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ABSTRACT
In a parallel and distributed application, a mapping is a selection
of a processor for each computation or task and memories for the
data collections that each task accesses. Finding high-performance
mappings is challenging, particularly on heterogeneous hardware
with multiple choices for processors and memories. We show that
fast mappings are sensitive to the machine, application, and input.
Porting to a new machine, modifying the application, or using
a different input size may necessitate re-tuning the mapping to
maintain the best possible performance.

We present AutoMap, a system that automatically tunes the
mapping to the hardware used and finds fast mappings without
user intervention or code modification. In contrast, hand-written
mappings often require days of experimentation. AutoMap utilizes
a novel constrained coordinate-wise descent search algorithm that
balances the trade-off between running computations quickly and
minimizing data movement. AutoMap discovers mappings up to
2.41× faster than custom, hand-written mappers.
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1 INTRODUCTION
Modern compute platforms are fundamentally distributed, offering
multiple places where computation may be performed and multiple
distinct memories where data may be placed. The mapping problem
is finding an assignment of computation to processors and of data
to memories such that an application achieves good performance.
We show that a new automatic approach, AutoMap, can achieve
substantial speedups over even custom, hand-written mapping
strategies with much less programmer effort.
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Figure 1: Sample two-node heterogeneous machine, with 2
kinds of processors (CPU cores and GPUs) and 3 kinds of
memories (System, Zero-Copy, and Frame-Buffer).

Figure 2: Partial dependence graph of a multi-physics appli-
cation, and a mapping discovered by AutoMap on Shepard
cluster. Each letter corresponds to a different task.

When the compute platform is a distributed system of multiple
nodes, computation and data must also be distributed, or mapped,
across the nodes of the machine to achieve good performance. How-
ever, the presence of accelerators such as GPUs has made mapping a
concern even within a single node, where the typical configuration
of a multicore CPU with several attached GPUs is itself a smaller
distributed system. Clusters of accelerated nodes, illustrated in Fig-
ure 1, havemultiple levels of distribution, heterogeneous processors,
and a complex hierarchy of distinct memories.

For example, Figure 1 shows three kinds of memory: Systemmem-
ory, addressable only by the CPUs (one per socket), Frame-Buffer
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Figure 3: Partial visualization of the best mappings found by AutoMap for a subset of HTR’s tasks for two different inputs
on 1, 2, and 4 nodes of Shepard cluster. Tasks are assigned to CPU or GPU. Collection arguments are in red, black, or yellow,
representing the mapping of collection argument 𝐶𝑖 to Zero-Copy, Frame-Buffer, and System memory, respectively. The
rectangles under each collection argument represents its relative size in bytes to the largest one of the application.

memory, addressable only by the GPUs, and Zero-Copy memory, ad-
dressable by both. A GPU computation 𝑡1 that accesses data 𝑐 placed
in Zero-Copy memory will generally run more slowly because of
the increased latency and decreased bandwidth incurred by accesses
to Zero-Copy memory instead of Frame-Buffer memory. However,
if a subsequent computation 𝑡2 that runs on a CPU, or even on a
different GPU, also accesses 𝑐 , then placement in Zero-Copy mem-
ory could be faster than alternatively placing 𝑐 in Frame-Buffer
memory for 𝑡1 and then copying the updated 𝑐 to a memory ad-
dressable by 𝑡2. Similarly, if another computation 𝑡3, concurrent to
𝑡1 and executing on the same GPU, intends to access data placed in
Frame-Buffer memory, the Frame-Buffer memory may not be large
enough to also hold 𝑐 . To select the fastest memory assignment
for 𝑐 , we must know the costs for each of these mapping choices.
Real applications have exponentially many combinations of such
mapping decisions, made complex by the dependencies between
application components, the different speeds of the communication
links, and the capacity constraints of hardware resources.

By far the most common approach to addressing the mapping
problem is to use greedy heuristics in the runtime system, such as
always mapping tasks to GPUs if there is a GPU variant and always
mapping task arguments to the closest memory to the chosen pro-
cessor that has enough capacity. These heuristics are not suitable
for all applications to achieve high performance, so some systems
provide mechanisms for programmers to affect the mapping, and
at least one provides a full interface allowing applications to con-
trol mapping decisions [6]. Hand-written mappings use knowledge
about the application and target machine to achieve higher perfor-
mance than heuristic-based mappings chosen by runtime systems.
However, experimenting with mappings by hand requires deep
knowledge of the application and target machine, and in our experi-
ence can require anywhere from a day to a few days for a complex
application.

There is a significant body of previous work on mapping for the
case where every processor has a single memory that it can access
[22, 33, 38]. In this scenario, the mapping of tasks and collections
is unified: the choice of processor for a task fully determines where
the data must be placed. The mapping problem where there are
degrees of freedom in the choice of memory for data is more general,
and solving the problem outlined above—whether two tasks should
share a co-located collection or the application should incur an
extra copy—is central to our approach.

To solve the mapping problem in this more general setting, we
present AutoMap, a system that automates and optimizes the map-
ping of tasks to processors and collections to memories on parallel,
heterogeneous, and distributed machines (Section 3). AutoMap is
used in an offline search to test many different mappings with the
application and return the fastest mapping found.

The core of AutoMap is a new search algorithm called constrained
coordinate-wise descent or CCD (Section 4). CCD alternates between
optimizing the mapping of tasks and the mapping of data and man-
ages the trade-off between mapping tasks to run as fast as possible
and mapping data accessed by multiple tasks to minimize commu-
nication. AutoMap performs a dynamic analysis, which ensures
that the search knows the actual costs of executing tasks and copy-
ing data, rather than relying on static estimates. As we will see,
individual mappings can have significant variation in performance
from run to run, necessitating multiple executions to obtain reliable
estimates of the performance mean and variance.

We evaluate AutoMap on five benchmark applications on two
different clusters (Section 5). These benchmarks include a large
multi-physics application [12] and a multi-fidelity ensemble com-
putational fluid dynamics application, where computation is per-
formed on data of different resolutions. In all experiments, AutoMap
produces mappings that are at least as fast as the hand-written map-
pings. In some cases, the mappings found by AutoMap are up to
2.41× than the hand-written mappers. The results indicate that the
mapping problem can be automated with equal to, and in some
cases, better than human performance, relieving programmers from
the burden of writing a custom, hand-written mapper.

