
Index Launches: Scalable, Flexible Representation of Parallel
Task Groups

Rupanshu Soi
BITS Pilani - Hyderabad Campus

India
f20180294@hyderabad.bits-pilani.ac.in

Michael Bauer
NVIDIA
USA

mbauer@nvidia.com

Sean Treichler
NVIDIA
USA

sean@nvidia.com

Manolis Papadakis
NVIDIA
USA

mpapadakis@nvidia.com

Wonchan Lee
NVIDIA
USA

wonchanl@nvidia.com

Patrick McCormick
Los Alamos National Laboratory

USA
pat@lanl.gov

Alex Aiken
Stanford University

USA
aiken@cs.stanford.edu

Elliott Slaughter
SLACNational Accelerator Laboratory

USA
eslaught@slac.stanford.edu

ABSTRACT
It’s common to see specialized language constructs in modern task-
based programming systems for reasoning about groups of indepen-
dent tasks intended for parallel execution. However, most systems
use an ad-hoc representation that limits expressiveness and of-
ten overfits for a given application domain. We introduce index
launches, a scalable and flexible representation of a group of tasks.
Index launches use a flexible mechanism to indicate the data re-
quired for a given task, allowing them to be used for a much broader
set of use cases while maintaining an efficient representation. We
present a hybrid design for index launches, involving static and
dynamic program analyses, along with a characterization of how
they’re used in Legion and Regent, and show how they generalize
constructs found in other task-based systems. Finally, we present re-
sults of scaling experiments which demonstrate that index launches
are crucial for the efficient distributed execution of several scientific
codes in Regent.

CCS CONCEPTS
• Computing methodologies→ Parallel computing method-
ologies; Distributed computing methodologies.

KEYWORDS
index launches, task-based parallelism, runtime systems, regions

ACM Reference Format:
Rupanshu Soi, Michael Bauer, Sean Treichler, Manolis Papadakis, Wonchan
Lee, Patrick McCormick, Alex Aiken, and Elliott Slaughter. 2021. Index
Launches: Scalable, Flexible Representation of Parallel Task Groups. In

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
SC ’21, November 14–19, 2021, St. Louis, MO, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8442-1/21/11. . . $15.00
https://doi.org/10.1145/3458817.3476175

The International Conference for High Performance Computing, Networking,
Storage and Analysis (SC ’21), November 14–19, 2021, St. Louis, MO, USA.ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3458817.3476175

1 INTRODUCTION
Modern supercomputers are large distributed machines with deep
and complex memory hierarchies and heterogeneous processors.
Explicitly parallel programming models are traditionally used to
program these machines [4, 11, 15, 27]. However, since most of
these systems require the programmer to reason about low-level
memory and execution details of the target machine, writing large
and complex scientific applications is a major challenge even for
expert programmers [14]. Recently, a variety of implicitly paral-
lel programming models [2, 3, 5, 7, 9, 16, 24, 32] have presented
a solution to this problem by abstracting away details of the ma-
chine from the programmer and therefore allowing them to focus
primarily on writing application logic.

One design question that must be answered by implicitly parallel
programming models is how to encode parallelism in the applica-
tion. Some systems encode this parallelism at a fine-grained level,
such as in the composition of pure functions in Spark [32]. Since
a naive execution of such fine-grained operations would be inef-
ficient, these systems automatically coarsen groups of operations
into tasks, or larger operations that execute in parallel on the ma-
chine. Alternatively, task-based systems deal natively with such
coarse-grained tasks, and leave the job of choosing appropriate task
granularities to the user [2, 3, 5, 7, 9, 16, 24].

Although details vary, task-based systems work by constructing
a task graph—a directed acyclic graph (DAG) representing tasks
and their dependencies. Tasks may be enumerated statically or
dynamically, but in either case represent an intended program order.
The task graph relaxes this order to identify the inherent parallelism
that exists in the application. Figure 1 shows examples of task graph
patterns that are representative of applications commonly found
in high-performance scientific and data analysis workflows. In the
figure, time flows from top to bottom along the vertical dimension,

https://doi.org/10.1145/3458817.3476175
https://doi.org/10.1145/3458817.3476175

SC ’21, November 14–19, 2021, St. Louis, MO, USA Rupanshu Soi et al.

(a) Trivial (b) Stencil (c) FFT

(d) Sweep (e) Tree (f) Unstructured

Figure 1: Examples of common task graph patterns in scien-
tific and data analysis applications.

Horizontal (Parallelism) Collapsed
Yes No

Vertical
(Time)

Collapsed

Yes PaRSEC PTG [9] TensorFlow [31]

No Index Launch PaRSEC DTD [16]
StarPU [3] Dask [24]

Table 1: Task-based systems by dimension(s) of the task
graph collapsed.

with arrows identifying dependencies on previously executed tasks.
Tasks that are mutually unreachable in the graph may be executed
in parallel. By convention, parallel tasks are arrayed along the
horizontal dimension.

Whether task graphs are statically or dynamically generated, the
manner of generation, as well as the in-memory representation,
directly impacts the efficiency and scalability of the overall system.
A naive representation of a full task graph scales as a function of
O(PT) where P is the degree of parallelism (which manifests as
the width of the task graph) and T is the graph’s height. To improve
scalability, many systems adopt runtime mechanisms that permit
one or both dimensions of the task graph to be collapsed in the
resulting representation. In general, systems can be categorized
by how many (and which) dimensions they collapse, as shown in
Table 1.

Parameterized task graphs (PTGs) [9] capture a static, algebraic
description of a task graph that can be expanded in an efficient
manner at runtime. In this way, a static, O(1) representation of the
program is possible—effectively collapsing both dimensions of the
dynamic graph. However, since the language for describing such
graphs is necessarily restricted, this prevents the representation of
a wide variety of task graphs. Most notably, any form of dynamic
task generation cannot be represented. Therefore, while the task
graph representation is maximally dense, the expressiveness of the
system is limited.

TensorFlow [31] collapses the time (vertical) dimension by explic-
itly capturing control-flow constructs like loops in the task graph.
The parallelism (horizontal) dimension is still fully materialized,
allowing TensorFlow to support arbitrary dependencies between
tasks with full generality. Assuming the application is iterative, the
cost of the resulting task graph is O(P), effectively amortizing the
cost of wide task graphs over the duration of the program. However,
if the program is non-iterative or contains control flow constructs

not understood by the underlying system, the technique fails and
system falls back to the unoptimized, fully expanded task graph.

An alternative to collapsing the time dimension is available in
systems that support dynamic task enumeration. If the runtime
is permitted to execute tasks as they are being enumerated and
reclaim storage associated with tasks as they are completed, a
breadth-first enumeration of the task graph requires only O(P)
storage for the unexecuted frontier of the graph being enumerated,
even when arbitrarily complicated control flow is present. Note
that these benefits are limited to the time dimension—the sliding
window of enumerated but not yet executed tasks must necessarily
include every element of a set of tasks that is expected to run in
parallel.

It is well-known that identical tasks can be broadcast to 𝑁 pro-
cessors in O(log𝑁) time, since 𝑁 identical tasks can be represented
in O(1) space, effectively collapsing the horizontal (parallelism)
dimension of the task graph. Our key contribution is to extend
this intuitive result to non-identical tasks, particularly tasks with
non-trivial and even dynamic data requirements. Our technique
integrates with an efficient distributed program analysis [6] to
generate an efficient, scalable execution.

Finally, a number of systems do not collapse either dimension
of the task graph [3, 16, 24]. Among these systems, the two that
achieve high scalability do so by exposing the user to the SPMD
semantics of the underlyingmachine executionmodel. The program
is executed on𝑁 nodes and each node is permitted to prune the task
graph to exclude tasks not directly dependent on those executed
by that node. However, in order to do so, the user must effectively
compute the task graph on their own, placing an additional burden
on the user and breaking the implicitly parallel abstraction of the
original programming model.

