
Legate Sparse: Distributed Sparse Computing in Python
Rohan Yadav

rohany@cs.stanford.edu
Stanford University

USA

Wonchan Lee
wonchanl@nvidia.com

NVIDIA
USA

Melih Elibol
melibol@nvidia.com

NVIDIA
USA

Taylor Lee Patti
tpatti@nvidia.com

NVIDIA
USA

Manolis Papadakis
mpapadakis@nvidia.com

NVIDIA
USA

Michael Garland
mgarland@nvidia.com

NVIDIA
USA

Alex Aiken
aiken@cs.stanford.edu
Stanford University

USA

Fredrik Kjolstad
kjolstad@cs.stanford.edu

Stanford University
USA

Michael Bauer
mbauer@nvidia.com

NVIDIA
USA

ABSTRACT
The sparse module of the popular SciPy Python library is widely
used across applications in scientific computing, data analysis and
machine learning. The standard implementation of SciPy is re-
stricted to a single CPU and cannot take advantage of modern
distributed and accelerated computing resources. We introduce
Legate Sparse, a system that transparently distributes and acceler-
ates unmodified sparse matrix-based SciPy programs across clusters
of CPUs and GPUs, and composes with cuNumeric, a distributed
NumPy library. Legate Sparse uses a combination of static and
dynamic techniques to efficiently compose independently written
sparse and dense array programming libraries, providing a unified
Python interface for distributed sparse and dense array computa-
tions. We show that Legate Sparse is competitive with single-GPU
libraries like CuPy and achieves 65% of the performance of PETSc
on up to 1280 CPU cores and 192 GPUs of the Summit supercom-
puter, while offering the productivity benefits of idiomatic SciPy
and NumPy.

ACM Reference Format:
Rohan Yadav, Wonchan Lee, Melih Elibol, Taylor Lee Patti, Manolis Pa-
padakis, Michael Garland, Alex Aiken, Fredrik Kjolstad, and Michael Bauer.
2023. Legate Sparse: Distributed Sparse Computing in Python. In The Inter-
national Conference for High Performance Computing, Networking, Storage
and Analysis (SC ’23), November 12–17, 2023, Denver, CO, USA. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3581784.3607033

1 INTRODUCTION
Python is a widely used language for data science, machine learning,
and scientific computing due to its ease of use and large ecosys-
tem of numerical libraries. This ecosystem includes NumPy [13]

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SC ’23, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0109-2/23/11.
https://doi.org/10.1145/3581784.3607033

for dense array-based computations and SciPy’s [35] Sparse mod-
ule for sparse matrix-based computations, both of which serve as
foundations for numerous applications and frameworks.

Despite their widespread use, the canonical implementations
of NumPy and SciPy target a single CPU node, with only select
operations supporting multiple threads. As data set sizes and appli-
cation computational demands continue to increase, there is a need
to target resources more powerful than what a single CPU-only
node can provide. Recent work has made great strides in this area
for dense array programming systems [5, 22, 24, 29], but the auto-
matic distribution and acceleration of SciPy-based sparse matrix
programs has not yet been achieved.

SciPy or CuPy [22] (a single-GPU implementation of NumPy
and SciPy) can be paired with a communication library like MPI or
NCCL, or a task-based library like Dask Distributed [29] or Ray [21]
to enable distributed execution. However, this composition requires
the user to manually partition and communicate data, resulting
in non-trivial code modification and necessitating distributed pro-
gramming expertise. The industry-standard sparse linear algebra
systems PETSc [3, 20] and Trilinos [34] expose Python wrappers
around their low-level C/C++ APIs. While these APIs provide many
high-level sparse matrix operations, they require programmers
to reason about data distribution and data movement, a level of
expertise many programmers do not have.

Our goal in this work is to develop a system that scales unmodi-
fied SciPy Sparse programs across distributed machines with good
performance, and efficiently composes with cuNumeric [5], a dis-
tributed NumPy library. This system would provide the familiar
dense and sparse array programming interfaces to allow users with
and without expertise in distributed programming to rapidly pro-
totype distributed applications and scale these applications to the
size of machine needed to process their datasets. In this paper, we
explore the large design space encompassed by these constraints,
and demonstrate one design point that achieves our goals.

Achieving our goal of building a distributed and heterogeneous
sparse array programming library that achieves both high per-
formance as well as composability with an external dense array
programming library requires solving a global problem of perfor-
mance composability at multiple layers of the software stack. First,

https://doi.org/10.1145/3581784.3607033
https://doi.org/10.1145/3581784.3607033

SC ’23, November 12–17, 2023, Denver, CO, USA R. Yadav, W. Lee, M. Elibol, T. Patti, M. Papadakis, M. Garland, A. Aiken, F. Kjolstad, and M. Bauer

unlike when developing a monolithic distributed library, operations
launched by each separate library should compose with operations
launched by other libraries at the distributed layer. This means that
both libraries must share distributed data representations efficiently
and perform only necessary synchronization and communication.
Second, each library’s operations must agree on the processor va-
rieties targeted in a heterogeneous system. For example, if even
one operation issued by a user’s program does not have a GPU
implementation, the data movement caused by falling back to a
CPU implementation can significantly impact performance. Third,
library operations must agree on the types of their data structures,
especially when those data structures are sparse. When operations
are not implemented on the program’s requested sparse data struc-
tures, expensive format conversions to supported data structures
can dominate program execution time and increase memory usage.

To compose at these three layers of the software stack, the im-
plementation of each library needs to be flexible at each layer. At
the distributed layer, each library must be flexible with the parti-
tioning schemes used for individual operations to compose with
how operations launched by the other library may partition data.
And at the layers of processor varieties and types of data structures,
the sparse library must support a myriad set of variants for each
potential such combination, which also need be specialized to the
chosen partitioning schemes.

We implement the flexibility and generality required of a dis-
tributed sparse array programming library that composes with
cuNumeric through a careful separation of decisions made stati-
cally (during the implementation of Legate Sparse) and dynamically
(during the execution of Legate Sparse programs). The combination
of static and dynamic decisions is key to a successful implemen-
tation of Legate Sparse: we believe that a fully static approach is
likely to sacrifice composability or implementation maintainability,
while a fully dynamic approach is likely to sacrifice performance.
Some decisions must be made statically to specialize kernels to
processor kinds and sparse data structures, while other decisions
must be postponed until runtime, where the specific interactions
between different libraries are known. We divide the space of static
and dynamic decisions in the implementation of Legate Sparse with
the following key ideas:

• Composable Distribution. To compose distributed operations
across libraries, we combine a constraint-based description of
data distributions with a first-class representation of data par-
titions. This combinations allows for the compact encoding of
potential distribution strategies for each operation statically.
Then, we defer the decision of what concrete data partitions
to use for each operation until runtime. We dynamically select
partitions that satisfy the distribution constraints and align with
existing data distributions, allowing (to the extent possible) for
data to be operated on where it exists in the machine.

• Compiler-Aided Kernel Generation. To implement the large
number of variants required to run each operation with each
sparse data structure on each heterogeneous processor kind, we
leverage the DISTAL [36, 37] sparse tensor algebra compiler. We
utilized DISTAL to ahead-of-time generate distributed kernels

1 # Try to import cuNumeric and Legate Sparse,

2 # and fall back to NumPy and SciPy if not present.

3 try:

4 import cunumeric as np

5 import legate.sparse as sp

6 except ImportError:

7 import numpy as np

8 import scipy.sparse as sp

9
10 # Generate a random sparse matrix.

11 A = sp.random(n, n, format='csr')

12 # Make a positive semi-definite matrix from A.

13 A = 0.5 * (A + A.T) + n * sp.eye(n)

14
15 # Estimate the maximum eigen-value via the Raleigh quotient.

16 x = np.random.rand(A.shape[0])

17 for _ in range(iters):

18 x = A @ x

19 x /= np.linalg.norm(x)

20 result = np.dot(x.T, A @ x)

Figure 1: Legate Sparse and cuNumeric program that runs on
a GPU cluster and falls back to SciPy and NumPy.

specialized to each data format, processor variety and partition-
ing scheme, enabling Legate Sparse to dynamically dispatch
across a wide set of statically-generated specialized kernels.

• Dynamic Dependence and Communication Analysis. Dy-
namic dependence and communication analyses enable inde-
pendent libraries to launch work while ensuring precise syn-
chronization and communication between the libraries. We
implement Legate Sparse through a translation to the program-
ming model of the Legion [6] runtime system, and leverage it
to overlap computation and perform precise, data-dependent
communication across library boundaries.

We have developed a prototype implementation of Legate Sparse
that composes with cuNumeric to distribute and accelerate un-
modified Python programs that use NumPy and SciPy, such as
the eigenvalue estimation computation in Figure 1. Legate Sparse
achieves the transparent distribution of SciPy and NumPy programs
in a maintainable way: the implementations of Legate Sparse and
cuNumeric are each unaware of the other library’s implementation,
and a large number of the kernels in Legate Sparse were automati-
cally generated. Our prototype implements 35% of the SciPy Sparse
API, which is sufficient to express complex computations from
scientific computing and machine learning.

