
Cool: A Portable Project for Teaching Compiler ConstructionAlexander Aiken�EECS DepartmentUniversity of California, Berkeleyhttp://www.cs.berkeley.edu/eaiken1 IntroductionThe compiler course is a �xture of undergraduate computer science education. Most CS programs o�er acourse on compilers that includes a substantial project where students write a compiler for a small pro-gramming language. The project often serves two distinct purposes: it teaches something about languagedesign and compiler implementation, and it gives students the experience of building a substantial soft-ware system. A compiler project is the most complex software engineering task many students completein an undergraduate program.Unfortunately, developing a compiler project is labor intensive and time consuming, as it incorporatesall of the problems of designing and implementing a programming language. Using a \real" language(meaning any existing programming language that has a signi�cant number of users) does not signi�cantlysimplify the problem, because all such languages are too large to be implemented fully by undergraduatesin a single course|in practice, using a real language is a choice to use a subset of a real language, whichposes a substantial design problem in itself. Designing the language to be implemented is just the �rstproblem in creating a course project, however. Precise speci�cations for the project must be written,any supporting software must be designed, implemented, tested, and documented, handouts must beprepared, and so on. Finally, the entire project should be implemented by course sta� prior to actualuse in a course, because a full implementation is the only reliable way to ensure that the project isself-consistent, complete, and tractable.Readers who have taught or taken compiler courses may recognize that this idealized description ofa compiler project sometimes bears little resemblance to reality. Time pressures can dictate that cornersare cut in the design of the project, or even that the project is designed in \real time" while the courseis underway|a risky strategy at best! Once an instructor has created a project, the investment madeprovides a strong incentive to reuse the project again and again, even beyond the point when the projectbecomes outdated.Given that compiler courses are important and that compiler projects are expensive to create, it issurprising|at least to the author|that there are no standard, widely used compiler projects. Manyinstructors create their own projects, repeating much work that has been done many times before. In-structors do reuse projects from previous instances of the same course, but projects are not routinelyshared between institutions or even between instructors at the same institution. In contrast, other areasof computer science do have widely used course projects (e.g., Tom Anderson's nachos project for teachingoperating systems [CPA93]).�This work was supported by an NSF NYI award. 1



The current situation would improve if instructors who design course projects shared the fruits oftheir labor more widely. This article presents Cool, a freely available, portable compiler project. Coolhas been used for the past two years in compiler courses at Berkeley and the project is quite mature. Coolis being distributed in the hope that instructors at other institutions can bene�t from the e�orts of theproject developers and the many students who have written Cool compilers. Cool will not suit everyone'sneeds or tastes; another purpose of this article is to encourage others to make compiler projects publiclyavailable. This article concludes with a few comments about desirable features for a portable compilerproject.2 CoolCool, the Classroom Object-Oriented Language, is a small programming language for teaching the basicsof compiler construction to undergraduate computer science majors. Cool is designed to be implementedby individuals or teams of two using C++ [Str91] in a Unix environment in a single semester. At Berkeley,80-90% of the student teams complete the project each semester. The project has been designed to berelatively easy to modify, so shorter or longer projects are possible. In this paper, Cool refers both to thelanguage and to the complete compiler project (of which the language is one part).The Cool language is object-oriented, statically typed, and has automatic memory management.These are the essential features of a number of recent languages (e.g., Java [Jav96]). These particularfeatures were selected because they are technically interesting, representative of a useful class of contem-porary languages, and co-exist easily in one design.The Cool project also is designed to solve three common practical problems with compiler projects.First, the project is completely modular; there are no dependencies between the assignments. In partic-ular, a student who does a poor job on one assignment is not at a disadvantage on later assignments.Second, the project is highly portable between Unix platforms.The third problem is that reusing projects is similar to reusing exams or problem sets. If a projecthas been used once at a school, the local student population develops a \memory" of the project thatlasts several years, and dishonest students may submit the work of others from previous years as theirown. Indeed, this problem alone may explain why so many new course projects are invented. However,making relatively modest changes to old projects reduces substantially the incentive to cheat. The Coolproject is designed to be easy to modify and extend, and in fact has been substantially modi�ed oncewith much less e�ort than would be needed to construct a new project.The complete Cool project consists of many components beyond the language. The following subsec-tions briey describe aspects of the project organized around the topics of platform independence, thereference compiler, supporting software, modular assignments, formal speci�cation, and documentation.2.1 Platform IndependentCool is highly portable and easy to install on any Unix machine with standard GNU software tools (gmake,bison, and ex). Cool is platform independent in two additional ways. First, Cool can be installed tosupport multiple architectures transparently on a common �le system. At Berkeley, Cool is supportedsimultaneously on HP's, DECstations, and Sun workstations. A separate Linux distribution is madeavailable for students to use on their home PC's. Second, Cool targets MIPS assembly, which can run ona simulator such as Jim Larus' spim [Lar]. Thus, the generated assembly code is also relatively platformindependent. The Cool distribution includes spim. 2



