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Abstract

When training deep neural networks, keeping all tensors in high precision (e.g., 32-bit or
even 16-bit floats) is often wasteful. However, keeping all tensors in low precision (e.g., 8-bit
floats) can lead to unacceptable accuracy loss. Hence, it is important to use a precision
assignment—a mapping from all tensors (arising in training) to precision levels (high or
low)—that keeps most of the tensors in low precision and leads to sufficiently accurate
models. We provide a technique that explores this memory-accuracy tradeoff by generating
precision assignments for convolutional neural networks that (i) use less memory and (ii)
lead to more accurate convolutional networks at the same time, compared to the precision
assignments considered by prior work in low-precision floating-point training. We evaluate
our technique on image classification tasks by training convolutional networks on CIFAR-10,
CIFAR-100, and ImageNet. Our method typically provides > 2× memory reduction over a
baseline precision assignment while preserving training accuracy, and gives further reductions
by trading off accuracy. Compared to other baselines which sometimes cause training to
diverge, our method provides similar or better memory reduction while avoiding divergence.

1 Introduction

In deep neural network training, floating-point formats are usually used to represent tensors and it is
worthwhile to use the smallest bitwidth format that gives acceptable results. For example, it is common to
replace tensors using 32-bit floats with tensors that use 16-bit floats (Kalamkar et al., 2019; Micikevicius et al.,
2018). The benefits are easy to understand: computations using lower-precision floats not only use less memory
but are also faster (due to improved vector parallelism, locality, and reduced data movement). The downside
is that there is generally some loss of training accuracy, and in the worst case training may not even converge.

For such low-precision floating-point training, the most common approaches use two floating-point
formats—one for lower-precision floats (e.g., 8-bit floats) and the other for higher-precision floats (e.g., 16-bit
floats)—and assign one of the two formats to each tensor (including weights, activations, and their gradients).
The precision assignments studied in previous work fall into one of two assignment schemes (which both have
several variants): the uniform assignment uses low precision for almost all tensors (often excepting those
in the first and/or last few layers) (Micikevicius et al., 2018), while the operator-based assignment limits
low precision to the input tensors of certain operators (e.g., convolutions) (Sun et al., 2019). Prior work
has shown that both precision assignment schemes (with well-chosen low-bitwidth floating-point formats)
can match the accuracy of 32-bit-float training (Cambier et al., 2020; Chmiel et al., 2021; Drumond et al.,
2018; Fox et al., 2021; Kalamkar et al., 2019; Micikevicius et al., 2018; Sun et al., 2019; Wang et al., 2018).

There is an important limitation in all prior approaches to low-precision floating-point training: they use
very few precision assignments (most often just one) for a given set of models, but there are some other
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(a) SqueezeNet (b) ShuffleNet-v2 (c) MobileNet-v2

Figure 1: Training trajectory of various models on CIFAR-100. Colors denote precision assignments:
all-32-bit πfp32 (red), uniform πunif (yellow), and operator-based πop (blue) (see §3.1); the latter two use
the 8-bit (and 16-bit) floats in Sun et al. (2019) as low (and high) precision numbers. Markers denote the
“width multiplier” of a model, which controls the capacity of the model (see §5.3): 1.0 (•), 0.5 (�), 0.25
(N), and 0.1 ( ). Some lines of πunif are missing as they converge to small values or diverge. Observe that
neither πunif nor πop works best for all models: in some models, πop has a similar accuracy to πfp32; but
in other (and all) models, the accuracy drop of πop (and πunif) from πfp32 are noticeably large (i.e., >1%).

models and inputs where the chosen precision assignment (i) results in noticeably worse accuracy than
32-bit-float training, (ii) causes training to even diverge, or (iii) admits a more efficient assignment that
achieves similar training accuracy (see Figures 1, 3, and 4).

In this paper, we present a new, automated method for choosing precision assignments that removes the
limitations described above. To do so, we formally introduce the memory-accuracy tradeoff problem (§3.2):
given a dataset, a model, and two floating-point precision levels (i.e., bitwidths; high and low), find a mixed
precision assignment (a mapping from all tensors arising in training to high/low precision) for the model
that maximizes training accuracy subject to a given upper bound on the model aggregate (i.e., the total
number of bits of all tensors appearing in training). The model aggregate is a proxy for the memory and
time required for training, as it is roughly proportional to memory footprint and also well-correlated with
training time (since training is often dominated by data movement) (Micikevicius et al., 2018).

We prove that the memory-accuracy tradeoff problem is theoretically difficult (namely NP-hard) partly due to
the exponential number of possible mixed precision assignments (which we often refer to simply as precision
assignments for brevity) (§3.3). The large number of possible assignments makes the problem difficult in
practice as well: there is no known analytical method for predicting the training accuracy of a given precision
assignment, and for any practical model there are far too many precision assignments to simply test them all.

We propose a simple (heuristic) approach to the tradeoff problem that prioritizes tensors for low-precision
formats based on the tensor’s size (with an additional step described below) (§4.1). More specifically, our algo-
rithm takes as input a single parameter giving a desired upper bound on the model aggregate. Starting with the
largest tensor in the model, tensors are assigned low precision in size order (from largest to smallest) until the
model aggregate falls below the given upper bound; all remaining tensors are assigned high precision. Our main
result is that this method discovers mixed precision assignments that use less memory while achieving higher
training accuracy than previous approaches. While we cannot show that our method finds Pareto-optimal
memory-accuracy tradeoffs, we do show that our results are closer to Pareto-optimal than prior methods.

Some precision assignments initially generated by our algorithm cause training to diverge due to an excessive
number of overflows. To address this issue, we propose an overflow handling technique that promotes
tensors causing too many overflows from low precision to high precision during training (§4.2). In our
experiments, these promotions consume only a small amount of additional memory (<3% of the maximum
model aggregate) and prevent training from diverging. The overflow handling technique is not specific to
our algorithm and can be applied to other precision assignment methods as well.

We evaluate a PyTorch implementation of our method on standard image classification tasks by training
four convolutional networks (and their variants) on CIFAR-10, CIFAR-100, and ImageNet (§5). We first
demonstrate that the precision assignments computed by our method alleviate the limitations of existing
methods: they indeed explore the tradeoff between memory and accuracy and exhibit a better tradeoff than
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the uniform and operator-based assignments. We then show the two main components of our method (i.e.,
precision demotion of larger tensors and precision promotion of overflowing tensors) are both important
to produce competitive precision assignments. We also provide some guidance on how users may apply our
method to navigate the memory-accuracy tradeoff.

To summarize, this work makes four main contributions:
• We formally introduce the memory-accuracy tradeoff problem to explore better mixed precision
assignments for low-precision floating-point training and prove the NP-hardness of the problem.
• We present a novel precision assignment technique, as a heuristic solution to the tradeoff problem, that

proposes assignments based on a single parameter denoting a desired upper bound on the model aggregate.
• We present a novel technique that handles an excessive number of overflows arising in training while using a

small amount of additional memory. The technique is applicable to any (not just our) precision assignments.
• We demonstrate that the mixed precision assignments found by our method do explore the tradeoff
between memory and training accuracy, and outperform existing precision assignment methods.

We remark that this work focuses on low-precision floating-point training, not fixed-point training (which
uses fixed-point formats), since we want to target upcoming (or very recent) hardware with native support
for low-precision floats (e.g., 8-bit floats) and their operations (e.g., Andersch et al. (2022)). Also, this
work focuses on low-precision training (which trains a model from scratch), not inference (which assumes
a pre-trained model). More discussion is in §2. We further remark that in our experiments we simulate
low-precision formats (e.g., 8-bit floats) with 32-bit floats as in prior works, since a hardware and software
ecosystem that natively supports these formats does not yet exist. Similarly, we do not include other models
(e.g., language models) in the experiments, since no current software stacks support per-tensor precision
assignments for certain operators that those models use. More details are in §5.1 and §5.2.

For image classification tasks and convolutional networks, our precision assignment method typically provides
> 2× memory reduction over the operator-based assignment while maintaining similar training accuracy
and gives further reductions by trading off accuracy. Our method also provides similar memory reduction
to the uniform assignment, while avoiding the divergence of training often caused by a uniform assignment.

The paper is organized as follows. After discussing related work (§2), we define the memory-accuracy tradeoff
problem and study its hardness (§3). We then describe our algorithm for the problem (§4) and our evaluation
(§5). We conclude with limitations and future work (§6).