We present index launches, a scalable and flexible representation
of a group of tasks intended for parallel execution. An index launch
is a compression algorithm for a naive task graph that compresses
an O(P) subset of the task graph representing parallel tasks down
to O(1), i.e., it collapses a task graph along the horizontal (paral-
lelism) dimension. The resulting task graph is O(T), where T is
the original task graph’s height, though of course, this need not be
represented in memory all at once as only the frontier of executing
tasks is materialized. Intuitively, this provides additional flexibil-
ity in the time dimension: programs need not be iterative to take
advantage of index launches. Our technique supports completely
arbitrary and dynamic control flow.

The flexibility of index launches is further bolstered by a very
general data model. Each task in an index launch may specify the
collections of data which it requires to operate. We use collections
here to refer to any group of data objects used together by a task.
The important property of collections is that they may be parti-
tioned. Partitions name subsets of objects in a collection, and for the
purposes of our technique these subsets may be arbitrary, though
it is commonly desirable for them to be disjoint (i.e., each object is
contained in at most one sub-collection). Such collections and data
partitions permit tasks to identify precisely which data is required
to execute.

One of the challenges of index launches is to identify which sub-
collections of data a task requires to execute. Rather than limiting
the programming model to predefined operators (as in Spark [32]),

Index Launches: Scalable, Flexible Representation of Parallel Task Groups SC ’21, November 14–19, 2021, St. Louis, MO, USA

we permit tasks to select arbitrary sub-collections. To maintain a
compact representation of the index launch, we encode this selec-
tion as a projection functor, a function that maps from a task’s index
within a launch to an arbitrary sub-collection. Listing 1 presents
two examples of index launches with their associated tasks (foo
and bar) and arguments (p[i] and q[f(i)]). In the example, the
projection functors are _i.i and _i.f(i) (where f is an opaque
function), respectively.

1 for i = 0, N do -- parallel

2 foo(p[i])

3 end

4
5 for i = 0, N do -- parallel

6 bar(q[f(i)])

7 end

Listing 1: Index launches with a trivial and non-trivial
projection functor, respectively.

For an index launch to be valid (i.e., all tasks to be able to run
in parallel), a compiler or runtime must be able to prove either
that accesses are disjoint (no two tasks request overlapping sub-
collections), or that the usage of data by tasks is read-only. Fa-
cilitated by our data model, there are several ways a compiler or
runtime system can prove the safety of an index launch. As a simple
example, assuming the partition is disjoint, index launches are triv-
ially safe if the identity projection functor is used (as in the first case
above), because, even in the presence of writes, no data accesses
can overlap. However, in many cases, the final verdict of safety
depends on the projection functors (an index launch might have
multiple projection functors, one for each task argument) and how
they map collection subsets to tasks. Of the two main approaches
for analyzing the projection functor, a static analysis can be done at
compile time and will not incur any runtime overhead, but will be
inherently limited in scope. On the other hand, a dynamic analysis
can easily handle a much larger class of expressions at the cost of
runtime performance. We present a hybrid design, in which we first
attempt to statically guarantee the safety of the index launch. How-
ever, if the static analyzer is unable to fully analyze the projection
functor, we generate a dynamic check that analyzes any remaining
arguments at runtime. This dynamic check has cost O(P), but we
show that the constant factors are small enough to make this check
economical at all but the most extreme scales. Additionally, this
check can be disabled (if desired) for production runs to eliminate
any overheads; i.e., correct execution of the program does not rely
on the result of the safety analysis (assuming the program is valid).

We present an evaluation of index launches on up to 1024 nodes
of Piz Daint, a heterogeneous supercomputer [1]. Our results demon-
strate that index launches improve scalability and performance,
even in the presence of an already-distributed and optimized task
scheduling infrastructure. Furthermore, the dynamic checks added
for safety in our hybrid analysis carry negligible cost at scales
relevant to known current and future supercomputers.

Overall, this paper makes the following contributions:

• We characterize the space of abstractions for coarse-grained,
implicitly parallel tasks and show that efficient execution

requires collapsing one or both dimensions (of time and
parallelism).

• We demonstrate how index launches are more expressive,
general and orthogonal than existing abstractions found in
task-based programming models.

• We describe a hybrid design of index launches leveraging
both static and dynamic program analyses.

• We present an implementation of this hybrid design in the
Legion runtime system and Regent, a language which targets
Legion.

• We evaluate the impact of index launches and show that
they are critical for achieving efficient distributed execution
of task-based programs, even in the presence of a distributed
task scheduling infrastructure. Furthermore, our hybrid anal-
ysis incurs cost that is amenable for usage at the scales of
all known current and future supercomputers.

2 PROGRAMMING MODEL
Index launches are intended to be embedded in a larger task-based
programming model. In this section we describe the relevant fea-
tures of a core programming model largely based on the Legion
runtime system. Note that not all these features are required for
index launches to function or be useful, but in many cases, the flexi-
bility afforded by them increases the generality and expressiveness
that index launches can provide.

The unit of program execution in ourmodel is a task, which is just
a function marked for parallel execution by the user. Even though
there is an implicit program order, the compiler and runtime system
are free to execute tasks in any relaxed order that is consistent with
the original sequential semantics.

Data is organized into collections, which, to a first approxima-
tion, can be any data structure containing sets of objects. The exact
nature of objects is unimportant for our work. Generally speak-
ing, collections are indexed, and may represent single- or multi-
dimensional arrays, maps, sets, and so on. For example, a stencil
code might use a collection consisting of a 2-D grid with objects at
each point in the domain containing the relevant physical variables
(pressure, velocity, etc.).

Collections are the primary way to pass large data to tasks. No-
tably, in the Legion runtime collections are not fixed in a specific
memory but may be copied and migrated between distributed mem-
ories in the machine. While not mandatory for an implementation
of index launches, this eases many subsequent implementation
details, especially on distributed machines.

The most important property of collections, for the purpose of
this paper, is that they can be partitioned. Partitions divide collec-
tions into subsets of objects intended to be used together. Many
partitions are disjoint (i.e., the subsets do not overlap), but they can
also be aliased. Taking the stencil example from earlier, two useful
partitions might consist of dense blocks of the domain (the points
computed by each task, a disjoint partition) and the “halos” around
each block (an aliased partition). Collections can be partitioned
multiple times, and the different subsets are views onto the same
underlying data.

The exact method for determining partitions is left unspecified,
though there are a number of approaches that might be used, such

SC ’21, November 14–19, 2021, St. Louis, MO, USA Rupanshu Soi et al.

as language-based techniques [29] or automatic graph partitioners
[18, 25]. We assume that the compiler and runtime have a procedure
for determining the disjointness of partitions, but otherwise do not
need to consider it in detail.

To correctly analyze the effects of a task prior to its execution,
tasks must declare privileges on each collection they receive as input.
A privilege can be one of read, write, read-write, or a reduction on a
commutative operator (+, ×, etc.). These privileges are required not
only to check the safety of an index launch, but also to ensure that
the correct data dependencies are computed. A dependency occurs
when tasks in subsequent index launches read data written (or
reduced) by a previous launch. In these cases Legion automatically
copies the data to make it available (if the dependent task executes
on a different node in the machine). Privileges can be verified at
compile time to ensure that tasks obey their declarations [26].