To summarize, we make the following contributions:

• We formalize the mapping problem for task-based program-
ming models on machines where the mapping of tasks does
not fully determine the mapping of data.
• We describe AutoMap, a system that optimizes an applica-
tion’s mapping by dynamically searching the space of possi-
ble mapping decisions (Section 3).
• Wedesign a search algorithm tailored to finding high-performance
mappings for task-based programs called constrained coordinate-
wise descent, which explicitly balances the trade-off between
computation and communication costs, and find mappings
that outperform the other search algorithms by up to 1.57×
(Section 4).
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• We implement and evaluate AutoMap, showing that it finds
fast mappings that often outperform hand-written mappings
without any code modification or user intervention. We
demonstrate that high-performancemappings depend highly
on the machine configuration, input size, and other realistic
constraints. AutoMap also outperforms standard strategies
of mapping a multi-fidelity ensemble CFD application to
heterogeneous systems and discovers mappings up to 50×
faster on memory-constrained experiments by mapping a
subset of the collections to slower memories (Section 5).

We do not claim that AutoMap is the best possible solution to the
mapping problem. While our work demonstrates that jointly con-
sidering the assignment of tasks to processors and data to memories
is necessary to automatically discover good mappings on current
distributed, heterogeneous machines, we will discuss additional
decisions that we do not currently consider that could be incorpo-
rated to further improve the quality of mappings. And while CCD
is effective, we view it as a first step; there may well be improved
algorithms that are faster, find better mappings, or both.

2 MODEL AND BACKGROUND
We model a machineM as a graph where the nodes are processors
and memories. Each processor has a kind (either CPU or GPU in
this paper) and each memory has a kind and a capacity in bytes.
The edges are of two types: An edge between a processor 𝑝 and
a memory 𝑚 indicates that 𝑚 is addressable by 𝑝 , and an edge
between two memories indicates that there is a communication
channel between the two memories.

Task-based systems are a common programming model for dis-
tributed programming with accelerators. In scientific computing,
task-based systems include PaRSEC [8], StarPU [4], Legion [6],
recent versions of OpenMP [26], OmpSs [13], COMPSs [21], and
PyCOMPSs [37]; in data analytics, widely-used task-based program-
ming models include Spark [41], TensorFlow [1], PyTorch [27],
Dask [11], and Ray [23].

While task-based programming models vary considerably, there
is agreement on aspects important for mapping. Programs represent
and are translated into acyclic dependence graphs that are executed
at runtime: the nodes are tasks and edges represent a partial order
on task execution, as illustrated for a multi-physics application in
Figure 2. Tasks are functions of named data collections that theymay
read, write, or both. In all task-based systems we know of, these
collections are some variation of a multi-dimensional array. The
important aspect for mapping is that tasks require each collection
argument be placed in a single memory. To run on a processor kind,
a task must have a variant for that processor kind—i.e., there must
be object code for the task that executes on that type of processor.

For a machineM and task graph G, a mapping 𝑓 is a function
of type tasks × collections→ processors × memories such that
• for each collection argument 𝑐𝑖 of a task 𝑡 in G, 𝑓 (𝑡, 𝑐𝑖 ) =
(𝑝,𝑚𝑖 ), where𝑚𝑖 is a memory inM accessible to 𝑝 .
• 𝑡 has a variant for 𝑝’s kind.

AutoMap aims to solve the mapping problem, which entails find-
ing a mapping 𝑓 that minimizes an application’s execution time.
Throughout this work, we refer to optimizing mappings as decreas-
ing their execution times.

Figure 4: Architecture of AutoMap.

A mapping may imply data movement not explicit in the task
graph. Given amapping 𝑓 , consider tasks 𝑡1 and 𝑡2 where 𝑡2 depends
on 𝑡1, 𝑡1 writes a collection 𝑐 , and 𝑡2 reads 𝑐 . Let (_,𝑚1) = 𝑓 (𝑡1, 𝑐)
and (_,𝑚2) = 𝑓 (𝑡2, 𝑐). There is no requirement that𝑚1 =𝑚2, but
if𝑚1 ≠𝑚2, then once 𝑡1 has finished executing, 𝑐 must be copied
from𝑚1 to𝑚2 before 𝑡2 can begin execution.

Figure 2 shows a fast mapping for a portion of a multi-physics
application, illustrating that the decisions of which tasks should run
on which processors and what memories should be used for data
can be non-trivial in real applications. Figure 3 shows partial fast
mappings found by AutoMap for the samemulti-physics application
on 1, 2, and 4 nodes and different inputs. These mappings are 1.44×,
1.5×, and 1.11× faster than the default strategy, respectively. They
present non-trivial choices, such as the fastest one on 4 nodes,
which (the full mapping) places 9 collection arguments in Zero-
Copy memory.

3 AUTOMAP
AutoMap consists of two components shown in Figure 4:

(1) the mapper, which interacts with the runtime system to
coordinate whichmapping is used and to obtain performance
profiles;

(2) the driver, which contains the search algorithms and the
profiles database used to decide which mapping should be
executed and evaluated next.

For this work, we use the Legion runtime system because it
exposes an API to dynamically control mapping decisions [6]. In
our implementation, the mapper is an implementation of Legion’s
mapping interface, and the search algorithms are pluggable com-
ponents that can be replaced to implement a different algorithm.
While our implementation is in Legion, we believe AutoMap is
applicable to other systems using a task-based programming model.
For another system to use AutoMap, it must support the following
features: a) tasks with separate data collections as arguments; and
b) the existence of per-collection dependence information between
tasks (this information can either be user-provided or computed by
the runtime system). StarPU [4] and PaRSEC [8] are systems that
support these features. While the details of the mapping interfaces
are different for each task-based runtime system, we believe the
overall design and the algorithms we propose are applicable to
other task-based systems.
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Algorithm 1: Constrained Coordinate-wise Descent
1 CCD (M, G)

input :machine modelM, dependence graph G
output : the fastest mapping found 𝑓 , its performance 𝑝

2 Initialize 𝑓 to starting point, 𝑝 to its performance;
3 C ← induced graph over collections in G;
4 foreach rotation 𝑟 from 1 to 𝑛𝑢𝑚_𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠 do

