
Expanding the Frontiers of Computer Science: 

Designing a Curriculum to Reflect a Diverse Field 
Mehran Sahami 

Computer Science Department 
Stanford University 

Stanford, CA 94305, USA 

sahami@cs.stanford.edu 

Alex Aiken 
Computer Science Department 

Stanford University 
Stanford, CA 94305, USA 

aiken@cs.stanford.edu 

Julie Zelenski 
Computer Science Department 

Stanford University 
Stanford, CA 94305, USA 

zelenski@cs.stanford.edu 
 

 

ABSTRACT 

While the discipline of computing has evolved significantly in the 

past 30 years, Computer Science curricula have not as readily 

adapted to these changes.  In response, we have recently 

completely redesigned the undergraduate CS curriculum at 

Stanford University, both modernizing the program as well as 

highlighting new directions in the field and its multi-disciplinary 

nature.  As we explain in this paper, our restructured major 

features a streamlined core of foundation courses followed by a 

depth concentration in a track area as well as additional elective 

courses. Since its deployment this past year, the new program has 

proven to be very attractive to students, contributing to an 

increase of over 40% in the number of CS major declarations.  We 

analyze feedback we received on the program from students, as 

well as commentary from industrial affiliates and other 

universities, providing further evidence of the promise this new 

curriculum holds. 

Categories and Subject Descriptors 

K.3.2 [Computers and Education]: Computer and Information 

Science Education – Computer science education, Curriculum. 

General Terms 

Design, Documentation, Experimentation, Management. 

Keywords 

Curriculum, Concentrations, Tracks, Multi-disciplinary. 

1. INTRODUCTION AND GOALS 
While the discipline of computing has evolved significantly in the 

past 30 years, Computer Science curricula have been much slower 

to adapt to these changes.  In particular, CS has relatively recently 

spawned a number of sub-fields that have rapidly grown in both 

intellectual and practical importance but are under-represented in 

the typical CS undergraduate curriculum.  Furthermore, CS is 

having a pervasive impact on a wide range of other disciplines, a 

phenomenon that is likely to continue for many years, but 

opportunities for undergraduates to study these advances at the 

boundaries between disciplines remain relatively rare. At Stanford 

University, we undertook to bring the Computer Science 

curriculum in line with what is happening in the field, completely 

redesigning the undergraduate CS major to explicitly show the 

diversity of topics in Computer Science and provide greater 

opportunities for inter-disciplinary work.  Although not the 

primary motivation, recent declines in CS program enrollments 

[12] added impetus to our desire to capture student interest by 

increasing awareness of the great diversity and intellectual 

challenge that computing presents. 

At Stanford, between 2001 and 2006, we witnessed a drop in CS 

enrollments generally in-line with national trends, as the number 

of annual CS major declarations dropped from over 150 to 

approximately 80.  While enrollment stabilized and even began to 

grow modestly in 2007, the strong correlation between student 

enrollments and the health of the high-tech economy cannot be 

denied [10].  More recently, the media portrayal of "a supposedly 

horrific loss of [computer programming] jobs" due to off-shoring 

[9] has deterred potential students from CS.  While recent analysis 

has found that job off-shoring has not resulted in a net loss of IT 

jobs in the US [1], it is instructive to see that students' decision 

making is significantly affected by perceptions of job prospects.  

More subtly, students choosing to not major in CS because of 

their belief that programming jobs are being off-shored indicates 

that students are equating majoring in CS with being a 

programmer as the eventual (perhaps, only) career outcome.  A 

similar phenomenon has been cited in other work looking at 

enrollment declines [7] and has also been used as the basis of 

curricular revision which stresses the importance of context for 

computing [4].  In a similar vein, we believe that explicitly 

broadening the "footprint" of Computer Science to show its many 

intellectually challenging subfields and strong multi-disciplinary 

ties can cast a wider net in piquing student interest to pursue CS.  