We evaluate the performance of Legate Sparse on the Summit
supercomputer with a combination of NumPy and SciPy based
workloads with varying complexity, ranging from 10 to 1000 lines
of code. Our benchmark suite contains iterative linear solvers (con-
jugate gradient, geometric multi-grid), Runge-Kutta integration,
and sparse matrix factorization. Our experiments show that, for
a drop-in NumPy and SciPy replacement, Legate Sparse achieves
good scalability to 1280 CPUs and 192 GPUs, achieving 65% of the
performance of PETSc. We also show that Legate Sparse delivers
comparable performance with CuPy on a single GPU and outper-
forms SciPy on a single CPU socket, while effectively scaling to
larger numbers of processors.

Legate Sparse: Distributed Sparse Computing in Python SC ’23, November 12–17, 2023, Denver, CO, USA

2 BACKGROUND
In this section, we provide background on the SciPy Sparse module,
and discuss components of the library relevant to this work.We then
provide background on the Legion [6] runtime system, which both
Legate Sparse and cuNumeric are built upon. Finally, we discuss
how cuNumeric maps onto Legion’s abstractions.

2.1 SciPy Sparse
SciPy Sparse [2, 35] is a sub-module of the SciPy Python library
that provides a high-level API for linear algebra operations over
different types of sparse matrices. SciPy Sparse supports several
common sparse matrix formats, including the CSR (compressed
sparse rows), CSC (compressed sparse columns), DIA (diagonal) and
COO (coordinate) formats, and supports format conversions and
data reorganization operations between these formats. On these
sparse matrices, SciPy Sparse supports a variety of basic mathe-
matical operations, such as matrix-vector products, matrix-matrix
products and diagonal computations, as well as higher-level linear
algebra operations like iterative solves and eigenvalue computa-
tions. SciPy Sparse is directly composable with NumPy, as many
operations within the API natively accept and return NumPy arrays.
The standard implementation of SciPy implements the API with a
combination of calling out to C operations and utilizing existing
NumPy routines. Finally, the SciPy Sparse API has no notions of
execution or distribution strategies, meaning that all parallelism
performed by Legate Sparse must be implicit.

2.2 Legion
Legion [6] is a data-centric, task-based runtime system organized
around region data structures that are partitioned into sub-regions
and computed on by user-defined tasks. Legion performs dynamic
analysis to extract parallelism from sequential user programs, rep-
resented as streams of tasks, by identifying tasks within the stream
that operate on independent regions, and automatically inserting
the necessary communication and synchronization to preserve the
sequential semantics of the input program.

Data Model. All long-lived and distributed data is described
through regions, which are multi-dimensional arrays. Regions are
the underlying data structures that back both cuNumeric’s dis-
tributed arrays and Legate Sparse’s sparse matrices. Parallelism
in Legion is expressed through the partitioning of regions into
sub-regions. A partition 𝑃 of a region 𝑅 is a first-class object that
represents the mapping from a set of colors to subsets of the indices
of 𝑅. Partitions need not be disjoint, nor do they need to cover the
whole index space: the sets of indices in 𝑃 can overlap or alias, and
their union does not need to cover all indices in 𝑅.

Legion supports dependent partitioning [33] operations for creat-
ing partitions from existing partitions. The most important depen-
dent partitioning operation to this work is image, which operates
on a source region that contains indices pointing into a destina-
tion region, and projects a partition of the source region onto the
destination. Intuitively, given a partition of the source region, the
image operation colors all indices in the destination region with
the same color as the partition of each index in the source region.
More precisely, consider a source region 𝑆 and a destination region

{0,2} {3,4} {6,8}{5,5}

4 5 760 1 32

S :

D :

(a) Image (by range)

4 50 1 32

3 4 520 1 31S :

D :

(b) Image (by coordinate)

Figure 2: Visualization of the image partitioning operation.

𝐷 , where elements in 𝑆 are sets of indices in 𝐷 . Given a parti-
tion 𝑃 of 𝑆 , the image of 𝑆 to 𝐷 is a partition 𝑃 ′ of 𝐷 such that
∀𝑐 ∈ 𝑃,∀𝑖 ∈ 𝑃 [𝑐], 𝑆 [𝑖] ⊆ 𝑃 ′ [𝑐].

The image operation is demonstrated in Figure 2, where Figure 2a
shows an image from a source region that contains ranges of indices,
and Figure 2b shows a source region that names individual indices.
Note that the partition of 𝐷 created by the image in Figure 2(b) is
aliased, because the 1st and 3rd elements of 𝐷 are included in two
sub-regions each. Image is a powerful operator that allows us to
express co-partitioning of the indexing arrays that are often used
to represent sparse matrices, and to capture the data-dependent
communication patterns that arise in sparse computations.

Tasks. Tasks are the atomic unit of computation in Legion. Tasks
are arbitrary, user-defined computations that operate on regions,
and declare how they will use each region (read, write or reduce).
Legion extracts dependencies between tasks, and inserts communi-
cation operations for the regions on which a task operates.

Mapping. Legion programs do not directly encode machine-
specific decisions such as on what processors tasks should run
and in what memories regions should be allocated. Instead, a sepa-
rate mapper makes these decisions for the application at runtime,
allowing the application to remain unchanged when porting to a
new machine or during certain kinds of performance tuning.

2.3 cuNumeric
cuNumeric [5] is a distributed and accelerated drop-in replacement
for NumPy. Like Legate Sparse, cuNumeric is implemented via a
dynamic translation from the NumPy API to Legion. cuNumeric
represents NumPy arrays as Legion’s regions, partitions the regions
for parallel processing, and launches tasks corresponding to NumPy
operations. The original version of cuNumeric as described by Bauer
et al. [5] selects partitions of regions for individual operations by
maintaining a key partition for each region that tracks the latest
written partition of the region. NumPy operations between multiple
arrays choose partitions of arrays that keep the key partition of
the largest region involved in an operation in place. Additionally,
the original version of cuNumeric employs a specialized mapper
that encodes heuristics for mapping NumPy programs, such as
choosing when to distribute tasks, selecting the tile size to partition
data into, and the mapping of tasks and regions onto processor
and memories. To enable composability with Legate Sparse, we
modify the partitioning strategies within cuNumeric to use the
constraint-based system discussed in Section 4.1, and introduce
composition-aware mapping algorithms to cuNumeric’s mapper,
as discussed in Section 4.2.

SC ’23, November 12–17, 2023, Denver, CO, USA R. Yadav, W. Lee, M. Elibol, T. Patti, M. Papadakis, M. Garland, A. Aiken, F. Kjolstad, and M. Bauer

4.0 5.0

1.0 2.0 3.0

7.0 8.0

6.0

0

1

2

3

0 1 2 3

{0,2} {3,4} {6,7}{5,5}

0 1 13 3 0 30

1.0 2.0 4.03.0 5.0 6.0 8.07.0

pos

crd

vals

4x4 matrix Legate CSR

Figure 3: Legate Sparse’s CSR sparse matrix encoding.

3 SPARSE DATA REPRESENTATION
The standard single-node representations of common sparse ma-
trix formats store metadata about the indices of non-zero matrix
entries and their values in packs of arrays. For example, the COO
(coordinate) format stores three arrays, where the first two arrays
store the row coordinate and column coordinate of each non-zero
entry of the matrix, and the last array stores the value. The CSR
(compressed sparse rows) format further compresses the COO for-
mat by implicitly representing the rows that contain non-zero en-
tries: it maintains an array (often called pos or indptr) where the
column coordinates and values for row 𝑖 are stored within range
[pos[𝑖], pos[𝑖+1]) of an array called crd. The CSC format is similar
to CSR, but compresses the columns instead of the rows.

We use Legion’s regions to extend these single-node represen-
tations into distributed sparse matrix data structures by mapping
each of the arrays used to represent sparse matrices to regions. For
instance, the row, column and value arrays in the COO format are
represented directly as regions in Legate Sparse. Formats such as
CSR and CSC are represented in a similar manner, but store the
range of coordinates for a row or column 𝑖 in a tuple at pos[i], as
depicted in Figure 3. This small variation from the standard repre-
sentation allows us to directly employ Legion’s image partitioning
operation to relate partitions of the pos and crd regions with one
another. We also use images to relate partitions of the crd region
with referenced indices in dense vectors and matrices. For example,
consider a distributed SpMV (𝑦 = 𝐴 · 𝑥), where 𝐴 is stored as CSR.
Performing an SpMV requires accessing the locations in 𝑥 corre-
sponding to the non-zero coordinates stored in 𝐴’s crd region. We
use an image from the partition of 𝐴’s crd region to compute the
referenced locations of 𝑥 . An example of this operation is discussed
in Figure 5 in Section 4.3. Images allow for the co-partitioning of
the regions used to define sparse data structures, and to implement
MPI-like scatter/gather operations in a high-level manner.