/* for each task 𝑡 and collection 𝑐, gather all

collections that overlap with 𝑐 */

5 O ← {(𝑡, 𝑐 ) ↦→ (𝑡, 𝑐 ) ∪ { (𝑡 ′, 𝑐′ ) : (𝑐, 𝑐′ ) ∈ C}};
6 foreach task 𝑡 ∈ G, ordered by runtime do
7 𝑓 , 𝑝 ← OptimizeTask(𝑡 , 𝑓 , 𝑝 ,M, O);
8 Remove 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑛𝑢𝑚_𝑒𝑑𝑔𝑒𝑠

𝑛𝑢𝑚_𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠−1 lightest edges from C
9 return (𝑓 , 𝑝 )

10 OptimizeTask (𝑡 , 𝑓 , 𝑝 ,M, O)
/* optimize distribution setting */

11 foreach distribution setting 𝑑 ∈ {true, false} do
12 𝑓 , 𝑝 ← TestMapping(𝑓 [distribute 𝑡 according to 𝑑 ], 𝑓 , 𝑝)

/* optimize processor kinds */

13 foreach processor kind 𝑘 ∈ M do
/* optimize memory kinds */

14 foreach collection 𝑐 ∈ 𝑡 .𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 , ordered by size do
15 foreach memory kind 𝑟 ∈ M accessible from 𝑘 do
16 𝑓 ′ ← 𝑓 [map 𝑡 on 𝑘 , 𝑐 on 𝑟 ];
17 𝑓 ′′ ← ColocationConstraints(𝑓 ′, 𝑡, 𝑐, 𝑘, 𝑟, O);
18 𝑓 , 𝑝 ← TestMapping(𝑓 ′′, 𝑓 , 𝑝);
19 return (𝑓 , 𝑝 )
20 TestMapping (𝑓𝑡𝑒𝑠𝑡 , 𝑓 , 𝑝)
21 𝑝𝑡𝑒𝑠𝑡 = EvaluateMapping(𝑓𝑡𝑒𝑠𝑡);
22 if 𝑝𝑡𝑒𝑠𝑡 < 𝑝 then
23 return (𝑓𝑡𝑒𝑠𝑡 , 𝑝𝑡𝑒𝑠𝑡 )
24 return (𝑓 , 𝑝)

3.1 Extensions to the Mapping Problem
We extend the mapping problem to address features of realistic
task-based programs. First, many of the applications we consider
use group tasks, which are sets of independent tasks launched in
a single operation. All elements of a group are instances of the
same task. We extend our notion of mapping to include whether a
group task should be executed entirely on the initial leader node or
whether the tasks in the group should be distributed in a blocked
fashion among all machine nodes. We do not consider different
strategies for distributing group tasks across machine nodes. For
uniformity, we assume programs have only group tasks by treating
individual tasks as groups of size one. Second, we allow mappings
to fail at runtime if a collection assignment exceeds the capacity
of the physical memory. It is possible to generalize a mapping
𝑓 (𝑡, 𝑐) in a straightforward manner to a priority list of memories,
all addressable by the chosen processor, where the first memory
that can hold 𝑐 will be used. For simplicity of presentation, we do
not discuss this generalization, but our implementation handles
this more general form of mapping.

3.2 The Search Space
To estimate the size of the search space of possible mappings, we
momentarily make the simplifying assumption that all tasks can
be assigned to all processor kinds and all data collections can be

Algorithm 2: Co-location Constraints
1 ColocationConstraints (𝑓 , 𝑡 , 𝑐 , 𝑘 , 𝑟 , O)

input :current mapping 𝑓 , task 𝑡 , collection 𝑐 , processor kind
𝑘 , memory kind 𝑟 , collections overlapping map O

output :new mapping 𝑓 ′

2 𝑓 ′ ← 𝑓

3 𝑡_𝑐ℎ𝑒𝑐𝑘, 𝑐_𝑐ℎ𝑒𝑐𝑘 ← ∅, ∅
/* map all collections overlapping with 𝑐 to 𝑟 */

4 foreach (𝑡𝑖 , 𝑐𝑖 ) ∈ O[ (𝑡, 𝑐 ) ] do
5 𝑓 ′ ← 𝑓 ′ [𝑐𝑖 ≠ 𝑐 : map 𝑐𝑖 on 𝑟 ];

/* record tasks with moved collections */

6 𝑡_𝑐ℎ𝑒𝑐𝑘 ← 𝑡_𝑐ℎ𝑒𝑐𝑘 ∪ {𝑡𝑖 }
/* after changing the mapping of all collections that

overlap with 𝑐, the mapping of those collections’ tasks

may change, requiring iteration to a fixed point */

7 while 𝑡_𝑐ℎ𝑒𝑐𝑘 ≠ ∅ or 𝑐_𝑐ℎ𝑒𝑐𝑘 ≠ ∅ do
/* adjust mappings for all tasks with moved

collections */

8 while 𝑡_𝑐ℎ𝑒𝑐𝑘 ≠ ∅ do
9 𝑡𝑖 ← 𝑡_𝑐ℎ𝑒𝑐𝑘.𝑝𝑜𝑝 ( )

10 foreach 𝑐𝑖 ∈ 𝑡𝑖 .𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 do
11 if 𝑐𝑖 ’s mem kind not addressable by 𝑡𝑖 ’s proc kind