Thus, the primary goals of our curriculum revision are aimed at: 

 providing students greater awareness of the breadth of options 

in CS and opportunities to pursue these areas in depth, 

 incorporating relatively new, but already mature, sub-fields of 

CS on par with more traditional topics within the curriculum, 

 highlighting and promoting multi-disciplinary connections, 

 establishing a structure with sufficient flexibility to allow for 

lightweight revision in response to the evolution of the field. 

These goals (especially the first three) are in-line with 

recommendations on engineering education from the National 

Academy of Engineering [8] as well as a recent NSF workshop on 

Integrative Computing Education and Research [5]. 

 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. To copy 

otherwise, or republish, to post on servers or to redistribute to lists, 

requires prior specific permission and/or a fee. 

SIGCSE’10, March 10–13, 2010, Milwaukee, Wisconsin, USA. 

Copyright 2010 ACM  978-1-60558-885-8/10/03...$10.00. 

 



Interestingly, while increasing enrollments was not a direct goal 

of our curriculum revision efforts, we were happy to see a 

significant increase in CS major declarations in the year since our 

new program was launched.  A detailed analysis of the reasons for 

this increase is presented in Section 4. 

2. CURRICULAR STRUCTURE 
Immediately prior to our new curriculum, our program structure 

consisted of a large core of required classes (CS1, CS2, advanced 

programming, discrete math, automata/computability, algorithms, 

AI, and computer architecture), a few restricted choices (operating 

systems or compilers), and roughly three restricted CS electives. 

In the past two decades, this curriculum saw only minor revisions 

in adjusting a few particular course requirements—the essential 

structure remained untouched. During that same period, new 

frontiers had emerged in CS and multi-disciplinary ties to other 

fields had been established, but the large and inflexible major 

requirements limited the ability of students to take advantage of 

courses in those areas.   

In alignment with our goals, we pursued a track-based model for 

our new curriculum, with the following general structure: 

 Core: a common set of courses all CS majors are required to 

take to establish a shared intellectual foundation. 

 Track: a chosen topical concentration area (selected from a 

menu), aimed at giving students greater depth in the area(s) of 

CS they find the most interesting.   

 Electives: additional course options allowing students to 

pursue greater breadth, depth, multi-disciplinary ties, or 

combinations thereof. 

 Senior Project: a capstone course with either a software 

development or research emphasis. 

Being homed in the School of Engineering, general requirements 

such as mathematics and science still exist in the new curriculum, 

but we discuss them only in relation to the requirements above.  

We describe the Core, Tracks, and Electives presently. 

2.1 The Core 
The Core curriculum focuses on providing a common intellectual 

experience in CS, setting a foundation for use across a variety of 

depth areas.  This raises the opportunity—indeed, the necessity—

to have the Core include only essential elements common to the 

many directions in which CS has evolved.  Given our program's 

historical context, agreeing to have a Core was not contentious.  

Rather, the challenge was to keep the Core as streamlined as 

possible. We gathered input from a number of faculty detailing 

their "must-haves" for any computer science student and modeled 

the Core based on the intersection of those lists rather than 

the union.  Our Core is composed of six courses: three in 

"Theory" and three in "Systems", detailed below. 

Systems I: Programming Abstractions—a classic CS2 course 

emphasizing common data abstractions and structures as 

well as recursion.   

While this is a CS2 course, it does not have our CS1 as a strict 

prerequisite (our CS1 course is in Java, whereas CS2 is in C++, 

lessening the mechanical dependency between the two courses).  

An analysis revealed that roughly half of our CS majors did not 

take CS1 (due to AP credit or prior programming experience), 

providing evidence that a reasonable number of students can 

begin the Systems Core immediately.  Of course, we do not expect 

all students to do so, and offer an accessible CS1 course taken by 

a large percentage of the entire undergraduate student population 

that is meant to "funnel" students into the CS program.  Our CS1 

and CS2 courses were unchanged as a result of the curriculum 

revision.  We note that the selection of Core topics is somewhat 

orthogonal to the detailed contents (e.g., programming language) 

of CS1, making such a structure more readily adoptable by others. 