2.2 Reference CompilerThe project comes with coolc, a Cool compiler. This reference compiler plays several roles. First,assignment skeletons and support software are extracted from the coolc source. Second, the phases ofthe compiler can be compiled separately, which supports modular assignments (see Section 2.4). Third,the reference compiler serves as a sample solution, which instructors may use to guide students. Fourth,students appreciate the ability to compare their compilers with a (hopefully) correct compiler on speci�cexamples.The most important function of the reference compiler is one the students never see. Implementinga reference compiler is the only reliable check that a compiler project is tractable by students in ashort period of time with a minimum of drudgery. In the case of Cool, the initial implementation ofcoolc revealed several aspects of the language design that could be simpli�ed to reduce the requiredimplementation e�ort without sacri�cing anything of educational value.2.3 Support SoftwareA typical compiler uses many standard data structures (e.g., look-up tables) and has some low-level,repetitive code (e.g., templates for emitting each kind of assembly instruction). Because students havepresumably had a data structures course prior to the compiler course, it is wasteful to have studentsimplement these components. All such support code is supplied to students in the Cool project. Thecode is documented, and there is a separate handout describing the overall structure of the componentsand their interfaces.Supplying students with support code has another advantage when the implementation language fora project is C or C++. These languages require meticulous attention to memory management detailsif programs are to work properly. When that care is not given, the errors are sometimes di�cult to�nd|students can spend more time trying to �nd the source of a dangling pointer than learning aboutcompilers. Providing support code that gives a moderate level of abstraction (in particular, encapsulatesmemory management) removes a large percentage of the possible pitfalls and enables students to focuson the most important aspects of the project.2.4 Modular AssignmentsCompiler projects usually are divided into four assignments: lexical analysis, parsing, semantic analysis,and code generation. The strong dependencies between these phases is an inherent and di�cult problem.For example, a student who does poorly on the lexical analyzer may be indirectly penalized on theparser, because it will not be possible to thoroughly test the parser with a buggy lexer; this problem iscompounded in later assignments. Conversely, without a working code generator, a student writing thesemantic analyzer cannot test the code generation interface. Finally, if grading is done partly by runningtest cases, it is impossible to have a fair basis for grading code generation (for example) without usingcorrect implementations of the earlier phases.The Cool project has been structured to eliminate dependencies between assignments. The coolccompiler is modular with well-de�ned interfaces between each of the four phases. Each coolc phase canbe compiled separately and used in any other Cool compiler that adheres to the interface. Thus, studentsmay mix-and-match any of the components of coolc with any of their own components. For example,a student can construct a Cool compiler using his or her own lexical and semantic analysis and coolc'sparser and code generator. 3



2.5 Formal Speci�cationCool comes with a language reference manual, the CoolAid. The CoolAid has two parts, an informaloverview of Cool and a formal speci�cation of the syntactic structure, static semantics, and operationalsemantics of Cool programs. The formal semantics is given using standard deductive type rules andstructural operational semantics. A self-contained explanation of all notation is included in the manual.It is often noted that a di�culty in teaching formal semantics is that students do not see how toapply the ideas to everyday programming problems. Arguably, no one needs formal semantics more thana compiler writer, where the language semantics serves as the compiler speci�cation. Indeed, when toldthat grades are based on conformance of their compiler to the language manual, many students develop asudden interest in formal semantics. Once acquainted with how to read the formal rules, students examineand question every detail in the course of writing the compiler. Some students report that the experiencetransformed their view of programming languages and formal speci�cation. Overall, a compiler course isan excellent vehicle for introducing students to formal speci�cations.2.6 DocumentationBesides the language manual there is a document describing all of the support code and its interfaces,a handout for each assignment, and a short Instructor's Guide. Documentation for all of the tools usedin the project (gmake, bison, ex, and spim) is also included. Finally, all source code, including bothskeleton code given to students and the reference compiler, is documented.3 What Makes a Good Project?There is a long-running and useful debate in the programming languages community about what languagesand language concepts are most important to teach in undergraduate courses. In the context of compilercourses, the speci�c questions are: What language should students implement?, and In what languageshould students write their compiler?While important, in the author's experience these two questions are not the paramount issues facingsomeone designing or choosing a course project. The overriding concerns are: (1) the project is well-speci�ed and (2) the project is tractable. The problems that ensue if (1) is not satis�ed, regardless ofany other merits the project may have, should be clear. For (2), it is impossible for most students takinga typical course load to implement anything but a small language in a single course. Furthermore, thereis little educational value in implementing the bells and whistles of realistic languages.Given the fact that the language to be implemented must be small, the author prefers to use aninvented language rather than a subset of an existing language for a compiler project. An inventedlanguage can be designed to be easy to implement rather than easy to use, which is the reverse of theusual priorities. Also, one is not constrained by existing languages and can pick and choose featuresfrom a wide spectrum. For example, Cool is object-oriented like C++, is an expression language withgarbage collection like Lisp-family languages, and has a very regular syntax reminiscent of Pascal. Anotheradvantage is that an invented language can be deliberately di�erent from existing languages. Confrontingan unknown language forces students to think consciously about the meaning of language phrases, ratherthan relying on intuitions borrowed from known languages.Unfortunately, it is probably not possible to illustrate every interesting language feature in a single,coherent project. For example, Cool does not have higher-order functions, a basic feature of many modernlanguages. (There is no language design problem in adding higher-order functions; the problem is keepingthe project small.) 4