2 Related Work

Low-precision floating-point training has been extensively studied since the work of Micikevicius et al.
(2018). One active research direction is to select appropriate floating-point formats (or their variants) for low-
and high-precision numbers in training. Various floating-point formats have been proposed, including FP16
(Micikevicius et al., 2018), BF16 (Kalamkar et al., 2019), FP8 (Micikevicius et al., 2022; Wang et al., 2018),
HFP8 (Sun et al., 2019), and FP6 (Chmiel et al., 2021), along with some variants such as HBFP (Drumond
et al., 2018), S2FP8 (Cambier et al., 2020), and BM (Fox et al., 2021). Recently, the problem of automatically
selecting such floating-point formats has been considered (Yang et al., 2022). Another research direction is
to develop algorithmic techniques that improve training accuracy under low precision: e.g., (Björck et al.,
2021; Sa et al., 2018; Yang et al., 2019a; Zamirai et al., 2020). Our work is orthogonal and complementary
to all these prior works: they consider various floating-point formats or training algorithms but use a fixed
precision assignment, which is either the uniform or operator-based assignment (or their variants); our work
explores various precision assignments once floating-point formats and training algorithms are fixed (e.g.,
based on the prior works). The tradeoff between memory and accuracy in training is also considered in Yang
et al. (2022), but the work differs from ours: they vary floating-point formats when a precision assignment is
fixed, while we vary precision assignments when floating-point formats are fixed.

Low-precision fixed-point training uses fixed-point formats as a low-precision representation instead of a
floating-point format. Some works use fixed-point formats for forward tensors and floating-point formats for
backward tensors: e.g., (Choi et al., 2018; Courbariaux et al., 2015; Jacob et al., 2018; Sun et al., 2020; Yang
et al., 2019b). Other works use only fixed-point formats for all tensors: e.g., (Banner et al., 2018; Das et al.,
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2018; Gupta et al., 2015; Rajagopal et al., 2020; Sakr & Shanbhag, 2019; Wu et al., 2018; Zhang et al., 2020;
Zhou et al., 2016). Among all these works, some consider various mixed precision assignments with different
bitwidth (fixed-point) formats: (Sakr & Shanbhag, 2019; Zhang et al., 2020); but they are not applicable to
our context (i.e., floating-point training) since they rely on some properties of fixed-point formats that do not
hold for floating-point formats (e.g., all numbers in a given format are equally distributed). The approach
taken in Rajagopal et al. (2020) is orthogonal and complementary to ours: they use only the uniform precision
assignment, but change the underlying low-precision formats during training; we consider various mixed
precision assignments, but fix the underlying low-precision formats during training.

Low-precision inference, often called neural network quantization (in a narrow sense), aims at reducing
the latency or memory of neural network inference (instead of training) by using low-precision numbers
(Nagel et al., 2021). Existing approaches typically assume a pre-trained model and try to find low-precision
formats for each part of the inference computation, either by retraining the model (called quantization-aware
training) or without any retraining (called post-training quantization); see, e.g., Gholami et al. (2022); Qin
et al. (2022) for surveys. Some works on inference consider various mixed precision assignments, but they are
not applicable to our context: they focus on making inference more efficient and usually assume a pre-trained
model; we focus on making training more efficient and aim at learning a model from scratch.

Floating-point tuning is another related topic, which considers the following problem: given a program,
assign appropriate formats (among given candidates) to the program’s floating-point variables such that the
program’s output has an error smaller than a given threshold for all given inputs, while also maximizing
performance (Chiang et al., 2017; Guo & Rubio-González, 2018; Menon et al., 2018; Rubio-González et al.,
2013; 2016). This problem is different from the problem we focus on: the former considers the floating-point
error after a single run of a program, while we consider the training accuracy after a large number of runs of
a program (i.e., a gradient computation) where each run affects the next run; further, the former considers
general-purpose programs, while we consider deep learning programs and exploit their unique features.

3 Problem

In this section, we first provide background on low-precision floating-point training (§3.1), based on which
the memory-accuracy tradeoff problem is introduced (§3.2). We then prove the NP-hardness of the problem
(§3.3). Our approach in §3–4 is more formal than most related works for two reasons: (i) we show the
problem is NP-hard, which has not been considered in prior work; and (ii) to clearly describe the precision
assignments to be considered.

3.1 Background: Low-Precision Floating-Point Training

Let T be the set of real-valued tensors and let [n] denote the set {1, . . . , n}. For a supervised learning task,
we usually consider a model network M = (f1, . . . , fn) parameterized by θ = (θ1, . . . , θn) ∈ Tn, and a loss
network L = (fn+1, . . . , fm), where fi : T2 → T is a primitive operator on tensors (e.g., convolution, batch
normalization, maxpool, and softmax). Given an input-output pair (x, y) ∈ T2, the modelM computes a
predicted output y′ of x by iteratively applying fi(·, θi) to x (i ∈ [n]), and L computes a loss from y′ by
iteratively applying fi′(·, y) to y′ (i′ ∈ [m]\ [n]). A standard way to trainM is to minimize the loss value using
the gradient descent algorithm: iteratively update θ by following the gradient of the loss with respect to θ.

Floating-point training. In practice, we perform a gradient computation usually with tensors represented
in floating-point formats. Let π : TS → FP be a precision assignment giving the floating-point format of
each tensor, where TS =∆ {vi, dvi, θj , dθj | i ∈ [m + 1], j ∈ [n]} is the set of tensors arising in a gradient
computation (explained below), and FP =∆ {fp(e,m, b) | e,m ∈ N, b ∈ Z} is the set of floating-point formats.
Here fp(e,m, b) denotes a floating-point format that consists of a 1-bit sign, an e-bit exponent, and an m-bit
mantissa, and has an (additional) exponent bias of b ∈ Z. A common choice of π is πfp32(t) =∆ fp32 for all
t ∈ TS, where fp32 =∆ fp(8, 23, 0) is the standard 32-bit floating-point format.
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Figure 2: A diagram showing the tensors and operators used in a gradient computation; see Eq. (1) for
details. For brevity, rounding functions rndπ(·) are omitted.

Given a precision assignment π, a gradient computation is typically performed by the backpropagation
algorithm: with v̂1 = rndπ(v1)(x) and d̂vm+1 = rndπ(dvm+1)(1), compute

v̂i+1 = rndπ(vi+1)(fi(v̂i, ûi)), θ̂j = rndπ(θj)(θj),
d̂vi = rndπ(dvi)(df i,1(d̂vi+1, v̂i, ûi)), d̂θj = rndπ(dθj)(df j,2(d̂vj+1, v̂j , θ̂j)),

(1)

for i ∈ [m] and j ∈ [n]; see Figure 2 for a diagram. Here rnd : FP× T → T is a function rounding a given
input to a given floating-point format, df i,1, df i,2 : T3 → T are the backward operators of fi with respect
to its first and second arguments, respectively, and ûi = θ̂i if i ∈ [n] and y otherwise. We call vi and θj
the forward tensors, and dvi and dθj the backward tensors. We put a hat over each tensor to emphasize that
its value is the output of a rounding function to a possibly low-precision format; remark that such a rounding
function is not used within fi, df i,1, and df i,2, since they typically use large bitwidth floats (e.g., fp32) and
no low-precision floats internally (Cambier et al., 2020; Kalamkar et al., 2019). After the computation, d̂θj
stores the gradient of the loss value with respect to θj .

The overall picture of floating-point training is now described as follows. In each iteration of the gradient
descent algorithm, we compute d̂θj via Eq. (1) using a given precision assignment π, training data (x, y), and
current weights θ. We then update each θj by θj ← rndfp32(θj−η ·d̂θj) given a learning rate η > 0, and proceed
to the next iteration until the training ends. Here we use fp32 to represent θj by following the convention in
low-precision floating-point training: a “master copy” of weights (i.e., θj) is stored separately from the weight
values (i.e., θ̂j) used in a gradient computation, and is usually represented by fp32 (Cambier et al., 2020;
Kalamkar et al., 2019; Micikevicius et al., 2018). The memory overhead of this master copy is very small
compared to the memory required to store other tensors (e.g., activation tensors vi) (Micikevicius et al., 2018).

Low-precision floating-point training. In low-precision training, we use a precision assignment π where
some tensors have a smaller bitwidth than fp32. Particularly well-studied are π that use two predetermined
floating-point bitwidths (which are different) and optionally vary the rest of the format from tensor to
tensor. We call C : TS × {lo, hi} → FP a precision-candidate assignment if C(t, lo) has the same bitwidth
for all t ∈ TS, the same holds for hi, and the bitwidth for lo is smaller than that for hi. We define Π(C) =∆
{π : TS→ FP | ∀t ∈ TS. π(t) ∈ {C(t, lo), C(t, hi)}} as the set of precision assignments that conform to C.

Among various precision assignments in Π(C), two have received the most attention: the uniform assignment
πunif,C (Micikevicius et al., 2018) and the operator-based assignment πop,C (Sun et al., 2019). The former
assigns low-precision formats to all tensors uniformly1, and the latter to (most of) the input tensors of
GEMM operators (in both forward and backward passes):

πunif,C(t) =∆ C(t, lo) for all t ∈ TS,

πop,C(t) =∆
C(t, lo) if t ∈ {vi, θi, dvi+1} for some i

and fi is a GEMM operator (but not the first/last one)
C(t, hi) otherwise,

(2)

where a GEMM operator refers to a general matrix multiplication operator which arises in, e.g., fully-connected
or convolutional layers. A particular variant πop′,C of πop,C has received much attention as well (Kalamkar
et al., 2019), which assigns low-precision formats to (most of) the input and output tensors of GEMM
operators: it is defined as πop,C except that {vi, θi, dvi+1} in Eq. (2) is replaced by {vi, θi, vi+1, dvi, dθi, dvi+1}.

