-
guages; Compilers;

KEYWORDS
Control replication; Regent; Legion; regions; task-based runtimes

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
SC17, November 2017, Denver, CO, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5114-0/17/11. . . $15.00
https://doi.org/10.1145/3126908.3126949

1 for t = 0, T do
2 for i = 0, N do −− Parallel
3 B[i] = F(A[i])
4 end
5 for j = 0, N do −− Parallel
6 A[j] = G(B[h(j)])
7 end
8 end

(a) Original program.

1 for i = 0, N do −− Parallel
2 for t = 0, T do
3 B[i] = F(A[i])
4 −− Synchronization needed
5 A[i] = G(B[h(i)])
6 end
7 end

(b) Transposed program.

F(A[0])

F(A[1])

. . .

F(A[N-1])

. . .

. . .

. . .

. . .

G(B[h(0)])

G(B[h(1)])

. . .

G(B[h(N-1)])

(c) Implicitly parallel execution of original program.

F(A[0]) . . . G(B[h(0)])

F(A[1])

. . .

. . .

. . .

G(B[h(1)])

F(A[N-1]) . . . G(B[h(N-1)])

(d) SPMD execution of transposed program.

Figure 1: Comparison of implicit and explicit parallelism.

1 INTRODUCTION
Programs with sequential semantics are easy to read, understand,
debug, and maintain, compared to explicitly parallel codes. In cer-
tain cases, sequential programs also lend themselves naturally to
parallel execution. Consider the code in Figure 1a. Assuming there
are no loop carried dependencies, the iterations of each of the two
inner loops can be executed in parallel on multiple processors in a
straightforward fork-join style. As illustrated in Figure 1c, a main
thread launches a number of worker threads for the first loop, each

https://doi.org/10.1145/3126908.3126949

SC17, November 2017, Denver, CO, USA Elliott Slaughter et al.

of which executes one (or more) loop iterations. There is a syn-
chronization point at the end of the loop where control returns to
the main thread; the second loop is executed similarly. Because the
second loop can have a completely different data access pattern
than the first (indicated by the arbitrary function h in B[h(j)]), com-
plex algorithms can be expressed. With considerable variation, this
implicitly parallel style is the basis of many parallel programming
models. Classic parallelizing compilers [10, 25, 29], HPF [30, 36]
and the data parallel subset of Chapel [16] are canonical exam-
ples; other examples include MapReduce [18] and Spark [48] and
task-based models such as Sequoia [23], Legion [6], StarPU[4], and
PaRSEC [13].

In practice, programmers don’t write highly scalable high per-
formance codes in the implicitly parallel style of Figure 1a. Instead,
they write the program in Figure 1b. Here the launching of a set of
worker threads happens once, at program start, and the workers
run until the end of the computation. We can see in Figures 1c and
1d that conceptually the correspondence between the programs is
simple. Where Figure 1a launches N workers in the first loop and
then N workers in the second loop, Figure 1b launches N long-lived
threads that act as workers across iterations of the inner loops of
the program. This single program multiple data, or SPMD, program-
ming style is the basis of MPI [42], UPC [2] and Titanium [1], and
also forms a useful subset of Chapel, X10 [17] and Legion.

While Figure 1a and Figure 1b are functionally equivalent, they
have very different scalability and programmer productivity prop-
erties. Figure 1b is much more scalable, and not just by a con-
stant factor. To see this, consider what happens in Figure 1a as
the number of workers N (the “height” of the execution graph in
Figure 1c) increases. Under weak scaling, the time to execute each
worker task (e.g., F(A[i]) in the first loop) remains constant, but
the main control thread does O (N) work to launch N workers. (In
some cases, a broadcast tree can be used to reduce this overhead
to O (logN).) Thus, for some N , the runtime overhead of launch-
ing workers exceeds the individual worker’s execution time and
the program ceases to scale. While the exact scalability in practice
always depends on how long-running the parallel worker tasks
are, our experience is that many implicitly parallel programs don’t
scale beyond 10 to 100 nodes when task granularities are on the
order of milliseconds to tens of milliseconds. In contrast, the SPMD
program in Figure 1b, while it still must launch N workers, does so
only once and in particular the launch overhead is not incurred in
every time step (the T loop). Programs written in SPMD style can
scale to thousands or tens of thousands of nodes.

On the other hand, the implicitly parallel program in Figure 1a
is much easier to write and maintain than the program in Figure 1b.
While it is not possible to give precise measurements, it is clear
that the difference in productivity is large: In our experience an
implicitly parallel program that takes a day to write will require
roughly a week to code in SPMD style. The extra programming
cost is incurred because the individual workers in Figure 1b each
compute only a piece of the first loop of Figure 1a, and thus explicit
synchronization is required to ensure that all fragments of the first
loop in all workers finish before dependent parts of the second loop
begin. Furthermore, because the access patterns of the two loops in
Figure 1a need not be the same, data movement is in general also
needed to ensure that the values written by the various distributed

pieces of the first loop are communicated to the threads that will
read those values in the distributed pieces of the second loop. In
most SPMD models (and specifically in MPI) this data movement
must be explicitly written and optimized by the programmer. The
synchronization and the data movement are by far the most difficult
and time consuming parts of SPMD programs to get right, and these
are exactly the parts that are not required in implicitly parallel
programs.

This paper presents control replication, a technique for generating
high-performance and scalable SPMD code from implicitly parallel
programs with sequential semantics. The goal of control replication
is to both “have our cake and eat it”, to allow programmers to write
in the productive implicitly parallel style and to use a combination
of compiler optimizations and runtime analysis to automatically
produce the scalable (but much more complex) SPMD equivalent.

Control replication works by generating a set of shards, or long-
running tasks, from the control flow of the original program, to
amortize overhead and enable efficient execution on large num-
bers of processors. Intuitively, a control thread of an implicitly
parallel program is replicated across the shards, with each shard
maintaining enough state to mimic the decisions of the original
control thread. An important feature of control replication is that
it is a local transformation, applying to a single collection of loops.
Thus, it need not be applied only at the top level, and can in fact
be applied independently to different parts of a program and at
multiple different scales of nested parallelism.

As suggested above, the heart of the control replication trans-
formation depends on the ability to analyze the implicitly parallel
program with sufficient precision to generate the needed synchro-
nization and data movement between shards. Similar analyses are
known to be very difficult in traditional programming languages.
Past approaches that have attempted optimizations with compara-
ble goals to control replication have relied on either very sophis-
ticated, complex and therefore unpredictable static analysis (e.g.,
HPF) or have relied much more heavily on dynamic analysis with
associated run-time overheads (e.g., inspector-executor systems
[35]).

A key aspect of our work is that we leverage recent advances in
parallel programming model design that greatly simplify and make
reliable and predictable the static analysis component of control
replication. Many parallel programming models allow program-
mers to specify a partition of the data, to name different subsets of
the data on which parallel computations will be carried out. Recent
proposals allow programmers to define and use multiple partitions
of the same data [6, 11]. For example, returning to our abstract ex-
ample in Figure 1a, one loop may be accessing a matrix partitioned
by columns while the other loop accesses the same matrix parti-
tioned by rows. Control replication relies on the programmer to
declare the data partitions of interest (e.g., rows and columns). The
static analysis is carried out only at the granularity of the partitions
and determines which partitions may share elements and therefore
might require communication between shards. The dynamic analy-
sis optimizes the communication at runtime by computing exactly
which elements they share.

