
Making Set-Constraint Program Analyses ScaleManuel F�ahndrich� Alexander Aiken�EECS DepartmentUniversity of California, BerkeleyBerkeley, CA 94720-1776fmanuel,aikeng@cs.berkeley.eduJuly 2, 19961 IntroductionConstraint-based programanalyses are appealing because elaborate analyses can be described with a conciseand simple set of constraint generation rules. Constraint resolution algorithms have been developed formany kinds of constraints, conceptually allowing an implementation of a constraint-based program analysisto reuse large pieces of existing code. In practice, however, new analyses often involve re-implementingnew, complex constraint solving frameworks, tuned for the particular analysis in question. This approachwastes development time and interferes with the desire to experiment quickly with a number of di�erentanalyses.We believe that implementing an analysis should require writing only the code to generate the con-straints, and that a well engineered-library can take care of constraint representation, resolution, andtransformation. Writing such a library capable of handling small programs is not too di�cult, but scalingto large programs is hard. Toward this goal, we are developing a scalable, expressive framework for solvinga class of set constraints. Scalability is achieved through four techniques: polymorphism, simpli�cation,separation, and sparse representation of constraints.Our ultimate goal is to demonstrate constraint-based analysis on programs of at least 100,000 linesof code. Currently, we evaluate our design on an application inferring types and exceptions for StandardML [MTH90] with subtyping. Our implementation analyzes SML programs in the lambda intermediaterepresentation produced by the SML/NJ compiler [App92]. The largest program analyzed thus far isthe parser generator sml-yacc, containing 6017 non-comment lines of source, which translate into 66120abstract syntax tree nodes in the SML/NJ intermediate representation. To the best of our knowledge, thisis currently the largest program analyzed by a set constraint implementation (including results reported in[AWL94, Hei94]). Full type and exception inference for sml-yacc currently takes less than 10 minutes onan HP9000/715 running at 64MHz equipped with 64MB of main memory. Even though the analysis timeis still far from practical, we improve upon a similar analysis done previously by Yi [Yi94] by a factor of50. His abstract interpretation for estimating uncaught exceptions runs about 617 minutes for sml-yaccon an SGI Challenger.Our empirical results show that our system can almost certainly handle programs larger than sml-yacc;it just happens that sml-yacc is the largest example we currently have. Though our implementation scalesnicely, it is currently much slower on medium-size programs than the system described in [Hei94].The remainder of the paper is organized as follows: Section 2 gives a short overview of the set expressionsand constraints used in our framework. Section 3 presents the techniques we �nd useful in building ascalable system. Section 4 discusses our implementation and preliminary empirical results. Throughout�This material is based in part upon work supported by NSF Young Investigator Award No. CCR-9457812 and NSFInfrastructure Grant No. CDA-9401156. The content of the information does not necessarily reect the position or the policyof the Government. 1