1For simplicity we define πunif,C without the common exceptions for tensors near v1 and/or vm+1.
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We note that the precision assignments used in apex.amp and torch.amp (Nvidia, 2019; PyTorch, 2022)
correspond to πop,C and πop′,C, respectively. For several choices of C, these assignments have been shown
to produce training accuracy similar to that by πfp32 on many datasets and models (see §1–2).

3.2 Memory-Accuracy Tradeoff Problem

We now introduce the following problem based on §3.1, to address the limitation of existing approaches
for low-precision floating-point training discussed in §1:
Problem 3.1 (Memory-accuracy tradeoff). Given training data {(xi, yi)}, a model and loss network M
and L, a precision-candidate assignment C, and a lower bound r ∈ [0, 1] on the low-precision ratio, find a
precision assignment π ∈ Π(C) that maximizes acc(π) subject to ratio lo(π) ≥ r.

Here acc(π) denotes the accuracy of the modelM when trained with π on {(xi, yi)}, and ratio lo(π) denotes
the low-precision ratio of π, i.e., the portion of the tensors represented in low-precision under π, among
all tensors appearing in a gradient computation:

ratio lo(π) =∆ size({t ∈ TS | π(t) = C(t, lo)})
size(TS) ∈ [0, 1]

where size(T ) =∆
∑
t∈T size(t) denotes the total size (i.e., number of elements) of all tensors in T ⊆ TS.2 For

instance, ratio lo(πhi) = 0 and ratio lo(πlo) = 1 for the all-high-precision assignment πhi and the all-low-precision
assignment πlo. The problem asks for a precision assignment that maximizes training accuracy under a
memory constraint, which is expressed as a fraction of the memory required to train the model using πhi.

3.3 NP-Hardness of the Problem

We prove that the memory-accuracy tradeoff problem from §3.2 is NP-hard by showing that there is a
polynomial-time reduction from the knapsack problem to this problem:
Theorem 3.2. Problem 3.1 is NP-hard.

Proof sketch. Recall the knapsack problem: given n items with weights wi ∈ N and profits pi ∈ N (i ∈ [n]),
find a subset of the items that maximizes the total profit while its total weight does not exceed a given
threshold W ∈ N.

Given an instance (w, p,W ) of the knapsack problem, we construct an instance of Problem 3.1 such that we get
the following (informal) correspondence between the two: wi corresponds to the size of the parameter tensor
θi; pi to the i-th component of the input data; W to the lower bound r on the low-precision ratio (in an inverse
way); and selecting the i-th item corresponds to assigning a high-precision format to the tensor θi (and related
tensors), which roughly decreases the low-precision ratio by wi while increasing the accuracy of the model
(after training) by pi. Based on this informal correspondence, we formally prove that an optimal solution
to the above instance of Problem 3.1 can be converted in linear time to an optimal solution to the given
knapsack problem (w, p,W ). That is, we have a linear-time reduction from the knapsack problem (which is
NP-hard (Karp, 1972)) to Problem 3.1 which is therefore NP-hard. For a detailed proof, see Appendix A.

Intuitively, the proof relies on two aspects of Problem 3.1: the size of the search space (i.e., |Π(C)|) is
exponential in the size of the problem (especially |TS|), and some values representable in a high-precision
format underflow to 0 in a lower-precision format. Note that underflows are relevant in low-precision
training: they frequently arise in practice, degrading the results of training (Micikevicius et al., 2018). The
NP-hardness result indicates that it is unlikely any polynomial-time algorithm solves the problem exactly.

4 Algorithm

In this section, we propose a novel (heuristic) algorithm for the memory-accuracy tradeoff problem (§4.1),
and a new technique to handle overflows arising in training (§4.2). We point out that the former algorithm

2As explained in §1, the low-precision ratio is a proxy for the reduction in memory as well as training time (because the
low-precision ratio increases as the model aggregate decreases).
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finds an initial precision assignment before training starts, whereas the latter technique updates the current
precision assignment while training proceeds.

4.1 Precision Demotion for Saving Memory

Consider an input to the memory-accuracy trade-off problem (Problem 3.1): a model and loss network
M = (f1, . . . , fn) and L = (fn+1, . . . , fm), a precision-candidate assignment C, and a lower bound r on the
low-precision ratio. Given the input, our algorithm finds a precision assignment π in two steps (Algorithm 1).

Tensor grouping. We first group tensors in TS such that each group consists of all the tensors between two
“adjacent” GEMM operators (see below for details). This grouping reduces the search space over precision
assignments, from all of Π(C) to a subset in which the same precision is assigned to the tensors in the same
group. This specific grouping strategy is based on two observations: a majority of floating-point operations
are carried out in GEMM operators, and it is standard (e.g., in PyTorch) to use the same precision for a
forward tensor and its corresponding backward tensor.

Formally, we group tensors as follows. Let fk and fk′ (k < k′) be GEMM operators that are “adjacent”,
i.e., there is no GEMM operator in {fk+1, . . . , fk′−1}. For each such (fk, fk′), we create a group
{vi, dvi, θj , dθj | i ∈ (k, k′] ∩ [m + 1], j ∈ (k, k′] ∩ [n]}. After that, we create two more groups for the
remaining tensors: one for the tensors near v1 and the other for tensors near vm+1. As a result, we obtain
a set of disjoint groups of tensors {T1, T2, . . .} ⊆ 2TS.

Precision demotion. Given the groups of tensors, T1, T2, . . ., we construct a precision assignment π as
follows: initialize π to the all-high-precision assignment and update π by demoting the precision of all tensors
in a group to low precision, one group at a time, until the low-precision ratio of π becomes greater than r.
We demote the precision of groups in decreasing order of their sizes (i.e., the total number of elements in
tensors); that is, the precision of a larger size group is demoted earlier. Formally, let {T ′1, T ′2, . . .} be the
reordering of {T1, T2, . . .} such that size(T ′1) ≥ size(T ′2) ≥ · · · . After initializing π by π(t) = C(t, hi) for all t,
we iterate over i ∈ N and update π to π(t) = C(t, lo) for all t ∈ T ′i , until ratio lo(π) ≥ r is first satisfied. The
resulting π is the output of our algorithm.

The intuition behind using group size as the priority order for precision demotion is based on the fact
that it is actually optimal in a very simplified setting. Suppose that an input x to the modelM stores a
quantity of information I and the forward computation of M is nothing but a process of extracting the
information in the input into a small number of values, i.e., the tensor vn+1. Assume that passing through
each group Oi = {fk+1, . . . , fk′} of operators (corresponding to the group Ti of tensors) reduces the amount
of information by a factor αi ∈ (0, 1), and using low precision on the group Ti further reduces the amount
of information by a constant factor β ∈ (0, 1) for all i. Then, the amount of information left in vn+1 becomes
I × (α1α2 · · · )× βl, where l is the number of groups in low precision. In this simplified setting, maximizing
the amount of information in vn+1 is equivalent to minimizing the number of groups in low precision, which
is achieved precisely by demoting the largest groups first (when there is a constraint on the low-precision
ratio). We show empirically (§5.4) that using the decreasing size order in precision demotion indeed produces
better precision assignments than using other orders.

4.2 Precision Promotion for Handling Overflows

While our algorithm in §4.1 exerts a constraint on memory usage, it places no explicit constraint on training
accuracy, and so not surprisingly for some models and datasets the resulting precision assignment causes
training to diverge—accuracy decreases significantly and remains low after some point. We observe that
when training begins to diverge (and a bit before that), many overflows occur in the rounding function of
some tensors v̂i, i.e., an input tensor to the function rndπ(vi)(·) in Eq. (1) contains many elements whose
magnitude is larger than the maximum representable number of the format π(vi) (Figure 6(a-b); §5.4). This
rapid increase in overflows in individual tensors is a signal that training may diverge.