Systems II: Computer Organization and Systems—a course 

with the theme of taking students "from the hardware up to 

the source code".  Topics include machine architecture, 

memory models, data representation, and elements of 

compilation and concurrency. 

Systems II is meant to provide students with a unified 

introduction to the lower levels of the machine.  We feel that it is 

essential for students in any subfield of computing to understand 

the fundamental abilities and limitations of real computing 

systems.  Even students with a theoretical focus benefit from 

seeing such material as applications of automata theory or 

program analysis/verification.  This course is not a replacement 

for a full course in either compilers or machine architecture, but 

since it contains the foundational material we believe all students 

need in this area, it allows for streamlining the curriculum to no 

longer require a full course in either of these topics. 

Systems III: Principles of Computer Systems—the theme of 

this course is "modern computer systems and networks".  

Topics include processes and concurrency mechanics, file 

systems, virtualization, networking and distributed systems. 

This course explains the facilities and paradigms that modern 

operating systems, networks and distributed systems provide.  The 

need for this course is reflected in the fact that computing has and 

will continue to move toward a much more distributed paradigm 

(both multicore chips as well as large scale data centers and the 

web), and all students must be facile with such workings.  Across 

such diverse areas such as HCI (where practitioners consider how 

distributed systems affect end-user interaction through issues such 

as latency or information consistency) or Computational Biology 

and Artificial Intelligence (where researchers develop algorithms 

for parallel, distributed systems), the direction in which 

computing is moving in the 21st century makes such a class 

important to all Computer Scientists. 

Again, we stress that this course is not a replacement for a course 

focused on implementing an operating system or designing and 

implementing network protocols.  The course is meant to be a 

foundation relevant to all students—it will be a reasonable 

endpoint for some, while providing a stepping stone for those who 

choose to pursue further work in systems design and 

implementation.  As a result, we eliminated the requirement for all 

students to take a full course on operating system implementation. 

Theory I: Mathematical Foundations of Computing—this is 

a course on discrete math and automata.  Topics include 

logic, induction, proof techniques, sets, functions, relations, 

and an introduction to automata and NP-completeness.   

The goal of Theory I is to give students the mathematical 

language of computing, the ability to present cogent arguments 

(i.e., proofs), and an understanding of what is possible to 



compute.  The material is motivated in situ through real world 

applications, while also presenting topics, such as finite automata, 

which will be built upon in Systems II and III, reflecting the 

importance of theory to systems and vice versa.  

Theory II: Probability Theory for Computer Scientists—an 

introductory course meant to provide students with tools for 

probabilistic analysis and modeling in computing.  The 

course also provides an introduction to Machine Learning.   

Theory II is perhaps the most significant departure from a 

"standard" CS curriculum [6], but it is a reflection of where we 

believe the field is headed.  Indeed, probabilistic analysis has 

become widespread as a tool in analyzing systems, constructing 

algorithms, and modeling uncertainty in user interactions.  It 

forms the basis for many well known applications including 

Google's PageRank algorithm, modern email spam filters, and the 

analysis of biological and social networks.  While many CS 

curricula (including our previous program) require a course in 

Probability, such courses are generally not taught in CS 

departments and are much more focused on theoretical results and 

proofs.  They are generally devoid of any discussion of the real 

use of these models in computing and provide no examples of 

real-world software systems based on their use.  For these reasons 

(among others), we chose to develop our own probability class in-

house, allowing us to specifically target the use of probability in 

computing.  Moreover, we also use the course as a vehicle to 

teach elements of Machine Learning and AI, showing applications 

both within computing as well as their use in other disciplines.  

Such applications can help students better understand the 

potential impact and social context of their work.  

Theory III: Data Structures and Algorithms—an advanced 

course in the design and analysis of algorithms, presenting 

various data models (e.g., algorithms for trees and graphs) 

and a range of algorithmic techniques (e.g. greedy and 

randomized algorithms, dynamic programming). 