the paper we point out open theoretical issues where progress would, we believe, aid the engineering ofimplementations similar to ours.2 Types and ConstraintsIn our framework, set expressions represent types, and we use the terms set expression and type expressioninterchangeably. We describe the type language and the meaning of types informally. A formal developmentof an ideal model for this type language can be found in [AW93].The full type language consists of type variables, a least type ?, a greatest type >, constructed typesc(�1; : : : ; �n) where c is a constructors of arity n drawn from an in�nite set of constructors C, functiontypes �1 ! �2, intersections, unions, and conditional types.� ::= � j > j ? j c(�1; : : : ; �n) j �1 ! �2j �1 \ �2 j �1 [�2 j �1) �2We use a meaning function I to give meaning to free variables and extend it in the obvious way to typeexpressions. There is a subtype relation � on meanings which we omit for brevity. The relation �1 � �2holds between expressions �1 and �2 if for all assignments I to variables, we have I(�1) � I(�2).Unlike \standard" set expressions, our expression language includes sets of functions �1 ! �2. For agiven assignment I, the meaning of this expression isff j x 2 I(�1)) f(x) 2 I(�2)gin an appropriate domain. From the point of view of constraint resolution, the key property of functiontypes is that they are anti-monotonic in the domain; that is �1 � �2) �2 ! � � �1 ! � . We say that asubexpression � 0 of a type expression � appears monotonically (resp. anti-monotonically) if � 0 appears tothe left of an even (resp. odd) number of !'s within � .The other non-standard expression is conditional types �1) �2 (formerly �2?�1 in [AWL94]). Themeaning of a conditional type I(�1) �2) is I(�2) if I(�1) 6= ?, and ? otherwise. (We use ? to denoteboth the syntactic least type and the semantic bottom element.) Conditional types are useful for expressingcomputations involving case analysis. For example, the predicate null, which tests whether a list is emptyor not, can be assigned a very accurate type using conditions. In the following type, parentheses are usedto show association: null : �! (� \ nil) true) [(� \ cons(>;>)) false)To see that this type makes sense, note that the instance � = nil simpli�es to nil ! true (using theidentity nil \ cons(>;>) = ?). An instance with � = cons(�;) yields cons(�;) ! false.Solving constraints involving general intersection, union, and function types is still an open problem[AW93, Dam94]. Our system restricts the forms of constraints involving intersections on the left-hand sideand unions on the right-hand side of constraints in order to solve them. For the purpose of this paper, itis su�cient to consider the core type language de�ned below, which avoids these irregularities. We still usethe full type language in examples, however. The core type language distinguishes between \left" types �Land \right" types �R. Left types appear in monotonic positions and right types appear in anti-monotonicpositions. �L ::= � j ? j > j c(�L1 ; : : : ; �Ln) j �R1 ! �L2 j �L1 [�L2�R ::= � j ? j > j c(�R1 ; : : : ; �Rn) j �L1 ! �R2 j �R1 \ �R2Constraints between types express containment of sets of values. We use � to denote a set of constraints:� ::= f�L1 � �R1 ; : : : ; �Ln � �Rn gA solution to a set of constraints f�L1 � �R1 ; : : : ; �Ln � �Rn g is a meaning function I s.t.I(�Li) � I(�Ri) for i = 1; : : : ; n2

� [f? � �Rg � � (1)� [f�L � >g � � (2)� [f� � �g � � (3)� [fc(�L1 ; : : : ; �Ln) � c(�R1 ; : : : ; �Rn)g � � [f�Li � �Ri j 1 � i � ng (4)� [f�R1 ! �L1 � �L2 ! �R2 g � � [f�L1 � �R2 ; �L2 � �R1 g (5)� [f�L1 [�L2 � �Rg � � [f�L1 � �R; �L2 � �Rg (6)� [f�L � �R1 \ �R2 g � � [f�L � �R1 ; �L � �R2 g (7)� [f�L � �; � � �Rg � � [f�L � �; � � �R; �L � �Rg (8)Figure 1: Constraint resolution for core typesFigure 1 shows the constraint resolution rules for the core types. See [AWL94] for the resolution rules ofthe full type language. In Figure 1, the relation �1 � �2 means that the constraint systems �1 and �2have the same solutions. The resolution rule for constructors is sound and complete for a domain of lazyconstructors (i.e. I(c(: : : ;?; : : :)) 6= ?) and this rule is sound (but not complete) for a strict language likeML. The lazy interpretation has the advantage that the resolution time complexity is polynomial insteadof exponential. We write � for the solved form of �, which is the set of constraints obtained by applyingthe resolution rules until closure.Polymorphic constrained types (or simply polymorphic types) are written8(�1; : : : ; �n):� n�The meaning of a polymorphic type depends on the meaning of any free variables and is only de�ned ifthe constraints � have a solution for at least one choice of values for the quanti�ed variables (�1; : : : ; �n).I(8(�1; : : : ; �n):� n�) =\I0 I0(�)where I0 ranges over solutions of �, and I 0(�) = I(�) for all � 62 f�1; : : : ; �ng.Using polymorphic constrained types we can re�ne the type of null introduced above so that the typeis unde�ned for arguments other than nil and cons.null : 8(�):�! (� \ nil) true) [(� \ cons(>;>)) false) n f� � nil [cons(>;>)g3 ScalabilityOur goal is to analyze very large programs (>100,000 lines) using constraint resolution. Designing a systemto scale is not necessarily the same as designing a system to run fast. The primary engineering concernfor a scalable system is space consumption. For example, a scalable system cannot assume that the entireprogram is available at one time, because it may not �t in machine memory. Thus the program must beanalyzed in small pieces. This single observation leads to a radically di�erent overall design than wholeprogram analyses systems that analyze only complete programs (e.g., see [Hei94]).To achieve a scalable system, we analyze parts of programs separately and combine the results later. Weuse four techniques to achieve this goal: polymorphism, simpli�cation, separation, and sparse constraintrepresentation.Computing a polymorphic type for an expression allows a certain degree of abstraction of the propertiesof that expression with respect to its context. This abstraction from context makes the separate analysisand combination that we seek possible. Furthermore, polymorphism helps yield precise results without theneed for repeatedly analyzing the same expression in di�erent contexts.Unfortunately, instances of polymorphic constrained types produce copies of the constraints associatedwith the type. Polymorphism by itself does not give us scalability, because the more polymorphism we use,3