Our decision to represent sparse matrices as a set of regions
instead of a collection of local sparse matrices per rank (as used
by PETSc and Trilinos) has both benefits and downsides. Using a
set of regions aligns more closely with the Legion programming
model that we target, and careful choices of partitioning enables
description of non-trivial communication patterns. Additionally,
this choice allows for interoperation with Legate Sparse: since
sparse matrices are constructed from regions, users can directly
construct sparse matrices out of cuNumeric arrays, or extract and
operate on the arrays that back a sparse matrix. A downside of this
decision is that the partitioned pieces of the global sparse matrix
passed to individual tasks are not valid sparse matrices from the
perspective of external libraries like cuSPARSE. As a result, we pay

a small performance penalty when reshaping these local pieces
into formats accepted by these libraries when we use them. Our
evaluation (Section 6) shows that our sparse matrix representation
has low overhead while allowing for direct use Legion’s API and
close alignment with SciPy Sparse’s programming model.

4 COMPOSABLE PARALLELIZATION
Our goal with Legate Sparse was to distribute and accelerate SciPy
Sparse workloads while efficiently composing with cuNumeric. In
this section, we describe the techniques employed to enable the
performant composition of Legate Sparse with cuNumeric at the
distributed layer of each library.We describe how Legate Sparse and
cuNumeric partition the previously discussed sparse and dense data
structures, and how each library launches parallel operations over
the partitioned data using Legion. We show how abstractions built
on top of Legion’s partitions enable concise and composable parallel
implementations of distributed operations, and describe how tomap
these operations onto physical hardware in a composable manner.

4.1 Constraint-Based Parallelization
Legate Sparse and cuNumeric distribute SciPy and NumPy pro-
grams by translating each operation into a set of task launches over
partitioned regions. The selection of what partitions to use for each
task launch has a significant impact on performance. For example,
if two tasks 𝑡1 and 𝑡2 operate sequentially on a dense matrix 𝑀 ,
𝑡1 selects a row-wise partition of𝑀 , and 𝑡2 selects a column-wise
partition of𝑀 , then a distributed transpose must be performed after
𝑡1 has completed to put the data in the required distributed layout
for 𝑡2. To be performance-composable across operations, we need
to re-use existing partitions whenever possible. However, to keep
the implementation maintainable, we do not want every operation
to have to explicitly consider all possible partitions of every input.

We resolve this tension by leveraging recent work in constraint-
based automatic parallelization, introduced by Lee et al. [17]. We
add a layer of indirection to task definitions and launches where,
instead of describing the exact partitions that tasks should operate
on, tasks describe what regions they will operate on and constraints
on how those regions should be partitioned. Constraints can be
simple, such as declaring that two regions must have aligned parti-
tions (for an element-wise operation), or complex constraints that
invoke dependent partitioning operations (such as relating the pos
and crd regions in a CSR matrix by an image). We use a constraint
solver inspired by Lee et al. [17] to select concrete partitions of each
region that satisfy all of the declared constraints. The constraints
are designed such that there is always at least one solution; if more
than one solution is possible, the solver picks the solution that
re-partitions the least amount of data. We refer to Lee et al. for a
formal discussion of the constraint language and solving process.

We now discuss an example of the task launching process with
constraints using the row-based distributed SpMV example in Fig-
ure 4. Upon execution of the task launching code in Figure 4,
the task object contains the following partitioning constraints:
equals(y, pos), image(pos, crd), image(pos, vals), and
image(crd, x). Intuitively, these constraints mean the follow-
ing: 1) the same partition must be selected for y and pos, 2) the
partitions of crd and vals must be the result of an image from the

Legate Sparse: Distributed Sparse Computing in Python SC ’23, November 12–17, 2023, Denver, CO, USA

1 def spmv(self, A, x):

2 # Compute y = A @ x and return y.

3 y = cunumeric.zeros(A.shape[0])

4 task = ctx.create_task(ROW_SPLIT_SPMV)

5 # Add all regions to the task.

6 task.add_output(y)

7 task.add_input(A.pos, A.crd, A.vals, x)

8 # Describe partitioning constraints.

9 task.add_alignment_constraint(y, A.pos)

10 task.add_image_constraint(A.pos, [A.crd, A.vals])

11 task.add_image_constraint(A.crd, x)

12 task.execute()

13 return y

Figure 4: Python implementation of a row-based distributed
CSR SpMV (adapted from DISTAL generated code).

selected partition of pos, and 3) the partition of xmust be the result
of an image from the selected partition of crd. The constraint solver
realizes that the choices of partitions for y and pos are independent,
while the partitions for crd, vals and x are dependent on choices
for partitions for other regions. Then, the solver examines the ex-
isting partitions for y and pos and selects the existing partitions
if they are aligned. Otherwise, it selects an existing partition that
keeps the sparse matrix in place. Once these initial partitions have
been selected, the solver uses Legion’s image operation to construct
partitions of crd, vals and x to satisfy the remaining constraints.

We developed Legate Sparse using the constraint system, and
adapted the implementation of cuNumeric to use the same sys-
tem. The constraint-based design is key to achieving performance
composability at the distributed layer of our system for two reasons:
• Partition reuse. The constraint formulation enables reusing
partitions across individual operations and libraries. Operations
defined by Legate Sparse can consume partitions created by
cuNumeric and vice-versa, avoiding unnecessary data move-
ment when passing data between Legate Sparse and cuNumeric.

• Localization of operation definitions. Because each task
only describes what partitions are possible to use, each task is
defined independently. Existing operation implementations do
not need to consider partitioning strategies defined in the future,
and new operation implementations do not need to consider all
possible existing partitioning strategies. The most important
outcome of this design is that the cuNumeric and Legate Sparse
implementations are completely unaware of the other. The lack
of coupling streamlines development and is promising for the
development of future libraries using the same strategy.

4.2 Composable Mapping
By representing sparse and dense arrays with regions and launch-
ing tasks using constraint-based parallelism, Legate Sparse and
cuNumeric issue a stream of tasks to Legion. To execute this stream
of tasks, Legate Sparse and cuNumeric must instruct Legion on
which processor each task should run on, and in which memory to
allocate each region of each task. Legate Sparse and cuNumeric com-
municate these decisions through separate mapper objects, which
Legion queries before executing tasks. Proper mapping decisions
are key to achieving high performance — if mapping decisions

are not made in a coordinated manner between Legate Sparse and
cuNumeric, performance degradation can occur due to unneces-
sary data movement. While the library implementations of Legate
Sparse and cuNumeric are independent, we introduce a point of cou-
pling at the runtime layer between the libraries by sharing mapper
infrastructure and mapping policies between the two.

Legate Sparse and cuNumeric use the same strategy for mapping
tasks to processors to ensure a consistent assignment. A consistent
processor mapping strategy ensures that data does not thrash be-
tween operations launched by different libraries. For example, if
Legate Sparse and cuNumeric launch an element-wise operation in
series, using the same processor mapping strategy ensures no data
movement occurs between the operations.

The more difficult aspect of composing mapping decisions across
libraries is the mapping of regions onto memories in the machine.
The key challenge involved in mapping regions is how to share
allocations of distributed and partitioned data between libraries.
Because interactions between libraries are unknown until execution,
the partitions of regions created by libraries and the aliasing of
those partitions are also not known until program execution. To
minimize data movement and memory usage, the mapping strategy
used by Legate Sparse and cuNumeric must reuse and resize region
allocations across individual operations and library boundaries. We
facilitate the reuse of region allocations by having the mappers for
Legate Sparse and cuNumeric record all region allocations made
in a shared store on each node, and having the mappers query the
store on their local node before making new allocations.

However, reusing allocations that exactly match the extents of a
region is not sufficient to achieve good performance, as tasks from
different libraries may use multiple views of the same underlying
region. As an example, consider a stencil computation, where a task
reads from multiple tiles offset around a center tile. An efficient
mapping for this computation would coalesce all offset tiles with
the center tile into a single, larger allocation, reducing the total
amount of memory and increasing cache locality.

To efficiently map multiple sub-regions into a single allocation,
our shared mapping strategy employs a coalescing step before per-
forming allocations. When selecting an allocation for a region, map-
pers examine the existing allocations for other sub-regions of the
same parent region. If another sub-region has an intersection with
the region being allocated, then the mapper has an option of merg-
ing the two views into a new, larger allocation with enough space
for both regions. Tasks using the larger allocation then operate on
slices of the allocation corresponding to the desired sub-region. We
use a heuristic to drive coalescing decisions, where sub-regions are
coalesced if the size of their overlapping components is sufficiently
larger than their non-overlapping components. The coalescing step
is key to reducing overall memory usage and eliminating redundant
data movement. A concrete example is discussed in Section 4.3.

4.3 Execution Example
Figure 5 depicts the execution of the program displayed in Figure 1
with Legate Sparse and cuNumeric. Figure 5 shows how the sparse
matrix-vector multiplication (SpMV) launched by Legate Sparse
and the norm and division operations launched by cuNumeric share
partitions and physical resources. The top half of the figure shows

SC ’23, November 12–17, 2023, Denver, CO, USA R. Yadav, W. Lee, M. Elibol, T. Patti, M. Papadakis, M. Garland, A. Aiken, F. Kjolstad, and M. Bauer

A = sparse.random(…)
x = np.random(…)
for _ in range(…):
 x = A @ x
 x /= norm(x)

0 1 32

0 1 32 4 5

0 1 32 4 5

pos

crd

vals

0 1 32

x0

x1

0 31 2

0 1

0 1 2

0 1 2

pos

crd

vals

0 1 2

0 1

x0

x1

GPU 0

2 3

3 4 5

3 4 5

pos

crd

vals

1 2 3

2 3

x0

x1

GPU 1

0 1x1

2 3x1

0 1 2

0 1

x1

x2 …

1 2 3

1 2

x1

x2 …

2

3

0 1x2 2

1 2x2 3

0 1 2

0 1

x2

x3 …

2

1 2 3

1 2

x2

x3 …

3

(RA1)

(RA2)

(RA3)

(RA4)

(RA1)

(RA3)

(RA2)

(RA5)

(RA4)

(RA6)

(RA2)

(RA4)

(RA2)

(RA4)

(RA5)

(RA6)

x1 = A @ x0 x1 /= norm(x1) x2 = A @ x1 x2 /= norm(x2) x3 = A @ x2

Startup state: all of x is copied due to
allocation resizing.