An important property of this approach is that the control repli-
cation transformation is guaranteed to succeed for any programmer-
specified partitions of the data, even though the partitions can be

Control Replication: Compiling Implicit Parallelism to Efficient SPMD with Logical Regions SC17, November 2017, Denver, CO, USA

arbitrary. Partitions name program access patterns, and control
replication reasons at the level of those coarser collections and
their possible overlaps. This situation contrasts with the static anal-
ysis of programs where the access patterns must be inferred from
individual memory references; current techniques, such as polyhe-
dral analyses, work very well for affine index expressions [12], but
do not address programs with more complex accesses.

This paper makes the following contributions:
• We describe the design and implementation of control repli-
cation in the context of the Regent programming language
[41]. As noted above, the critical feature of Regent for control
replication is support for multiple partitions; the technique
should be applicable to any language with this feature.
• To the best of our knowledge, we are the first to demonstrate
the impact of programming model support for multiple par-
titions on a compiler analysis and transformation. We show
that this feature can be leveraged to provide both good pro-
ductivity and scalability.
• We evaluate control replication using four codes: a circuit
simulation on an unstructured graph, an explicit solver for
the compressible Navier-Stokes equations on a 3D unstruc-
tured mesh, a Lagrangian hydrodynamics proxy application
on a 2D unstructured mesh, and a stencil benchmark on
a regular grid. Our implementation of control replication
achieves up to 99% parallel efficiency on 1024 nodes (12288
cores) on the Piz Daint supercomputer [3] with absolute
performance comparable to hand-written MPI(+X) codes.

In the following section, we describe the relevant features of
Regent for control replication and give a motivating example. We
then describe the transformation, and an evaluation of our imple-
mentation, before discussing related work and concluding.

2 REGENT
Regent is a programming language with support for both implicit
and explicit parallelism, making it possible to describe the control
replication transformation entirely within one system. In particular,
Regent’s support for multiple partitions of data collections enables
a particularly straightforward analysis of data movement required
for efficient SPMD code generation. In this section, we discuss the
relevant features of Regent and a number of preliminary steps to
control replication.

2.1 Data and Execution Model
A central concern of the Regent programming language is the
management and partitioning of data. Data in Regent is stored
in regions. A region is a (structured or unstructured) collection of
objects and may be partitioned into subregions that name subsets
of the elements of the parent region.

Figure 2 shows a Regent version of the program in Figure 1a.
The two inner loops with calls to point functions F and G have been
extracted into tasks TF and TG on lines 1-6 and 8-13, respectively, and
the newmain simulation loop is preceded by an explicit partitioning
of the data on lines 16-22.

Lines 18 and 19 declare two regions A and B that correspond
to the arrays by the same name in the original program. These
regions contains elements of some data type indexed from 0 to N−1.

1 task TF(B : region(SU, . . .), A : region(SU, . . .))
2 where reads writes(B), reads(A) do
3 for i in SU do
4 B[i] = F(A[i])
5 end
6 end
7

8 task TG(A : region(SU, . . .), B : region(SQ, . . .))
9 where reads writes(A), reads(B) do
10 for j in SU do
11 A[j] = G(B[h(j)])
12 end
13 end
14

15 −− Main Simulation:
16 var U = ispace(0..N)
17 var I = ispace(0..NT)
18 var A = region(U, . . .)
19 var B = region(U, . . .)
20 var PA = block(A, I)
21 var PB = block(B, I)
22 var QB = image(B, PB, h)
23 for t = 0, T do
24 for i in I do
25 TF(PB[i], PA[i])
26 end
27 for j in I do
28 TG(PA[j], QB[j])
29 end
30 end

Figure 2: Regent version of program with aliasing.

(The element data type does not matter for the purposes of this
paper.) The declaration of the index space U on line 16 gives a name
to the set of indices for the regions; symbolic names for sets of
indices are helpful because in general regions may be structured or
unstructured, and optionally sparse. In Regent, memory allocation
for regions is decoupled from their declaration. No actual memory
allocation occurs at lines 18-19. Instead the program proceeds to
partition the regions into subregions so that the eventual memory
allocations are distributed across the machine.

Lines 20-22 contain calls to partitioning operators. The first two
of these, on lines 20 and 21, declare block partitions of the regions A
and B into roughly equal-sized subregions numbered 0 to NT−1. (As
before, a variable I is declared on line 17 to name this set of indices.)
The variables PA and PB name the sets of subregions created in the
respective partitioning operations. For convenience, we name the
object which represents a set of subregions a partition.

Line 22 declares a second partition QB of the region B based
on the image of the function h over PB. That is, for every index
b in region B’s index space (U), h(b) ∈ QB[i] if b ∈ PB[i]. This
partition describes exactly the set of elements that will be read
inside the task TG on line 11. Importantly, there are no restrictions
on the form or semantics of h. As a result, QB may not be a parti-
tion in the mathematical sense; i.e. the subregions of QB are not
required to be disjoint, and the union of subregions need not cover
the entire region B. In practice this formulation of partitioning is

SC17, November 2017, Denver, CO, USA Elliott Slaughter et al.

extremely useful for naming the sets of elements involved in e.g.
halo exchanges.

Regent supports a number of additional operators as part of
an expressive sub-language for partitioning [44]. In the general
case, Regent partitions are extremely flexible and may divide re-
gions into subregions containing arbitrary subsets of elements. For
the purposes of this paper, the only property of partitions that
is necessary to analyze statically is the disjointness of partitions.
A partition object is said to be disjoint if the subregions can be
statically proven to be non-overlapping, otherwise the partition is
aliased. For example, the block partition operators on lines 20-21
produce disjoint partitions as the subregions are always guaran-
teed to be non-overlapping. For the image operator on line 22, the
function h is unconstrained and thus Regent assumes that the sub-
regions may contain overlaps, causing the resulting partition to be
considered aliased.

Themain simulation loop on lines 23-30 then executes a sequence
of task calls with the appropriate subregions as arguments. Tasks
declare privileges on their region arguments (read, write, or reduce
on an associative and commutative operator). Execution of tasks is
apparently sequential: two tasks may execute in parallel only if they
operate on disjoint regions, or with compatible privileges (e.g. both
read, or both reduce with the same operator). Regent programs are
typically written such that the inner loop can execute in parallel; in
this case the loops on lines 24-26 and 27-29 both execute in parallel.

Note that in Regent, unlike in the fork-join parallel execution of
Figure 1c, there is not an implicit global synchronization point at
the end of each inner loop. Instead, Regent computes the dependen-
cies directly between pairs of tasks (as described above) and thus
tasks from different inner loops may execute in parallel if doing so
preserves sequential semantics.

An important property of Regent tasks is that privileges are strict.
That is, a task may only call another task if its own privileges are a
superset of those required by the other task. Similarly, any reads
or writes to elements of a region must conform to the privileges
specified by the task. As a result, a compile-time analysis such as
control replication need not consider the code inside of a task. All
of the analysis for control replication will be at the level of tasks,
privileges declared for tasks, region arguments to tasks, and the
disjointness or aliasing of region arguments to tasks.

2.2 Target Programs
In this paper we consider programs containing forall-style loops of
task calls such as those on lines 24-26 and 27-29 of Figure 2. Control
replication is a local optimization and need not be applied to an
entire program to be effective. The optimization is applied automat-
ically to the largest set of statements that meet the requirements
described below. In the example, control replication will be applied
to lines 23-30 of the program.

Control replication applies to loops of task calls with no loop-
carried dependencies except for those resulting from reductions
to region arguments or scalar variables. Arbitrary control flow
is permitted outside of these loops, as are statements over scalar
variables.

No restrictions are placed on caller or callee tasks; control repli-
cation is fully composable with nested parallelism in the application.

A

PA[i] PA[j]

PA

B

PB[i]QB[j]

PBQB

Figure 3: Region tree for the example. Filled boxes are dis-
joint partitions.