the more constraints we have to carry around. The key to this problem is type and constraint simpli�cation.By type and constraint simpli�cation we mean replacing a polymorphic constrained type by an equivalentpolymorphic type containing fewer variables. The number of variables is the main contributor to the sizeof types and constraints and consequently to running time, thus our focus is to eliminate as many variablesas possible.The need for simpli�cation can be understood by drawing an analogy with implementations of theHindley-Milner type system. Uni�cation, which is used to solve equality constraints between types gener-ated during Hindley-Milner type inference, automatically removes all redundant type variables and leavesno residual constraints. Constraint resolution systems based on inequalities do not have this property,which limits e�ciency because of the accumulation of type variables generated during inference, unlesssteps are taken to eliminate redundant variables. Section 3.2 details the simpli�cations performed by oursystem.Our third technique, separation, deals with the problem of maintaining and merging separate systemsof constraints. Consider the problem of analyzing a subtree of a large abstract syntax tree (AST). Theanalysis of each subtree of size n should consume roughly the same time and space, no matter where thesubtree is located within the full AST. Each subtree must thus be analyzed independently of any othersubtree. As a consequence, instead of accumulating constraints into a global system, constraints for eachsubtree are generated, solved, and simpli�ed independently. The constraints of independent subtrees aremerged only at common ancestors. Keeping constraint systems of independent subtrees completely separatealso allows more aggressive variable simpli�cation.One issue raised by inferring separate independent constraint systems for independent expressions isdetection of inconsistent constraints. Consider an example with two subtrees A and B, both referring to afree variable in the environment. If A adds the constraint int � , and B adds the constraint � float,then the inconsistency is detected at the point where the systems of A and B are merged. If the constraintadded by A were visible during the inference of B, the inconsistency could be detected earlier. The latterapproach is what typically happens in Hindley-Milner type inference based on uni�cation. Type errors arereported as soon as an inconsistent constraint is added to the global constraint system. Though perhapsmore intuitive, this approach does not pinpoint type errors very accurately in general. There is no reasonto favor tree B over tree A as the source of the inconsistency. Instead, both locations can be agged.Our �nal technique concerns a sparse representation of constraints in solved form, which is discussedin Section 3.1.3.1 Sparse Constraint RepresentationGiven a constraint set � of size n, the worst case storage requirement for the solved form � is O(n2)(for core expressions). We have observed this worst case requirement in practice. If constraints consumespace quadratic in the size of the program analyzed, the size of the largest program that can be analyzed isunfortunately not very large. Furthermore, performance of constraint resolution and transformation su�ersseverely due to the need to traverse the large solved form.The square order space requirement stems mainly from the generation of transitive constraints. Considerthe following constraints:cons(T1; nil) � �1 �1 � �2 �2 � �3 �3 � cons(T2; nil)Besides adding transitive constraints between variables such as �1 � �3, the transitive closure of theseconstraints replicates the lower bound cons(T1; nil) and upper bound on all variables. The representationused in our implementation avoids this replication. While computing the transitive constraints for the abovesystem, we keep only the constraint cons(T1; nil) � cons(T2; nil). The missing transitive constraints arerecomputed as needed; this sparse representation trades time for space.De�ne a directed graph G as follows:� The nodes of G are the expressions and subexpressions of �.� For each constraint �1 � �2 in �, there is an edge �1 ! �2. (Note that the rules of Figure 1 only addconstraints between subexpressions in the original system �.)4