Steady state: only 1-element of x is copied.

b c

a

f

d e

Legion Copy Index 2

Legion Copy Index 1

Expand RA1 to RA5

Expand RA3 to RA6

Legion Copy Index 1

Legion Copy Index 2

Tile x1 and pos, take images
onto crd, vals and x0

Le
ga

te
 E

xe
cu

tio
n

Le
gi

on
 E

xe
cu

tio
n

0 1 32x1

Reuse tiling of x1

Reuse partitions for
future operations

x2 reuses slice of RA2

x2 reuses slice of RA4

A =

legate.sparse cuNumeric legate.sparse cuNumeric legate.sparse

{0,0} {1,2} {5,5}{3,4}

0 1 12 2 3

a b dc e f

pos

crd

vals

Data Representation of A

Sample Program

Figure 5: Execution of the program in Figure 1, with control flowing between Legate Sparse and cuNumeric. The left part of
the figure contains an excerpt of the program and an example matrix A and its data layout. The right part of the figure is the
execution; the top half depicts partitioning and launching of tasks in Legate, while the bottom half shows the Legion-level
execution on the physical machine. In the right part of the figure, each region entry is labeled with the coordinate of the entry.

the execution of the Python Legate task launching logic, and the
bottom half shows the physical execution with Legion on a 2 GPU
system. An efficient implementation only performs one element
halo exchanges of the 𝑥 vector, and no other copies. We show how
Legate Sparse and cuNumeric interoperate to achieve this strategy.

Throughout the figure, we refer to the versions of the vector 𝑥
at each iteration 𝑖 of the main loop with 𝑥𝑖 . For example, the initial
vector 𝑥 is denoted 𝑥0, and the resulting 𝑥 after the first 𝑥 = 𝐴 @ 𝑥

operation is denoted as 𝑥1. Next, all region entries in the figure are
labeled with the coordinate of that entry within the region.

We first discuss the top half of the figure, which shows how
Legate Sparse maps arrays onto regions and partitions these regions
for distributed execution. The matrix A is organized in CSR as three
separate regions, pos, crd and vals, as discussed in Section 3. The
original vector 𝑥0 is represented by a one-dimensional region.When
the program launches the first SpMV, Legate Sparse creates a new
region for the output vector 𝑥1. Solving the constraints for SpMV
described in Figure 4, Legate Sparse selects an aligned tiling of 𝑥1
and pos. To satisfy the image constraints, Legate Sparse invokes
Legion’s image operation to create partitions of crd, vals and 𝑥0
from the tiling. We use blue and red colors to show the resulting
partitions of each region. Note how the image from crd into 𝑥0
creates an aliased (colored blue and red) partition. Legate Sparse
launches SpMV tasks over the partitions, dispatching the tasks to

Legion. Next, control flows to cuNumeric for the norm and division
operations, which we treat as a single operation for illustration
purposes. These are element-wise operations without partitioning
constraints, so cuNumeric selects the tiling of 𝑥1 created by Legate
Sparse. After cuNumeric launches the norm and division tasks, the
loop repeats, and all partitions are reused by future iterations.

We now shift to the bottom half of the figure, which depicts the
execution with Legion, and the mapping of logical operations onto
physical resources. For all tasks launched, the Legate Sparse and
cuNumeric mappers assign tasks and regions to each GPU and the
corresponding framebuffer memory. The key to peak performance
in this program is the mapper’s choice of allocations for each region.

In the first iteration, the Legate Sparse and cuNumeric mappers
make region allocations that correspond to the bounds of each
region. The choices made in the second iteration of the program
stress the importance of the compositional-awareness of the Legate
Sparse and cuNumeric mapping strategies. When mapping the
second SpMV operation, the mapper chooses new allocations (RA5
and RA6) for each piece of 𝑥1, resizing the allocations RA1 and
RA3 to account for the larger slice of 𝑥1 required by each SpMV
task. Resizing RA1 and RA3 requires a full copy of 𝑥1, and a single
element halo-copy between GPUs. Next, Legate Sparse sees that 𝑥0
has gone out of scope, and chooses to reuse the allocations RA2 and
RA4 by coalescing them into the requested sub-regions for 𝑥2. Since

Legate Sparse: Distributed Sparse Computing in Python SC ’23, November 12–17, 2023, Denver, CO, USA

the allocations have been coalesced, the SpMV tasks only operate
on a slice of the allocation, and similarly with the norm and division
tasks. The elements outside of these tasks’ slices are denoted by a
faded color. At the start of the third iteration, the application hits
a steady state where the existing allocations are large enough to
re-use without additional resizing, causing only the single-element
halo-copy to occur. Without the mapper’s coalescing step, the full
vector copy executed in the first iteration would be executed in
each iteration, resulting in a significant loss of performance.

This example demonstrates how the use of constraint-based par-
allelization enables logically isolated implementations of operations
to compose, and how information can be shared during mapping
to extract efficient communication patterns.

5 LIBRARY KERNEL IMPLEMENTATION
Having described the abstractions with which distributed opera-
tions are defined in Legate Sparse, we now discuss our process
for implementing the SciPy Sparse API. Our prototype supports
the COO, CSR, CSC and DIA sparse matrix formats, and of the
estimated 492 functions in SciPy Sparse, our prototype implements
176 (35%) functions; 14 were implemented by using the DISTAL
compiler, 156 were ported from existing SciPy or CuPy implemen-
tations, and 6 had to be handwritten. In this section, we discuss
these three cases, as well as the portions of the API that we have
not yet implemented.

5.1 Generating Kernels with DISTAL
We used the DISTAL [36, 37] compiler to generate implementa-
tions for components of the SciPy Sparse API that perform tensor
algebraic computations. These functions are performance critical
(such as SpMV or SpMM), and require custom code tailored to
the specific operation, sparse matrix formats and target hardware.
This custom code is tedious and difficult to write; despite DISTAL
being used to generate implementations of only 14 functions in
the SciPy Sparse API, the generated code accounts for 46% of the
total C++ and CUDA in Legate Sparse (2854/6135 LOC) and 12% of
the total Python in Legate Sparse (697/5748 LOC). By generating
this performance sensitive code, we enhance the maintainability
of Legate Sparse, and allow developer time to be spent elsewhere
when optimizing the library. We give an overview of DISTAL, and
how it was used to generate code for Legate Sparse.

DISTAL compiles a tensor algebra domain specific language
(DSL) into C++ code targeting the Legion runtime. DISTAL allows
for the separate specification of 1) desired tensor computation, 2)
sparse data format of each operand, 3) the distributed algorithm
to use, and 4) the data distribution of the operands. This flexibility
allows for the high level description of many kernels of interest
within SciPy. The constraint solver discussed in Section 4.1 consid-
ers the existing data distributions of regions, so we only use the first
3 input languages of DISTAL. DISTAL generates code directly tar-
geting the Legion API, so we perform slight manual modifications
to the generated code to target our higher-level abstractions; these
changes could be automated, but we have not found the manual
work to be burdensome for developing our prototype.

DISTAL code to generate a distributed and multi-threaded CPU
SpMV is found in Figure 6, the generated C++ task body is found in

1 // Runtime parameters: input sizes and processors.

2 Param n, m, procs;

3 // Define the tensor operators.

4 Tensor<double> y({n}, {Dense}), x({m}, {Dense});

5 Tensor<double> A({n, m}, {Dense, Compressed});

6 // Describe the desired computation.

7 IndexVar i, j, io, ii;

8 y(i) = A(i, j) * x(j);

9 // Schedule the computation.

10 DISTAL::compile(y.schedule()

11 .divide(i, io, ii, procs)

12 .distribute(io)

13 .communicate(io, {y, A, x})

14 .parallelize(ii, CPUThread));

Figure 6: Distributed, multi-threaded CSR SpMV in DISTAL.

1 void CSRSpMVTask(vector<Region> regions) {

2 auto y = regions[0];

3 auto pos = regions[1];

4 auto crd = regions[2];

5 auto vals = regions[3];

6 auto x = regions[4];

7 #pragma omp parallel for

8 for (int i = y.bounds.lo; i <= y.bounds.hi; i++) {

9 auto val = 0.0;

10 for (int jA = pos[i].lo; jA <= pos[i].hi; jA++) {

11 val += vals[jA] * x[crd[jA]];

12 }

13 y[i] = val;

14 }

15 }

Figure 7: DISTAL-generated C++ task for row-based, multi-
threaded CSR SpMV, with minor modifications.