The focus of Theory III is to provide the algorithmic tools that we 

believe a facile computer scientist needs to know to think 

computationally in a variety of contexts.  Such a course is 

common in many computing curricula, and we are in agreement 

with many of our peer institutions that this material is 

foundational and necessary for all computer scientists.  

The prerequisite structure for the Core courses is shown in Fig. 1.  

We include our current CS1 (and potential future alternatives) in 

the diagram to show the variety of entry points into the Core. 

 

 

 

 

 

 

 

 

Figure 1.   Prerequisite structure for Core courses. 

Since our regular academic year is composed of three quarters, it 

is possible for students to complete the Core material in a single 

year, but we expect most students to space this material out during 

the course of their Freshman and Sophomore years.   

While others have argued that a common core in a computing 

curriculum can be avoided [4], we have found that providing such 

a core offers several advantages.  First, it provides a general 

foundation that students can use to pursue many areas in CS after 

they graduate.  Indeed, the field of computing grows so quickly 

that it is simply not realistic to expect the education students 

receive as undergraduates to be sufficient for their whole careers, 

or that their interests will even remain in one subfield of the 

discipline.  Thus, the Core aims to provide a foundation on which 

continued work in a variety of areas within CS may be pursued.  

Equally importantly, however, is that the Core provides students 

with a common social experience—the "bonding" that takes place 

as students undertake common challenges and have shared 

experiences.  But perhaps most importantly, having a designated 

Core allows students to defer the selection of a concentration area 

(i.e., track) in CS until they have more exposure to the field.  This 

is especially important given the findings that most students in 

high school do not know what CS is about [2].  The idea of a Core 

has been well-received by our students.  As we show later in this 

paper, a recent survey of our CS undergraduates found 51% of 

respondents indicated that a streamlined set of core courses was 

one of the most appealing aspects of the new curriculum, while 

only 3% viewed it negatively. 

2.2 Tracks 
All CS students are required to complete the requirements for one 

track in our program.  This provides the opportunity for students 

to better align their program with their interests in the field, and 

also pursue multi-disciplinary work related to that area.  In its 

initial roll-out, our curriculum offers nine track choices: 

 Artificial Intelligence 

 Theoretical Computer Science 

 Systems 

 Human-Computer Interaction 

 Graphics 

 Information (management and application of data) 

 Biocomputation 

 Unspecialized 

 Individually Designed 
 

A track is generally composed of 4-5 courses, with requirements 

structured as follows: 

a.) one or two designated gateway courses 

b.) selection of one or two courses from a menu of courses 

highly related to the track area 

c.) selection of additional courses from (b) and/or from a list of 

more broadly related courses to the track area 

For example the Artificial Intelligence track looks as follows 

(shown with a much abbreviated sample of course offerings): 

a.) Required: Principles of Artificial Intelligence 

b.) Two courses from: Intro. Robotics, Computer Vision, Agent 

Systems, Natural Language Processing, Machine Learning 

c.) One additional course from (b) or from: Speech Synthesis, 

Advanced Robotics, Computation Genomics, Web Search, 

Decision Analysis, Stochastic Control, Information Theory, 

Modern Applied Statistics 

CS1 (Alt. CS1) 

Systems I 

Systems II 

Systems III 

Theory I 

Theory II 

Theory III 

AP credit or prior 

programming 

experience 



The designated "gateway" course(s) are the foundational course(s) 

in the track area (for example, "Principles of Artificial 

Intelligence" in AI or "Introduction to Human-Computer 

Interaction" in HCI).  These courses provide a more in-depth 

introduction to the area, assuming students have already taken 

some portion (but not necessarily all) of the Core courses.  The 

gateway courses serve two purposes.  First, they provide a clear 

mechanism for students to sample a particular track area to decide 

if they wish to pursue it further (and such sampling can be done 

prior to the completion of the entire core, so students can 

generally take gateway courses as early as their Sophomore year).  