Precision promotion. Based on this observation, after each gradient computation we update the current
precision assignment π by promoting to high precision (i.e., C(t, hi)) any forward tensor t whose overflow ratio
is greater than a given threshold Θ ∈ (0, 1); this updated precision assignment is used in the next gradient
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Algorithm 1: Computing π with precision demotion
Input: (f1, . . . , fn), (fn+1, . . . , fm), C, r
/* Tensor grouping */
k = 1; Tk = ∅
for i = 1 to m do

Tk = Tk ∪ {vi, dvi}
if k ≤ n then { Tk = Tk ∪ {θi, dθi} }
if fi is GEMM then { k = k + 1; Tk = ∅ }

end
/* Precision demotion */
(T ′1, . . . , T ′k) = sort(T1, . . . , Tk) by decreasing size
π(t) = C(t, hi) for all t ∈ TS
for j = 1 to k do

if ratio lo(π) ≥ r then { break }
π(t) = C(t, lo) for all t ∈ T ′j

end
return π

Algorithm 2: Training with precision promotion
Input: π, Θ, C
/* Training loop */
Initialize weights θ
while training not finished do

Compute the current gradient dθ using π
Update θ using dθ
/* Precision promotion */
for forward t ∈ TS do

if overflow_ratio(t) > Θ then
π(t) = C(t, hi)

end
end

end
return θ

computation (Algorithm 2). Here the overflow ratio of t ∈ TS denotes the number of overflows arising in the
rounding function of t̂ in Eq. (1), divided by the number of elements in t̂. We show empirically (§5.4) that
training always converges using this technique and the additional memory cost of promotion is small (in our
experiments, < 3% of the maximum model aggregate3). For the experiments, we use Θ = 0.01; in fact we
found that a wide range of values for Θ (0.1, 0.01, and 0.001) all work well. Note that this technique is not
specific to our algorithm and can also be applied to other precision assignment methods.

We apply precision promotion only to forward tensors for two reasons. First, dynamic loss scaling
(Micikevicius et al., 2018; Nvidia, 2019; PyTorch, 2022; Sun et al., 2019) already handles overflows in
backward tensors, but not in forward tensors: loss scaling multiplies the backward loss tensor dvm+1 by
a constant before performing backward computation, to scale up all backward tensors; the dynamic version
adjusts the constant during training in a way that avoids overflows in backward tensors. Note that dynamic
loss scaling does not affect forward tensors at all. Second, we cannot use a similar idea to handle overflows
in forward tensors, because forward tensors are not linear in the input tensor v1 whereas backward tensors
are linear in the backward loss tensor dvm+1 (by the linearity of differentiation).

Precision promotion incurs little if any computational overhead: checking whether a single rounding operation
overflows is cheap, and we only apply rounding functions to the output tensor of an arithmetic-intensive
operator (e.g., convolution and batch normalization), amortizing the cost of the overflow checks over a large
number of other operations.

5 Experiments

In this section, we evaluate our precision assignment technique (developed in §4) on standard training tasks
to answer three research questions:

• Does our technique explore the tradeoff between memory and accuracy and achieve a better tradeoff
than existing (fixed) precision assignments (§5.3)?
• Are the two main components of our technique, precision demotion/promotion of larger/overflowing
tensors, important for good performance (§5.4)?
• How can we choose the parameter r in our technique (i.e., a lower bound on the low-precision ratio) (§5.5)?

3For each training where our methods (presented in §4) are used, we measure the model aggregate when the training starts
and when it ends. We observe that the difference between the two values (averaged over four different runs) is at most 3%
of the maximum model aggregate (i.e., the model aggregate when all tensors are in high precision).

8



Published in Transactions on Machine Learning Research (06/2023)

5.1 Implementation

We have implemented our precision assignment technique using PyTorch (Paszke et al., 2019). Given a model
and loss network, and a dataset, our implementation takes as parameters a precision-candidate assignment C
and a lower bound r on the low-precision ratio; it then automatically assigns precisions to tensors (appearing
in training) according to our technique and uses those assigned precisions in gradient computations. To
make these procedures automatic, our implementation works as follows:

• For each primitive operator in PyTorch (e.g., torch.nn.Conv2d), our implementation provides its wrapped
version (e.g., ext3.nn.Conv2d) which records auxiliary information for our technique (e.g., floating-point
format of input/output tensors) and applies proper rounding functions in forward/backward computations
based on the auxiliary information. Models should now use the wrapped classes instead of the original ones.
• Our implementation first constructs a computation graph (of a given model and loss network) dynamically
by running a forward computation on a minibatch of input data. The computation graph and other
information (e.g., each tensor’s size) are recorded in the wrapped classes.
• Using the auxiliary information just recorded, our implementation then constructs an initial precision
assignment according to §4.1, and starts training with this assignment. During the training, our
implementation uses the current precision in gradient computations, and updates it after each gradient
computation according to §4.2. We record the precision assignment also in the wrapped classes to
automatically apply proper rounding functions in gradient computations.

We simulate low-precision formats used in the experiments (e.g., 8-bit floats) and their operations, with 32-bit
floats and 32-bit operations followed by rounding functions as described in Eq. (1); simulating low-precision
formats is the standard methodology set by prior works on low-precision training (Cambier et al., 2020; Fox
et al., 2021; Kalamkar et al., 2019; Micikevicius et al., 2022) and we simply follow this.4 We implement the
rounding functions based on the QPyTorch library (Zhang et al., 2019), but a few extensions are required, e.g.,
to support exponent bias and signal overflows for dynamic loss scaling. We automatically apply these rounding
functions after each primitive operator, by using PyTorch’s hook feature (e.g., nn.Module.register_*hook).

5.2 Experiment Setups

Datasets and models. As benchmarks for our experiments, we use the image classification task and three
datasets for the task: CIFAR-10 and CIFAR-100 (Krizhevsky, 2009), and ImageNet (Russakovsky et al.,
2015); these task and datasets have been widely used in recent works on low-precision training as a standard
choice (Chmiel et al., 2021; Rajagopal et al., 2020; Sakr & Shanbhag, 2019; Wang et al., 2018) and we simply
follow this. For the task and datasets, we use four well-known models: SqueezeNet (Iandola et al., 2016),
ShuffleNet-v2 (Ma et al., 2018), MobileNet-v2 (Sandler et al., 2018), and ResNet-18 (He et al., 2016); they
are chosen since models with relatively few weights, such as these, are generally known to be more difficult to
train with low precision than those with more weights (Sun et al., 2019). We considered other tasks (e.g.,
language modeling) and related models (e.g., RNN/transformer-based models) but did not include them in our
experiments because substantial additional implementation effort orthogonal to our main contributions would
be required: these models use some PyTorch operators that do not support per-tensor precision assignments,5
so applying our technique to these models requires significant modifications to PyTorch internals.

Precision-candidate and precision assignments. For the experiments, we use the precision-candidate
assignment C studied in Sun et al. (2019), which uses 16-bit (and 8-bit) floats for high (and low) precision; in
particular, C(t, hi) = fp(6, 9, 0) for all (forward/backward) tensors t, and C(t, lo) = fp(4, 3, 4) for all forward
tensors t and fp(5, 2, 0) otherwise. We choose this particular C since it uses sub-32-bit floating-point formats
for both low and high precision and the precision assignment πop,C was shown to achieve accuracy comparable
to 32-bit training (Sun et al., 2019). The three floating-point formats used in C have subnormals but no

4The 8-bit formats used in our experiments (see §5.2) began to be supported natively in hardware very recently (by NVIDIA
H100 GPU). But access to such hardware is still very limited (e.g., no major cloud services including AWS, Azure, and Google
Cloud provide it), and these formats are not yet supported natively in software (e.g., PyTorch, TensorFlow, and cuDNN). Due to
such lack of a hardware and software ecosystem natively supporting these formats, we chose to simulate them as in prior works.

5For instance, the PyTorch functions nn.RNN and nn.MultiheadAttention do not allow to change the precision of intermediate
tensors (e.g., input/output tensors of each GEMM operator used in the functions) to user-defined formats (e.g., fp(4, 3, 4)).
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infinities and NaNs, which are rounded to the largest or smallest representable numbers. Since our technique
is parameterized by a precision-candidate assignment, it is easily applied to other assignments as well.

We evaluate our technique by varying its parameter r (i.e., a lower bound on low-precision ratio) over deciles
r ∈ {0, 0.1, 0.2, . . . , 1}. We write πours,r to denote the precision assignment chosen by our technique (described
in §4) for a given r; e.g., πours,0 is the all-high-precision assignment, and πours,1 is the all-low-precision
assignment equipped with our precision promotion technique (§4.2). Following Sun et al. (2019), all precision
assignments (including πours,r) in our experiments use high precision (i.e., 16 bits) for all backward weight
tensors (i.e., d̂θj). For each precision assignment π, its low-precision ratio can change during training due
to our precision promotion technique (when applied), so we compute the average of the ratio over all epochs
and report this value as the low-precision ratio of π.

Other setups and compute time. All experiments were performed on NVIDIA V100 GPUs; total compute
time for all experiments was 1,081 GPU days. We train all models in a standard way: we apply dynamic loss
scaling (a standard technique used in low-precision floating-point training; see §4.2 for details) except for
32-bit training, and use standard settings (e.g., learning rate); see Appendix B for details. Due to random
variations in training, we perform four runs of training for each configuration and report the average and the
range of measured quantities.