Let G be the transitive reduction of G. Our representation has at least the edges of G, but no more thanG. Our representation di�ers from G only in that we do not eliminate transitive constraints introduced byrules other than rule (8) of Figure 1.3.2 Simpli�cationsSimpli�cations reduce the number of variables in types and constraints. More precisely, simplifying a typemeans replacing it with an equivalent type containing fewer variables:De�nition 3.1 Consider two polymorphic constrained types �a = 8�:�a n�a and �b = 8�:�b n�b. Let Sa(resp. Sb) be the set of solutions of �a (resp. �b). Then �a � �b if for every Ib 2 Sb there exists Ia 2 Sasuch that Ia(�a) � Ib(�b). The types �a and �b are equivalent �a � �b if �a � �b and �b � �a.(It is an open problem whether the subtype relation on quanti�ed constrained types is decidable; nocomplete algorithm is known.)Besides reducing the space requirement for types and constraints, eliminating variables is crucial forperformance, since the computational complexity of many algorithms in a constraint framework growssuper-linearly in the number of variables. Simpli�cations also make types easier for humans to read.To every simpli�cation, there are two aspects: First, a pattern identifying candidate types to be sim-pli�ed, and second, a set of conditions to verify that a particular simpli�cation is sound. Currently, oursimpli�cation suite simply consists of a set of equivalences we have found necessary to achieve scalability,readability, and to a lesser extent performance. A general, uniform simpli�cation framework would clearlybe preferable, but we know of none. Recent work by Pottier [Pot96] proposes a more uniform frameworkbased on an entailment relation. The uniform part of his framework is a soundness test for simplifyingsubstitutions. He does not propose a uniform framework for �nding candidates for simpli�cation|thispart of the system is still heuristic. Smith [Smi94] describes a set of type simpli�cations similar to ours,but for a simpler type language.Since our primary goal is to reduce the number of variables, the patterns we recognize for simpli�cationsall involve variables. A common condition to all simpli�cations is that any variable occurring in the patternmust be a universally quanti�ed variable. Thus variables free in the type are never part of a pattern andare never eliminated.We �rst motivate and illustrate the various simpli�cations by example before giving a more completedescription of each simpli�cation. Consider the type8(�; �):�! � n f� � int; float � �gBecause function types are anti-monotonic in the domain, it is easy to verify that this type is equivalentto 8():int ! float (or just int ! float) using De�nition 3.1. Intuitively, because � occurs only anti-monotonically, it can be set to its upper bound; similarly, because � occurs only monotonically, it canbe set to its lower bound. We call this kind of simpli�cation minimization/maximization of variables.Section 3.2.1 describes minimization/maximization in more detail. Next, consider the type8():�! � n f� � ; � �gIn all instances of this type, the variable lies between � and �. However, the type of the instance is nota�ected by the choice for , so long as the constraints are satis�ed. An equivalent but simpler type is8():�! � n f� � �gNote that the transitive constraint through is made explicit. Section 3.2.2 contains more about thissimpli�cation. The constraints of the following type contain a cycle of dependent variables:8(�; �):�! � n f� � �; � � �gHere we have a cycle of length 2. Cycles can be collapsed to a single variable (Section 3.2.3). Clearly if� � � and � � �, then � = �, leading to the simpler type8(�):�! �5