Figure 7, and the constraint based task launching code in Figure 4
is the result of adapting DISTAL-generated C++ task launching
code. The DISTAL C++ code declares some runtime parameters,
initializes the tensor operands, describes the desired computation,
and then schedules the computation for the target machine. The
algorithm specified by the scheduling language distributes the rows
of the matrix across all processors, and then parallelizes execution
across the rows between CPU threads. To achieve peak performance
on GPUs, we hand-modified the DISTAL-generated CUDA code to
make calls into cuSPARSE when applicable. In our experience, this
aspect was the most error prone step in developing the sparse linear
algebra kernel implementations and could be made easier in the
future with better compiler support for external library interaction,
such as in the Mosaic system [4].

5.2 Porting SciPy and CuPy Implementations
The largest subset (156/176 functions) of our implementation of
SciPy Sparse was done by porting existing implementations of
the API in SciPy and CuPy. While developing Legate Sparse, we
found that many functions in SciPy Sparse were implemented using
parallel NumPy operations and previously defined SciPy Sparse
kernels. By focusing our system design on composability with
cuNumeric, we were able bootstrap our library with itself and

SC ’23, November 12–17, 2023, Denver, CO, USA R. Yadav, W. Lee, M. Elibol, T. Patti, M. Papadakis, M. Garland, A. Aiken, F. Kjolstad, and M. Bauer

cuNumeric to obtain distributed and accelerated implementations
of these functions without any distributed programming.

The classes of functions that we were able to directly port var-
ied in complexity. The simplest of these functions were non-zero
preserving, element-wise, unary operations on sparse matrices that
are implemented by using the corresponding NumPy operation
on the array storing the values of the sparse matrix. Some more
complicated ported functions include computing sums across dif-
ferent axes of sparse matrices, and format conversions between
sparse matrix formats. The most complex operations that we di-
rectly ported to Legate Sparse were higher-level operations such as
solves and integrations. We ported several iterative linear solvers
(CG, CGS, BiCG, BiCGSTAB, GMRES), Runge-Kutta integration and
eigensolvers from SciPy and CuPy implementations to distributed
implementations using Legate Sparse and cuNumeric.

5.3 Hand-Written Implementations
The final group of functions in Legate Sparse were those that re-
quired completely hand-written implementations. These functions
include sorts and auxiliary operations that are implemented within
SciPy with calls to C/C++ or Python loops that directly index into
NumPy arrays. For these operations, we developed distributed and
accelerated implementations using the constraint-based parallelism
framework discussed in Section 4.1 paired with C/C++ and CUDA
code for tasks adapted from the SciPy implementations.

5.4 Unimplemented Components
Having covered how we implemented components of SciPy Sparse,
we now discuss the remaining portions of the API and the path
forward to implementing them. Out of the 316 remaining functions
in SciPy Sparse, 116 are defined on sequential matrix formats (list-
of-lists and dictionary-of-keys) used for matrix assembly in shared
memory, which we do not plan to support. 72 of the remaining 200
functions are defined on the BSR (block sparse rows) sparse matrix
format, which we plan to support, and are able to use DISTAL
to generate kernels for. This leaves 128 functions in SciPy Sparse
defined on sparse matrix formats that we support in Legate Sparse
(CSR, CSC, DIA, COO). Of these functions, we believe there is a
path forward to a nearly complete implementation: 8 are possible to
generate with DISTAL, 44 are possible to port from SciPy, 60 require
a combination of porting and hand-writing, and 14 are specific to
SciPy’s implementation. The functions that require hand-writing
cover different components of the API, including sparse matrix
reshaping operators, operators that slice and update pieces of sparse
matrices, and functions that call to external libraries like SuperLU.

6 EVALUATION
Experimental Setup.We evaluated the performance of Legate Sparse
on the Summit supercomputer. Each Summit node has a 40 core
dual socket IBM Power9. Each socket has three NVIDIA Volta V100s
connected by NVLink 2.0, for a total of six GPUs per node. Each
node is connected by an Infiniband EDR interconnect. We compile
all code using GCC 9.3.0 and CUDA 11.0.2. Legion was configured
with GASNet 2022.9.0 for inter-node communication.

Overview. We evaluate the performance of Legate Sparse by
testing it on a set of SciPy programs from the scientific comput-
ing and machine learning domains. The set of benchmarks range
from twenty-five to nearly a thousand lines of code and from mi-
crobenchmarks to full applications, displaying the complexity of the
programs Legate Sparse is able to execute. All of the benchmarks
use cuNumeric, and stress the interaction with Legate Sparse.

We measure Legate Sparse’s performance running in both CPU-
only andGPU-only settings, allowing us to compare against systems
that only support CPUs or GPUs. On a single node, we compare
against the standard implementations of SciPy and NumPy for
CPUs, and CuPy for GPUs. CuPy provides a drop-in replacement
for the SciPy and NumPy APIs, but can only utilize a single GPU.
Onmultiple nodes, we compare (when a hand-tuned baseline exists)
against the industry-standard PETSc sparse linear algebra library,
which supports both CPUs and GPUs. PETSc provides a C API
with high-level linear algebra operations similar to SciPy, but re-
quires users to both specify low-level details about partitioning and
distribution and hand-write many distributed NumPy-like array
computations. For all experiments, we collect 12 runs of data points,
drop the fastest and slowest runs, and then average the results of
the remaining 10 runs.

6.1 Weak Scaling Experiments
In this section, we evaluate the weak-scaling performance of Legate
Sparse, emulating a usage where users increase the size of their
machine to scale to larger data sets. For all benchmarks but the
quantum simulation, we compare the performance between one
socket of CPUs and the three GPUs connected to that socket. How-
ever, we start the weak-scaling at one GPU to compare performance
with CuPy. We plot throughput on a log-log plot due to the order-
of-magnitude difference in performance between various systems.

SpMV Microbenchmark. Our first experiment is a microbench-
mark for the scaling of the SpMV operations on banded sparse
matrices. This benchmark is trivially parallel with no communi-
cation, and Figure 8 shows that both Legate Sparse and PETSc
achieve perfect weak scaling. Most SciPy operations are single-
threaded and cannot benefit in performance from additional cores
or memory bandwidth of an additional CPU socket, resulting in
no weak-scaling. As discussed in Section 3, our choice of using a
global sparse matrix representation in Legate Sparse incurs some
overhead from reshaping operations to the local partitions of the
sparse matrices before passing the resulting local matrices to cuS-
PARSE, resulting in the slight performance differences between
Legate Sparse versus CuPy and PETSc.

CG Solver. We implemented a conjugate-gradient iterative linear
solver for a 2-D Poisson problem, with the results displayed in Fig-
ure 9. As with the previous experiment, we compare both modes
of Legate Sparse to the same code run in SciPy and CuPy, and a
comparable implementation in PETSc. As seen in the SpMV mi-
crobenchmark, Legate Sparse’s CPU mode outperforms SciPy due
to being multi-threaded. Legate Sparse and PETSc achieve nearly
perfect weak scaling on CPUs, with PETSc slightly outperforming
Legate Sparse, as Legion reserves some CPU resources for run-
time work. On GPUs, CuPy, Legate Sparse and PETSc have similar
performance on a single GPU, with Legate Sparse achieving 85%

Legate Sparse: Distributed Sparse Computing in Python SC ’23, November 12–17, 2023, Denver, CO, USA

1/1 1/3 2/6 4/12 8/24 16/48 32/96 64/192
Sockets/GPUs

100

101

102

Th
ro

ug
hp

ut
 (i

te
ra

tio
ns

 /
se

co
nd

)

SpMV Microbenchmark

System
Legate-GPU
CuPy (1 GPU)
PETSc-GPU

Legate-CPU
SciPy
PETSc-CPU

Figure 8: Weak-scaling of an SpMV microbenchmark.

1/1 1/3 2/6 4/12 8/24 16/48 32/96 64/192
Sockets/GPUs

100

101

102

Th
ro

ug
hp

ut
 (i

te
ra

tio
ns

 /
se

co
nd

)

Conjugate Gradient Solver

System
Legate-GPU
CuPy (1 GPU)
PETSc-GPU

Legate-CPU
SciPy
PETSc-CPU

Figure 9: Weak-scaling of a Conjugate Gradient solver.

percent of the performance of PETSc. PETSc and Legate Sparse
then weak-scale from a single GPU, where PETSc achieves nearly
perfect weak scaling, starting to fall off slightly at 192 GPUs. Legate
Sparse also scales well, but experiences some performance drop-off
at 32 nodes due to the fast GPU kernels exposing overheads in
Legion’s all-reduce implementation1, causing the dot-product com-
munication in the CG solve to affect Legate Sparse’s performance at
a smaller processor count than PETSc. At 192 GPUs, Legate Sparse
achieves 65% percent of PETSc’s performance.

Multi-grid Solver. We implement a two-level geometric multi-
grid conjugate gradient solver, which uses the injection restriction
operator and a weighted Jacobi smoother2. Multi-grid methods
are known to be relatively challenging to implement correctly and
efficiently on distributed machines — our implementation is 300
lines of Python. We do not have a distributed reference imple-
mentation, so we compare Legate Sparse’s CPU mode to SciPy,
Legate Sparse’s GPU mode to CuPy, and then weak-scale to larger
machines. Figure 10 contains the weak-scaling results for the geo-
metric multi-grid solver. As with prior experiments, Legate Sparse’s
1The Legion developers are aware of this issue, and plan to address it in the future.
2This benchmark was inspired by, but is not directly comparable to HPCG [14].