Second, all gateway courses are also designated as general CS 

electives (described in more detail later).  This allows students 

who sample a gateway course and decide not to pursue that 

respective track to incur no programmatic penalty as the gateway 

course can simply be counted as one of their in-major electives. 

We make special note of the last three tracks listed above, as their 

requirements are somewhat different from the other six.  The 

Biocomputation track requires additional science courses 

(specifically, a year of Chemistry and two quarters of Biology) 

beyond the standard CS requirements (in Physics).  To offset 

these additional requirements, students take fewer courses in other 

categories.  Importantly, the track contains many requirements for 

a collegiate pre-medical program, allowing pre-med students an 

option to major in CS without significant undue burden.   

The Unspecialized track is essentially composed of each of the 

gateway courses of the other tracks, with a few additional breadth 

options.  This track serves two purposes.  First, it provides a 

"breadth" track option for students who choose not to pursue one 

area in particular depth.  Indeed, students who sample several 

gateway courses and cannot decide on a particular track can 

simply graduate under the Unspecialized track as they will have 

satisfied its requirements by taking five gateway courses from 

other tracks.  Second, the Unspecialized track mimics the 

requirements of our previous curriculum.  In this way, the new 

curriculum is largely a superset of our previous program 

requirements, allowing in-flight students to graduate under the 

new requirements without significant adjustment. 

The Individually Designed "track" is simply a set of guidelines 

allowing students to propose their own coherent set of track 

requirements (requiring faculty approval).  It provides an added 

level of flexibility to address individual needs or fast-emerging 

areas without the need for university-level program approval. 

More generally, the designation of tracks allows students to 

explicitly see the diversity of options available to undergraduates 

in CS.  Since our CS program no longer has one monolithic set of 

requirements, but rather explicitly lists a number of subfields, the 

program itself serves as an advertisement for the diversity of the 

field.  Furthermore, by allowing students to pursue greater depth 

in the area of CS they find most appealing, we increase the 

frontier of the field that is accessible to undergraduates.  This 

makes the overall "footprint" of our curriculum larger and casts a 

wider net to attract student interest. 

Finally, an explicit goal of our curriculum redesign was to make 

future updates to the curriculum easier.  Modularizing our 

program into the track-based structure accomplishes this goal, as 

it is now possible to add or remove tracks without affecting other 

tracks or the set of Core courses. 

2.3 Electives 
Beyond the Core and Track requirements, students complete their 

CS depth requirements by selecting from a set of elective courses.  

Students are required to take a minimum of seven courses, 

including their track requirements and electives.  The electives 

come from two sources.  First, a set of General CS Electives is 

available to choose from for students pursuing any track area.  

This list includes most of the undergraduate courses in the CS 

department.  Each track then designates a set of Track-specific 

Electives—additional courses that are available as electives for 

students pursuing that track area.  The track-specific electives are 

intentionally selected to include appropriate multi-disciplinary 

courses (including such diverse areas as economics, engineering 

management, linguistics, statistics, studio art, psychology, and 

philosophy, as well as other engineering disciplines) as well as 

advanced graduate courses in the track area.  For example, the 

Graphics track provides electives such as Design and 

Photography from the Art department, Introduction to Perception 

from Psychology, and Game Studies from the program in Science, 

Technology and Society.  Thus, the program can serve students 

interested in computational media, perceptual issues in digital art, 

and/or game development all within the same track. 

Electives allow students to pursue additional breadth (by taking 

general CS elective courses), further depth (by pursing graduate 

courses), multi-disciplinary ties (by taking appropriate non-CS 

courses), or some combination thereof.  This flexibility helps 

address a variety of student interests/career paths as well as 

highlights the growing multi-disciplinary nature of CS.  Indeed, if 

we were to use AP Exams as a leading indicator of student 

interest, we would find that while CS numbers are stagnant, there 

are growing numbers of students interested in areas related to CS 

(e.g., Biology and Statistics, which had over 7 times and 5 times 

as many exam takers as CS, respectively, in 2008 [3]) who could 

be well served by a CS program that combines computing with 

other areas of interest (e.g., Biocomputation for Biology students, 

AI/Machine Learning for Statistics students, etc.). 