The next simpli�cation is subtler. Consider the type8(�; �):(� \ �)! cons(�; �)Suppose function f has this type and we apply f to a value of type T = � \ �. Then cons(�; �) �cons(T; T), with equality if � = �. This observation is true for every T , thus the distinct variables � and� can be merged into a single variable (Section 3.2.4). The equivalent type is8(�):�! cons(�; �)3.2.1 Minimization/MaximizationWhether or not a variable � 2 (�1; : : : ; �n) can be minimized or maximized depends on the occurrencesof � within 8(�1; : : : ; �n):� n�. Below is the de�nition of functions Pos and Neg that compute the set ofmonotonically, respectively anti-monotonically occurring variables within a type expression.Pos(�) = f�g Neg(�) = fgPos(c(�1; : : : ; �n)) = Si=1;:::;nPos(�i) Neg(c(�1; : : : ; �n)) = Si=1;:::;nNeg(�i)Pos(�1 ! �2) = Neg(�1) [Pos(�2) Neg(�1 ! �2) = Pos(�1) [Neg(�2)Pos(>) = fg Neg(>) = fgPos(?) = fg Neg(?) = fgPos(�1 [�2) = Pos(�1) [Pos(�2) Neg(�1 \ �2) = Neg(�1) [Neg(�2)Pos(�1 \ �2) = Pos(�1) [Pos(�2) Neg(�1 [�2) = Neg(�1) [Neg(�2)The function FV computes the set of variables free in a (constrained) polymorphic type. The set of variablesoccurring monotonically P and the set of variables occurring anti-monotonically N within a constrainedtype � n� are the least sets satisfying:FV (8(�1; : : : ; �n):� n�) [Pos(�) � PFV (8(�1; : : : ; �n):� n�) [Neg(�) � Nif � 2 P; � 0 � � 2 �, then Pos(� 0) � P;Neg(� 0) � Nif � 2 N; � � � 0 2 �, then Pos(� 0) � N;Neg(� 0) � PAny variable in (�1; : : : ; �n) n P can be maximized, and any variable in (�1; : : : ; �n) nN can be min-imized. Minimizing � means replacing � in � n� by the union of �'s lower bounds SfT j (T � �) 2 �g.Maximization is done analogously, but the intersection of the upper bounds of � is used. Since constraintsmay be recursive, T can be substituted for � only if � 62 FV (T) (i.e., recursively constrained variablescannot be eliminated). A proof of soundness for this simpli�cation is in a forthcoming paper.3.2.2 Truly Intermediate VariablesConsider the type 8(�; �):� ! � n f� � �g. Minimization/maximization does not eliminate � or � ,because both appear monotonically and anti-monotonically. However, this type is equivalent to the typeof the identity function �! �, so we should be able to either minimize � or maximize �.We observe that ? � � � � � >, suggesting that either � or � is actually unconstrained. If we choosea particular type, say int for �, then � will be constrained from below, and the partial instance will beint! � n int � �. As we can see, in this partial instance, � only occurs positively, and the type can besimpli�ed to int! int using minimization. A similar argument holds for �xing �.The following re�nement of minimization/maximization simpli�cation computes two new sets, sP andsN , in function of P , and N and � n�.FV (8(�1; : : : ; �n):� n�) [Pos(�) � sPFV (8(�1; : : : ; �n):� n�) [Neg(�) � sNif � 2 P; � 0 � � 2 �, and � 0 is not a variable, then Pos(� 0) � sP ;Neg(� 0) � sNif � 2 N; � � � 0 2 �, and � 0 is not a variable, then Pos(� 0) � sN ;Neg(� 0) � sPInstead of using P and N , variables not occurring in sP can be maximized, and variables not occurring insN can be minimized. 6