The compiler analysis for control replication need not be concerned
with the contents of called tasks because the behavior of a task is
soundly approximated by the privileges in the task’s declaration (a
property enforced by Regent’s type system). Similarly, any caller
task is completely agnostic to the application of control replication
because any possible transformation of the code must be consistent
with the task’s privileges.

The region arguments of any called tasks must be of the form
p[f(i)] where p is a partition, i is the loop index, and f is a pure
function. Any accesses with a non-trivial function f are transformed
into the form q[i]with a new partition q such that q[i] is p[f(i)].
Note here that we make essential use of Regent’s ability to define
multiple partitions of the same data.

2.3 Region Trees
The semantics of Regent enables a straightforward analysis of alias-
ing based on the relationships between regions and partitions. To
determine whether two regions may alias, the compiler constructs a
region tree that describes these relationships. This tree is a compile-
time adaptation of the runtime data structure described in [6].

Figure 3 shows the region tree for the code in Figure 2. Note
that regions in this formulation are symbolic, that is, the indices
used to identify subregions are either constants or unevaluated
loop variables. A dynamic evaluation of this program would result
in an expansion of this tree for the various iterations of the loops
(resulting in e.g. PA[0], PA[1], . . . , PA[NT-1] under the PA partition).
However, the number of iterations is not available at compile-time,
making the symbolic version necessary.

The region tree is convenient because it provides a natural test
to determine whether any two regions may alias: For any pair of
regions R and S , find the least common ancestor A with immediate
children R′ and S ′ (along the path to R and S , respectively). If A is
a disjoint partition and R′ and S ′ are indexed by constants, then R
and S are guaranteed to be disjoint regions at runtime; otherwise
they may alias.

Region trees can be constructed by walking a task’s body from
top to bottom. Each newly created region becomes the root of a fresh
region tree. Partitions are inserted under the region they partition,
and expressions that access subregions of partitions result in the
corresponding subregion nodes, tagged with the index expression
used.

Control Replication: Compiling Implicit Parallelism to Efficient SPMD with Logical Regions SC17, November 2017, Denver, CO, USA

1 −− Initialization:
2 for i in I: PA[i]← A
3 for i in I: PB[i]← B
4 for i in I: QB[i]← B
5

6 −− Transformed code:
7 for t = 0, T do
8 for i in I: TF(PB[i], PA[i])
9 for i, j in I × I: QB[j]← PB[i]
10 for j in I: TG(PA[j], QB[j])
11 end
12

13 −− Finalization:
14 for i in I: A← PA[i]
15 for i in I: B← PB[i]

(a) Code after data replication.

1 −− Initialization:
2 for i in I: PA[i]← A
3 for i in I: PB[i]← B
4 for i in I: QB[i]← B
5 var IQPB =

{
i, j | QB[j] ∩ PB[i] , ∅

}
6

7 −− Transformed code:
8 for t = 0, T do
9 for i in I: TF(PB[i], PA[i])
10 for i, j in IQPB: QB[j]← PB[i]
11 for j in I: TG(PA[j], QB[j])
12 end
13

14 −− Finalization:
15 for i in I: A← PA[i]
16 for i in I: B← PB[i]

(b) Code with intersections.

1 −− Initialization:
2 for i in I: PA[i]← A
3 for i in I: PB[i]← B
4 for i in I: QB[i]← B
5 var IQPB =

{
i, j | QB[j] ∩ PB[i] , ∅

}
6

7 −− Transformed code:
8 for t = 0, T do
9 for i in I: TF(PB[i], PA[i])
10 barrier()
11 for i, j in IQPB: QB[j]← PB[i]
12 barrier()
13 for j in I: TG(PA[j], QB[j])
14 end
15

16 −− Finalization:
17 for i in I: A← PA[i]
18 for i in I: B← PB[i]

(c) Code with synchronization.

1 −− Shard task:
2 task shard(SI, SIQPB, PA, PB, QB)
3 for t = 0, T do
4 for i in SI: TF(PB[i], PA[i])
5 barrier()
6 for i, j in SIQPB: QB[j]← PB[i]
7 barrier()
8 for j in SI: TG(PA[j], QB[j])
9 end
10 end
11 −− Initialization as before
12 −− Transformed code:
13 var X = ispace(0..NS)
14 var SI = block(I, X)
15 for x in X do
16 var SIQPB =
17

{
k, j | k, j ∈ IQPB ∧ k ∈ SI[x]

}
18 shard(SI[x], SIQPB, PA, PB, QB)
19 end
20 −− Finalization as before

(d) Code with shards.

Figure 4: Regent program at various stages of control replication.

3 CONTROL REPLICATION
In this section we describe the program transformations that com-
prise the control replication optimization. The optimization pro-
ceeds in phases, first inserting communication, then synchroniza-
tion, and finally replicating the control flow to produce long-running
shard tasks to reduce runtime overhead.

Consider a subregion S and its parent region P . Semantically, S is
literally a subset of P : an update to an element of S also updates the
corresponding element of P . There are two natural ways to imple-
ment this region semantics. In the shared memory implementation
the memory allocated to S is simply the corresponding subset of the
memory allocated to P . In the distributed memory implementation, S
and P have distinct storage and the implementation must explicitly
manage data coherence. For example, if a task writes to region
S , then the implementation must copy S (or at least the elements
that changed) to the corresponding memory locations of P so that
subsequent tasks that use P see those updates; synchronization may
also be needed to ensure these operations happen in the correct
order. Intuitively, control replication begins with a shared memory
program and converts it to an equivalent distributed memory im-
plementation, with all copies and synchronization made explicit by
the compiler.

3.1 Data Replication
The first stage of control replication is to rewrite the program so
that every region and subregion has its own storage, inserting
copies between regions where necessary for correctness. We use
the shorthand R1 ← R2 for an assignment between two regions: R1
is updated with the values of R2 on the elements R1 ∩ R2 they have
in common. Figure 4a shows the core of the program in Figure 2
after three sets of copies have been inserted. Immediately before the
code to which the optimization is applied (lines 7-11), the various

partitions are initialized from the contents of the parent regions
(lines 2-4). Symmetrically, any partitions written in the body of the
transformed code must be copied back to their respective parent
regions at the end (lines 14-15). Finally, inside the transformed code,
writes to partitions must be copied to any aliased partitions that are
also used within the transformed code. Here PB and QB are aliased
(i.e. subregions of PB may overlap subregions of QB), so PB must be
copied to QB on line 9 following the write to PB on line 8. Note that
PA is also written (on line 10) but can be proven to be disjoint from
PB and QB using the region tree analysis described in Section 2.3,
thus no additional copies are required.

3.2 Copy Placement
The placement of the copies in Figure 4a happens to be optimal,
but in general the algorithm described in Section 3.1 may introduce
redundant copies and place those copies suboptimally. To improve
copy placement, we employ variants of partial redundancy elimi-
nation and loop invariant code motion. The modifications required
to the textbook descriptions of these optimizations are minimal.
Loops such as lines 8-10 of Figure 4a are viewed as operations on
partitions. For example, line 8 is seen as writing the partition PB
and reading PA (summarizing the reads and writes to individual sub-
regions). Note that the use of standard compiler techniques is only
possible because of the problem formulation. In particular, aliasing
between partitions is removed by the data replication transforma-
tion in Section 3.1, and program statements operate on partitions
which hide the details of individual memory accesses.