then
12 𝑓 ′ ← 𝑓 ′ [𝑡𝑖 ≠ 𝑡 : map 𝑡𝑖 on 𝑘 ]
13 𝑐_𝑐ℎ𝑒𝑐𝑘 ← 𝑐_𝑐ℎ𝑒𝑐𝑘 ∪ { (𝑡𝑖 , 𝑐𝑖 ) }

/* adjust mappings for all collections with moved

tasks */

14 while 𝑐_𝑐ℎ𝑒𝑐𝑘 ≠ ∅ do
15 𝑡𝑖 , 𝑐𝑖 ← 𝑐_𝑐ℎ𝑒𝑐𝑘.𝑝𝑜𝑝 ( )
16 𝑚 ← select a mem kind addressable by 𝑡𝑖 ’s proc kind
17 if (𝑡, 𝑐 ) ∈ O[ (𝑡𝑖 , 𝑐𝑖 ) ] then
18 continue
19 𝑓 ′ ← 𝑓 ′ [map 𝑐𝑖 on𝑚];
20 foreach (𝑡 𝑗 , 𝑐 𝑗 ) ∈ O[ (𝑡𝑖 , 𝑐𝑖 ) ] do
21 if (𝑡 𝑗 , 𝑐 𝑗 ) == (𝑡𝑖 , 𝑐𝑖 ) or 𝑐 𝑗 ’s mem kind ==𝑚 then
22 continue
23 𝑓 ′ ← 𝑓 ′ [map 𝑐 𝑗 on𝑚];
24 if𝑚 not addressable by 𝑡 𝑗 ’s proc kind then
25 𝑡_𝑐ℎ𝑒𝑐𝑘 ← 𝑡_𝑐ℎ𝑒𝑐𝑘 ∪ {𝑡 𝑗 }
26 𝑐_𝑐ℎ𝑒𝑐𝑘 ← 𝑐_𝑐ℎ𝑒𝑐𝑘 \ { (𝑡 𝑗 , 𝑐 𝑗 ) }
27 return 𝑓 ′

assigned to the same number of memories for each processor kind.
There are then 𝑃𝑇𝑀𝐶 possible mappings, where 𝑃 is the number
of processor kinds, 𝑇 is the number of tasks, 𝑀 is the number of
memory kinds, and 𝐶 is the number of collection arguments. In
practice different processors have different numbers𝑀 of memories
that they can address, but 𝑀 ≥ 2 for all processor kinds in the
machines we consider.

Such an immense search space cannot be traversed exhaustively.
Thus, we factor the problem into two parts: A search over the
kinds of processors/memories to use and runtime logic to select
specific processors/memories of the appropriate kind. This struc-
ture reduces the search space without sacrificing high-performance
mappings. Specifically, the driver invokes a search algorithm to
choose the kind of processor for each task, and the mapper dis-
tributes tasks in a deterministic, blocked fashion among processors
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of the selected kind. There are more sophisticated strategies for dis-
tributing the tasks. Autotuning the distribution of groups of tasks
across processors is an opportunity for further improvements and
potential future work for AutoMap. Similarly to mapping tasks, the
driver invokes a search algorithm to choose the kind of memory for
each collection, and the mapper instantiates each collection in the
the memory of the desired kind that is closest to the selected pro-
cessor. Finally, tasks in a group task are assigned the same mapping
of processor kind and collection kinds.

Based on our factorization of the mapping problem, AutoMap
searches to find a mapping function with the signature tasks ×
collections→ bool × processor kind × memory kind. Then 𝑓 (𝑡, 𝑐) =
(𝑑, 𝑘𝑝 , 𝑘𝑚) where the boolean 𝑑 indicates whether the group task
is distributed or not, 𝑘𝑝 is the processor kind for 𝑡 , and 𝑘𝑚 is the
selected memory kind for 𝑐 .

3.3 AutoMap Usage
AutoMap requires no modification to the application. The input
is a file containing the search space and machine model represen-
tation containing all or a subset of tasks and data collections of
the target application. The file representing the search space is
generated automatically by running and profiling the application
once. Given the representation of the search space, AutoMap then
begins an offline search for mappings, and invokes the application
automatically to evaluate potential mappings. While in this work
we optimize execution time, AutoMap is suitable for minimizing
other metrics (e.g., power consumption). The search always has
a current best mapping, and so the search can be time-limited if
desired.

4 SEARCH ALGORITHMS
The AutoMap framework supports the use of different search al-
gorithms to propose candidate mappings for evaluation. AutoMap
includes coordinate-wise descent, OpenTuner, and we introduce
constrained coordinate-wise descent, a novel algorithm tailored to
finding solutions for the mapping problem.

4.1 Coordinate-wise Descent (CD)
Coordinate-wise descent considers each task in turn, optimizing
the mapping of that task and all of its collections (Algorithm 1
excluding line 17). When considering each dimension, all other
decisions are held constant; i.e., one mapping decision is changed at
a time. Specifically, for a group task, CD first greedily optimizes its
distribution setting, then the task’s processor kind, and finally the
memory kind of each collection. Thus, CD’s runtime is linear in the
number of tasks and the number of collections in the application.

CD loops over tasks (Algorithm 1 line 6) from longest running to
shortest and over collections (Algorithm 1 line 14) from largest to
smallest. Intuitively, this ordering should accelerate convergence to
a high performance mapping, as the best mapping(s) of expensive
tasks and large collections are less likely to be influenced by the
rest of the application’s mapping.

Starting point. We pick a starting point that is good for many
applications: Group tasks are distributed across all nodes, all tasks
with GPU variants are placed on GPUs, and all collections (that fit)
are placed in Frame-Buffer memory.

4.2 Constrained CD (CCD)
While there are many dimensions to the search, our experience is
that often the central trade-off is the tension between tasks running
as fast as possible and minimizing data movement. Algorithm 1,
constrained coordinate-wise descent, iteratively optimizes the place-
ment of tasks and of data to maximize performance. The search
begins with a high penalty for data movement that is gradually
relaxed to balance the costs of compute and data movement in an
increasingly fine-grained way.

CCD optimizes an initial mapping in a sequence of 𝑁 rotations. In
each rotation, CCD runs a full CD, and the best mapping of rotation
𝑟𝑖 is the starting one of rotation 𝑟𝑖+1.

Minimizing data movement through constraints. As part of
the search, AutoMap maintains a dependence graph G of tasks; in
our implementation, this graph is obtained from runtime profiling
information. From this graph we induce a graph C = (𝑉 , 𝐸) on
the collections, where each collection 𝑐 ∈ 𝑉 and there are edges
between collections that overlap: (𝑐1, 𝑐2) ∈ 𝐸 iff 𝑐1 ∩ 𝑐2 ≠ ∅. The
weight of the edge is |𝑐1 ∩ 𝑐2 |.

Intuitively, collections overlap when they reference non-disjoint
components of the same logical data structure. For example, the
halo regions in a partitioned stencil computation overlap, as each
halo region references data used by multiple tasks. CCD models
this sharing of data directly, and uses it to guide the search.

CCD enforces two constraints for each mapping it considers:

(1) A task argument is mapped to a memory visible to the task’s
processor.