3 INDEX LAUNCHES
In general, an index launch can be seen as a map from points in
a domain 𝐷 to instances of invocations of a task 𝑇 . For example,
an index launch of a task with 𝑛 collection arguments might be
written as

forall(𝐷,𝑇 , ⟨𝑃1, 𝑓1⟩, . . . , ⟨𝑃𝑖 , 𝑓𝑖 ⟩, . . . , ⟨𝑃𝑛, 𝑓𝑛⟩)

where 𝑃𝑖 is the 𝑖th partition and 𝑓𝑖 is the corresponding projection
functor. For simplicity, we ignore non-collection arguments, which
are simply passed to the task by value.

We can immediately see that an index launch is an O(1) repre-
sentation of a task group of |𝐷 | tasks, and the projection functor
𝑓𝑖 controls how sub-collections of 𝑃𝑖 are assigned to different in-
stances of the task 𝑇 . We also note that P = |𝐷 |, i.e., the domain
determines the degree of parallelism.

Index launches enable the compiler and runtime to efficiently
determine if two tasks are safe to run in parallel. In general, tasks
are safe to run in parallel when they are non-interfering, that is,
when no task accesses (with any privilege) data written by another
task in the same launch. This requirement can be expressed as two
checks:

Self-checks. For each argument ⟨𝑃𝑖 , 𝑓𝑖 ⟩, either
• the privilege must be read (or a reduction), or
• the partition 𝑃𝑖 must be disjoint and the projection functor
𝑓𝑖 injective over launch domain 𝐷 .

Cross-checks. For every pair of arguments ⟨𝑃𝑖 , 𝑓𝑖 ⟩ and ⟨𝑃 𝑗 , 𝑓𝑗 ⟩,
either

• the privileges must be both read, or both a reduction (with
the same reduction operator),

• 𝑃𝑖 and 𝑃 𝑗 must be disjoint (i.e., partitions of collections that
are themselves disjoint), or

• 𝑃𝑖 = 𝑃 𝑗 , 𝑃𝑖 must be disjoint and the images of the respective
projection functors on 𝐷 must also be disjoint sets (i.e., no
two projection functors may select the same sub-collection).

In practice, checking the privileges requested by𝑇 is straightfor-
ward. As noted above, the disjointness of a partition 𝑃 is a function
of the partitioning language that is used, and can be assumed to
be provided. In many practical cases, these first two conditions are
sufficient: either the partitions are disjoint or the privileges are

reads or reductions. Hence, the main remaining case that is unre-
solved is the problem of guaranteeing that the projection functor
𝑓𝑖 is injective. We guarantee injectivity via a combination of static
and dynamic analysis as described below.

4 COMPILER IMPLEMENTATION
Although our design of index launches from Section 3 can be im-
plemented with only runtime support, performance and usability
can be improved in many common cases by performing various
compile time checks. Most notably, an approach based on hybrid
compiler optimizations enables the automatic generation of index
launches from apparently sequential loops such as those in List-
ings 1 and 2. This section presents an overview of how a compiler
can support index launches, including our hybrid design involving
static and dynamic program analyses, which we have implemented
in Regent [26].

Broadly speaking, the compiler performs a static dependence
analysis in-line with the description in Section 3. By default, any
loop in the program source whose body contains a task launch and
other simple statements (such as variable declarations), and that
contains no loop-carried dependencies (other than reductions), is
eligible to be executed as an index launch. Let us consider a simple
example and walk through the steps the compiler takes to try to
prove that the corresponding index launch will be safe.

1 task foo(C1, C2) reads(C1) writes(C2) do

2 -- computation

3 end

4
5 for i = 0, 5 do

6 foo(p[i], q[i%3])

7 end

Listing 2: A task launch loop with the task definition.

To begin, each partition argument must be checked against itself.
In our example, the first argument p passes this test as the privilege
requested on it by foo is reads. However, since foo requests write
privileges on the second argument q, the compiler must check if q is
a disjoint partition and that i%3 is injective over the domain [0, 5).
Since the compiler has a method of determining the disjointness of
any partition, our problem is either solved (if the partition is not
disjoint) or quickly reduced to analyzing an arbitrary expression,
i.e., the projection functor, over the launch domain (if the partition
is disjoint).

To analyze the projection functor, the compiler first subjects
it to a simple static analysis that can recognize trivial projection
functors like constant (not injective), identity (injective), or the
slightly more general affine case (injective, iff it does not degenerate
to a constant). The strength of this static analysis is left unspecified
in our design; a number of well-known static analysis techniques,
such as polyhedral methods, can be used to determine the safety
of these loops [8]. The exact level of power and expressiveness of
this analysis is less important in our case than in more traditional
compiler settings because we augment this static analysis with a
precise dynamic analysis that handles all remaining cases.

This dynamic analysis works well in our case because we are
dealing with coarse-grained tasks and data: the checks occur at the

Index Launches: Scalable, Flexible Representation of Parallel Task Groups SC ’21, November 14–19, 2021, St. Louis, MO, USA

1 var conflict = false

2 var volume = q.volume () -- size of q

3 var bitmask = malloc(volume)

4
5 for i = 0, volume do

6 bitmask[i] = false

7 end

8
9 var value

10 for i = 0, 5 do -- loop over launch domain

11 -- eval and linearize projection functor

12 value = linearize(i%3)

13 if value >= 0 and value < volume

14 then -- bounds check

15 conflict = bitmask[value]

16 bitmask[value] = true

17 if conflict then

18 break

19 end

20 end

21 end

22
23 if conflict then

24 -- original task loop

25 else

26 -- index launch

27 end

Listing 3: Generated code for dynamic projection functor
check.

granularity of partitions, and are thus amortized over the elements
of the sub-collections of those partitions, no matter how large
the collections are. In general the cost of the dynamic analysis is
O(|𝐷 |) in the size of the launch domain, with only small constant
factor differences depending on the precise expressions used. It
is important to note that the dynamic analysis is only done if the
static analysis fails (i.e., it is a hybrid technique), making it even
less expensive.

The dynamic analysis, in essence, is a simple loop that evaluates
the projection functor at each domain point and determines if
it is injective, i.e., whether it evaluates to the same value twice
or not. Despite its simplicity, the analysis is sound and complete
with respect to determining injectivity of the projection functor,
allowing us to completely support arbitrary projection functors in
index launches.

A straightforward implementation of the dynamic analysis is as
a program transformation during an optimization pass inside the
compiler—it replaces the abstract syntax tree (AST) of the loop with
the AST of a check followed by a branch that selects whether to
execute the index launch or the usual task loop, depending on the
result of the check. The generated AST is functionally equivalent
to the code in Listing 3.

The check works by intializing a bitmask and then iterating over
the domain of the index launch. At each domain point, we evaluate
the projection functor and check if the bitmask is already set for
that point. If it is, then wemust have already visited it, which proves
that our projection functor is not injective, and as a result, the index
launch is not safe. Otherwise, we set the bitmask and continue to
the next iteration. At the end, we simply choose between an index
launch or a usual task launch loop depending on the result of the
check.

If the partition under consideration 𝑃 has dimension 𝑁 > 1,
we can’t directly use the value of the projection functor to set the
bitmask, as the value will be a tuple of dimension 𝑁 , whereas the
bitmask is a linear array. In these cases, we linearize the projection
functor to obtain a scalar value. This linearization procedure (line
12 in Listing 3) uses the bounds of the partition to bijectively map
the 𝑁 -dimensional projection functor to a scalar.

Astute readers will have already realized that because i%3 is
not injective over the domain [0, 5), the task loop in our example
is ineligible to be executed as an index launch. To summarize the
compiler’s reasoning, we cannot index launch the task loop because:

• foo requests write privileges on its second argument,
• the projection functor of the second argument is non-injective
over the given launch domain,

• therefore, there will exist two simultaneous invocations of
foo that will receive as input the same underlying piece of
data,

• and hence, two tasks may attempt to simultaneously write
to the same piece of data, leading to a race condition.