5.3 Comparison with Existing Precision Assignments

To compare our technique with existing precision assignments for floating-point training, we train each model
with the following precision assignments: all-32-bit πfp32, uniform πunif (Micikevicius et al., 2018), operator-
based πop (Nvidia, 2019; Sun et al., 2019), its variant πop′ (Kalamkar et al., 2019; PyTorch, 2022), and ours
πours,r (see §3.1 and §5.2 for their definitions). We choose πunif , πop, and πop′ as baselines because existing pre-
cision assignments for floating-point training fall into one of the three assignments (or their variants) (see §1–2).

We train the four models mentioned in §5.2 on CIFAR-10 and CIFAR-100, and ShuffleNet-v2 on ImageNet. We
also train smaller variants of the four models (which are more difficult to train with low precision) on CIFAR-
100. We obtain these variant models by following Sun et al. (2019), i.e., by applying a well-known approach for
model reduction that uses a parameter called the width multiplier (Howard et al., 2017): each variant model
reduces the number of channels in most tensors by a width multiplier; we use three values {0.5, 0.25, 0.1} for
the width multiplier. We train just one model on ImageNet due to the large amount of computation involved:
for each model, 44 training runs (11 choices for r and 4 runs for each choice) are required for πours,r and
each run on ImageNet takes nearly a half day with 16 GPUs. We use ShuffleNet-v2 for ImageNet since the
model shows interesting memory-accuracy tradeoffs when trained on the (smaller) CIFAR datasets.

ImageNet. Figure 3 presents training results of ShuffleNet-v2 on ImageNet: its left graph plots the average
training trajectory for each precision assignment, and its right graph shows how each precision assignment
trades off between memory and accuracy, where memory is represented (inversely) by the low-precision ratio
of the assignment (which is averaged over all epochs; see §5.2) and accuracy is the best test accuracy of the
model during training. Each point in the right graph shows the average accuracy of four runs of training,
while the shaded area shows the variation in accuracy among those four training runs.

Figure 3 shows three points. First, as the parameter r increases, the average accuracy drop of πours,r from
πfp32 increases (up to 5%). In contrast, πunif and πop′ have a much larger average accuracy drop (more than
30%), as some training runs diverge when πunif and πop′ are used. Second, the tradeoff given by πours,r is
better (i.e., closer to Pareto-optimal) than by πop: πours,r for r ∈ {0.3, 0.4} has both higher accuracy and
larger low-precision ratio (i.e., memory reduction) than πop. In particular, πours,0.4 has 1.6× the memory
reduction of πop. Third, πours,r provides options that πop cannot (which has an accuracy drop of >1%). If we
want accuracy closer to πfp32, say within 0.5%, we can use πours,0.2 with 2.6% more memory than πop. If we
can tolerate a larger accuracy loss, say ≈ 3%, then we can use πours,0.7 with 2.9× the memory reduction of πop.

CIFAR-10/100. Figure 4 presents the memory-accuracy tradeoffs of precision assignments for the four
models on CIFAR-10 and CIFAR-100, and their smaller variants (with width multiplier 0.25) on CIFAR-100.
The results for other smaller variants are similar and included in Figure 10 (see Appendix C.1).
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The conclusions from Figure 3 hold for Figure 4: πours,r provides a range of options by varying r and exhibits a
better tradeoff than πunif , πop, and πop′ in almost all cases. We give a detailed comparison as follows. First, in
half of all 12 plots, πunif shows a similar tradeoff to πours,1. But in the remaining half, πunif has an accuracy drop
much larger than all other precision assignments including πours,r, since using πunif often makes training diverge
while using, e.g., πours,1 does not do so. Second, in all but two plots, πours,r shows a strictly better tradeoff than
πop: πours,r has noticeably larger (> 2×) memory reduction than πop while maintaining similar accuracy. Even
in the two plots, πours,r has a tradeoff very close to πop. Note that in three plots, πop has an accuracy drop of
>1% while πours,r provides several options that have smaller accuracy drops and more memory savings at the
same time. Third, πours,r shows a strictly better (or similar) tradeoff than πop′ in all but two (or two) plots.
Note that πop′ has accuracy smaller than πop in all but one plots. Also it has an accuracy drop of >1% in half
of all plots, and sometimes makes training even diverge (in one plot here and three other plots in Figure 10).

Additional results. To isolate the effect of our precision promotion technique on the above results (Figures 3,
4 and 10), we compare our precision assignments and the baseline assignments while applying the precision
promotion to all of them, and present the results in Appendix C.1 (Figures 13–15). Two observations can be
made in these results: for each precision assignment, (i) if training diverged without the precision promotion,
applying the precision promotion prevents such divergence and produces much higher accuracy; (ii) otherwise,
the accuracy and the low-precision ratio remain similar regardless of using the precision promotion. These
observations lead to the same conclusion as in the above: our assignments provide similar or better tradeoff
between memory and accuracy than the baseline assignments, even when the latter are equipped with our
precision promotion technique. In addition, these observations also indicate that our precision promotion
technique can effectively handle divergence in training (see §5.4 for more results on this).

5.4 Ablation Study: Precision Demotion and Promotion

Precision demotion. To evaluate the decision to use precision demotion in decreasing-size order, we train
the four models on CIFAR-100 with πours,r, πours[inc],r (which demotes tensor groups in increasing-size order)
and πours[rand],r (which demotes tensor groups in random order). For πours[rand], three different random orders
are used in each case. The results, presented in Figure 5 (and Appendix C.2), show that the order of precision
demotion has a significant impact on the resulting memory-accuracy tradeoff, and that decreasing order
provides the best results in nearly all cases. Increasing order consistently shows the worst results, suggesting
our intuition (given in §4.1) for choosing decreasing order has some basis in reality.

Precision promotion. To understand whether precision promotion of overflowing tensors is important to
our technique, we train ShuffleNet-v2 on ImageNet using πours[no-promo],r which does not promote tensors.
The results, presented in Figure 6(a), show that several training trajectories diverge in early epochs and fail
to recover afterwards. Figure 6(b) plots the top-5 tensor overflow ratios for the highlighted trajectory in
Figure 6(a). The overflow ratios first spike about when divergence occurs around epoch 11. A closer look
shows that the spike in overflow ratio occurs shortly before divergence, and starts first in a few tensors and
then propagates to others. These observations indicate that an excessive number of overflows in a few tensors
are the cause of the training divergence.

Finally, Figure 6(c-d) shows that precision promotion is effective at preventing the divergence of training
while sacrificing only a small amount of memory reduction. The figure shows ShuffleNet-v2 on ImageNet
trained using our technique with and without precision promotion. Figure 6(c) shows that without precision
promotion large accuracy drops occur due to divergence, whereas with precision promotion training converges.
Figure 6(d) shows that the total size of tensors promoted to high precision is small for all r values. See
Appendix C.2 for similar results for CIFAR-10.

5.5 Choosing the Value of r

The time and space savings of our method are most significant when a model is regularly retrained, which
commonly occurs when new data is periodically incorporated into an existing model. Assuming that new
data has a similar distribution to existing data, we can choose a single r (a parameter in our method) by
conducting one set of experiments where we train with πfp32 and πours,r for different r and then choose the
r value that maximizes model aggregate savings while still having an acceptable drop in accuracy.
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Figure 3: Results of training ShuffleNet-v2 on ImageNet with πfp32, πunif (Micikevicius et al., 2018), πop (Sun
et al., 2019), πop′ (Kalamkar et al., 2019), and πours,r. Left: Each line shows the average training trajectory
for each precision assignment; πours,r is colored from navy to yellow (darker for smaller r). A zoomed-in
version of this plot can be found in Appendix C.1. Right: Each point shows the memory-accuracy tradeoff of
each precision assignment; a red-dashed line shows the accuracy of πfp32; and shaded areas show the variation
among four training runs. In the right figure, top-right points are better than bottom-left ones. Observe
that there are •s above and to the right of and , respectively. F is missing as its y-value is too small.

(a) CIFAR-10, SqueezeNet (b) CIFAR-100, SqueezeNet (c) CIFAR-100, SqueezeNet†

(d) CIFAR-10, ShuffleNet-v2 (e) CIFAR-100, ShuffleNet-v2 (f) CIFAR-100, ShuffleNet-v2†

(g) CIFAR-10, MobileNet-v2 (h) CIFAR-100, MobileNet-v2 (i) CIFAR-100, MobileNet-v2†

(j) CIFAR-10, ResNet-18 (k) CIFAR-100, ResNet-18 (l) CIFAR-100, ResNet-18†

Figure 4: Memory-accuracy tradeoffs of πunif (Micikevicius et al., 2018), πop (Sun et al., 2019), πop′ (Kalamkar
et al., 2019), and πours,r for four models and their smaller variants on CIFAR-10 and CIFAR-100. The variant
models have width multiplier 0.25 and are marked by †. Top-right points are better than bottom-left ones. In
all but three plots, there are •s above and to the right of and , respectively; even in the three plots (g,h,k),
•s have almost the same tradeoffs to and . In half of all plots, F has much smaller y-values than other
points. The training trajectories for the above plots and the results of other smaller models are in Appendix C.1.