(2) If (𝑐, 𝑐′) ∈ 𝐸, then 𝑐 and 𝑐′ are mapped to the same memory
kind.

The first constraint is necessary for correctness (or else the mapping
will not be executable). The second constraint is the co-location
constraint on overlapping collections to minimize data movement,
described in Algorithm 2. At each step of a rotation, CCD has
a current mapping 𝑓 to which it makes one change, creating a
mapping 𝑓 ′. If 𝑓 ′ violates constraint (1) because task 𝑡 cannot
access collection argument 𝑐 , then 𝑡 is moved to a processor kind
that can access memory kind 𝑐 . If 𝑓 ′ violates constraint (2) because
collection 𝑐 was moved to memory kind 𝑘 and (𝑐, 𝑐′) ∈ 𝐸 where 𝑐′
is mapped to some different memory kind, then 𝑐′ is also moved to
memory kind 𝑘 (Algorithm 2 lines 4-6). Adjusting the mapping to
locally satisfy the constraints may violate constraints for different
tasks and collections, so these two rules are iteratively applied until
the mapping 𝑓 ′′ satisfies both constraints globally (Algorithm 2
lines 7-26). This iterative process converges, as the limiting case is
that all tasks/collections are mapped to the same processor/memory
kind.

After each rotation, CCD prunes a fraction 1/(𝑁 − 1) of the
lowest-weight edges from C to relax the data movement constraint,
where 𝑁 is the total number of rotations to be performed. In CCD’s
last rotation over all tasks, all edges from C have been pruned, so
all constraints on data collection placement are lifted. The purpose
of this constraint relaxation approach is twofold: First, by initially
constraining overlapping collections to be mapped in the same
way, we collapse their mapping into a single decision, simplifying
the search space. Second, this approach guarantees that CCD tries
to find the fastest mappings at multiple different thresholds of
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tolerance for datamovement. In our experiments, we set the number
of rotations to 5 and prune 1/4 of the edges of C at the end of each
rotation.

As we will see in our evaluation (Section 5.3), CCD performs the
best among these algorithms, finding mappings that are at least as
fast, often in less time. We believe two features stand out as the
most important.

(1) CCD is systematic, deterministically enumerating a wide va-
riety of different mappings. While hardly exhaustive, explo-
ration of each dimension of the search space is guaranteed.

(2) Constraints on data movement allow CCD to make coor-
dinated moves, deciding to place multiple collection argu-
ments of different tasks in the same memory to minimize
data movement. Search strategies that make purely local
decisions about individual collections are much less likely
to explore such colocations.

Consider the multi-physics solver described in Figure 5: two
different group tasks operate on two large shared collections. The
fastest known strategy for some of the inputs (and the strategy dis-
covered by AutoMap) is to place these two collections in Zero-Copy
memory to minimize data movement. Having all tasks place the
collections in Frame-Buffer memory would be faster than having
only some of the tasks place them in Frame-Buffer memory and
others place them in Zero-Copy memory, which slows the execu-
tion of some of the tasks (due to the slower accesses to Zero-Copy
memory) while still incurring substantial data movement. In this
scenario, algorithms that optimize the mapping of a single task at
a time and accept only strict improvements may fail to converge
to the fastest known mapping, as there is no sequence of strictly
improving mapping decisions that progress from the collections all
being in Frame-Buffer memory to all being in Zero-Copy memory.
Even an algorithm like OpenTuner is unlikely to find this solution
as it requires accepting multiple cost-increasing moves. In our ex-
periments, the alternative algorithms considered here fail to find the
fastest known mapping. CCD succeeds, as it makes a coordinated
decision to jointly map these collections in its first rotation.

4.3 OpenTuner
AutoMap maps the search space onto OpenTuner search data types.
OpenTuner uses ensembles of search techniques, which run simul-
taneously, testing candidate mappings. Techniques that find better
mappings have a larger budget to select the subsequent mappings
for evaluation, while the ones that perform poorly evaluate fewer
mappings. It is not possible to represent constrained search spaces
in OpenTuner. Automap tries to overcome this limitation by return-
ing a high value whenever OpenTuner suggests an invalid mapping
(e.g., selects a memory for a data collection that is not accessible
by the processor chosen for the task), so it does not suggest similar
mappings in the future, although that is not guaranteed.

5 EVALUATION
We evaluate AutoMap’s overall performance and individual com-
ponents on five benchmark applications described in Figure 5. The
selected benchmarks use Legion’s task-based programming model
for distributed heterogeneous machines. The benchmarks are imple-
mentations for electrical circuit simulation (Circuit) [6], structured

stencil (Stencil) [40], Lagrangian hydrodynamics simulation (Pen-
nant) [16], multi-physics solver (HTR) [12], and multi-fidelity en-
semble computational fluid dynamics (Maestro). HTR and Maestro
are production-level applications used in large-scale simulations.
We discuss the performance of mappings that AutoMap is able to
find, and individually compare the CCD algorithm to other reason-
able algorithms that could be used for the mapping problem.

Experimental Setup.We perform experiments on two different
clusters of accelerated nodes: Shepard from Stanford University
HPC Center and Lassen from Lawrence Livermore National Labo-
ratory. Each node of Shepard has 2 Intel Xeon Platinum 8276 2.2
GHz CPUs with 28 cores each, 196 GB of RAM, and one NVIDIA
Tesla P100 with 16 GB of Frame-Buffer. Each node of Lassen has 2
IBM Power9 3.45 GHz CPUs with 22 cores each (only 20 usable),
256 GB of RAM, and four NVIDIA Volta V100 GPUs with NVLink
2.0 (AC922 server) and 16 GB of Frame-Buffer each. We separate 8
cores to the Legion runtime, and leave the rest of the CPU cores
and all GPUs on each system for the application.

In our experiments, we configure AutoMap to use the following
three memory kinds: Frame-Buffer memory (a high-throughput
memory, local to each GPU), Zero-Copy memory (a pinned memory
on the host that all GPUs and CPUs can access), System memory
(CPU-accessible RAM, one per socket). We reserved 60 GB of host
memory per node for the Zero-Copy memory. The CCD experi-
ments ran for five rotations, which we found to perform the best in
practice. More rotations increased the search time without improv-
ing performance, and fewer rotations made CCD perform similarly
to CD. We selected five as a trade-off between finding faster map-
pings and search time, but the optimal number of rotations can
vary depending on the application, machine, and input. During
the search, each mapping ran 7 times, and the average was used
to select the best mapping for each experiment. As a final step of
the search, the applications were executed with each of the top
5 mappings 30 times; we report results for the mapping with the
fastest average runtime.