Another interesting case for an index launch is when multiple
task arguments use the same disjoint partition, but with different
projection functors. If any of the arguments has write or reduce
privileges, it becomes necessary to cross-check the different pro-
jection functors against each other. Although a naive pairwise
implementation with quadratic time complexity is possible, we
achieve linear time by checking arguments on a given partition
using a single bitmask. The key insight is that writes to a given
sub-collection must be exclusive, while reads need not be (as long
as the only other accesses are reads). For simplicity, we consider
reductions to be writes for the purposes of these checks. Therefore,
using a bitmask per partition, we repeat the main body of the dy-
namic check (lines 10—21 in Listing 3) for each argument with the
following modifications:

• we do not set the bitmask (line 16) for read-only arguments,
because we do not want such arguments to trigger conflicts
with subsequent reads, and

• we check all write or reduce arguments before any read-only
arguments.

This ordering allow us to catch all write-write and write-read con-
flicts (and similarly for reductions), since the bitmask is set for
writes prior to checking reads.

Now, we briefly analyze the asymptotic complexity of our dy-
namic checks. Checking each argument requires initializing its bit-
mask, which takes O(|𝑃𝑖 |) time and space, where 𝑃𝑖 is the partition
passed to the 𝑖th argument of the task. Assuming that evaluating
the projection functor takes constant time, iterating through the
launch domain 𝐷 will take O(|𝐷 |) time, resulting in a O(|𝐷 | + |𝑃 |)

SC ’21, November 14–19, 2021, St. Louis, MO, USA Rupanshu Soi et al.

[0
,3
]

[0
,3
]

[0
,3
]

[0
,3
]

[0
,3
]

[0
,3
]

[0
,3
]

[0
,3
]

D
C
R
,
ID

X
D
C
R
,
N
o
ID

X

N
od

e
0

N
od

e
1

Task Issuance Logical Analysis Distribution Physical Analysis
N
od

e
0

N
od

e
1

[0
,1
]

[0
,1
]

[2
,3
]

[2
,3
]

Figure 2: Illustration of runtime pipeline stages for a set of two index launches or eight single tasks, with DCR.

runtime complexity for checking a single argument. Therefore, if a
task has 𝑛 arguments and each uses a separate partition, the worst-
case complexity is O(𝑛 |𝐷 | + ∑𝑛

𝑖=1 |𝑃𝑖 |). On the other hand, if all
𝑛 arguments use the same partition 𝑃 , the complexity reduces to
O(𝑛 |𝐷 | + |𝑃 |), because we only need to initialize the bitmask once.
Note that𝑛 is a static property of the program, thus for the purposes
of scalability O(𝑛 |𝐷 | + |𝑃 |) reduces to O(|𝐷 | + |𝑃 |). Moreover, since
|𝑃 | is often in O(|𝐷 |), O(|𝐷 | + |𝑃 |) can be further reduced to O(|𝐷 |).
Finally, using P = |𝐷 | from before, our overall complexity can be
written as O(P).

However, as described earlier, the dynamic analysis code emitted
by the compiler is a pure safety check, and the correct execution
of the program does not rely on it. Therefore, it can be disabled
(after the program has been verified at least once) to eliminate this
cost, leaving the remaining space and time complexity of the index
launch as O(1).

Overall, the main effort of the compiler is to identify candidates
for being executed as an index launch, and then verifying that it
is safe to do so. Due to the generality of our hybrid approach, we
are able to support arbitrary dependencies with negligible runtime
cost, even at extreme scales (see Section 6).

5 RUNTIME IMPLEMENTATION
In contrast to the compiler, which is primarily concerned with the
safety of index launches, the Legion runtime is additionally respon-
sible for executing them efficiently. Index launches are a compact
representation of a set of tasks, so they must be expanded to be exe-
cuted. The goal is then to expand them in a manner that is efficient
and not overly eager, so that one node is not wholly responsible for
all tasks in the launch. A second responsibility of the runtime is to

efficiently identify dependencies between tasks in different index
launches (tasks within a launch cannot have dependencies because
they are parallel). Note that the runtime assumes that safety checks
have already been performed in a previous stage, either statically
by the compiler or dynamically in code emitted by the compiler,
and therefore operates under the assumption that these launches
are valid.

Legion provides two modes of analysis: a newer, distributed,
mode called dynamic control replication (DCR) [6], and the original,
centralizedmode [7]. Index launches interoperate with both of these
modes, though the mechanisms are different.

The runtime uses an internal pipeline to process tasks. The rele-
vant phases of this pipeline, from the perspective of index launches
are task issuance, logical analysis, distribution, and physical analy-
sis. Once physical analysis is completed, dependencies have been
computed and task execution (and any necessary data movement)
can begin.

Figures 2 and 3 show an illustration of the four pipeline stages
on a sample program that contains eight tasks arranged either into
two index launches (in rows marked IDX), or eight individual task
launches (marked No IDX). The execution is distributed between
two nodes, labeled node 0 and node 1. In the figure, individual tasks
are indicated by circles, and index launches by rectangles. The
domain of an index launch is marked on each index launch. Note
that the runtime’s in-memory representation of an index launch is
a fixed size, regardless of how many tasks are represented.

Task issuance is the frontend phase of the runtime. The Regent
compiler ultimately compiles programs into a series of API calls to
the Legion runtime. In the case of an index launch, a set of tasks can
be issued with a single runtime call. Therefore, with index launches

Index Launches: Scalable, Flexible Representation of Parallel Task Groups SC ’21, November 14–19, 2021, St. Louis, MO, USA

[0
,3
]

[0
,3
]

[0
,3
]

[0
,3
]

N
o
D
C
R
,
ID

X
N
o
D
C
R
,
N
o
ID

X

N
od

e
0

N
od

e
1

Task Issuance Logical Analysis Distribution Physical Analysis
N
od

e
0

N
od

e
1

[0
,1
]

[2
,3
]

[2
,3
]

[0
,1
]

Figure 3: Illustration of runtime pipeline stages for a set of two index launches or eight single tasks, without DCR.

enabled, the runtime receives the task group as a single bulk unit
of work. This process is similar whether or not DCR is enabled,
except that with DCR, all nodes in the machine simultaneously
issue identical index launches to the runtime. As a result, in DCR,
all instances of the runtime (of which there is one per node) become
aware of the task simultaneously and without any communication.
This process is shown in Figure 2 as the identical index launches
that appear in the issuance phase on both nodes 0 and 1.

Logical analysis is the same with or without DCR. The benefit
of index launches is that they permit whole-partition reasoning at
runtime. An index launch on partition 𝑃 and an index launch on
partition 𝑄 can be seen to be independent if 𝑃 and 𝑄 are partitions
of distinct collections 𝐶1 and 𝐶2, and 𝐶1 and 𝐶2 are themselves
disjoint. This phase thus identifies bulk dependencies between
index launches, but does not attempt to identify precisely which
tasks in a given launch depend on which others. This can be seen
in Figures 2 and 3 as there is only a single arrow (representing
the logical dependency) between the index launch boxes on each
node. In DCR, this phase is simply performed identically on every
node, such that all nodes have the dependency information (again
without requiring communication).

Distribution is the phase where an index launch is expanded into
individual tasks, and those tasks are assigned to nodes. This phase
is critical because if performed too early, or in an inefficient manner,
we lose the asymptotic benefit of having an O(1) representation
for |𝐷 | tasks, which means that the runtime can no longer reason
about these tasks as a single unit of work. This phase also shows
the largest differences between DCR and non-DCR executions.