Finally, the choice of language in which students write their compilers is not obvious. In part, thedecision depends on whether the course also is intended to teach practical software construction orprinciples of language design. In courses with an emphasis on gaining experience in software constructionas it is practiced in industry, the choices are C and C++. For courses with an emphasis on languagedesign, a language such as ML [MTH90] is much better for exposing students to modern language ideas.Cool uses C++ as the implementation language. As noted above, when students use C or C++ forimplementation, it is important to give some thought to helping students minimize routine coding errorsthat can sap their time and enthusiasm for the project. The strategy adopted in Cool is to providesupport code that o�ers a moderate level of abstraction for the primitive data types of the compiler, andto make a few suggestions about C++ programming style. (Speci�cally, it is recommended that onlya small subset of C++ be used, which is the same subset used in writing the coolc reference compiler.)This approach has been successful; a substantial majority of students are able to complete the projectwithin the time frame of the course.The recent development of Java has created another candidate implementation language. BecauseJava is a much safer programming language than either C or C++ and because it is likely to gainpopularity in industry, Java will become more attractive than either C or C++ as an implementationlanguage for many student projects. A port of Cool to Java would be simple, as the coolc referencecompiler is written in the Java subset of C++. The only drawback is the current lack of tools to supportJava programming, particularly debuggers and a well-tested and documented Java parser generator.4 ConclusionsSubstantial e�ort has been spent developing the Cool compiler project over a two year period. It isunlikely that this experience is unique, and other educators are encouraged to spend the additional e�ortto make their compiler course projects available to the community for use and further development.The Cool distribution is available from http://www.cs.berkeley.edu/eaiken/cool. The WWWsite contains all materials a student needs to write a compiler, including the manual and all assignmenthandouts, source for all support code, assignment skeletons, and binaries for the phases of the referencecompiler. The distribution is also available via ftp from ftp.cs.berkeley.edu in directory pub/cool.Instructors may obtain the full distribution (including source for coolc and test cases) by sending mail toaiken@cs.berkeley.edu.5 AcknowledgementsThe precursor of Cool is Sather164, a compiler project developed by Susan Graham and John Boyland.Sather164 is itself based on the programming language Sather [SK95]. Lok Sang Chen, Manuel F�ahndrich,David Gay, Douglas Hauge, Margret Jacoby, and Carleton Miyamoto contributed substantially to thedesign and implementation of Cool.Manuel F�ahndrich, Susan Graham, and Margret Jacoby provided comments on earlier drafts of thispaper.References[CPA93] W. Christopher, S. Procter, and T. Anderson. The Nachos instructional operating system. In1993 Winter USENIX Conference, pages 479{488, January 1993.5



[Jav96] The Java Tutorial: Object-Oriented Programming for the Internet.http://java.sun.com/java.sun.com/tutorial/intro.html, 1996.[Lar] J. Larus. Spim. http://www.cs.wisc.edu/elarus/spim.html.[MTH90] R. Milner, M. Tofte, and R. Harper. The De�nition of Standard ML. MIT Press, Cambridge,Massachusetts, 1990.[SK95] D. Stoutamire and M. Kennel. Sather revisited: A high-performance free alternative to C++.Computers in Physics, 9(5):519{524, September 1995.[Str91] B. Stroustrup. The C++ Programming Language. Addison-Wesley, 1991.

6