3.3 Copy Intersection Optimization
Copies are issued between pairs of source and destination regions,
but only the intersections of the regions must actually be copied.
The number, size and extent of such intersections are unknown at

SC17, November 2017, Denver, CO, USA Elliott Slaughter et al.

compile time; this is an aspect of the analysis that is deferred until
runtime. For a large class of high-performance scientific applica-
tions, the number of such intersections per region is O (1) in the
size of the overall problem and thus for these codes an optimization
to skip copies for empty intersections is able to reduce the complex-
ity of the loop on Figure 4a line 9 from O (N 2) to O (N). Figure 4b
shows the code following this optimization; note the changes on
lines 5 and 10. For clarity of presentation the intersections on line
5 are written in pseudocode. In the implementation the compiler
generates equivalent Regent code.

To avoid an O (N 2) startup cost in comparing all pairs of sub-
regions in the computation of intersections at line 5 in Figure 4b,
we apply an additional optimization (not shown in the figure). The
computation of intersections proceeds in two phases. First, we com-
pute a shallow intersection to determine which pairs of regions
overlap (but not the extent of the overlap). For unstructured regions,
an interval tree acceleration data structure makes this operation
O (N logN). For structured regions, we use a bounding volume
hierarchy for this purpose. Second, we compute the exact set of
overlapping elements between known-intersecting regions. Follow-
ing the creation of shard tasks in Section 3.5 these operations are
performed inside the individual shards, making them O (M2) where
M is the number of non-empty intersections for regions owned by
that shard.

Note that while shallow intersections are initially placed imme-
diately prior to the transformed code, the placement may subse-
quently be altered by standard optimizations such as loop-invariant
code motion. In the applications tested in Section 5, the shallow
intersections were all lifted up to the beginning of the program
execution.

In practice, at 1024 nodes, the impact of intersection computa-
tions on total running time is negligible, especially for long-running
applications. Section 5.5 reports running times for the intersection
operations of the evaluated applications.

3.4 Synchronization Insertion
When moving to multiple shards, it is necessary to synchronize on
copies performed between shards. Shards are created in Section 3.5,
and thus the inserted synchronization is initially redundant, but
becomes necessary in the final transformed code.

A naive version of this synchronization is shown in Figure 4c.
The copy operations on line 11 are issued by the producer of the
data. Therefore, on the producer’s side only, copies follow Regent’s
normal sequential semantics. Explicit synchronization is therefore
only required for the consumer. Two barriers are used in Figure 4c
on lines 10 and 12. The first barrier on line 10 preserves write-
after-read dependencies and ensures that the copy does not start
until all previous consumers of QB (i.e. TG tasks from the previous
iteration of the outer loop) have completed. The second barrier on
line 12 preserves read-after-write dependencies and ensures that
subsequent consumers of QB (i.e. subsequent TG tasks) do not start
until the copy has completed.

As an additional optimization (not shown), these barriers are re-
placed with point-to-point synchronization. In particular, the tasks
which require synchronization are exactly those with non-empty
intersections computed in Section 3.3, thus the sets of tasks that

much synchronize are computed dynamically from the intersec-
tions above. The placement of synchronization operations in the
transformed code is determined as follows. A simple dataflow anal-
ysis determines all consumers of QB preceding the copy on line 11
and all those following; these tasks synchronize with copies on line
11 as determined by the non-empty intersections computed in IQPB.
This form of synchronization in Regent has the additional benefit
that the point-to-point synchronization operators can be added as
a direct precondition or postcondition to a task and therefore do
not block the main thread of control as would a traditional barrier.

3.5 Creation of Shards
In the final stage of the transformation, control flow itself is repli-
cated by creating a set of shard tasks that distribute the control
flow of the original program. Figure 4d shows the code after the
completion of the following steps.

First, the iterations of the inner loops for TF and TG must be
divided among the shards. Note this division does not determine the
mapping of a task to a processor for execution, which is discussed
in Section 4.2. This simply determines ownership of tasks for the
purposes of runtime analysis and control flow. The assignment is
decided by a simple block partition of the iteration space into NS
roughly even blocks on line 14. Second, the compiler transforms the
loops so that the innermost loops are now over iterations owned
by each shard, while the new outermost loop on line 15 iterates
over shards.

Third, the compiler extracts the body of the shard into a new
task on lines 2-10. This task is called from the main loop on line 18.

4 IMPLEMENTATION
We have implemented control replication as a compiler plug-in for
Regent that adds control replication as an additional optimization
pass to the main compiler. As with Regent itself, control replication
is implemented in the Terra [20] and Lua [28] languages. This
combination gives Regent (and our plugin) the ability to drive
compilation with a high-level scripting language, while generating
efficient low-level code via LLVM [32].

4.1 Runtime Support
Regent targets Legion, a C++ runtime system for hierarchical task
parallelism [6]. In non-control replicated Regent programs, Legion
discovers parallelism between tasks by computing a dynamic de-
pendence graph over the tasks in an executing program. Control
replication removes the need to analyze inter-shard parallelism,
but Legion is still responsible for parallelism within a shard as
well as any parallelism in the code outside of the scope of control
replication.

A notable feature of Legion is its deferred execution model. All
operations (tasks, copies, and even synchronization) execute asyn-
chronously in the Legion runtime. This is an important requirement
for supporting task parallelism, as it guarantees that themain thread
of execution does not block and is subsequently able to expose as
much parallelism as possible to the runtime system.

Legion targets Realm, a low-level runtime that supports execu-
tion on a wide variety of machines [43]. Realm uses GASNet [47]
for active messages and data transfer.

Control Replication: Compiling Implicit Parallelism to Efficient SPMD with Logical Regions SC17, November 2017, Denver, CO, USA

4.2 Mapping Tasks to Processors
All tasks in Regent, including shard tasks, are processed through
the Legion mapping interface [6]. This interface allows the user
to define a mapper that controls the assignment of tasks to phys-
ical processors. (At the user’s discretion, these decisions may be
delegated to a library implementation. Legion provides a default
mapper which provides sensible defaults for many applications.)
A typical strategy is to assign one shard to each node, and then to
distribute the tasks assigned to that shard among the processors of
the node. However, substantially more sophisticated mapper imple-
mentations are also possible; in general mappers are permitted to be
stateful and/or dynamic in their decision making. The techniques
described in this paper are agnostic to the mapping used.

4.3 Region Reductions
Control replication permits loop-carried dependencies resulting
from the application of associative and commutative reductions to
region arguments of tasks. These reductions require special care in
an implementation of control replication.

The partial results from the reductions must be stored separately
to allow them to be folded into the destination region, even in the
presence of aliasing. To accomplish this, the compiler generates
a temporary region to be used as the target for the reduction and
initializes the contents of the temporary to the identity value (e.g.,
0 if the reduction operator is addition). The compiler then issues
special reduction copies to apply the partial results to any destination
regions which require the updates.

4.4 Scalar Reductions
In control replication, scalar variables are normally replicated as
well. This ensures, for example, that control flow constructs behave
identically on all shards in a SPMD-style program. Assignments to
scalars are restricted to preserve this property; for example, scalars
cannot be assigned within an innermost loop (as the iterations of
this loop will be distributed across shards during control replica-
tion).

However, it can be useful to perform reductions on scalars, for
example, to compute the next timestep in a code with dynamic
time stepping. To accommodate this, control replication permits
reductions to scalars within inner loops. Scalars are accumulated
into local values that are then reduced across the machine with a
Legion dynamic collective, an asynchronous collective operation
that supports a dynamically determined number of participants.
The result is then broadcast to all shards.

4.5 Hierarchical Region Trees
Regent permits recursive partitioning of regions. Among many
other uses, this feature enables a common idiom in which the pro-
grammer constructs a top-level partition of a region into two subsets
of elements: those which are guaranteed to never be involved in
communication, and those which may need to be communicated.
This design pattern, in combination with the region tree analysis
described in Section 2.3, enables an important communication op-
timization that reduces data movement for distributed-memory
execution, and also substantially reduces the cost of the dynamic
computation of intersections described in Section 3.3.