In either case, distribution in Legion is entirely under the control
of the end user. Users supply (or choose a system-provided default)

mapper which controls all performance decisions that the runtime
makes. At the distribution phase of the execution pipeline, this
means selecting the assignment of tasks to nodes.

When DCR is employed, the user can supply a sharding functor
which determines, for each point in the domain of an index launch,
which node owns that point. The selection process can be seen in
Figure 2, where the solid portion of the index launch shows that
the sub-domain [0, 1] has been selected to execute on node 0 and
[2, 3] has been selected to execute on node 1. (Note that the dashed
portion, which has not been selected, is shown simply to indicate
that the launch is still a single logical unit, and takes no additional
space in memory.) Sharding functors are pure functions, which
permit this mapping to be memoized for efficiency. As a result, the
set of tasks within an index launch that are assigned to a single
shard can be computed with complexity O(|𝐷 |local) where |𝐷 |local
is the number of local tasks assigned to a node. As with previous
phases, this is also performed without communication.

Without DCR, users control the assignment of tasks to nodes via
a slicing functor. In contrast to the sharding functor, slicing can be
performed recursively, allowing tasks to be distributed to nodes in a
broadcast tree-like manner. Figure 3 shows that two slices have been
created from each launch, and slices representing the sub-domain
[2, 3] have been moved to node 1. Unlike DCR, this phase requires
communication as slices are sent around themachine. Dependencies
are copied during this stage, but not otherwise expanded. This stage
therefore occurs in O(log |𝐷 |) time as the fixed-size representation
of the index launch is broadcast across the machine, with only
changes to the sub-domain of each slice as necessary. Once slices
arrive at their final destinations, the runtime expands them into
individual tasks. This expansion is not shown in the figure for

SC ’21, November 14–19, 2021, St. Louis, MO, USA Rupanshu Soi et al.

clarity about how the slices are moved, and happens immediately
after the distribution phase.

Finally (for the purposes of this discussion), the runtime performs
physical analysis. In this stage of the pipeline, dependencies are
identified on specific tasks. The process is similar with or without
DCR, and in either case, communication is required. To compute
dependencies, Legion tracks the last tasks to have read, written
or reduced to a given sub-collection of a partition. This metadata
is distributed around the machine in order to facilitate efficient
analysis. Thus, with or without DCR this phase of the pipeline
proceeds in a distributed manner, with complexity that is propor-
tional to O(|𝐷 |local log |𝑃 |) where |𝐷 |local is the number of local
tasks per node and |𝑃 | is the size of partitions (i.e., the number of
sub-collections per partition). Legion uses a distributed bounding
volume hierarchy to perform this check in logarithmic time with
respect to partition size.

Critically, there is no single node in either case (with or with-
out DCR) that needs to process the entire set of tasks launched
by the user. Because distribution occurs in a communication-less,
constant time manner—or with a tree broadcast—the index launch
is distributed efficiently. Even though projection functors can be
dynamic and request arbitrary sub-collections, the final physical
analysis is distributed and uses optimized, logarithmic-time data
structures to compute dependencies. Thus index launches delay
the expansion of the task representation, and facilitate efficient
distributed analysis of dependencies.

6 EVALUATION
We evaluate the impact of index launches by conducting a set of
strong and weak scaling runs of three codes on up to 1024 nodes of
the Piz Daint supercomputer, a heterogeneous Cray XC50 machine
with one Intel Xeon E5-2690 v3 (12 physical cores) and one NVIDIA
Tesla P100 per node, and a Cray Aries interconnect [1]. We used the
system default installation of the Cray programming environment
version 2.7.3. Legion was compiled with GCC 8.3.0 and CUDA 11.0.2,
and was configured to use GASNet 2021.3.0 as a network portability
backend. Regent programs were compiled with LLVM 3.8.1 as the
code generation backend.

In our experiments, we consider three programs: a circuit simu-
lation [6], a 2-D stencil from the PRK suite [30], and a multi-physics
solver code that includes fluid, particle and discrete ordinates radi-
ation modules [28]. We present both strong and weak scaling runs,
and measure the impact of index launches by comparing the results
with and without this optimization enabled, as well as with and
without Legion’s distributed task scheduling mode enabled [6]. Of
the three codes, Soleil-X, which is also the most complicated, takes
advantage of non-trivial projection functors, and we also analyze
the impact of the cost of these checks on scaling and efficiency. In
all of the experiments below, each data point is the average of 5
runs, in order to reduce noise due to interference from other jobs
on the machine.

We also provide a more fine-grained analysis of the cost of the
hybrid analysis presented in Section 4. Using a set of benchmark
codes with a variety of trivial and non-trivial projection functors,
we time the cost of the dynamic check component of our hybrid
analysis. This setup allows us to extrapolate beyond the scale of

today’s supercomputers to estimate the impact on anticipated future
machines.

6.1 Test Programs
We present strong and weak scaling results from three programs:
Circuit, Stencil, and Soleil-X.

Circuit is a simulation of an electrical circuit on an unstructured
graph from [6], where it was previously optimized. The code uses
only trivial projection functors, and therefore is verified entirely
by Regent’s static checker and does not incur any runtime cost
to verify projection functors. Circuit takes advantage of Regent’s
built-in CUDA code generation to automatically generate kernels
appropriate for use on Piz Daint’s GPUs.

Stencil is a 2-D stencil benchmark adapted from the PRK suite [30]
and previously optimized in [6]. As with Circuit, the code uses triv-
ial projection functors and takes advantage of Regent’s CUDA code
generation.

In both Circuit and Stencil we used configurations identical to
the experiments in [6]. Circuit used 5.1×106 wires for strong scaling
and 2 × 105 wires per node for weak scaling. Stencil used 9 × 108
grid cells for strong scaling and 9 × 108 grid cells per node for
weak scaling. As in [6], task granularities for all applications were
chosen to generate a task per GPU per computational stage of the
application.

Soleil-X is the most substantial of the codes tested in our evalua-
tion. Developed as part of the NNSA PSAAP II center at Stanford
University, it is a multi-physics code with modules for turbulent
fluid flow, particles, and radiation (via the discrete ordinatesmethod)
[28]. All three modules take advantage of Regent’s CUDA code gen-
eration to target GPUs. Of the three modules, the DOM radiation
model uses non-trivial projection functors, and was not previously
optimized to use index launches. Our hybrid approach allows the
entire Soleil-X code to make use of index launches. To evaluate
the impact of these checks, we also include results that have all
optimizations enabled and additionally have the dynamic checks
disabled.

6.2 Strong and Weak Scaling Results
We present strong and weak scaling results for each of the three
applications below.

6.2.1 Circuit. Strong and weak scaling results for Circuit can be
seen in Figures 4 and 5, respectively. In each of the figures, use of
Legion’s distributed task scheduling mode [6] is marked with DCR,
and use of index launches is marked by IDX. Thus we present four
configurations with the cartesian product of each option enabled
or disabled, respectively.

We can see that the best performance is achieved with both
optimizations enabled. When strong scaling, this configuration
achieves a 1.6× speedup over the next best configuration, with
DCR enabled but index launches disabled. Similarly, when weak
scaling, the configuration with both optimizations enabled is able
to run at a scale 4× larger (1024 vs 256 nodes) with better parallel
efficiency (85% vs 84%). Though the analysis with DCR is distributed,
the inherent cost of issuing O(P) tasks, and reduced efficiency due
to the lack of whole-partition analysis in the runtime, reduces
performance when index launches are disabled.

Index Launches: Scalable, Flexible Representation of Parallel Task Groups SC ’21, November 14–19, 2021, St. Louis, MO, USA

1 2 4 8 16 32 64 128 256 512
Nodes

101

102

Th
ro

ug
hp

ut
 (1

06 w
ire

s/
s)

DCR, IDX
DCR, No IDX
No DCR, IDX
No DCR, No IDX

Figure 4: Circuit strong scaling.