12



Published in Transactions on Machine Learning Research (06/2023)

(a) SqueezeNet (b) ShuffleNet-v2 (c) MobileNet-v2
Figure 5: Memory-accuracy tradeoffs of πours,r, πours[inc],r, and πours[rand],r for three models on CIFAR-100.
Observe that •s are above and to the right of other points in nearly all cases. The results of ResNet-18
are in Appendix C.2.

(a) (b) (c) (d)

Figure 6: Training ShuffleNet-v2 on ImageNet with πours,r and πours[no-promo],r. (a) Training trajectories
of πours[no-promo],r for different r; colors denote r values (darker for smaller r). (b) Top-5 overflow ratios
of tensors at each epoch, for the highlighted trajectory in (a); the largest ratio is blue and the fifth largest
red. (c) Memory-accuracy tradeoffs of πours,r and πours[no-promo],r. (d) Low-precision ratio when training
ends vs. when training starts, for πours,r and πours[no-promo],r. The results on CIFAR-10 are in Appendix C.2.

To simulate this scenario, we create five datasets ImageNet-200-i (i ∈ [5]) as follows, so that each of them
contains different but similar data: randomly select 1/5 of the classes in ImageNet (which has 1000 classes
in total), and split the training data of each class evenly into five new datasets.

For each ImageNet-200-i, we train ShuffleNet-v2 with πfp32 and πours,r
and present the results in Figure 7. Based on the tradeoff results of
πours,r, we can choose r = 0.4 if we desire an average of < 1% accuracy
drop from πfp32, and we can choose r = 0.9 if an average ≈ 3% accuracy
drop is tolerable. We make two more observations: the tradeoff result
of πours,r is similar across all five datasets even though each dataset
is different, and for each r the variance in the accuracy of πours,r from
different datasets and runs of training is similar to that of πfp32. Thus
we expect that on a new but similar dataset, πours,r would have an
accuracy drop similar to Figure 7 with acceptable variance.

Figure 7: Memory-accuracy
tradeoffs of πours,r for ShuffleNet-
v2 on ImageNet-200-i (i ∈ [5]).

6 Limitations and Future Work
Our work has the same limitation present in prior works on low-precision floating-point training: low-precision
floats and operations are simulated in software (instead of being handled natively in hardware) and so the
potential speedup of our method is not directly measured, though we do expect speedups to be proportional
to the reduction in the model aggregate. We leave it as future work to perform such experiments on very
recent or future hardware (e.g., NVIDIA H100 GPU) that natively supports more low-precision formats.
Another direction for future work is to integrate our method into systems for automatically optimizing deep
learning computations (e.g., Jia et al. (2019); Unger et al. (2022)) to accelerate training.
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A Problem: Deferred Proof

Theorem 3.2. Problem 3.1 is NP-hard.

Proof. We prove the NP-hardness of Problem 3.1 (the memory-accuracy tradeoff problem) by reducing the
knapsack problem (which is NP-hard) to the tradeoff problem. More precisely, we prove that the knapsack
problem can be solved in polynomial time if we assume an oracle for the tradeoff problem.

Recall the knapsack problem: given n items with weights wi ∈ N and profits pi ∈ N (i ∈ [n]), and given
a threshold W ∈ N, decide which items to choose such that the total profit of the chosen items is maximized
while their total weight does not exceed W . That is, find α ∈ {0, 1}n that maximizes

∑
i∈[n] αipi subject

to
∑
i∈[n] αiwi ≤W. This problem is well-known to be NP-hard (Karp, 1972).

Given an instance of the knapsack problem (w, p,W ), we construct an instance of the tradeoff problem as
follows.

• Notations. The following construct uses a constant k ∈ N and floating-point formats fphi, fp lo ∈ FP
(one for high precision and the other for low precision). Below we will specify the conditions they should
satisfy, and show that some k, fphi, and fp lo indeed satisfy the conditions. We write rndhi(·) and rndlo(·)
as shorthand for rndfphi(·) and rndfp lo(·).
• Training setups. We consider a very simple setting for training: the gradient descent algorithm with a

learning rate η = 2−l (l ∈ N) is applied for just one epoch; all parameters are initialized to 0 and their master
copies are represented in fphi; and the negative loss of a model on training data (i.e., −L(fθ(x), y) using
notations to be described below) is used as the accuracy of the model. Here l ∈ N can be any natural number.
• Model and loss networks. A model network M and a loss network L are given as Figure 8, where
M has n parameter tensors θi ∈ Rwi of size wi (i ∈ [n]). For an input-output pair (x, y) ∈ Rn × R,M
and L compute a predicted output fθ(x) ∈ R and a loss L(fθ(x), y) ∈ R as follows (assuming that no
rounding functions are applied):

fθ(x) =∆
∑
i∈[n]

∑
j∈[wi]

θi,jxi, L(fθ(x), y) =∆ 2−k|fθ(x)− y|.

Roughly speaking,M is (a variant of) a linear classifier and L is a `1-loss (scaled by 2−k).
• Training data. Training data consists of a single input-output pair (x, y) ∈ Rn × R that satisfies the
following:

xi = rndlo(
√
pi/wi), y < −2−(k+l)

∑
i∈[n]

wix
2
i

for all i ∈ [n]. Here y can take any value as long as it satisfies the above inequality. Note that xi can
be different from

√
pi/wi since the latter value may not be representable in fp lo.

• Precision-candidate assignment. A precision-candidate assignment C : TS× {hi, lo} → FP is given as:

C(t, hi) =∆ fphi, C(t, lo) =∆ fp lo for all t ∈ TS.

That is, for all tensors, fphi is used as a high-precision format and fphi as a low-precision format. Here
fphi and fp lo should satisfy the following:

ehi ≥ elo, mhi ≥ mlo, (3)
|rndlo(s)− s| < |s| · err for all s ∈ S1, (4)

rndlo(s) = 0 for all s ∈ S2, (5)
rndhi(s) = s for all s ∈ S2 ∪ S3. (6)

Here ehi and mhi (and elo and mlo) denote the number of exponent bits and mantissa bits of fphi
(and fp lo), and err and Sj are defined as: err =∆ 1/(6n · maxi∈[n]pi), S1 =∆ {

√
pi/wi | i ∈ [n]},

S2 =∆ {2−k} ∪ {2−kxi | i ∈ [n]}, and S3 =∆ {2−(k+l)xi | i ∈ [n]}. Eq. (4) says that the relative error of
representing each s ∈ S1 in fp lo should be less than err . Eq. (5) says that each s ∈ S2 should underflow
to 0 when represented in fp lo. Eq. (6) says that each s ∈ S2 ∪ S3 should be representable in fphi.
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Figure 8: The model networkM and the loss network L used in the proof of Theorem 3.2.

• Low-precision ratio. A lower bound r ∈ [0, 1] on the low-precision ratio is given as:

r =∆ max
{

0, 1− 2W + 1
size(TS)

}
∈ [0, 1].

So r decreases linearly as W increases.

We make three points on the above construction.

• First, each part of the knapsack problem (w, p,W ) is used in the following parts of the construction: wi
is used mainly in the size of the parameter tensor θi; pi in the input xi; and W in the lower bound r.
• Second, there exist k ∈ N and fphi, fp lo ∈ FP that satisfy Eqs. (3)–(6). This can be shown as follows: first,
by taking sufficiently many exponent and mantissa bits for fp lo, we can make Eq. (4) satisfied; next, by
taking a sufficiently large k, we can make Eq. (5) satisfied; finally, by taking sufficiently many exponent
and mantissa bits for fphi, we can make Eq. (3) and Eq. (6) satisfied (since xi is representable in fp lo
and 2−(k+l) is a power of two).
• Third, some well-known models (e.g., ShuffleNet-v2) have a similar structure toM in that they apply
the following operations as a subroutine: split a tensor into multiple tensors, apply some operators to
each split tensor, and combine the resulting tensors into a single tensor.

We now prove that the knapsack problem (w, p,W ) can be solved in polynomial time, if an oracle to the
above tradeoff problem is given. Suppose that π ∈ Π(C) is an optimal solution to the above tradeoff problem
(given by the oracle). Define an item selection α ∈ {0, 1}n for the knapsack problem as:

αi =∆
{

1 if π(dθi) = π(dvn+i) = π(dv2n+1) = fphi
0 otherwise

for each i ∈ [n]. Note that α can be constructed from π in linear time. Thus, it suffices to show that α
is an optimal solution to the knapsack problem (w, p,W ), which is equivalent to the following two claims:

• Claim 1: We have
∑
i∈[n] αiwi ≤W .

• Claim 2: For any α′ ∈ {0, 1}n with
∑
i∈[n] α

′
iwi ≤W , we have

∑
i∈[n] α

′
ipi ≤

∑
i∈[n] αipi.