B

private_v_ghost

all_private all_ghost

PB SB QB

PB[i] SB[i] QB[j]

Figure 5: Region tree with hierarchical partitions.

Figure 5 shows a possible modification to the region tree from
Figure 3 that uses this optimization. The top-level region B has
been partitioned into two subregions that represent all the private
elements (i.e. those never involved in communication) and ghost
elements (i.e. those that are involved in communication). The new
partition SB represents the subset of elements of the original PB
partition involved in communication. Similarly, the new PB and
QB partitions have been intersected with the regions all_private
and all_ghost.

Notably, the top-level partition in this new region tree is dis-
joint, and thus by consulting the region tree the compiler is able
to prove that the partition PB is disjoint from QB and SB. As a re-
sult, the compiler is able to prove that the subregions of PB are not
involved in communication (as they are provably disjoint from all
other subregions), and can avoid issuing copies for PB. Additionally,
because PB has been excluded from the set of partitions involved in
communication, the compiler is able to skip any intersection tests
with PB and other partitions. As in most scalable applications the
set of elements involved in communication is usually much smaller
than those not involved in communication, so placing the private
data in its own disjoint subregion can reduce the runtime cost of
computing intersections.

5 EVALUATION
We evaluate performance and scalability of control replication in
the context of Regent with four applications: a stencil benchmark
on a regular grid; MiniAero, an explicit solver of the compressible
Navier-Stokes equations on a 3D unstructured mesh; PENNANT, a
Lagrangian hydrodynamics simulation on a 2D unstructured mesh;
and a circuit simulation on a sparse unstructured graph. For each
application we consider a Regent implementation with and without
control replication and when available a reference implementation
written in MPI or a flavor of MPI+X.

For each application, we report weak scaling performance on
up to 1024 nodes of the Piz Daint supercomputer [3], a Cray XC50
system. Each node has an Intel Xeon E5-2690 v3 CPU (with 12
physical cores) and 64 GB of memory. Legion was compiled with
GCC 5.3.0. The reference codes were compiled with the Intel C/C++
compiler 17.0.1. Regent used LLVM for code generation: version
3.8.1 for Stencil and PENNANT and 3.6.2 for MiniAero and Circuit.

SC17, November 2017, Denver, CO, USA Elliott Slaughter et al.

1 2 4 8 16 32 64 128 256 512 102
4

0

500

1,000

1,500

Total Nodes

Th
ro
ug

hp
ut

pe
rn

od
e
(1
06
po

in
ts
/s
)

Regent (with CR) Regent (w/o CR)
MPI MPI+OpenMP

Figure 6: Weak scaling for Stencil.

Finally, we report the running times of the dynamic region in-
tersections for each of the applications at 64 and 1024 nodes.

5.1 Stencil
Stencil is a 2D structured benchmark from the Parallel Research
Kernels (PRK) [45, 46]. The code performs a stencil of configurable
shape and radius over a regular grid. Our experiments used a radius-
2 star-shaped stencil on a grid of double-precision floating point
values with 40k2 grid points per node. We compared against the
MPI and MPI+OpenMP reference codes provided by PRK. Both
reference codes require square inputs and thus were run only at
node counts that were even powers of two.

As noted in Section 2.2, all analysis for control replication was
performed at the task and region level. Control replication was
able to optimize code containing affine access patterns, without
requiring any specific support for affine reasoning in the compiler.

Figure 6 shows weak scaling performance for Stencil up to 1024
nodes. (In the legend control replication is abbreviated as CR.)
Control replication achieved 99% parallel efficiency at 1024 nodes,
whereas Regent without control replication rapidly drops in effi-
ciency when the overhead of launching an increasing number of
subtasks begins to dominate the time to execute those subtasks, as
discussed in Section 1.

5.2 MiniAero
MiniAero is a 3D unstructured mesh proxy application from the
Mantevo suite [26] developed at Sandia National Laboratories, im-
plementing an explicit solver for the compressible Navier-Stokes
equations. The mini-app is written in a hybrid style, using MPI
for inter-node communication and Kokkos for intra-node paral-
lelism. (Kokkos is a portability layer for C++ that compiles down
to pthreads (on CPUs), and is also developed at Sandia [22].) We
ran the reference in two configurations: one MPI rank per core,

1 2 4 8 16 32 64 128 256 512 102
4

0

500

1,000

1,500

Total Nodes

Th
ro
ug

hp
ut

pe
rn

od
e
(1
03
ce
lls
/s
)

Regent (with CR) Regent (w/o CR)
MPI+Kokkos (rank/core) MPI+Kokkos (rank/node)

Figure 7: Weak scaling for MiniAero.

and one MPI rank per node (using Kokkos support for intra-node
parallelism).

Figure 7 shows weak scaling absolute performance for the vari-
ous implementations of MiniAero on a problem size of 512k cells
per node. As demonstrated in [41], Regent-based codes out-perform
the reference MPI+Kokkos implementations of MiniAero on a sin-
gle node, mostly by leveraging the improved hybrid data layout
features of Legion [7].

Control replication achieves slightly over 100% parallel efficiency
at 1024 nodes due to variability in the performance of individual
nodes; as before, Regent without control replication struggles to
scale beyond a modest number of nodes. Although the rank per
node configuration of the MPI+Kokkos reference provides initial
benefits to single-node performance, performance eventually drops
to the level of the rank per core configuration.

5.3 PENNANT
PENNANT is a 2D unstructured mesh proxy application from Los
Alamos National Laboratory simulating Lagrangian hydrodynam-
ics [24]. The application represents a subset of the functionality
that exists in FLAG, a larger production code used at the lab [14].

The reference PENNANT implementation applies a cache block-
ing optimization that substantially improves the computational
intensity of the overall application. This optimization impacts even
the data structure layouts, as the (otherwise unordered) mesh ele-
ments are grouped into chunks to be processed together. In spite
of this, control replication applied seamlessly to the code, as the
details of the cache blocking optimization are limited to the struc-
ture of the region tree (which subsumes the chunk structure of the
original code) and the bodies of tasks (whose details are accurately
summarized by the privileges declared in the task declaration).

Figure 8 shows weak scaling performance for PENNANT on up
to 1024 nodes, using a problem size of 7.4M zones per node. The

Control Replication: Compiling Implicit Parallelism to Efficient SPMD with Logical Regions SC17, November 2017, Denver, CO, USA

1 2 4 8 16 32 64 128 256 512 102
4

0

5

10

15

20

Total Nodes

Th
ro
ug

hp
ut

pe
rn

od
e
(1
06
zo
ne
s/
s)

Regent (with CR) Regent (w/o CR)
MPI MPI+OpenMP

Figure 8: Weak scaling for PENNANT.

single-node performance of the Regent implementation is less than
the reference because the underlying Legion runtime requires a
core be dedicated to analysis of tasks. This effect is noticeable on
PENNANT because, due to the cache blocking optimization above,
PENNANT is mostly compute-bound.

However, this performance gap closes at larger node counts as
Regent is better able to achieve asynchronous execution to hide
the latency of the global scalar reduction to compute the dt in the
next timestep of the application. At 1024 nodes, control replication
achieves 87% parallel efficiency, compared to 82% for MPI and 64%
for MPI+OpenMP.

5.4 Circuit
We developed a sparse circuit simulation based on [6] to measure
weak scaling performance on unstructured graphs. The implicitly
parallel version from [6] was already shown to be substantially
communication bound at 32 nodes and would not have scaled to
significantly more nodes, regardless of the implementation tech-
nique. The input for this problem was a randomly generated sparse
graph with 100k edges and 25k vertices per compute node; the
application was otherwise identical to the original.