When DCR is disabled, we see a slight reversal of this trend;
index launches result in a slight decrease in performance due to
interference with an unrelated tracing optimization in the Legion
runtime. Legion relies on tracing to amortize expensive runtime
analysis of the task graph [20]. In Legion’s current design, when
DCR is disabled, the tracing occurs prior to distribution (i.e., in the
second column of Figure 3). Because tracing works fundamentally
at the level of individual tasks (because its job is to reconstruct the
task graph without repeating the analysis of task dataflow), this
forces the expansion of the task graph prior to distribution, and
effectively undoes the asymptotic benefit of index launches.

To demonstrate that this effect is a result of tracing, we perform
an additional experiment, shown in Figure 6. This experiment is
identical to Figure 5 except that tracing is disabled, and the tasks
are overdecomposed (such that there are 10× as many tasks for
the same problem size). Without tracing, index launches provide
a benefit by deferring the expansion of the task graph to after
distribution, as shown in Figure 3. This effect is magnified by the
overdecomposition, due to the additional savings when moving
tasks in bulk. Thus, in this configuration, index launches show a
benefit relative to the same configuration without index launches,
whether or not DCR is used.

As future work, we plan to investigate a deeper integration with
Legion’s tracing feature to enable tracing to work with bulk task
launches, such that the benefits of index launches can be enjoyed,
even without DCR. Note that even with this support, our experi-
ments in the highest-performance configuration (with DCR) demon-
strate that index launches are a critical optimization for efficient
execution at extreme scales.

6.2.2 Stencil. Figures 7 and 8 show the strong and weak scaling
results for Stencil, respectively. Overall we observe similar, but less
dramatic, results as compared to Circuit. Strong scaling with all
optimizations achieves a 1.2× speedup over the next best configura-
tion, which is again DCR without index launches. The weak scaling
configuration shows divergence between DCR with and without
index launches beginning at around 512 nodes, which grows with
node count.

1 2 4 8 16 32 64 128 256 512
1024

Nodes

0

1

2

3

4

5

Th
ro

ug
hp

ut
 p

er
 N

od
e

(1
06 w

ire
s/

s)

DCR, IDX
DCR, No IDX
No DCR, IDX
No DCR, No IDX

Figure 5: Circuit weak scaling.

1 2 4 8 16 32 64 128 256 512
1024

Nodes

0

1

2

3

4

5
Th

ro
ug

hp
ut

 p
er

 N
od

e
(1

06 w
ire

s/
s)

DCR, IDX
DCR, No IDX
No DCR, IDX
No DCR, No IDX

Figure 6: Circuit weak scaling, overdecomposed, no tracing.

6.2.3 Soleil-X. Figure 9 and 10 shows weak scaling results for
Soleil-X in two configurations: with fluid flow only; and with
fluid, particles and radiation (DOM). In both configurations, in-
dex launches improve parallel efficiency and enable the code to
scale to higher node counts. In the pure fluid case, we observe 78%
parallel efficiency at 512 nodes, while in the full simulation case,
we observe 64% efficiency at 32 nodes. Note that the second case,
which includes the DOM radiation model, is expected to scale more
poorly because of the inherent properties of the DOM algorithm,
which involves sweeps rather than forall-style parallelism.

The DOM code in Soleil-X makes use of non-trivial projection
functors. The algorithm consists of sweeps over a grid, one from
each corner. Thus the launch domains of each index launch vary,
and consist of 3-D diagonal slices. The projection functors in the
launch project these diagonal slices into a 2-D plane used for the
exchange data. This projection is safe only when the launch domain
contains no duplicate (𝑥,𝑦), (𝑦, 𝑧) or (𝑥, 𝑧) pairs. While it could be

SC ’21, November 14–19, 2021, St. Louis, MO, USA Rupanshu Soi et al.

1 2 4 8 16 32 64 128 256 512
Nodes

101

102

Th
ro

ug
hp

ut
 (1

09 c
el

ls/
s)

DCR, IDX
DCR, No IDX
No DCR, IDX
No DCR, No IDX

Figure 7: Stencil strong scaling.

1 2 4 8 16 32 64 128 256 512
1024

Nodes

0

2

4

6

8

10

Th
ro

ug
hp

ut
 p

er
 N

od
e

(1
09 c

el
ls/

s)

DCR, IDX
DCR, No IDX
No DCR, IDX
No DCR, No IDX

Figure 8: Stencil weak scaling.

challenging for a static compiler to verify that no duplicate pairs
exist, a dynamic check can verify this trivially. Figure 10 compares
the peformance with these checks included or elided. We see that
the cost of these checks is negligible at this scale.

6.3 Dynamic Projection Functor Checks
Tables 2 and 3 show timing results for the dynamic analysis for
various common practical cases. Each data point is the average of 5
runs and shows the elapsed time in microseconds. Column headings
represent the size of the launch domain, which was equal to the
number of sub-collections in Table 2 and half the number of sub-
collections in Table 3. Note that the launch domain is independent
of problem size since the checks are performed at the coarse granu-
larity of partitions, rather than individual objects within collections.
A single partition was used for both tables—in Table 2 to measure
the cost of self-checks, and in Table 3 to measure the cost of cross-
checks (i.e., verifying that the images of two projection functors are
disjoint sets). The algorithms for both are described in Section 4.

1 2 4 8 16 32 64 128 256 512
Nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Th
ro

ug
hp

ut
 p

er
 N

od
e

(it
er

/s
)

DCR, IDX
DCR, No IDX

Figure 9: Soleil-X (fluid-only) weak scaling.

1 2 4 8 16 32
Nodes

0

2

4

6

8

10
Th

ro
ug

hp
ut

 p
er

 N
od

e
(it

er
/s

)

DCR, IDX (dynamic check)
DCR, IDX (no check)
DCR, No IDX

Figure 10: Soleil-X (fluid, particle and DOM) weak scaling.

Since the analysis exits as soon as it finds a duplicate value, we were
careful to choose valid projection functors and launch domains so
that this early exit does not occur. In other words, all index launches
corresponding to these tests would have been safe.

It is a common idiom in scientific applications in Regent to set
the partition size equal to the number of nodes the application will
run on. Therefore, both tables are a good proxy for understanding
how the analysis will behave for large node counts beyond the size
of current supercomputers. We can see that even for extreme values
of the size of the launch domain (and partition size), the dynamic
analysis never takes longer than 3 ms, which is approximately the
same as the overhead of launching a task in Regent/Legion at these
scales. We found that the measurements scale linearly with the
size of the launch domain in both tables (reading each row in both
tables from left to right), and linearly in the number of arguments
in Table 3 (reading each column from top to bottom), confirming
that our implementation indeed runs in linear time.

In any case, the checks can be executed in parallel with the
runtime analysis and tasks themselves, so the exact cost of a check

Index Launches: Scalable, Flexible Representation of Parallel Task Groups SC ’21, November 14–19, 2021, St. Louis, MO, USA

Table 2: Elapsed times (in µs) for the dynamic self-checks
for various safe projection functors. Column headings are
the size of the launch domain.

Projection functor 103 104 105 106

Identity 𝑖 1 10 141 1314
Linear 𝑎𝑖 + 𝑏 1 15 148 1396
Modular (𝑖 + 𝑘)mod𝑁 3 20 128 1258
Quadratic 𝑎𝑖2 + 𝑏𝑖 + 𝑐 2 19 238 2389

Table 3: Elapsed times (in µs) for the dynamic cross-check
for multiple arguments on the same partition, showing lin-
ear scaling with the number of arguments. Column head-
ings are the size of the launch domain.