We now prove each claim as follows.

Proof of Claim 1. If α = (0, . . . , 0), then the claim clearly holds. Suppose that α 6= (0, . . . , 0). Then,

1−
1 + 2

∑
i∈[n] αiwi

size(TS) ≥ ratio lo(π) ≥ r ≥ 1− 1 + 2W
size(TS) .

Here the first inequality uses α 6= (0, . . . , 0) and the definition of α andM; the second inequality uses the
fact that π is a valid solution to the above tradeoff problem; and the third inequality uses the definition
of r. Hence, the claim holds.
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Proof of Claim 2. Suppose that the claim does not hold. Then, there exists α′ ∈ {0, 1}n such that∑
i∈[n]

α′iwi ≤W,
∑
i∈[n]

α′ipi >
∑
i∈[n]

αipi.

Define a precision assignment π′ ∈ Π(C) as:

π′(dv2n+1) =∆ fphi,

π′(dθi) =∆ π′(dvn+i) =∆ fphi for all i ∈ [n] with α′i = 1,
π′(t) =∆ fp lo for all other t ∈ TS.

Then, we have ratio lo(π′) ≥ r by
∑
i∈[n] α

′
iwi ≤ W and the definition of π′, M, and r. Hence, it suffices

to show acc(π) < acc(π′), because this would contradict to the fact that π is an optimal solution.

To show acc(π) < acc(π′), we prove the following two lemmas: the first lemma gives a closed form of acc(π)
and acc(π′), and the second lemma shows that

∑
i∈[n] βiwix

2
i is close to

∑
i∈[n] βipi (where the former

summation appears in acc(π) and acc(π′)).
Lemma A.1. The following hold:

acc(π) = 2−ky + 2−(2k+l)
∑
i∈[n]

αiwix
2
i , acc(π′) = 2−ky + 2−(2k+l)

∑
i∈[n]

α′iwix
2
i .

Proof. We prove the equation for acc(π) only, since the equation for acc(π′) can be proved similarly.

First, we show that for all i ∈ [n] and j ∈ [wi],

d̂θi,j = αi · 2−kxi. (7)

Pick any i ∈ [n] and j ∈ [wi]. Note that by the definition ofM, we have

d̂θi,j = rndπ(dθi)

(
rndπ(dvn+i)(rndπ(dv2n+1)(2−k)) · rndvi

(rndv0(xi))
)

= rndπ(dθi)

(
rndπ(dvn+i)(rndπ(dv2n+1)(2−k)) · xi

)
,

where the second equality uses Eq. (3) and that xi is representable in fp lo. We prove Eq. (7) by case analysis
on αi. Suppose αi = 1. Then, by the definition of αi, π(dθi) = π(dvn+i) = π(dv2n+1) = fphi. From this,
we get the desired equation:

d̂θi,j = rndhi

(
rndhi(rndhi(2−k)) · xi

)
= rndhi(2−k · xi) = 2−kxi,

where the last two equalities use Eq. (6). Suppose now αi = 0. Then, by the definition of αi, at least one of
π(dθi), π(dvn+i), and π(dv2n+1) is fp lo. If π(dvn+i) = fp lo or π(dv2n+1) = fp lo, we get the desired equation:

d̂θi,j = rndπ(dθi)

(
rndlo(2−k) · xi

)
= rndπ(dθi)(0 · xi) = 0,

where the first equality uses Eq. (3) and Eq. (6), and the second equality uses Eq. (5). The remaining case
is when π(dvn+i) = π(dv2n+1) = fphi and π(dθi) = fp lo. We get the desired equation in this case as well:

d̂θi,j = rndlo

(
rndhi(rndhi(2−k)) · xi

)
= rndlo(2−k · xi) = 0,

where the second equality uses Eq. (6), and the last equality uses Eq. (5). Hence, we have proved Eq. (7).

Next, let θi be the i-th parameter tensor before training starts, and θ′i be the corresponding tensor after
training ends (i ∈ [n]). Then, by the definition of the tradeoff problem constructed above, we have θi,j = 0 and

θ′i,j = θi,j − rndhi(2−l · d̂θi,j) = 0− rndhi(2−l · (αi · 2−kxi)) = αi · (−2−(k+l)xi),
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where the second equality uses Eq. (7) and the third equality uses Eq. (6). Using this equation, we finally
obtain the conclusion of this lemma:

acc(π) = −L(fθ′(x), y)

= −2−k
∣∣∣y −∑

i∈[n]

∑
j∈[wi]

θ′i,jxi

∣∣∣
= −2−k

∣∣∣y −∑
i∈[n]

∑
j∈[wi]

αi · (−2−(k+l)xi) · xi
∣∣∣

= −2−k
∣∣∣y +

∑
i∈[n]

αi · 2−(k+l)wix
2
i

∣∣∣
= 2−k

(
y +

∑
i∈[n]

αi · 2−(k+l)wix
2
i

)
= 2−ky + 2−(2k+l)

∑
i∈[n]

αiwix
2
i ,

where the first two equalities use the definition of accuracy, and the second last equality uses the definition
of y. This concludes the proof of the lemma. �

Lemma A.2. For any β ∈ {0, 1}n, ∣∣∣ ∑
i∈[n]

βiwix
2
i −

∑
i∈[n]

βipi

∣∣∣ < 1
2 .

Proof. We first show that for any i ∈ [n],

|wix2
i − pi| <

1
2n.

Pick any i ∈ [n]. By Eq. (4) and the definition of xi, we have∣∣∣xi −√ pi
wi

∣∣∣ <√ pi
wi
· 1

6n ·maxj∈[n] pj
≤
√
pi
wi
· 1

6npi
.

From this, we have√
pi
wi

(
1− 1

6npi

)
< xi <

√
pi
wi

(
1 + 1

6npi

)
,

pi
wi

(
1− 1

6npi

)2
< x2

i <
pi
wi

(
1 + 1

6npi

)2
.

From this, we obtain the desired result:

|wix2
i − pi| < pi

((
1 + 1

6npi

)2
− 1
)

= pi

( 1
3npi

+ 1
(6npi)2

)
< pi

( 1
3npi

+ 1
6npi

)
= pi ·

1
2npi

= 1
2n,

where the second inequality uses 6npi > 1 (as n, pi ∈ N).

Using this result, we can show the conclusion as follows:∣∣∣ ∑
i∈[n]

βiwix
2
i −

∑
i∈[n]

βipi

∣∣∣ =
∣∣∣ ∑
i∈[n]

βi(wix2
i − pi)

∣∣∣ ≤ ∑
i∈[n]

|βi| · |wix2
i − pi| <

∑
i∈[n]

1
2n = 1

2 ,

where the last inequality uses |βi| ≤ 1. This completes the proof of the lemma. �

Using the two lemmas, we now prove acc(π) < acc(π′). By Lemma A.2 and
∑
i∈[n] αipi <

∑
i∈[n] α

′
ipi, we have∑

i∈[n]

αiwix
2
i <

∑
i∈[n]

αipi + 1
2 ≤

∑
i∈[n]

α′ipi −
1
2 <

∑
i∈[n]

α′iwix
2
i ,

where the second inequality comes from αi, α
′
i ∈ {0, 1} and pi ∈ N. From this, and by Lemma A.1, we obtain

acc(π) < acc(π′) as desired. This concludes the proof of Claim 2, thereby finishing the proof of the theorem.
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Remark A.3. In the proof of Theorem 3.2, we proved the NP-hardness of Problem 3.1 by making use of only
a few limited aspects of the problem. For instance, we used the fact that some values representable in a high-
precision format round to zero in a low-precision format; on the other hand, many other values representable in
a high-precision format round to non-zero values in a low-precision format, and this indeed occurs in practical
training (even more frequently than underflows). Also, we used a simple setting for training in which a gradient
descent algorithm is applied for one epoch, training data consist of one input-output pair, and test data is
the same as training data; on the other hand, in practical training, a gradient descent algorithm is applied for
many epochs, training data consists of many input-output pairs, and test data is different from training data.

Problem 3.1 is general enough so that it embraces all the aforementioned aspects of floating-points and training,
including those that are not considered in the proof of Theorem 3.2. Since those aspects are likely to make the
problem even more difficult, we conjecture that the problem would be more intractable than being NP-hard.

B Experiments: Deferred Details

The datasets we use have the following licenses:

• CIFAR-10 and CIFAR-100: These datasets are under the MIT license.
• ImageNet: This dataset can be used “only for non-commercial research and educational purposes.” For
more details, see its webpage (Stanford Vision Lab, 2020).