3.2.3 Collapsing CyclesA set of variables (�1; : : : ; �n) are cyclicly dependent in �, if � contains the constraints f�1 � �2; �2 ��3; : : : ; �n � �1g. Clearly, any solution I for � satis�es I(�1) = I(�2) = : : : = I(�n).Cyclic dependencies in � can be found using standard graph algorithms on a graph representation ofthe constraints. The simpli�cation is carried out by replacing each occurrence of any of the variables(�1; : : : ; �n) within � n� with a single new variable.3.2.4 Intersection/Union MergingLet � and � be two quanti�ed variables appearing in a constrained type � n�. Further assume that wherever� appears monotonically, it is in a union �[�. Similarly, assume that all monotonic uses of � are in unions� [�. Finally, assume that � and � have the same upper bound(s). Then � and � can be uni�ed, i.e. wecan set � = � = , where is a fresh variable.Let LB�;LB� (resp. UB�;UB�) be the set of lower bounds (resp. upper bounds) of �; � in �. ThenLB = LB� [LB�, and UB = UB� = UB�. This simpli�cation is sound because� The type � is preserved: all monotonic occurrences of � [� are constrained below by LB� [LB�before and after the simpli�cation. All anti-monotonic occurrence of either � or � were constrainedabove by UB� = UB� = UB before and after the simpli�cation.� The constraint system has the same solutions as before. Since UB� = UB� = UB�;�, we haveLB� � UB�;� 2 �, and LB� � UB�;� 2 �. After the simpli�cation, we have LB� [LB� = LB �UB = UB�;�.The simpli�cation for intersections in anti-monotonic positions is analogous.We conclude this section by noting that our simpli�cations are not normalizing, i.e. applying simpli�ca-tions in di�erent orders may yield di�erent types with di�ering numbers of variables. How best to simplifyconstrained types remains an important open problem.4 Empirical ResultsWe evaluate our framework with a type and e�ect inference analysis with subtypes for Standard ML. Theanalysis is performed on the lambda intermediate representation generated by SML/NJ.While we have tested our system on many programs, we focus here on the two largest programs in oursuite of examples. In the table below, the source line count (LOC) does not include comment lines, butincludes interface speci�cations.Program LOC AST nodes Type vars Analysis Time (best)LexGen 1151 17609 8558 97 secSmlYacc 6017 66120 33286 552 secTo show that our simpli�cations are e�ective, we ran our type inference with a range of simpli�cationfrequencies. When simpli�cations are rare, the number of variables in the types and constraints is large. Wemeasure this indirectly by observing the time to recompute the transitive bounds in our sparse constraintrepresentation. The more variables, the longer this recomputation takes.The graphs in Figure 2 show three time components, total analysis time, time recomputing transitivebounds, and time spent doing simpli�cation (not all time components included in the total analysis timeare shown). The simpli�cation interval I (x-axis) de�nes how often simpli�cation is performed. In thisexperiment, simpli�cations were performed on AST nodes of depth k�I; k = 1; 2; : : : and always in the veryend. For I = 64, only the �nal type was simpli�ed. We note that for frequent simpli�cation, the analysistime is dominated by the simpli�cation process itself. For high simpli�cation frequencies, the simpli�cationcost is higher than the gain from the reduction of variables, thus reducing the frequency reduces the overallanalysis time. But as the frequency is further reduced, the recomputation of transitive bounds eventuallydominates the analysis time due to the many variables that need to be traversed. For lexgen this increaseis gradual, whereas for sml-yacc, the increase is dramatic between intervals 8 and 10. This jump is likely7

0

50

100

150

200

250

300

1 2 4 8 16 32

T
im

e
in

 s
ec

s

Simplifcation interval

lexgen

Total
Transitive

Simplify

0

500

1000

1500

2000

2500

3000

1 2 4 8 16 32 64

T
im

e
in

 s
ec

s

Simplifcation interval

sml-yacc

Total
Transitive

Simplify

Figure 2: Analysis Time in function of simpli�cation interval. The curve marked \Transitive" shows thetime spent recomputing transitive bounds due to our sparse constraint representation. The curve marked\Simplify" shows the time spent doing simpli�cation.
0

5000

10000

15000

20000

25000

2 4 8 16 32 64

K
B

Simplifcation interval

sml-yacc Heap usage

Figure 3: Maximum heap size used by the analysis in function of simpli�cation interval.
0