Baselines for comparison.We evaluate AutoMap’s overall per-
formance by comparing it to Legion’s default mapper and to custom,
hand-written mappers for each application. The default mapper
is packaged with the Legion runtime system and is invoked if no
mapper is provided by the user. It applies a set of fixed heuristics to
determine processor and data placement, such as using GPUs and
placing collections in the highest bandwidth memories whenever
possible. As all applications considered include GPU variants for
each task, in our experiments the default mapper places all tasks
on the GPUs and all of their collections in Frame-Buffer memory.

The hand-written mappers are application-specific custom map-
pers implemented by a domain expert, often requiring multiple
days of effort. Domain experts rely on their understanding of the
application and of the target computer architecture to select the
mapping. For the applications we consider, hand-written mappers
generally follow a similar strategy as the default mapper but some-
times place large or shared data in Zero-Copy memory and move
less important tasks to CPUs to utilize more compute cores and
conserve Frame-Buffer memory.

As presented in Figure 5, the benchmark applications are exten-
sively optimized codes that have appeared in prior publications,
along with their hand-written mapper implementations. While the
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Application Description Tasks Collection Arguments Search Space Size CCD Search Time (hours)
Circuit Electrical circuit simulation [6] 3 15 ∼ 218 1-2
Stencil 2D structured stencil [40] 2 12 ∼ 214 1-2
Pennant Lagrangian hydrodynamics calculation [16] 31 97 ∼ 2128 1-4
HTR Multi-physics solver [12] 28 72 ∼ 2100 4-7

Maestro Multi-fidelity Ensemble CFD 13 (only LFs) 30 ∼ 243 1-2

Figure 5: Description of the five benchmark applications.
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Figure 6: Performance evaluation of custom mapper and AutoMap relative to the default mapper on Shepard cluster.
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Figure 7: Multi-fidelity Ensemble CFD varying the number
of low-fidelity samples and resolution.

hand-written mappers were not necessarily tuned exactly for Shep-
ard and Lassen, the optimizations they implement target similar
multi-GPU machines, and have been heavily optimized. In our ex-
periments, we use the benchmark codes as-is, and only change the
mapping strategy when we compare the performance of AutoMap,
the default mapper, and the benchmark application’s custom map-
per. The more complex applications require a longer search.

Results. The comparisons between the three mappers (default,
custom, and AutoMap) for a variety of inputs are shown in Figure 6.
These experiments were conducted on Shepard. Each application
was weak-scaled when moving to multiple nodes. In each figure,
we plot the speedup achieved by AutoMap and the custom mapper
over Legion’s default mapper. These plots represent improvement
achieved by using AutoMap or a custom mapper over the default
mapper.

AutoMap evaluates the performance of candidate mappings 7
times and uses the average of these times as the performance re-
sult for the mapping. When reporting results, we evaluate the 5
best mappings found by AutoMap 31 times and report the average
performance.

We see that AutoMap finds better or equal mappings to the de-
fault mapper. Except for some inputs of Circuit and HTR, AutoMap
also generally matches or outperforms applications’ custom map-
pers. Circuit’s custom mapper decomposes group tasks in a blocked
manner across nodes in the machine, while AutoMap uses a round-
robin strategy. AutoMap does not currently consider different ways
to decompose group tasks, allowing the custom mapper to find a
better mapping in some cases.

The results for Stencil are in Figure 6b, and the most signifi-
cant speedups arise when AutoMap places the tasks in the CPU.
Moreover, use different combinations of collection arguments into
System and Zero-Copy memories. It is crucial to notice that placing
data in System and Zero-Copy is not the same on multi-socket
systems (clusters A and B have two sockets). In such systems, two
independent allocations are created in the System memory to be
used for tasks running on each socket. Therefore, data accessed
by tasks in a different socket requires a data transfer from one
allocation to the other by the Legion runtime, whereas Zero-Copy
is a single allocation addressable by all the processors, including
GPUs.

Pennant results are in Figure 6c. The most significant speedups
achieved on Pennant are due to mixed mappings with up to 26 of
the 31 tasks on the CPU and 4 collection arguments in Zero-Copy.
As the input size increases, AutoMap places more tasks on the GPU
and data on the Frame-Buffer memory. We see similar results on
HTR (Figure 6d), and the biggest AutoMap gains are because of
placing tasks on the CPU and the data on Zero-Copy. AutoMap,
however, found a mapping with a 10% performance increase (see
Figure 3, input 64x256y72z on 4 nodes) that places 9 collection
arguments on the Zero-Copy memory and 2 tasks on CPU.

AutoMap is able to find mappings that outperform custom map-
pers on some configurations of each application in our benchmark
suite. Custom mappers are usually implemented for a specific con-
figuration and input, limiting the number of situations that the
custom mapper can be applied to and achieve peak performance.
AutoMap helps users discover efficient mapping strategies to tune
their custom mappers to new application configurations, or im-
prove the performance of their application without even writing a
customized mapper.

5.1 Multi-fidelity Ensemble CFD
Maestro is a multi-fidelity ensemble computational fluid dynamics
(CFD) solver resolving the single-component compressible Navier-
Stokes equations with explicit finite-difference schemes. We con-
figured Maestro to utilize a bi-fidelity ensemble comprised of one
high-fidelity and multiple low-fidelity samples, all operating on a
3D volume.

The inherent cost of high-fidelity simulation limits its usage in
engineering applications requiring many samples, such as uncer-
tainty quantification or optimization. In a multi-fidelity setting,

8



Automated Mapping of Task-Based Programs onto Distributed and Heterogeneous Machines SC ’23, November 12–17, 2023, Denver, CO, USA

low-fidelity simulations are used to complement high-fidelity sim-
ulations by enabling the collection of many samples with lower
computational cost but at reduced accuracy [14].