3. PROCESS 
The need for substantial curricular reinvigoration was widely 

recognized in our department (composed of roughly 50 faculty 

members), and our curriculum revision process was driven, 

unsurprisingly, by an 11-member departmental Curriculum 

Committee.  Initially, we focused on determining a high-level 

structure for the curriculum, reaching consensus on the model of a 

Core, Tracks, and Electives before filling in the details.  This 

provided a general framework—which was at times revisited—to 

determine the detailed program requirements.  Importantly, this 

concrete initial proposal was put before the full faculty before 

moving on to the detailed work.  Gaining unanimous departmental 

faculty support provided early buy-in that a curricular change was 

needed and gave the committee a mandate for significant reform. 

The next task was defining the Core courses and their content.  

Two factors made this often contentious process successful.  First, 

rather than having open-ended discussions about "what every 

computer scientist should know," we always maintained a 

concrete working document defining the latest revision of the 

Core courses and their detailed contents.  This allowed for much 

more directed committee discussions and detailed analysis of the 

trade-offs in including or removing certain topics.  More 



importantly, however, at least one of the likely instructors for each 

of the new Core courses was intimately involved in the discussion 

of the course topics.  As a result, there was a realistic assessment 

of the amount of material that could be covered in each course as 

well as a potentially willing instructor for it—a critical factor for 

eventually translating curriculum documents into real courses. 

Once the Core was defined, additional committees were formed to 

develop each track (and track-specific electives) separately.  The 

track committees were composed of a subset of members of the 

Curriculum Committee as well as additional faculty in the track 

area (in some cases including faculty from other departments).  

Again, a concrete proposal for the requirements for each track was 

always maintained to drive the discussion.  The critical aspect of 

this process was that a large portion (well over half) of the entire 

CS faculty became involved in the curriculum development 

process.  This cemented wide support for the new curriculum.  

When the requirements for each track were finalized, the result 

was reviewed by the Curriculum Committee for coherence and 

level-setting across all tracks. When the entire curriculum was 

defined, it was unanimously adopted by the CS department faculty 

and then approved by our School of Engineering.  The curriculum 

was rolled-out in its entirety during the 2008-09 academic year. 

4. ASSESSMENT AND CONCLUSIONS 
To assess our new curriculum, we examined enrollment statistics 

in CS, surveyed student attitudes toward the program and actively 

sought feedback from industrial affiliates.  Most notably, after the 

deployment of the new curriculum this past year, we witnessed a 

surge of over 40% in undergraduate CS major declarations (from 

87 in 2007-08 to 123 in 2008-09).  While CS enrollment increases 

have been reported recently at other universities, the magnitude of 

our increase is well above the numbers we have seen from peer 

institutions, and survey data suggests our new curriculum is the 

cause.  A voluntary on-line survey (primarily multiple choice 

questions) of our students who declared CS as their major this 

past year (N = 58) shows that over 36% of respondents indicated 

that the new CS curriculum influenced their choice of major, with 

7% stating explicitly that they would have majored in something 

other than CS if not for the new curriculum.  Statistical 

extrapolation from survey respondents (47% of the population) to 

the entire population of students declaring CS in the past year 

reveals that between 9 to 44 incremental students declared CS as 

their major as a result of the curricular changes.  Given that the 

total incremental increase in CS declarations we saw in 2008-09 

was 36 students, it appears that a solid majority of the incremental 

increase is due to the revised curriculum.  We also assessed the 

aspects of the new curriculum students (N = 96) found most/least 

appealing, shown in Fig. 2.  Note that students could select 

multiple options so the percentages across categories do not sum 

to 100%.  With regard to most appealing aspects, students could 

choose "Flexibility in requirements", whereas the analogous 

question for least appealing aspects was "New required courses" 

they would have to take.  As can be seen in Fig. 2, students 

overwhelmingly found the new curriculum to be appealing, with 

the ability to focus on a particular track being the most compelling 

aspect of the program (77% positive response). 