The implementations of models we use have the following licenses:

• SqueezeNet for CIFAR-10 and CIFAR-100: We adapt an implementation of the model in a public GitHub
repository (Pathak, 2020), whose license information is not available.
• ShuffleNet-v2, MobileNet-v2, and ResNet-18 for CIFAR-10 and CIFAR-100: We adapt an implementation
of these models in a public GitHub repository (kuangliu, 2021), which is under the MIT license.
• ShuffleNet-v2 for ImageNet and ImageNet-200-i: We adapt an implementation of the model in the
torchvision library (PyTorch, 2022b), which is under the BSD 3-Clause license.

The details of how we train models are as follows:

• Four models on CIFAR-10 and CIFAR-100: We train the four models with a standard setup (kuangliu,
2021). In particular, we run the (non-Nesterov) SGD optimizer for 200 epochs with minibatch size of
128 (over 1 GPU), learning rate of 0.1, momentum of 0.9, weight decay of 5 × 10−4, and the cosine
annealing scheduler for learning rate. For dynamic loss scaling, we use initial scale of 216, growth factor
of 2, back-off factor of 0.5, and growth interval of 1 epoch, as suggested in PyTorch (PyTorch, 2022a).
• ShuffleNet-v2 on ImageNet: We train the model with the default setup given in PyTorch’s GitHub
repository (PyTorch, 2022c), except that we use larger minibatch size and learning rate as in (Goyal
et al., 2017; Kalamkar et al., 2019; Krizhevsky, 2014; PyTorch, 2022d) to reduce the wall-clock time
of training. In particular, we run the (non-Nesterov) SGD optimizer for 90 epochs with minibatch size
of 1024 (over 16 GPUs), learning rate of 0.4, momentum of 0.9, weight decay of 10−4, and the cosine
annealing scheduler for learning rate. For dynamic loss scale, we use initial scale of 216, growth factor
of 2, back-off factor of 0.5, and growth interval of 0.5 epoch, as suggested in PyTorch (PyTorch, 2022a).
• ShuffleNet-v2 on ImageNet-200-i: We train the model with the same settings for ImageNet except that
we use the default values for minibatch size and learning rate given in (PyTorch, 2022c), i.e., minibatch
size of 256 (over 4 GPUs) and learning rate of 0.1.

C Experiments: Deferred Results

C.1 Comparison with Existing Precision Assignments

Figure 9 presents a zoomed-in version of Figure 3 (left).

Figure 10 presents results omitted in Figure 4: training results of smaller variant models (which have width
multiplier 0.5 or 0.1) on CIFAR-100 with πfp32, πunif , πop, πop′ , and πours,r. The figure shows similar results
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to Figure 4: the results for the variant models with width multiplier 0.5 (and 0.1) are similar to those for
the original models (and the variant models with width multiplier 0.25).

Figures 11 and 12 show the average training trajectories for the configurations presented in Figures 4 and 10.

Figures 13 and 14 present the same results as Figures 3 and 4 except the following: in the former, πop and
πop′ are equipped with our precision promotion technique, whereas in the latter they do not so. Figures 13
and 14 do not include πunif because this assignment with the precision promotion is identical to πours,1.

C.2 Ablation Study: Precision Demotion and Promotion

Figure 16 presents results omitted in Figure 5: training results of ResNet-18 on CIFAR-100 with πours,r,
πours[inc],r, and πours[rand],r. The figure shows similar results to Figure 5 except that it shows smaller
differences in memory-accuracy tradeoff between the three precision assignments.

Figure 17 presents results omitted in Figure 6: training results of four models on CIFAR-10 with πours,r
and πours[no-promo],r. The figure shows similar results to Figure 6 except that the training of ResNet-18 on
CIFAR-10 does not diverge even with πours[no-promo],r for all r values.
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Figure 9: A zoomed-in version of Figure 3 (left). Results of training ShuffleNet-v2 on ImageNet with πfp32,
πunif (Micikevicius et al., 2018), πop (Sun et al., 2019), πop′ (Kalamkar et al., 2019), and πours,r. Each line
shows the average training trajectory for each precision assignment; πours,r is colored from navy to yellow
(darker for smaller r).
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(a) CIFAR-100, SqueezeNet‡ (b) CIFAR-100, SqueezeNet¶

(c) CIFAR-100, ShuffleNet-v2‡ (d) CIFAR-100, ShuffleNet-v2¶

(e) CIFAR-100, MobileNet-v2‡ (f) CIFAR-100, MobileNet-v2¶

(g) CIFAR-100, ResNet-18‡ (h) CIFAR-100, ResNet-18¶

Figure 10: Continued from Figure 4. Memory-accuracy tradeoffs of πunif (Micikevicius et al., 2018), πop (Sun
et al., 2019), πop′ (Kalamkar et al., 2019), and πours,r for smaller variants of four models on CIFAR-100. The
variant models have width multiplier 0.5 (marked by ‡) or 0.1 (marked by ¶). Top-right points are better
than bottom-left ones. In all but one plots, there are •s above and to the right of and , respectively;
even in the one plot (g), •s have almost the same tradeoffs to and . In three of all plots, F has much
smaller y-values than other points; F is missing in (h) as its y-value is too small.
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(a) CIFAR-10, SqueezeNet (b) CIFAR-100, SqueezeNet (c) CIFAR-100, SqueezeNet†

(d) CIFAR-10, ShuffleNet-v2 (e) CIFAR-100, ShuffleNet-v2 (f) CIFAR-100, ShuffleNet-v2†

(g) CIFAR-10, MobileNet-v2 (h) CIFAR-100, MobileNet-v2 (i) CIFAR-100, MobileNet-v2†

(j) CIFAR-10, ResNet-18 (k) CIFAR-100, ResNet-18 (l) CIFAR-100, ResNet-18†

Figure 11: Training trajectories for the configurations shown in Figure 4. Each line shows the average
training trajectory for each precision assignment. πours,r is colored from navy to yellow (darker for smaller r).
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(a) CIFAR-100, SqueezeNet‡ (b) CIFAR-100, SqueezeNet¶

(c) CIFAR-100, ShuffleNet-v2‡ (d) CIFAR-100, ShuffleNet-v2¶

(e) CIFAR-100, MobileNet-v2‡ (f) CIFAR-100, MobileNet-v2¶

(g) CIFAR-100, ResNet-18‡ (h) CIFAR-100, ResNet-18¶

Figure 12: Training trajectories for the configurations shown in Figure 10. Each line shows the average
training trajectory for each precision assignment. πours,r is colored from navy to yellow (darker for smaller r).
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Figure 13: Results corresponding to Figure 3. The only difference from Figure 3 is that πop and πop′ here
are equipped with our precision promotion technique, whereas πop and πop′ in the previous figure do not so.

(a) CIFAR-10, SqueezeNet (b) CIFAR-100, SqueezeNet (c) CIFAR-100, SqueezeNet†

(d) CIFAR-10, ShuffleNet-v2 (e) CIFAR-100, ShuffleNet-v2 (f) CIFAR-100, ShuffleNet-v2†

(g) CIFAR-10, MobileNet-v2 (h) CIFAR-100, MobileNet-v2 (i) CIFAR-100, MobileNet-v2†

(j) CIFAR-10, ResNet-18 (k) CIFAR-100, ResNet-18 (l) CIFAR-100, ResNet-18†

Figure 14: Results corresponding to Figure 4. The only difference from Figure 4 is that πop and πop′ here
are equipped with our precision promotion technique, whereas πop and πop′ in the previous figure do not so.
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(a) CIFAR-100, SqueezeNet‡ (b) CIFAR-100, SqueezeNet¶

(c) CIFAR-100, ShuffleNet-v2‡ (d) CIFAR-100, ShuffleNet-v2¶

(e) CIFAR-100, MobileNet-v2‡ (f) CIFAR-100, MobileNet-v2¶

(g) CIFAR-100, ResNet-18‡ (h) CIFAR-100, ResNet-18¶

Figure 15: Results corresponding to Figure 10. The only difference from Figure 10 is that πop and πop′ here
are equipped with our precision promotion technique, whereas πop and πop′ in the previous figure do not so.
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(a) ResNet-18

Figure 16: Continued from Figure 5. Memory-accuracy tradeoffs of πours,r, πours[inc],r, and πours[rand],r for
ResNet-18 on CIFAR-100. Observe that •s are above and to the right of other points in nearly all cases.

(a) CIFAR-10, SqueezeNet

(b) CIFAR-10, ShuffleNet-v2

(c) CIFAR-10, MobileNet-v2

(d) CIFAR-10, ResNet-18
Figure 17: Continued from Figure 6. Training four models on CIFAR-10 with πours,r and πours[no-promo],r.
Column 1: Training trajectories of πours[no-promo],r for different r; colors denote r values (darker for smaller
r). Column 2: Top-5 overflow ratios of tensors at each epoch, for the highlighted trajectory in (a); the largest
ratio is blue and the fifth largest red. Column 3: Memory-accuracy tradeoffs of πours,r and πours[no-promo],r.
Column 4: Low-precision ratio when training ends vs. when training starts, for πours,r and πours[no-promo],r.
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