1/1 1/3 2/6 4/12 8/24 16/48 32/96 64/192
Sockets/GPUs

100

101

Th
ro

ug
hp

ut
 (i

te
ra

tio
ns

 /
se

co
nd

)

Geometric Multi-Grid Solver

System
Legate-GPU
CuPy (1 GPU)

Legate-CPU
SciPy

Figure 10: Weak-scaling of a Geometric Multi-Grid solver.

CPU version significantly outperforms SciPy and has good weak-
scaling to 64 sockets. On a single GPU, CuPy is 30% faster than
Legate Sparse’s GPU version. This performance difference is caused
by overheads in the Legate library due to its Python implementa-
tion. During the V-cycle of the multi-grid method, the application
launches several tasks small enough to expose overheads in Legate’s
task launching and metadata management. Legate Sparse’s GPU
version starts off weak-scaling well, but has kernels that run fast
enough to expose overheads in Legion that could be fixed in the
future with tracing [18] and task fusion [32]. Similar performance
on a preconditioned CG solver was seen by Bauer et al. [5]. Despite
the imperfect weak scaling, Legate Sparse is able to execute the
Python multi-grid solver on accelerated hardware much faster and
on larger problem sizes than SciPy.

Quantum Simulation. We develop a Legate Sparse quantum sim-
ulation of Rydberg atom arrays. The simulation can be used to
solve Maximum Independent Set (MIS) problems, as pioneered by
the group of Mikhail D. Lukin and QuEra Computing [10]. Like
previous implementations [1], we significantly reduce the mem-
ory footprint of the simulation by including only states that are
allowed by the Rydberg blockade mechanism [19]. Likewise, the
interactions between states are rather sparse, as they only per-
mit transition between states in adjacent excitation manifolds and
otherwise identical excitation structure. Competing quantum dy-
namics, namely the energy terms stemming from laser detuning
of the system, are inherently sparse due to their diagonal action.
Nevertheless, the exponential growth of the quantum state space
is only partially stymied by exploiting inherent problem structure,
so the simulation remains memory hungry. This application was
developed in Python without any expectation that it would be even-
tually executed in a distributed fashion; the algorithms used in the
simulation could be tuned to achieve more scalable performance.
We aimed to maximize scale of the Python application as-is, and
were able to achieve the exact simulation of the full wave function
of up to 50 qubits at time-scales consistent with deep circuits or
high entanglement.

The core computational component of this benchmark is an 8th-
order Runge-Kutta integration. Similarly to the GMG benchmark,
we compare against SciPy and CuPy. Due to the nature of the

SC ’23, November 12–17, 2023, Denver, CO, USA R. Yadav, W. Lee, M. Elibol, T. Patti, M. Papadakis, M. Garland, A. Aiken, F. Kjolstad, and M. Bauer

1 2 4 8 16 32 64
Sockets or GPUs

10−1

100

Th
ro

ug
hp

ut
 (i

te
ra

tio
ns

 /
se

co
nd

)

Quantum Simulation
System
Legate-CPU
Legate-GPU
SciPy
CuPy (1 GPU)

Figure 11: Weak-scaling of a quantum simulation.

application, we were unable to exert fine-grained control over the
input size: we could only approximately double the problem size.
Therefore, we utilize 4 of the 6 GPUs on each Summit node for this
benchmark to directly compare weak-scaling performance between
CPUs and GPUs. We stress that Legate Sparse can successfully
utilize all 6 GPUs per node for standard runs of the simulation.

The weak-scaling results are found in Figure 11. As with prior
experiments, Legate Sparse significantly outperforms the standard
implementation of SciPy. On a single GPU, CuPy achieves a 40%
speedup over Legate Sparse, for a similar reason as the GMG bench-
mark — several small tasks launched in the integration expose over-
heads in Legate. The simulation experiences a loss in weak-scaling
efficiency as the number of processors increases. This fall-off is
expected due to the communication pattern of the application: the
sparse matrices that describe the atomic relationships have a very
high bandwidth (the coordinates in a row reference a wide range
of columns). Our profiling shows that the algorithms used by the
application require every processor to exchange tens to hundreds
of megabytes of data with at least half of the other processors in
the system, almost an all-to-all communication pattern.

At 1 to 4 GPUs, Legate Sparse’s GPU version significantly out-
performs the CPU version, due to utilizing the higher-bandwidth
NVLink. Once inter-node communication over Infiniband is re-
quired after 4 GPUs, the GPU version has similar performance as
the CPU version, even dropping below the CPU performance at 16
GPUs. This drop is due to the ratio of communication to effective
bandwidth available between each experiment: at 16 GPUs, Legate
Sparse’s GPU version is utilizing 4 nodes of network hardware,
while Legate Sparse’s 16-socket CPU version is using 8 nodes to
exchange the same amount of data, thus having double the network
bandwidth available to communicate through. Finally, the large
halo regions present in the application result in imperfect weak
scaling of the memory usage per processor, causing Legate Sparse’s
64 GPU version to run out of memory.

Dataset CuPy Legate Sparse

Samples/sec Samples/sec Min Req. Resources
ML-10M 197156 69648 1 GPU
ML-25M 28590 55288 2 GPUs
ML-50M X 33857 6 GPUs
ML-100M X 6907 12 GPUs

Figure 12: Sparse Matrix Factorization Performance

6.2 Sparse Machine Learning
To evaluate the potential of Legate Sparse as a high-level program-
ming model for sparse machine learning applications, we imple-
ment the sparse matrix factorization algorithm with bias [15]. We
optimize our model with mini-batch SGD [28], and use a closed-
source sparse autograd procedure to generate Python source code
for the gradient, which we hand-optimized to remove redundant
computations and to exploit sparsity patterns. We compare against
CuPy, and measure training throughput in terms of samples per
second on the 10 million (10m), 25 million (25m), 50 million (50m)
and 100 million (100m) MovieLens datasets [12]. The 50m and 100m
datasets were derived from the 20m dataset using randomized frac-
tal expansions [7]. The training loop loads the input dataset into
host memory, shuffles the training data before each epoch, and con-
structs batches of sparse matrices from samples of the training data
to update the model parameters. Our implementation falls within
99.7% of SOTA prediction performance for the 10m dataset [26, 27].
The results for these experiments are found in Figure 12.

A key optimization in our implementation is the use of the
SDDMM (sampled dense-dense matrix multiplication) operation
to avoid materializing dense matrices in expressions of the form
𝐴 ⊙ (𝐵 ·𝐶), where 𝐴 is sparse and 𝐵,𝐶 are dense. We generated a
high-performance distributed SDDMM implementation using DIS-
TAL, and exposed cuSPARSE’s SDDMM kernel for CuPy to use,
since CuPy did not support SDDMM out-of-the-box.

We ran each dataset with CuPy on a single GPU, and found that
it could only fit the 10m and 25m datasets without running out of
memory. In contrast, Legate Sparse can scale to the larger datasets
without code modifications by simply adding more GPUs, handling
the 50m and 100m datasets with 6 GPUs and 12 GPUs respectively.

CuPy achieves a 2.8x speedup over Legate Sparse on the 10m
dataset. Similar to prior experiments, this performance difference
arises from overheads in Legate exposed by small tasks launched by
the application. Next, CuPy processes the 25m dataset on a single
GPU, but achieves nearly half the throughput of Legate Sparse.
CuPy runs close to the GPU memory limit on the 25m dataset, and
Legate Sparse is unable to do the same due to reserved GPUmemory
for Legion and external CUDA libraries. We saw that cuSPARSE’s
SDDMM kernel was inefficient compared to DISTAL’s kernel: the
SDDMM began to dominate CuPy’s execution time on the 25m
dataset, while remaining a small percentage of total execution time
for Legate Sparse, leading to the speedup on 2 GPUs. Finally, while
Legate Sparse can execute the 50m and 100m datasets, it experiences
some performance degradation at larger scales. This is due to all-to-
all communication patterns inherent in the factorization algorithm,
which performs several dense matrix transpose operations in the
gradient computation. The effect is more noticeable on the 100m

Legate Sparse: Distributed Sparse Computing in Python SC ’23, November 12–17, 2023, Denver, CO, USA

dataset: 12 GPUs is two nodes of Summit, so many communications
go through the lower bandwidth Infiniband instead of NVLink.

7 RELATEDWORK
Distributed Sparse Linear Algebra and Tensor Algebra Libraries. Dis-
tributed sparse linear algebra has received tremendous attention
from the community. The industry-standard sparse linear algebra
packages PETSc [3, 20] and Trilinos [34] are long-lasting results
of this research. These systems contain a wide variety of sparse
linear algebra operations, many of which have been ported to GPUs.
However, these systems offer a lower-level API than SciPy (and
Legate Sparse), and exist within an explicitly-parallel, message-
passing based environment, requiring some expertise in parallel
and distributed programming. Additionally, is it not always straight-
forward to integrate these large systems with external libraries.