Figure 9 shows weak scaling performance for the simulation
up to 1024 nodes. Regent with control replication achieves 98%
parallel efficiency at 1024 nodes. As with the other applications,
Regent without control replication matches this performance at
small node counts (in this case up to 16 nodes) but then efficiency
begins to drop rapidly as the overhead of having a single master
task launching many subtasks becomes dominant.

5.5 Dynamic Intersections
As described in Section 3.3, dynamic region intersections are com-
puted prior to launching a set of shard tasks in order to identify
the communication patterns and precise data movement required

1 2 4 8 16 32 64 128 256 512 102
4

20

40

60

80

Total Nodes

Th
ro
ug

hp
ut

pe
rn

od
e
(1
03
no

de
s/
s)

Regent (with CR) Regent (w/o CR)

Figure 9: Weak scaling for Circuit.

Application Nodes Shallow (ms) Complete (ms)

Circuit 64 7.8 2.7
1024 143 4.7

MiniAero 64 15 17
1024 259 43

PENNANT 64 6.8 14
1024 125 124

Stencil 64 2.7 0.4
1024 78 1.3

Table 1: Running times for region intersections on each ap-
plication at 64 and 1024 nodes.

for control-replicated execution. Table 1 reports the running times
of the intersection operations measured during the above experi-
ments while running on 64 and 1024 nodes. Shallow intersections
are performed on a single node to determine the approximate com-
munication pattern (but not the precise sets of elements that require
communication); these required at most 259 ms at 1024 nodes (15 ms
at 64 nodes). Complete intersections are then performed in parallel
on each node to determine the precise sets of elements that must
be communicated with other nodes; these took at most 124 ms.
Both times are much less than the typical running times of the
applications themselves, which are often minutes to hours.

6 RELATEDWORK
Several approaches have been considered for compiling sequential,
shared-memory parallel, and/or data-parallel programs for execu-
tion on distributed-memory machines.

Inspector/executor (I/E) methods have been used to compile a
class of sequential programs with affine loops and irregular ac-
cesses for distributed memory [34, 35]. As in control replication,
a necessary condition for I/E methods is that the memory access

SC17, November 2017, Denver, CO, USA Elliott Slaughter et al.

patterns are fixed within the loop, so that the inspector need only
be run once. Use of an inspector allows the read/write sets of pro-
gram statements to be determined dynamically when the necessary
static analysis is infeasible in the underlying programming lan-
guage, enabling distributed, parallel execution of codes written
in conventional languages. This approach has been demonstrated
to scale to 256 cores. However, the time and space requirements
of the inspector limit scalability at very large node counts. Also,
the I/E approach relies on generic partitioning algorithms such as
automatic graph partitioning [15, 39].

Kwon et al. describe a technique for compiling OpenMP pro-
grams with regular accesses to MPI code [31]. A hybrid static/dy-
namic analysis is used to determine the set of elements accessed by
each parallel loop. For efficiency, the dynamic analysis maintains a
bounded list of rectangular section fragments at communication
points. As a result, non-affine accesses cause analysis imprecision
that results in replicated data, increased communication, and lim-
ited scalability. The approach has been demonstrated to scale to 64
cores.

Like the two approaches above, control replication uses a com-
bined static/dynamic analysis to obtain precise information about
access patterns. At a high level, the key difference is that control
replication leverages a programming model with explicit support
for coarse-grain operations (tasks), data partitioning (of regions
into subregions), and the simultaneous use of multiple partitions of
the same data. Control replication performs analysis at this coars-
ened level rather than at the level of individual loop iterations,
resulting in a more efficient dynamic analysis and in-memory rep-
resentation of the access patterns of each loop without any loss
of precision. Furthermore, hierarchically nested partitions enable
control replication to skip analysis at runtime for data elements not
involved in communication (further reducing memory usage for the
analysis). Finally, explicit language support for partitioning allows
control replication to leverage application-specific partitioning al-
gorithms, which are often more efficient and yield better results
than generic algorithms. As a result, control replication is able to
support more complex access patterns more efficiently, resulting in
better scalability.

A number of efforts to support OpenMP on distributed-memory
machines target software distributed shared-memory (DSM) sys-
tems [5, 27, 38]. These approaches have limited scalability due to
the limitations of page-based DSM systems.

Efforts in data-parallel languages such as High Performance
Fortran (HPF) [30, 36] pioneered compilation techniques for a va-
riety of machines, including distributed-memory. In HPF, a sin-
gle (conceptual) thread of control creates implicit data-parallelism
by specifying operations over entire arrays in a manner similar
to traditional Fortran. This data parallelism is then mapped to a
distributed-memory system via explicit user-specified data distri-
butions of the arrays—though the compiler is still responsible for
inferring shadow regions (i.e. halos that must be communicated)
from array accesses. Several implementations of HPF achieve good
scalability on structured applications [37, 40].

ZPL, an implicitly parallel array language, provides a very gen-
eral array remap operator [19] that permits the redistribution of
data via (conceptually) scatters and gathers. The ZPL compiler
optimizes cases of the remap operator that commonly appear in

structured programs to avoid paying the cost of the general case.
However, when these optimizations fail, ZPL falls back to an in-
spector/executor approach similar to the one described above, with
similar tradeoffs.

The Chapel [16] language supports a variety of styles of paral-
lelism, including implicit data parallelism and explicit PGAS-style
parallelism. This multiresolution design reduces the burden placed
on the compiler to optimize Chapel’s data parallel subset because
users can incrementally switch to other forms of parallelism as
needed. However, use of Chapel’s explicitly parallel features expose
users to the hazards of traditional explicitly parallel programming.

Compared to Regent, Chapel’s data parallel subset (which is
most similar to Regent’s implicit parallelism) only supports a single
distribution of elements for the lifetime of a given array, and limited
task parallelism. Regent’s support for multiple and hierarchical
partitions are critical to enabling control replication to optimize
implicitly parallel programs for efficient execution on distributed
memory machines.

The multiresolution approach is also taken in Legion and Regent,
which support both a straightforward implicitly parallel style of
programming that scales to modest numbers of nodes as well as
more involved explicit communication constructs that can be used
to scale to very large node counts [7]. In particular, the explicit ap-
proach can be time-consuming and error-prone, and was identified
in a recent study [8] as a challenge for this class of programming
systems. Our work can be seen as greatly increasing the perfor-
mance range of the implicit style, allowing more whole codes and
subsystems of codes to be written in this more productive and more
easily maintained style.

MapReduce [18] and Spark [48] support implicitly parallel ex-
ecution of pure functions composed via data-parallel operators
such as map and reduce. Both MapReduce and Spark use a central-
ized scheduler that becomes a bottleneck at large node counts with
tasks on the order of milliseconds to tens of milliseconds. Originally
these systems were intended for use in I/O-intensive applications
where the input is initially read from disk, such that the overhead
of centralized scheduling was not a concern. More recently, im-
provements in the efficiency of these codes have resulting in more
fine-grained tasks. The use of execution templates to reduce control
overhead [33] has been explored as a way to improve the scalability
of a centralized scheduler.

Liszt [21] is an implicitly parallel domain-specific language for
solving partial differential equations on unstructured meshes. By
leveraging domain-specific knowledge, the Liszt compiler is able to
generate optimized distributed code that scales to large numbers of
nodes. However, the domain-specific reasoning used in the com-
piler limits the applicability of the approach. In contrast, control
replication is general-purpose and not limited to a specific domain.