The processing of a single high-fidelity sample requires signifi-
cant computational power and utilizes large amounts of memory.
Thus, the high-fidelity simulation is mapped onto the GPUs and its
collection arguments fill up the entire Frame-Buffer memory. The
low fidelity simulations, however, can be assigned to the CPUs or
the GPU, and their collection arguments can be mapped to Zero-
Copy memory or System memory. The main goal of the Maestro
developers is to run low fidelity simulations that do not affect the
performance of the expensive high-fidelity simulation by utilizing
additional resources available on the machine. The number and
resolution of the low fidelity simulations are tuned according to
the performance of the high-fidelity when executing alone.

Figure 7 presents AutoMap’s results along with two standard
strategies of mapping the tasks for the low-fidelity simulations:
1) mapping all low-fidelity tasks and collections to CPUs and Sys-
tem memory, and 2) mapping all low-fidelity tasks and collections
to GPUs and Zero-Copy memory. We compare these strategies
against the runtime of Maestro without any low-fidelity simula-
tions running, to see which strategies impact the execution time
of the high-fidelity simulation the least. Figure 7 plots the amount
of performance degradation when running different amounts of
low-fidelity simulations against running only the high-fidelity sim-
ulation, so values close to 1.0 indicate the low-fidelity simulations
do not affect the performance of the high-fidelity simulation. Our
results show that the simple strategies are not always optimal, and
can lead to performance degradation of the high-fidelity simulation
for certain low-fidelity simulation counts and resolutions. AutoMap
outperforms the other strategies by placing all the relevant tasks in
the same processor kind. For instance, on two nodes, the execution
of 16 low-fidelity simulations and resolution 323 is faster when
mapped to GPUs and Zero-Copy memory, but 32 low-fidelity sim-
ulations and 163 is faster when mapped to CPUs. These decisions
are non-trivial as they also depend on the hardware used. Different
processors and GPUs may present different results. Furthermore,
the low-fidelity simulations are adaptable and change according to
the simulation requirements. Automap can relieve the burden on
developers of these mapping decisions and finds the best results
for each configuration.

5.2 Memory Constrained Experiments
Users with limited resources may desire to run their applications
with larger inputs than the ones that fit in the fastest memory of
their fastest processor. The GPU Frame-Buffer memory, for instance,
has the highest throughput, but the most limited capacity in modern
systems. Selecting which collections to keep in the fastest memory
and which collections to demote to larger, but slower memories is
challenging, as complex applications may have dozens of collection
arguments (Pennant has 97). This selection is also not robust—as
the input size increases, the optimal selection may change.

The most straightforward approach is to place all data in a big-
ger but slower memory, which results in slow execution times.
AutoMap’s search is able to find a subset of the collections that fit
in the fast memory to significantly speed up execution time. Our
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Figure 8: Pennant execution times on Shepard and Lassen
clusters with inputs 1.3%, 7.1%, and 14.3% larger than the
maximum input that fits completely in the Frame-Buffer.
AutoMap provides speedup of at least 4× compared to all the
data in the GPU Zero-Copy.

implementation of AutoMap is resilient to mappings that exceed
the fastest memory’s capacity, detecting when a mapping results
in an out of memory error and moving on to a different mapping.

Figure 8 presents the execution time of Pennant with inputs
larger than the maximum size that fits in the Frame-Buffer memory
(320×40320 zones per GPU) for 1 and 4 nodes. On Lassen, the
best mappings found by AutoMap place 7, 12, and 13 collection
arguments in Zero-Copy for inputs 1.3%, 7.1%, and 14.3% bigger than
the maximum Frame-Buffer capacity, respectively. Interestingly, it
also placed 2 tasks on the CPU for the input +1.3% (1 and 4 nodes),
and 1 task on the CPU for the inputs +7.1% and +14.3% (4 nodes).
Shepard results are similar for the +1.3% input (1 and 4 nodes),
but for +7.1% and +14.3% AutoMap placed all tasks on CPU and
collection arguments in System memory. AutoMap finds mappings
much faster than placing all collection arguments in Zero-Copy.
The mappings discovered by AutoMap are up to 50× faster for the
+1.3% input on one node on Shepard. As expected, as the input
grows, the mappings discovered are slower as fewer collection
arguments fit in the Frame-Buffer memory.
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Figure 9: Execution time per mapping evaluation (lower is
better) as a function of search time for the three search algo-
rithms used by AutoMap: OpenTuner, CD, and CCD.

5.3 Search Algorithm Evaluation
We evaluate the choice of using the CCD algorithm instead of other
algorithms discussed in Section 4.3, such as CD and OpenTuner.
All three algorithms were given the same budget of time. CD is
equivalent to the one rotation (the last one) of CCD and terminates
earlier. In our experiments, we evaluate both the quality of map-
pings that each algorithm is able to find, as well as the amount of
time each algorithm took to find the best mapping. We evaluate
the algorithms on different problem sizes of the most complex of
our benchmark applications, Pennant and HTR. The results for our
experiments are in Figure 9, which shows the performance of the
best mapping found by each algorithm plotted against the elapsed
time of the search.

We see that CCD consistently finds mappings that outperform
CD and OpenTuner by up to 1.57×. By explicitly considering the re-
lationships between overlapping data collections, CCD can collapse
the placement decisions of multiple collections into a single choice,
while a system like OpenTuner has to make all of those decisions
independently. CD operates without these constraints on collec-
tion placement, and thus is also unable to make these coordinated
decisions.

Tailoring an algorithm to the mapping problem provides addi-
tional benefits in terms of search efficiency. We find that OpenTuner
spends as little as 13% and up to 45% of the search time evaluating
candidate mappings. In contrast, CCD and CD spend 99% of total
search time evaluating candidate mappings. This difference arises
due to the lack of domain knowledge that OpenTuner’s generic
algorithms possess about the mapping problem.

OpenTuner spends a significant amount of time suggesting in-
valid mappings (e.g., it places a task on CPU and one collection

argument of the task in Frame-Buffer memory), which will incur an
error during execution. AutoMap does not evaluate such mappings
and returns a high value to OpenTuner, so it avoids suggesting sim-
ilar mappings in the future. It is not possible to express constrained
search spaces in OpenTuner. This limitation is seen in the number
of mappings proposed by each search algorithm to AutoMap: For
Pennant, CCD suggests 1941 mappings, and evaluates on average
460 mappings per search (the difference are repeated mappings).
CD suggests 389 mappings, and evaluates on average 226 mappings,
essentially performing the final rotation of CCD. OpenTuner sug-
gests on average 157202 mappings, and evaluates 273 mappings,
suggesting two orders of magnitude more mappings than CCD or
CD.