The Cyclops Tensor Framework (CTF) [30, 31] is an explicitly-
parallel library for distributed dense and sparse tensor algebra
that provides a Einstein summation notation-based API, similar to
DISTAL. CTF has a flexible API for tensor computations, it lacks
composability with a NumPy-like dense array programming library.

Accelerated and Distributed NumPy. Replacing the NumPy and
SciPy API is a common approach to accelerating these programs.
Several systems exist that accelerate and distribute the NumPy API
that we will discuss, but we are not aware of any existing system
that successfully distributes the SciPy sparse matrix APIs.

We first discuss systems that target a single node. CuPy accel-
erates both NumPy and SciPy code on a single GPU by offloading
NumPy and SciPy calls to corresponding kernels on the GPU. CuPy
can execute in a multi-GPU environment, but requires users to
manage data movement and synchronization between the GPUs.
Grumpy [25] and Bohrium [16] are systems that lazily evaluate
NumPy programs and then generate optimized code for CPUs and
a GPU. Weld [23] is a composability-focused system (like Legate
Sparse) that provides a drop-in replacement for NumPy and Pandas
programs targeting CPUs and a GPU. Similiarly to Grumpy and
Bohrium, Weld lazily evaluates the input program and performs
cross library optimizations like fusion to increase efficiency.

Dask [29] is a popular library for distributed computing in Python
with a high-level array library similar to NumPy. NumS [11] is a
distributed NumPy replacement built on top of the Ray [21] task-
based runtime system targeting clusters of CPUs. Jax [9] is a drop-in
replacement for NumPy with support for vectorization, automatic
differentiation and fusion. Jax can target distributed machines, but
has restrictions on the kinds of partitioning and distribution it can
perform. cuNumeric [5] (formerly known as Legate NumPy) is a
library that provides a drop-in, distributed backend for NumPy, tar-
geting both clusters of CPUs and GPUs. cuNumeric shares a similar
architecture as Legate Sparse, and our work focuses on maintain-
able and performant composability with cuNumeric. These systems
target NumPy computations, and are not able to execute SciPy
operations on sparse matrices, unlike Legate Sparse.

DaCe [38] accelerates annotated Python and NumPy programs
onto distributed clusters of CPUs and accelerators by translating
them into a high level representation called Stateful DataflowMulti-
graphs (SDFGs) [8] and performing a series of optimizations on this

representation. While the SDFG representation allows for optimiza-
tions such as reordering and fusing computation, DaCe requires
both code changes to use and explicit partitioning and message
passing between memories. As such, DaCe inhabits a different part
of the design space than the part targeted by Legate Sparse.

8 CONCLUSION
We have introduced Legate Sparse, a system that distributes and
accelerates unmodified SciPy Sparse programs while composing
with cuNumeric. Developing Legate Sparse involves solving com-
posability problems across the software stack; we integrate the
libraries at the distributed layer through a constraint-based parti-
tioning scheme and a dynamic runtime system, and use the DISTAL
compiler to generate kernel variants for different sparse data struc-
tures and heterogeneous processors. Moving forward, the strategy
used in Legate Sparse provides a model that others may use to de-
velop high-performance distributed libraries. We believe the ideas
in Legate Sparse form a path towards an ecosystem of distributed
libraries that compose and share data like the standard Python
computing ecosystem.

ACKNOWLEDGEMENTS
We thank our anonymous reviewers for their valuable comments
that helped us improve this manuscript. We thank Olivia Hsu, Scott
Kovach, Shiv Sundram, Bobby Yan, AJ Root, Manya Bansal, Pra-
neeth Kolichala, Pat McCormick and Torsten Hoefler for their com-
ments and discussions on early stages of this manuscript. We thank
Steven Dalton for his help with developing prototype linear solvers
in Legate Sparse. Rohan Yadav was supported by an NSF Graduate
Research Fellowship, and part of this work was done while Rohan
Yadav was an intern at NVIDIA Research. This work was supported
by the Advanced Simulation and Computing (ASC) program of the
US Department of Energy’s National Nuclear Security Adminis-
tration (NNSA) via the PSAAP-III Center at Stanford, Grant No.
DE-NA0002373, by the Department of Energy’s Office of Advanced
Scientific Computing Research (ASCR) under contract DE-AC03-
76SF00515, and by NSF grant CCF-2216964.

REFERENCES
[1] 2023. Bloqade.jl: Package for the quantum computation and quantum simulation

based on the neutral-atom architecture. https://github.com/QuEraComputing/
Bloqade.jl/

[2] SciPy Authors. 2022. scipy.sparse documentation. https://docs.scipy.org/doc/
scipy/reference/sparse.html. https://docs.scipy.org/doc/scipy/reference/sparse.
html

[3] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Steven Benson, Jed Brown,
Peter Brune, Kris Buschelman, Emil M. Constantinescu, Lisandro Dalcin, Alp
Dener, Victor Eijkhout, Jacob Faibussowitsch, William D. Gropp, Václav Hapla,
Tobin Isaac, Pierre Jolivet, Dmitry Karpeev, Dinesh Kaushik, Matthew G. Knepley,
Fande Kong, Scott Kruger, Dave A. May, Lois Curfman McInnes, Richard Tran
Mills, Lawrence Mitchell, Todd Munson, Jose E. Roman, Karl Rupp, Patrick Sanan,
Jason Sarich, Barry F. Smith, Stefano Zampini, Hong Zhang, Hong Zhang, and
Junchao Zhang. 2022. PETSc Web page. https://petsc.org/. https://petsc.org/

[4] Manya Bansal, Olivia Hsu, Kunle Olukotun, and Fredrik Kjolstad. 2023. Mosaic:
An Interoperable Compiler for Tensor Algebra. Proc. ACM Program. Lang. 7,
PLDI, Article 122 (jun 2023), 26 pages. https://doi.org/10.1145/3591236

[5] Michael Bauer and Michael Garland. 2019. Legate NumPy: Accelerated and
Distributed Array Computing. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (Denver,
Colorado) (SC ’19). Association for Computing Machinery, New York, NY, USA,
Article 23, 23 pages. https://doi.org/10.1145/3295500.3356175

[6] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. 2012. Legion:
Expressing locality and independence with logical regions. In SC ’12: Proceedings

https://github.com/QuEraComputing/Bloqade.jl/
https://github.com/QuEraComputing/Bloqade.jl/
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://petsc.org/
https://petsc.org/
https://doi.org/10.1145/3591236
https://doi.org/10.1145/3295500.3356175

SC ’23, November 12–17, 2023, Denver, CO, USA R. Yadav, W. Lee, M. Elibol, T. Patti, M. Papadakis, M. Garland, A. Aiken, F. Kjolstad, and M. Bauer

of the International Conference on High Performance Computing, Networking,
Storage and Analysis. IEEE, 1–11. https://doi.org/10.1109/SC.2012.71

[7] Francois Belletti, Karthik Singaram Lakshmanan, Nicolas Mayoraz, Walid Krich-
ene, Yi fan Chen, John Anderson, Taylor Robie, Tayo Oguntebi, Amit Bleiwess,
and Dan Shirron. 2019. Scaling Up Collaborative Filtering Data Sets through Ran-
domized Fractal Expansions. Technical Report. https://arxiv.org/pdf/1901.08910.
pdf

[8] Tal Ben-Nun, Johannes de Fine Licht, Alexandros Nikolaos Ziogas, Timo Schnei-
der, and Torsten Hoefler. 2019. Stateful Dataflow Multigraphs: A Data-Centric
Model for High-Performance Parallel Programs. CoRR abs/1902.10345 (2019).
arXiv:1902.10345 http://arxiv.org/abs/1902.10345

[9] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris
Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. 2018. JAX: composable transformations of
Python+NumPy programs. http://github.com/google/jax

[10] S. Ebadi, A. Keesling, M. Cain, T. T. Wang, H. Levine, D. Bluvstein, G. Semeghini,
A. Omran, J.-G. Liu, R. Samajdar, X.-Z. Luo, B. Nash, X. Gao, B. Barak, E. Farhi,
S. Sachdev, N. Gemelke, L. Zhou, S. Choi, H. Pichler, S.-T. Wang, M. Greiner, V.
Vuletić, and M. D. Lukin. 2022. Quantum optimization of maximum independent
set using Rydberg atom arrays. Science 376, 6598 (2022), 1209–1215. https:
//doi.org/10.1126/science.abo6587

[11] Melih Elibol, Vinamra Benara, Samyu Yagati, Lianmin Zheng, Alvin Cheung,
Michael I. Jordan, and Ion Stoica. 2022. NumS: Scalable Array Programming for
the Cloud. https://doi.org/10.48550/ARXIV.2206.14276

[12] F. Maxwell Harper and Joseph A. Konstan. 2015. TheMovieLens Datasets: History
and Context. ACM Trans. Interact. Intell. Syst. 5, 4, Article 19 (dec 2015), 19 pages.
https://doi.org/10.1145/2827872

[13] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020.
Array programming with NumPy. Nature 585, 7825 (Sept. 2020), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

[14] Michael Allen Heroux and Jack. Dongarra. 2013. Toward a newmetric for ranking
high performance computing systems. (6 2013). https://doi.org/10.2172/1089988

[15] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix Factorization
Techniques for Recommender Systems. Computer 42, 8 (2009), 30–37. https:
//doi.org/10.1109/MC.2009.263

[16] Mads Kristensen, Simon Lund, Troels Blum, Kenneth Skovhede, and Brian Vinter.
2013. Bohrium: Unmodified NumPy Code on CPU, GPU and Cluster.