X10 [17] is an explicitly parallel programming language with
places and hierarchical tasks. Flat X10 [9] is a subset of this lan-
guage that restricts programs to a two-level task hierarchy where
the top level consists of forall-style parallel loops. A compiler for
Flat X10 is able to transform the program into a SPMD-style X10
program with explicit synchronization between tasks. However,
as the original Flat X10 program already contains explicit commu-
nication, the compiler need not make changes to the structure of
communication in the program. In contrast, control replication is

Control Replication: Compiling Implicit Parallelism to Efficient SPMD with Logical Regions SC17, November 2017, Denver, CO, USA

able to automatically generate efficient explicit communication for
an implicitly parallel program with implicit data movement.

7 CONCLUSION
Control replication automatically generates efficient SPMD code
for implicitly parallel programs by leveraging language support for
multiple partitions of data.We have presented an implementation of
control replication for Regent and evaluated it on three unstructured
proxy applications and a structured benchmark. In our experiments,
control replication achieves up to 99% parallel efficiency on 1024
nodes.

ACKNOWLEDGMENT
This work was supported by the Army High Performance Comput-
ing Research Center, by the Department of Energy National Nuclear
Security Administration under Award Number DE-NA0002373-1,
by the Advanced Simulation and Computing Program, Advanced
Technology Development and Mitigation element administered by
Thuc Hoang under contract DE-AC52-06NA25396 with Los Alamos
National Laboratory, by the Department of Energy Office of Sci-
ence, Office of Advanced Scientific Computing Research under the
guidance of Dr. Lucy Nowell, by an internship at NVIDIA Research,
and by a grant from the Swiss National Supercomputing Centre
(CSCS) under project ID d51.

The authors would like to thank Albert Sidelnik and Norm Rubin
for their mentorship and support, Charles R. Ferenbaugh for his
advice and assistance with the PENNANT code, and Janine C. Ben-
nett, Greg Sjaardema, Kenneth Franko, Hemanth Kolla, Jeremiah
Wilke, David Hollman, and the Mantevo project [26] for support
with the MiniAero code.

REFERENCES
[1] 2006. Titanium Language Reference Manual. http://titanium.cs.berkeley.edu/

doc/lang-ref.pdf. (2006).
[2] 2013. UPC Language Specifications, Version 1.3. http://upc.lbl.gov/publications/

upc-spec-1.3.pdf. (2013).
[3] 2016. Piz Daint & Piz Dora - CSCS. http://www.cscs.ch/computers/piz_daint.

(2016).
[4] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacre-

nier. 2011. StarPU: A Unified Platform for Task Scheduling on Heterogeneous
Multicore Architectures. Concurrency and Computation: Practice and Experience
23 (Feb. 2011), 187–198. Issue 2.

[5] Ayon Basumallik, Seung-Jai Min, and Rudolf Eigenmann. 2007. Programming
Distributed Memory Sytems Using OpenMP. In Parallel and Distributed Processing
Symposium, 2007. IPDPS 2007. IEEE International. IEEE, 1–8.

[6] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. 2012. Legion:
Expressing Locality and Independence with Logical Regions. In Supercomputing
(SC).

[7] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. 2014. Structure
Slicing: Extending Logical Regions with Fields. In Supercomputing (SC).

[8] Janine Bennett, Robert Clay, Gavin Baker, Marc Gamell, David Hollman, Samuel
Knight, Hemanth Kolla, Gregory Sjaardema, Nicole Slattengren, Keita Teran-
ishi, Jeremiah Wilke, Matt Bettencourt, Steve Bova, Ken Franko, Paul Lin, Ryan
Grant, Si Hammond, Stephen Olivier, Laxmikant Kale, Nikhil Jain, Eric Mikida,
Alex Aiken, Mike Bauer, Wonchan Lee, Elliott Slaughter, Sean Treichler, Martin
Berzins, Todd Harman, Alan Humphrey, John Schmidt, Dan Sunderland, Pat
McCormick, Samuel Gutierrez, Martin Schulz, Abhinav Bhatele, David Boehme,
Peer-Timo Bremer, and Todd Gamblin. 2015. ASC ATDM Level 2 Milestone #5325:
Asynchronous Many-Task Runtime System Analysis and Assessment for Next
Generation Platforms. SAND2015-8312 (2015).

[9] Ganesh Bikshandi, Jose G. Castanos, Sreedhar B. Kodali, V. Krishna Nandivada,
Igor Peshansky, Vijay A. Saraswat, Sayantan Sur, Pradeep Varma, and Tong Wen.
2009. Efficient, Portable Implementation of Asynchronous Multi-place Programs.
In PPoPP. ACM, 271–282.

[10] William Blume, Rudolf Eigenmann, Keith Faigin, John Grout, Jay Hoeflinger,
David Padua, Paul Petersen, William Pottenger, Lawrence Rauchwerger, Peng Tu,
and Stephen Weatherford. 1995. Effective Automatic Parallelization with Polaris.
In International Journal of Parallel Programming. Citeseer.

[11] Robert L. Bocchino Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen
Heumann, Rakesh Komuravelli, Jeffrey Overbey, Patrick Simmons, Hyojin Sung,
and Mohsen Vakilian. 2009. A Type and Effect System for Deterministic Paral-
lel Java. In Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA).

[12] Uday Bondhugula. 2013. Compiling Affine Loop Nests for Distributed-Memory
Parallel Architectures. In Supercomputing (SC). ACM, 33.

[13] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Thomas
Hérault, and Jack J. Dongarra. 2013. PaRSEC: Exploiting Heterogeneity to En-
hance Scalability. Computing in Science & Engineering 15, 6 (2013), 36–45.

[14] Donald E. Burton. 1994. Consistent Finite-Volume Discretization of Hydrodynamics
Conservation Laws for Unstructured Grids. Technical Report UCRL-JC-118788.
Lawrence Livermore National Laboratory, Livermore, CA.

[15] Ümit Çatalyürek and Cevdet Aykanat. 2011. PaToH (Partitioning Tool for Hyper-
graphs). In Encyclopedia of Parallel Computing. Springer, 1479–1487.

[16] Bradford L. Chamberlain, David Callahan, and Hans P. Zima. 2007. Parallel
Programmability and the Chapel Language. Int’l Journal of HPC Apps. (2007).

[17] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan
Kielstra, Kemal Ebcioglu, Christoph Von Praun, and Vivek Sarkar. 2005. X10:
An Object-Oriented Approach to Non-Uniform Cluster Computing. In Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA). 519–538.

[18] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Processing
on Large Clusters. In Opearting Systems Design & Implementation (OSDI). 10–10.

[19] Steven J. Deitz, Bradford L. Chamberlain, Sung-Eun Choi, and Lawrence Snyder.
2003. The Design and Implementation of a Parallel Array Operator for the
Arbitrary Remapping of Data. In PPoPP, Vol. 38. ACM, 155–166.

[20] Zachary DeVito, James Hegarty, Alex Aiken, Pat Hanrahan, and Jan Vitek. 2013.
Terra: A Multi-Stage Language for High-Performance Computing (PLDI).

[21] Zachary DeVito, Niels Joubert, Francisco Palacios, Stephen Oakley, Montserrat
Medina,Mike Barrientos, Erich Elsen, FrankHam, AlexAiken, Karthik Duraisamy,
Eric Darve, Juan Alonso, and Pat Hanrahan. 2011. Liszt: A Domain Specific
Language for Building Portable Mesh-based PDE Solvers. In Supercomputing
(SC).

[22] H. Carter Edwards and Christian R. Trott. 2013. Kokkos: Enabling Performance
Portability Across Manycore Architectures. In Extreme Scaling Workshop (XSW),
2013. 18–24.