We also reviewed the curricular changes with many members our 

of industrial affiliates program and received uniformly positive 

responses from them.  Discussion of our new curriculum has been 

0% 20% 40% 60% 80% 100%

Choosing a track

Flexibility in requirements    

New required courses

Streamlined core classes

Multi-disciplinary options

Most appealing

Least appealing

 
Figure 2.   Aspects of curriculum most/least appealing  (N=96). 

taken up in several leading CS departments both nationally and 

internationally, giving us useful feedback on the program, 

including invitations to help two other universities restructure 

their CS curricula.  While most feedback we have received has 

been positive, we have also received one important criticism: the 

lack of functional programming in our Core courses [11].  While 

our prior curriculum also lacked much functional programming, 

we now plan to use the functional statistical language R in a lab 

adjunct to our Theory Core II course to help address this point. 

In conclusion, we believe our new curriculum helps capture 

student interest by explicitly reflecting the broadening frontiers of 

the discipline and allowing students to better align their academic 

programs with their interests.  We would encourage others to 

consider a similar model, playing to strengths of their individual 

departments.  For small departments, we recognize that having an 

extensive list of tracks may not be possible and we would 

encourage partnering with non-CS departments to provide more 

multi-disciplinary tracks as a means of highlighting the 

increasingly broad influence of computing in other areas.  Smaller 

CS departments also have the potential to attract more students by 

targeting the larger departments at their institutions to work with 

in creating multi-disciplinary tracks.  Indeed, in discussions with 

small CS departments, we have seen such opportunities arise, for 

example, in partnering with media studies programs.  

5. ACKNOWLEDGMENTS 
We are grateful to members of our Curriculum Committee and the 

many other faculty involved in our curriculum revision process. 

6. REFERENCES 
[1] Aspray, W., Mayadas, F., and Vardi, M. Y. (Eds). 2006. Globalization and 

Offshoring of Software: A Report of the ACM Job Migration Task Force. 

[2] Carter, L. 2006. Why Students with an Apparent Aptitude for Computer 

Science Don’t Choose to Major in Computer Science. In Proc. of SIGCSE '06.  

[3] College Board. 2008. AP Program Size and Increments 1984–2008. 

[4] Furst, M., Isbell, C., and Guzdial, M. 2007. Threads™: How to Restructure a 

Computer Science Curriculum for a Flat World.  In Proc. of SIGCSE '07. 

[5] Integrative Computing Education and Research (ICER). 2006. Final Report of 

the Northwest Regional Meeting. 

[6] Joint Task Force on Computing Curricula. 2001.  ACM/IEEE Computing 

Curricula 2001 Final Report. http://www.acm.org/sigcse/cc2001. 

[7] Morris, J. H. and Lee, P. 2004. The Incredibly Shrinking Pipeline is Not Just for 

Women Anymore. Computing Research News, 16(3), May 2004. 

[8] National Academy of Engineering. 2005. Educating the Engineer of 2020: 

Adapting Engineering Education to the New Century.  Nat'l Academies Press. 

[9] Reynolds, A. 2004. Offshoring Which Jobs?  Washington Times, June 6, 2004. 

[10] Sahami, M. 2007. The Google Education Summit.  http://research.google.com/ 

university/relations/eduSummit2007/MehranSahami.pdf 

[11] SIGPLAN Proposal on Functional Programming. 2008. 

http://wiki.acm.org/cs2001/index.php?title=SIGPLAN_Proposal 

[12] Vegso, J. 2008. Enrollments and Degree Production at US CS Departments 

Drop Further in 2006-07. Computing Research News, 20(2), March 2008. 
 