Number of arguments 103 104 105 106

2 1 11 153 1480
3 1 16 186 1831
4 2 18 221 2118
5 2 23 256 2527

is unimportant as long as it is less on average than the application’s
task granularity.

7 RELATEDWORK
It is well-known that a broadcast tree can be constructed to dis-
tribute 𝑁 copies of an identical message in O(log𝑁) time. This
idea predates computing, but has found use in a number of parallel
algorithms such as MPI collectives MPI_Bcast and MPI_Scatter,
among others [27]. Index launches leverages this same general intu-
ition, but applies it within the context of representations of parallel
task groups.

Programming models for distributed computing frequently pro-
vide abstractions to describe sets of parallel tasks. Among the explic-
itly parallel programming models, for example, the ranks in a SPMD
program (such as MPI) can themselves be seen as a form of task
group, that simply start up at the beginning and run for the dura-
tion of a job. In Charm++ [17], chare arrays serve a similar purpose,
spawning a number of chares (actors) in parallel and optionally
specifying a distribution of chares around the machine. Chare ar-
rays are also used in Charm++ to perform collective operations
such as reductions.

Chapel has a coforall loop construct which can be used to
launch parallel work [10]. Though the loops are written out as
if sequentially launched, they can be optimized by a compiler to
perform an O(log |𝐷 |) broadcast tree. However, the closure which
is broadcast across the machine need not include all of the data
closed over in the loop body, as the Chapel language supports
remote references and the remote tasks can fetch data as needed
at a later time (but with all the usual pitfalls of explicitly parallel
programming).

A key difference between explicitly and implicitly parallel pro-
gramming models is that the former are not strict, and tasks (or

ranks, chares, etc.) can typically communicate (via messages, re-
mote memory access, etc.) after being created. As a result, there is
often no explicit notion of privilege or of data being passed to a
task as an argument at its initial creation. Index launches, being a
feature specifically intended for implicit parallelism, focus on the
identification of the work to be performed including all necessary
data.

Coarse-grained, implicitly parallel programming models employ
a variety of mechanisms to improve efficiency and scalability. For
example, OpenMP [12] and OmpSs [13] provide a taskloop con-
struct that can be used to launch a group of parallel tasks, one per
iteration of an annotated loop. However, as of OpenMP version 5.0,
the taskloop construct does not support dependencies and thus
does not provide the expressive power of index launches. In any
case, scalability is less of a concern for OpenMP and OmpSs as they
are both used on single-node systems. Index launches, and particu-
larly projection functors, are designed specifically to promote an
efficient distributed implementation.

Nimbus uses a centralized controller to orchestrate task execu-
tion, but supports execution templates which allow sequences of
tasks be replayed with a single command [21]. This approach can
improve efficiency despite the lack of a compact representation of
tasks, but still relies on a centralized controller which may become
a bottleneck at sufficient scale.

The Sequoia programming language uses compiler optimizations
to determine an optimal placement of tasks around the machine
[19]. Because the parallelism and placement of tasks is computed
statically, a compact runtime representation of the work is not
required. However, this approach is limited by the compiler’s ability
to completely determine the dataflow of the program.

Some task-based models provide higher-level abstractions that
appear to work at bulk level. For example, Dask [24] provides a
NumPy like abstraction that works on distributed arrays. Simi-
larly, Spark [32] offers functional parallel operators for map, reduce,
and other common routines. However, these operations are imple-
mented in terms of a series of individual task launches, and do not
use a compact task representation.

A number of implicitly parallel systems provide built-in capa-
bilities for task fusion. Similar to index launches, task fusion helps
reduce the overhead observed per task. However, task fusion gen-
erally provides a constant factor, not an asymptotic, improvement,
and the degree of fusion is limited by the number of parallel proces-
sors which need to be filled. Index launches are compact by design
and have a in-memory representation that is independent of the
number of processors.

The identification of parallel work and data dependencies can
also occur at a fine-grained level. Polyhedral methods are commonly
used to identify parallelizable loops and transformations that can be
applied to optimize them. These methods have been been applied to
generate distributed codes from sequential programs [8]. As with
coarse-grained compile-time methods, however, the key limitation
of these approaches is that the language of affine loop nests is
quite restrictive and prevents many useful programs from being
written. Index launches provide a much more dynamic and flexible
capability.

At the opposite end of the spectrum, inspector-executor methods
have been used to generate distributed codes from iterative, but

SC ’21, November 14–19, 2021, St. Louis, MO, USA Rupanshu Soi et al.

otherwise unstructured, or mixed structured/unstructured, sequen-
tial programs [22, 23]. These methods provide flexibility which is
comparable to index launches, by analyzing loops at runtime and
observing their actual data access patterns to discover the available
parallelism. However, due to being fine-grained, and the lack of a
compact in-memory representation, these approaches can easily
run out of memory, limiting their practical applicability at large
scales. Index launches strike a useful balance by optimizing for the
compactness of the representation, allowing efficient use at the
scales of modern supercomputers.

8 CONCLUSION
We have presented index launches, a scalable and flexible technique
to denote a set of coarse-grained tasks for parallel execution. We
compared index launches to other techniques in popular task-based
parallel programming systems by considering how these techniques
operate on the task-graph to achieve scalable distributed execution.
We embedded index launches in a general programming model
with compiler and runtime support, closely based on the actual
implementations in the Legion runtime and the Regent compiler.
We showed how we are able to support arbitrary dependencies
in index launches by using a combination of static and dynamic
program analyses. Finally, we demonstrated how index launches
aid in the distributed execution of 3 scientific applications in Regent,
enabling scalable execution on up to 1024 nodes of the Piz Daint
supercomputer.

ACKNOWLEDGMENTS
This research was supported by the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration
and funding from Department of Energy Office of Science, Office
of Advanced Scientific Computing Research under the guidance of
Drs. Laura Biven and Hal Finkel. Experiments on Piz Daint were
supported by the Swiss National Supercomputing Centre (CSCS)
under project ID d108.

REFERENCES
[1] 2016. Piz Daint - CSCS. http://www.cscs.ch/computers/piz_daint.
[2] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
http://tensorflow.org/.

[3] Emmanuel Agullo, Olivier Aumage, Mathieu Faverge, Nathalie Furmento, Florent
Pruvost, Marc Sergent, and Samuel Thibault. 2016. Achieving High Performance
on Supercomputers with a Sequential Task-based Programming Model. Technical
Report. Inria.

[4] Ashwin M Aji, Lokendra S Panwar, Feng Ji, Karthik Murthy, Milind Chabbi,
Pavan Balaji, Keith R Bisset, James Dinan, Wu-chun Feng, John Mellor-Crummey,
Xiaosong Ma, and Rajeev Thakur. 2016. MPI-ACC: Accelerator-Aware MPI for
Scientific Applications. IEEE Transactions on Parallel and Distributed Systems 27,
5 (2016), 1401–1414. https://doi.org/10.1109/TPDS.2015.2446479

[5] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacre-
nier. 2011. StarPU: A Unified Platform for Task Scheduling on Heterogeneous
Multicore Architectures. Concurrency and Computation: Practice and Experience
23 (Feb. 2011), 187–198. Issue 2.

[6] Michael Bauer, Wonchan Lee, Elliott Slaughter, Zhihao Jia, Mario Di Renzo, Mano-
lis Papadakis, Galen Shipman, Patrick McCormick, Michael Garland, and Alex
Aiken. 2021. Scaling Implicit Parallelism via Dynamic Control Replication. In
Principles and Practice of Parallel Programming (PPoPP). Association for Comput-
ing Machinery, New York, NY, USA, 105–118. https://doi.org/10.1145/3437801.
3441587

[7] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. 2012. Legion:
Expressing Locality and Independence with Logical Regions. In Supercomputing
(SC).