[17] Wonchan Lee, Manolis Papadakis, Elliott Slaughter, and Alex Aiken. 2019. A
Constraint-Based Approach to Automatic Data Partitioning for Distributed Mem-
ory Execution. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (Denver, Colorado) (SC ’19). As-
sociation for Computing Machinery, New York, NY, USA, Article 45, 24 pages.
https://doi.org/10.1145/3295500.3356199

[18] Wonchan Lee, Elliott Slaughter, Michael Bauer, Sean Treichler, Todd Warszawski,
Michael Garland, and Alex Aiken. 2018. Dynamic Tracing: Memoization of Task
Graphs for Dynamic Task-Based Runtimes. In SC18: International Conference
for High Performance Computing, Networking, Storage and Analysis. 441–453.
https://doi.org/10.1109/SC.2018.00037

[19] Jongseok Lim, Han-gyeol Lee, and Jaewook Ahn. 2013. Review of cold Rydberg
atoms and their applications. Journal of the Korean Physical Society 63, 4 (2013),
867–876.

[20] Richard Tran Mills, Mark F. Adams, Satish Balay, Jed Brown, Alp Dener, Matthew
Knepley, Scott E. Kruger, Hannah Morgan, Todd Munson, Karl Rupp, Barry F.
Smith, Stefano Zampini, Hong Zhang, and Junchao Zhang. 2021. Toward
performance-portable PETSc for GPU-based exascale systems. Parallel Comput.
108 (2021), 102831. https://doi.org/10.1016/j.parco.2021.102831

[21] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan,
and Ion Stoica. 2017. Ray: A Distributed Framework for Emerging AI Applications.
https://doi.org/10.48550/ARXIV.1712.05889

[22] Ryosuke Okuta, Yuya Unno, Daisuke Nishino, Shohei Hido, and Crissman Loomis.
2017. CuPy: A NumPy-Compatible Library for NVIDIA GPU Calculations. In
Proceedings of Workshop on Machine Learning Systems (LearningSys) in The Thirty-
first Annual Conference on Neural Information Processing Systems (NIPS). http:
//learningsys.org/nips17/assets/papers/paper_16.pdf

[23] Shoumik Palkar, James Thomas, Deepak Narayanan, Anil Shanbhag, Rahul
Palamuttam, Holger Pirk, Malte Schwarzkopf, Saman P. Amarasinghe, Samuel
Madden, and Matei Zaharia. 2017. Weld: Rethinking the Interface Between
Data-Intensive Applications. CoRR abs/1709.06416 (2017). arXiv:1709.06416
http://arxiv.org/abs/1709.06416

[24] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan

Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Processing Systems 32. Curran
Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf

[25] Mahesh Ravishankar and Vinod Grover. 2019. Automatic acceleration of
Numpy applications on GPUs and multicore CPUs. CoRR abs/1901.03771 (2019).
arXiv:1901.03771 http://arxiv.org/abs/1901.03771

[26] Steffen Rendle. 2012. Factorization Machines with libFM. ACM Trans. Intell. Syst.
Technol. 3, 3, Article 57 (May 2012), 22 pages.

[27] Steffen Rendle, Li Zhang, and Yehuda Koren. 2019. On the Difficulty of Evaluating
Baselines: A Study on Recommender Systems. https://doi.org/10.48550/ARXIV.
1905.01395

[28] Herbert E. Robbins. 1951. A Stochastic Approximation Method. Annals of
Mathematical Statistics 22 (1951), 400–407.

[29] Matthew Rocklin. 2015. Dask: Parallel computation with blocked algorithms and
task scheduling. In Proceedings of the 14th python in science conference. Citeseer.

[30] Edgar Solomonik and Torsten Hoefler. 2015. Sparse Tensor Algebra as a Parallel
Programming Model. CoRR abs/1512.00066 (2015). arXiv:1512.00066 http://arxiv.
org/abs/1512.00066

[31] Edgar Solomonik, Devin Matthews, Jeff R. Hammond, John F. Stanton, and James
Demmel. 2014. A massively parallel tensor contraction framework for coupled-
cluster computations. J. Parallel and Distrib. Comput. 74, 12 (2014), 3176–3190.
https://doi.org/10.1016/j.jpdc.2014.06.002 Domain-Specific Languages and High-
Level Frameworks for High-Performance Computing.

[32] Shiv Sundram, Wonchan Lee, and Alex Aiken. 2022. Task Fusion in Distributed
Runtimes. In 2022 IEEE/ACM Parallel Applications Workshop: Alternatives To
MPI+X (PAW-ATM). 13–25. https://doi.org/10.1109/PAW-ATM56565.2022.00007

[33] Sean Treichler, Michael Bauer, Rahul Sharma, Elliott Slaughter, and Alex Aiken.
2016. Dependent Partitioning. In Proceedings of the 2016 ACM SIGPLAN Interna-
tional Conference on Object-Oriented Programming, Systems, Languages, and Appli-
cations (Amsterdam, Netherlands) (OOPSLA 2016). Association for ComputingMa-
chinery, New York, NY, USA, 344–358. https://doi.org/10.1145/2983990.2984016

[34] The Trilinos Project Team. 2020 (acccessed May 22, 2020). The Trilinos Project
Website. https://trilinos.github.io

[35] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,
Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1.0 Contributors. 2020. SciPy 1.0: Fundamental Al-
gorithms for Scientific Computing in Python. Nature Methods 17 (2020), 261–272.
https://doi.org/10.1038/s41592-019-0686-2

[36] Rohan Yadav, Alex Aiken, and Fredrik Kjolstad. 2022. DISTAL: The Distributed
Tensor Algebra Compiler. In Proceedings of the 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation (San Diego,
CA, USA) (PLDI 2022). Association for Computing Machinery, New York, NY,
USA, 286–300. https://doi.org/10.1145/3519939.3523437

[37] Rohan Yadav, Alex Aiken, and Fredrik Kjolstad. 2022. SpDISTAL: Compiling
Distributed Sparse Tensor Computations. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis
(Dallas, Texas) (SC ’22). IEEE Press, Article 59, 15 pages.

[38] Alexandros Nikolaos Ziogas, Timo Schneider, Tal Ben-Nun, Alexandru Calotoiu,
Tiziano De Matteis, Johannes de Fine Licht, Luca Lavarini, and Torsten Hoefler.
2021. Productivity, Portability, Performance: Data-Centric Python. In Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis (St. Louis, Missouri) (SC ’21). Association for Computing
Machinery, New York, NY, USA, Article 95, 13 pages. https://doi.org/10.1145/
3458817.3476176

https://doi.org/10.1109/SC.2012.71
https://arxiv.org/pdf/1901.08910.pdf
https://arxiv.org/pdf/1901.08910.pdf
https://arxiv.org/abs/1902.10345
http://arxiv.org/abs/1902.10345
http://github.com/google/jax
https://doi.org/10.1126/science.abo6587
https://doi.org/10.1126/science.abo6587
https://doi.org/10.48550/ARXIV.2206.14276
https://doi.org/10.1145/2827872
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.2172/1089988
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1145/3295500.3356199
https://doi.org/10.1109/SC.2018.00037
https://doi.org/10.1016/j.parco.2021.102831
https://doi.org/10.48550/ARXIV.1712.05889
http://learningsys.org/nips17/assets/papers/paper_16.pdf
http://learningsys.org/nips17/assets/papers/paper_16.pdf
https://arxiv.org/abs/1709.06416
http://arxiv.org/abs/1709.06416
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/1901.03771
http://arxiv.org/abs/1901.03771
https://doi.org/10.48550/ARXIV.1905.01395
https://doi.org/10.48550/ARXIV.1905.01395
https://arxiv.org/abs/1512.00066
http://arxiv.org/abs/1512.00066
http://arxiv.org/abs/1512.00066
https://doi.org/10.1016/j.jpdc.2014.06.002
https://doi.org/10.1109/PAW-ATM56565.2022.00007
https://doi.org/10.1145/2983990.2984016
https://trilinos.github.io
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1145/3519939.3523437
https://doi.org/10.1145/3458817.3476176
https://doi.org/10.1145/3458817.3476176

	Abstract
	1 Introduction
	2 Background
	2.1 SciPy Sparse
	2.2 Legion
	2.3 cuNumeric

	3 Sparse Data Representation
	4 Composable Parallelization
	4.1 Constraint-Based Parallelization
	4.2 Composable Mapping
	4.3 Execution Example

	5 Library Kernel Implementation
	5.1 Generating Kernels with DISTAL
	5.2 Porting SciPy and CuPy Implementations
	5.3 Hand-Written Implementations
	5.4 Unimplemented Components

	6 Evaluation
	6.1 Weak Scaling Experiments
	6.2 Sparse Machine Learning

	7 Related Work
	8 Conclusion
	References