Our results demonstrate that CCD is an effective search algo-
rithm to target the mapping problem. CCD can find mappings that
outperform other algorithms, and search the space of candidate
mappings more efficiently than generic algorithms like OpenTuner.

6 RELATEDWORK
Sequoia was the first task-based system to provide a programmer-
controlled mapping interface [15]. Sequoia’s static specification of
application code and mapping was generalized in Legion [6], which
has a dynamic mapping interface.

Task Scheduling for Heterogeneous Systems. The earliest
works on task scheduling for heterogeneous clusters, such as the
HEFT [38], MCT [22], and FCP [33] algorithms, focus on scheduling
a task 𝑡 on a processor taking into account processor speed, the
cost of 𝑡 , and the time needed clear each processor’s current task
queue. These heuristics assume a single memory in which data can
be placed for a given processor. As we have already noted, when
there are multiple memories, the choice can affect not just the time
for 𝑡 but also the cost of subsequent tasks that will use that data.

Work within the StarPU task-based system implements different
scheduling strategies based on HEFT that consider data movement
costs and prefetching for heterogeneous systems with multiple
accelerators [3]. The described strategies place all of a task’s data
in a single memory and do not consider the impact of the data
placement decisions on the cost of future tasks.

In contrast, AutoMap addresses the problem of jointly optimiz-
ing the choice of processor for each task and memory for each
allocation. Considering the mapping of data collections as well as
tasks introduces new difficulties, as the mapping of data collections
can affect which processors are the best candidates to place the
tasks that use those collections, and vice versa.

Machine Learning-based Mapping Strategies. Prior work
translates multi-core code into OpenCL and uses a decision-tree
classifier (learned from training data based on static compiler anal-
ysis) to estimate whether an application is profitable to run on
GPUs [25]. Wang et al presents data sensitive and data insensi-
tive machine-learning predictors for the number of threads and
the scheduling policy for two different multi-core platforms [39].
In [25], the same processor is selected for the whole benchmark.
These papers do not select memory per data collection or deal with
distributed machines. AutoMap deals with a decision space per task
and data collection to find faster mappings.
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Communication-Aware Process Mapping. Another class of
prior work optimizes the mapping of MPI processes on a cluster
to compute cores to minimize communication between MPI pro-
cesses. Examples include search-based strategies and profile-guided
strategies [9]. These works use information about communication
between nodes to find optimal process placements based on how the
individual processes communicate. In these approaches, compute
and data are unified and always placed together; thus the problem
is simpler than the one we consider, where independent choices of
which memory to place data in can also affect performance.

Autotuning Performance Optimizations.Multiple domain
specific languages implement a similar separation between the
high-level source program and a lower-level specification of an
implementation in the space of possible performance optimizations
(e.g. Halide for image processing [29], GraphIt for graph applica-
tions [42], TACO for sparse tensor algebra [20]). This separation
provides an interface for automated optimization: OpenTuner [2],
an extensible framework for program autotuning based on ensem-
bles of search algorithms, has been used to find high performance
schedules for Halide and GraphIt. The optimizations considered
in these systems are higher-level data structure layout and par-
allelization transformations [24, 29, 36]. These systems address
optimization problems different from mapping.

FlexFlow is a deep learning engine that automatically finds fast
parallelization strategies for deep neural networks (DNNs) [19].
As with the DSLs above, FlexFlow’s optimization problem is dis-
tinct from mapping: it searches over data and compute partitioning
strategies for DNNs, with a fixed mapping strategy (execute all
tasks on GPUs and store all data in Frame-Buffers). This search
relies on a task graph cost estimator, which, like AutoMap, uses
profiling to estimate execution times. Unlike AutoMap, it uses static
bandwidth estimates, assumes a fixed mapping, and works with a
DNN computation graph instead of the lower-level task graph.

Dynamic Load Balancing. Many approaches have been devel-
oped for dynamic load balancing [5, 7, 34]. Load balancing algo-
rithms typically assume a much more uniform machine and tasks
than we consider here, and there is no need to model task depen-
dencies, memory constraints, or communication times.

Automated and Domain-Specific Mapping. Prior work in au-
tomated mapping uses static analysis to assign tasks to processors
on heterogeneous machines [28] or to assign data to software-
managed memory hierarchies [32]. Sbîrlea et al. combine compile-
time analysis with dynamic work stealing to map a data-flow pro-
gramming model onto heterogeneous platforms [35]. AutoMap is
the first work that we know of which addresses the general problem
of simultaneously mapping both tasks and data collections.

Otherwork has used domain-specific information to derive tuned
mapping strategies for different applications in the domain: Lux is
a distributed multi-GPU system for graph processing, which uses
a hand-written mapper enhanced with dynamic load balancing
[17]. ROC is a distributed multi-GPU system for fast graph neural
network (GNN) training and inference, which implements dynamic
graph partitioning [18]. The selected GNN partitioning strategy
and memory management strategy imply a specific application
mapping. In contrast, AutoMap does not make a domain-specific
assumptions and targets the large class of iterative programs.

Profile-Guided Optimization. Profile-guided optimization
uses profiling data collected at runtime to inform optimization de-
cisions used in production runs [10]. AutoMap uses profiles of task
executions and data movement costs. The inspector-executor frame-
work uses dynamic analysis (the inspector) to capture information
about a target program, and then runtime optimization (the execu-
tor) uses this information to optimize a program component [30, 31].
While we do not consider it in this paper, in principle AutoMap
could be used in an inspector-executor style, where AutoMap is
run on-line during an initial portion of a production run to select a
fast mapping for the remainder of that execution.

7 CONCLUSION
We present AutoMap, a system that automatically maps tasks to
processors and data to memories on parallel, heterogeneous, and
distributed computer architectures. Our CCD search algorithm con-
verges quickly to the fastest known mapping in all experiments. We
show that fast mappings can be sensitive to many axes of variation,
including application, machine count, and even input size, neces-
sitating an automated approach to find these fast mappings. We
show that AutoMap always equals or outperforms Legion’s default
mapping strategy and often outperforms hand-written mappings
without any code modification or user intervention.
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