[8] Uday Bondhugula. 2013. Compiling Affine Loop Nests for Distributed-Memory
Parallel Architectures. In Supercomputing (SC). ACM, 33.

[9] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Thomas
Hérault, and Jack J. Dongarra. 2013. PaRSEC: Exploiting Heterogeneity to En-
hance Scalability. Computing in Science & Engineering 15, 6 (2013), 36–45.

[10] Bradford L. Chamberlain. 2015. Chapel. In Programming Models for Parallel
Computing, Pavan Balaji (Ed.). MIT Press, 129–159.

[11] Barbara Chapman, Tony Curtis, Swaroop Pophale, Stephen Poole, Jeff Kuehn,
Chuck Koelbel, and Lauren Smith. 2010. Introducing OpenSHMEM: SHMEM for
the PGAS Community. In Partitioned Global Address Space Programming Model.
ACM, 2.

[12] Leonardo Dagum and Ramesh Menon. 1998. OpenMP: An Industry-Standard
API for Shared-Memory Programming. IEEE Comput. Sci. Eng. (1998).

[13] Alejandro Duran, Eduard Ayguadé, Rosa M Badia, Jesús Labarta, Luis Martinell,
Xavier Martorell, and Judit Planas. 2011. OmpSs: A Proposal for Programming
Heterogeneous Multi-Core Architectures. Parallel Processing Letters 21, 02 (2011),
173–193.

[14] Richard Gerber, James Hack, Katherine Riley, Katie Antypas, Richard Coffey, Eli
Dart, Tjerk Straatsma, Jack Wells, Deborah Bard, Sudip Dosanjh, Inder Monga,
Michael E. Papka, and Lauren Rotman. 2018. Crosscut Report: Exascale Require-
ments Reviews, March 9–10, 2017 – Tysons Corner, Virginia. An Office of Science
review sponsored by: Advanced Scientific Computing Research, Basic Energy
Sciences, Biological and Environmental Research, Fusion Energy Sciences, High
Energy Physics, Nuclear Physics. (1 2018). https://doi.org/10.2172/1417653

[15] D. S. Henty. 2000. Performance of Hybrid Message-Passing and Shared-Memory
Parallelism for Discrete Element Modeling. In Supercomputing (SC). https:
//doi.org/10.1109/SC.2000.10005

[16] Reazul Hoque, Thomas Herault, George Bosilca, and Jack Dongarra. 2017. Dy-
namic Task Discovery in PaRSEC: A Data-flow Task-based Runtime. In Proceed-
ings of the 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale
Systems (Denver, Colorado) (ScalA ’17). ACM, New York, NY, USA, Article 6,
8 pages. https://doi.org/10.1145/3148226.3148233

[17] Laxmikant V. Kalé and Sanjeev Krishnan. 1993. CHARM++: A Portable Concur-
rent Object Oriented System Based on C++. In OOPSLA. 91–108.

[18] G. Karypis and V. Kumar. 1998. A Fast and High Quality Multilevel Scheme for
Partitioning Irregular Graphs. SIAM J. Sci. Comput. (1998).

[19] Timothy J. Knight, Ji Young Park, Manman Ren, Mike Houston, Mattan Erez,
Kayvon Fatahalian, Alex Aiken, William J. Dally, and Pat Hanrahan. 2007. Com-
pilation for Explicitly Managed Memory Hierarchies. In Principles and Practice of
Parallel Programming (PPoPP). 226–236.

[20] Wonchan Lee, Elliott Slaughter, Michael Bauer, Sean Treichler, Todd Warszawski,
Michael Garland, and Alex Aiken. 2018. Dynamic Tracing: Memoization of Task
Graphs for Dynamic Task-Based Runtimes. In Supercomputing (SC).

[21] Omid Mashayekhi, Hang Qu, Chinmayee Shah, and Philip Levis. 2017. Execution
Templates: Caching Control Plane Decisions for Strong Scaling of Data Analytics.
In USENIX Annual Technical Conference (USENIX ATC).

[22] Mahesh Ravishankar, Roshan Dathathri, Venmugil Elango, Louis-Noël Pouchet,
J. Ramanujam, Atanas Rountev, and P. Sadayappan. 2015. Distributed memory
code generation for mixed Irregular/Regular computations (PPoPP). ACM, 65–75.

[23] Mahesh Ravishankar, John Eisenlohr, Louis-Noël Pouchet, J. Ramanujam, Atanas
Rountev, and P. Sadayappan. 2012. Code generation for parallel execution of a
class of irregular loops on distributed memory systems. In Supercomputing (SC).

[24] Matthew Rocklin. 2015. Dask: Parallel Computation with Blocked Algorithms
and Task Scheduling. In Python in Science Conference (SciPy). Citeseer.

[25] Kirk Schloegel, George Karypis, and Vipin Kumar. 2002. Parallel static and
dynamic multi-constraint graph partitioning. Concurrency and Computation:
Practice and Experience 14, 3 (2002), 219–240.

[26] Elliott Slaughter, Wonchan Lee, Sean Treichler, Michael Bauer, and Alex Aiken.
2015. Regent: A High-Productivity Programming Language for HPC with Logical
Regions. In Supercomputing (SC).

[27] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. 1998. MPI-The
Complete Reference. MIT Press.

[28] Hilario Torres and Gianluca Iaccarino. 2018. Soleil-X: Turbulence, Particles, and
Radiation in the Regent Programming Language. Bulletin of the American Physical
Society 63 (2018).

[29] Sean Treichler, Michael Bauer, Rahul Sharma, Elliott Slaughter, and Alex Aiken.
2016. Dependent Partitioning. In Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA). ACM, 344–358.

http://www.cscs.ch/computers/piz_daint
http://tensorflow.org/
https://doi.org/10.1109/TPDS.2015.2446479
https://doi.org/10.1145/3437801.3441587
https://doi.org/10.1145/3437801.3441587
https://doi.org/10.2172/1417653
https://doi.org/10.1109/SC.2000.10005
https://doi.org/10.1109/SC.2000.10005
https://doi.org/10.1145/3148226.3148233

Index Launches: Scalable, Flexible Representation of Parallel Task Groups SC ’21, November 14–19, 2021, St. Louis, MO, USA

[30] Rob F. Van der Wijngaart and Timothy G. Mattson. 2014. The Parallel Research
Kernels. In HPEC. 1–6.

[31] Yuan Yu, Martín Abadi, Paul Barham, Eugene Brevdo, Mike Burrows, Andy
Davis, Jeff Dean, Sanjay Ghemawat, Tim Harley, Peter Hawkins, Michael Isard,
Manjunath Kudlur, Rajat Monga, Derek Murray, and Xiaoqiang Zheng. 2018.
Dynamic Control Flow in Large-Scale Machine Learning. In Proceedings of the

Thirteenth EuroSys Conference (Porto, Portugal) (EuroSys ’18). Association for
Computing Machinery, New York, NY, USA, Article 18, 15 pages. https://doi.
org/10.1145/3190508.3190551

[32] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion
Stoica. 2010. Spark: Cluster Computing with Working Sets. HotCloud 10 (2010),
10–10.

https://doi.org/10.1145/3190508.3190551
https://doi.org/10.1145/3190508.3190551

	Abstract
	1 Introduction
	2 Programming Model
	3 Index Launches
	4 Compiler Implementation
	5 Runtime Implementation
	6 Evaluation
	6.1 Test Programs
	6.2 Strong and Weak Scaling Results
	6.3 Dynamic Projection Functor Checks

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