20

40

60

80

100

120

0 2000 4000 6000 8000 1000012000140001600018000

cu
m

ul
at

iv
e

se
c

time in nodes processed

lexgen

0

100

200

300

400

500

600

0 10000 20000 30000 40000 50000 60000 70000

cu
m

ul
at

iv
e

se
c

time in nodes processed

sml-yacc

Figure 4: Cumulative time spent per AST node8

due to the particular choice of where to apply simpli�cation in this experiment. Given two large types andconstraint systems it maybe much cheaper to simplify the systems separately before the merge, than tomerge the large systems and to simplify afterwards. The time pro�le in Figure 4 shows cumulative timespent per node for sml-yacc. Separation works well (every node takes roughly the same amount of timewith a few exceptions) suggesting that we can scale to larger programs.Figure 3 shows a conservative upper bound on the heap size used to store the types and constraints,again as a function of the simpli�cation frequency. Simpli�cations reduce the amount of storage requiredfor the constraint graph and the types dramatically. When simpli�cations are done at every node in theAST, at most 3MB of storage are required. If no simpli�cations are done, the required storage increasesby a factor of more than 8 to 25MB.Though our implementation seems to scale well, the absolute analysis times are still too long to bepractical. We hope to further improve our performance through techniques similar to hash-consing andmaybe selective caching of transitive bounds. Furthermore, heavy use of conditional types can blow upspace and time requirements beyond reasonable bounds. We have not engineered this aspect of the systemyet.5 ConclusionWe have described the techniques used in our implementation of a expressive set constraint framework forprogram analysis. Our system scales linearly on an example analysis medium sized program of 6000 linesof non-comment code. Space requirements were one of the main obstacles to obtaining an analysis systemthat scales to large programs. The large space requirements come from two sources: 1) the number ofvariables, which has a direct impact on the number of constraints, 2) the representation of the constraintsin solved form.Simpli�cations help scaling by reducing the space and time requirements to store and traverse theconstraint graph. However, simpli�cations are relatively expensive to compute and there is a point ofdiminishing returns. Frequent simpli�cation keeps the constraint graph to a small size, thus the transitivebound computations are relatively fast. Fewer simpli�cations save time, but the space usage for theconstraints is larger, and the traversal of the constraints takes more time.Absolute analysis times are still high, in particular compared to the performance of the system imple-mented by Heintze [Hei94], which is based on di�erent techniques. We hope to gain some insights into thespeed discrepancy by studying his implementation.6 AcknowledgmentsWe are grateful to Kwangkeun Yi for sharing his experience and his implementation with us, and to JohnBoyland for his comments on a draft of this paper.References[App92] Andrew Appel. Compiling with Continuations. Cambridge University Press, 1992.[AW93] A. Aiken and E. Wimmers. Type inclusion constraints and type inference. In Proceedings ofthe 1993 Conference on Functional Programming Languages and Computer Architecture, pages31{41, Copenhagen, Denmark, June 1993.[AWL94] A. Aiken, E. Wimmers, and T.K. Lakshman. Soft typing with conditional types. In Twenty-FirstAnnual ACM Symposium on Principles of Programming Languages, pages 163{173, Portland,Oregon, January 1994.[Dam94] Flemming M. Damm. Subtyping with union types, intersection types and recursive types. InProceedings of the '94 International Symposium on Theoretical Aspects of Computer Software,pages 687{706, April 1994. 9

[Hei94] Nevin Heintze. Set Based Analysis of ML Programs. In Proceedings of the 1994 ACM Conferenceon LISP and Functional Programming, pages 306{17, June 1994.[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The De�nition of Standard ML. MIT Press,1990.[Pot96] Fran�cois Pottier. Simplifying subtyping constraints. In Proceedings of the SIGPLAN '96 Inter-national Conference on Functional Programming, May 1996. to appear.[Smi94] Geo�rey S. Smith. Principal type schemes for functional programs with overloading and subtyp-ing. Science of Computer Programming, 23(2{3):197{226, December 1994.[Yi94] Kwangkeun Yi. Compile-time detection of uncaught exceptions for Standard ML programs. InProceedings of the First Annual Static Analysis Symposium, volume 864 of Lecture Notes inComputer Science. Springer, 1994.

10