[23] Kayvon Fatahalian, Daniel Reiter Horn, Timothy J. Knight, Larkhoon Leem, Mike
Houston, Ji Young Park, Mattan Erez, Manman Ren, Alex Aiken, William J. Dally,
and Pat Hanrahan. 2006. Sequoia: Programming the Memory Hierarchy. In
Supercomputing.

[24] Charles R. Ferenbaugh. 2014. PENNANT: an unstructured mesh mini-app for
advanced architecture research. Concurrency and Computation: Practice and
Experience (2014).

[25] Mary W. Hall, Jennifer-Ann M. Anderson, Saman P. Amarasinghe, Brian R. Mur-
phy, Shih-Wei Liao, Edouard Bugnion, and Monica S. Lam. 1996. Maximizing
Multiprocessor Performance with the SUIF Compiler. IEEE Computer 29, 12
(1996), 84–89.

[26] Michael A. Heroux, Douglas W. Doerfler, Paul S. Crozier, James M. Willenbring,
H. Carter Edwards, Alan Williams, Mahesh Rajan, Eric R. Keiter, Heidi K. Thorn-
quist, and Robert W. Numrich. 2009. Improving Performance via Mini-applications.
Technical Report SAND2009-5574. Sandia National Laboratories.

[27] Jay P. Hoeflinger. 2006. Extending OpenMP to Clusters. White Paper, Intel
Corporation (2006).

[28] Roberto Ierusalimschy, Luiz Henrique De Figueiredo, and Waldemar Celes Filho.
1996. Lua – An Extensible Extension Language. Software: Practice & Experience
(1996).

[29] François Irigoin, Pierre Jouvelot, and Rémi Triolet. 1991. Semantical Interpro-
cedural Parallelization: An Overview of the PIPS Project. In Supercomputing
(SC).

[30] Ken Kennedy, Charles Koelbel, and Hans Zima. 2007. The Rise and Fall of High
Performance Fortran: An Historical Object Lesson. In Proceedings of the Third
ACM SIGPLAN Conference on History of Programming Languages. ACM, 7–1.

[31] Okwan Kwon, Fahed Jubair, Rudolf Eigenmann, and Samuel Midkiff. 2012. A
Hybrid Approach of OpenMP for Clusters (PPoPP). ACM, 75–84.

[32] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the 2004 Inter-
national Symposium on Code Generation and Optimization (CGO’04). Palo Alto,
California.

[33] Omid Mashayekhi, Hang Qu, Chinmayee Shah, and Philip Levis. 2017. Execution
Templates: Caching Control Plane Decisions for Strong Scaling of Data Analytics.
In USENIX Annual Technical Conference (USENIX ATC).

[34] Mahesh Ravishankar, Roshan Dathathri, Venmugil Elango, Louis-Noël Pouchet, J.
Ramanujam, Atanas Rountev, and P. Sadayappan. 2015. DistributedMemory Code
Generation for Mixed Irregular/Regular Computations (PPoPP). ACM, 65–75.

http://titanium.cs.berkeley.edu/doc/lang-ref.pdf
http://titanium.cs.berkeley.edu/doc/lang-ref.pdf
http://upc.lbl.gov/publications/upc-spec-1.3.pdf
http://upc.lbl.gov/publications/upc-spec-1.3.pdf
http://www.cscs.ch/computers/piz_daint

SC17, November 2017, Denver, CO, USA Elliott Slaughter et al.

[35] Mahesh Ravishankar, John Eisenlohr, Louis-Noël Pouchet, J. Ramanujam, Atanas
Rountev, and P. Sadayappan. 2012. Code Generation for Parallel Execution of
a Class of Irregular Loops on Distributed Memory Systems. In Supercomputing
(SC).

[36] Harvey Richardson. 1996. High Performance Fortran: History, Overview and
Current Developments. Thinking Machines Corporation 14 (1996), 17.

[37] Hitoshi Sakagami, Hitoshi Murai, Yoshiki Seo, and Mitsuo Yokokawa. 2002. 14.9
TFLOPS Three-Dimensional Fluid Simulation for Fusion Science with HPF on
the Earth Simulator. In Supercomputing, ACM/IEEE 2002 Conference. IEEE, 51–51.

[38] Mitsuhisa Sato, Hiroshi Harada, Atsushi Hasegawa, and Yutaka Ishikawa. 2001.
Cluster-enabled OpenMP: An OpenMP Compiler for the SCASH Software Dis-
tributed Shared Memory System. Scientific Programming 9, 2, 3 (2001), 123–130.

[39] Kirk Schloegel, George Karypis, and Vipin Kumar. 2002. Parallel Static and
Dynamic Multi-Constraint Graph Partitioning. Concurrency and Computation:
Practice and Experience 14, 3 (2002), 219–240.

[40] Yoshiki Seo, Hidetoshi Iwashita, Hiroshi Ohta, and Hitoshi Sakagami. 2002.
HPF/JA: Extensions of High Performance Fortran for Accelerating Real-World
Applications. Concurrency and Computation: Practice and Experience 14, 8-9
(2002), 555–573.

[41] Elliott Slaughter, Wonchan Lee, Sean Treichler, Michael Bauer, and Alex Aiken.
2015. Regent: A High-Productivity Programming Language for HPC with Logical
Regions. In Supercomputing (SC).

[42] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra.
1998. MPI-The Complete Reference. MIT Press.

[43] Sean Treichler, Michael Bauer, and Alex Aiken. 2014. Realm: An Event-Based Low-
Level Runtime for Distributed Memory Architectures. In Parallel Architectures
and Compilation Techniques (PACT).

[44] Sean Treichler, Michael Bauer, Rahul Sharma, Elliott Slaughter, and Alex Aiken.
2016. Dependent Partitioning. In Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA). ACM, 344–358.

[45] Rob F. Van der Wijngaart, Abdullah Kayi, Jeff R. Hammond, Gabriele Jost, Tom St.
John, Srinivas Sridharan, Timothy G. Mattson, John Abercrombie, and Jacob
Nelson. 2016. Comparing Runtime Systems with Exascale Ambitions Using
the Parallel Research Kernels. In International Conference on High Performance
Computing. Springer, 321–339.

[46] Rob F. Van der Wijngaart and Timothy G. Mattson. 2014. The Parallel Research
Kernels. In HPEC. 1–6.

[47] Katherine Yelick, Dan Bonachea, Wei-Yu Chen, Phillip Colella, Kaushik Datta,
Jason Duell, Susan L. Graham, Paul Hargrove, Paul Hilfinger, Parry Husbands,
Costin Iancu, Amir Kamil, Rajesh Nishtala, Jimmy Su, Michael Welcome, and
TongWen. 2007. Productivity and Performance Using Partitioned Global Address
Space Languages. In PASCO. 24–32.

[48] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion
Stoica. 2010. Spark: Cluster Computing with Working Sets. HotCloud 10 (2010),
10–10.

	Abstract
	1 Introduction
	2 Regent
	2.1 Data and Execution Model
	2.2 Target Programs
	2.3 Region Trees

	3 Control Replication
	3.1 Data Replication
	3.2 Copy Placement
	3.3 Copy Intersection Optimization
	3.4 Synchronization Insertion
	3.5 Creation of Shards

	4 Implementation
	4.1 Runtime Support
	4.2 Mapping Tasks to Processors
	4.3 Region Reductions
	4.4 Scalar Reductions
	4.5 Hierarchical Region Trees

	5 Evaluation
	5.1 Stencil
	5.2 MiniAero
	5.3 PENNANT
	5.4 Circuit
	5.5 Dynamic Intersections

	6 Related Work
	7 Conclusion
	References

