Static Analysis Techniques for
Predicting the Behavior of Database Production Rules

Alexander Aiken
Jennifer Widom
Joseph M. Hellerstein™

IBM Almaden Research Center
650 Harry Road
San Jose, CA 95120

{aiken,widom}@almaden.ibm.com, hellers@cs.wisc.edu

Abstract

Methods are given for statically analyzing sets of database production rules to determine if
the rules are (1) guaranteed to terminate, (2) guaranteed to produce a unique final database
state, and (3) guaranteed to produce a unique stream of observable actions. If the analysis
determines that one of these properties is not guaranteed, it isolates the rules responsible for
the problem and determines criteria that, if satisfied, guarantee the property. The analysis
methods are presented in the context of the Starburst Rule System.

1 Introduction

Production rules in database systems allow specification of data manipulation operations that are
executed automatically whenever certain events occur or conditions are met, making the database
system active [DW92]. Database production rules provide a general and powerful mechanism for
many database features, including integrity constraint enforcement, derived data maintenance, trig-
gers, alerters, authorization checking, and versioning. In addition, active database systems provide
a convenient platform for large and efficient knowledge-bases and expert systems. A significant
drawback of active database systems, however, lies in the development of correct rule applications:
it can be very difficult in general to predict how a set of database production rules will behave.
Rule processing occurs as a result of arbitrary database changes; certain rules are triggered initially,
and their execution can trigger additional rules or trigger the same rules additional times. The
unstructured, unpredictable, and often nondeterministic behavior of rule processing can become a
nightmare for the database rule programmer.

A significant step in aiding the database rule programmer is to provide a facility that statically

analyzes sets of rules, providing information about the following three properties of rule behavior:

o Termination: Is rule processing guaranteed to terminate after any set of changes to the

database in any state?

*Current address: Computer Sciences Department, University of Wisconsin, Madison, WI 53706



o Confluence: Can the execution order of non-prioritized rules make any difference in the final
database state? That is, if multiple rules are triggered at the same time during rule processing,
can the final database state at termination of rule processing depend on which is considered

first? If not, the rule set is confluent.

e Observable Determinism: If a rule action is visible to the environment (e.g., if it performs
data retrieval or a rollback statement), then we say it is observable. Can the execution order
of non-prioritized rules make any difference in the order or appearance of observable actions?

If not, the rule set is observably deterministic.

These properties can be very difficult or impossible to decide in the general case. However, we

have developed conservative static analysis algorithms that:
e guarantee that a set of rules will terminate or say that it may not terminate;
e guarantee that a set of rules is confluent or say that it may not be confluent;

e guarantee that a set of rules is observably deterministic or say that it may not be observably

deterministic.

Furthermore, when the answer is “may not” for any of these properties, the analysis algorithms
isolate the rules responsible for the problem and determine criteria that, if satisfied, guarantee
the property. Hence the analysis can form the basis of an interactive environment where the
rule programmer invokes the analyzer to obtain information about rule behavior. If termination,
confluence, or observable determinism is desired but not guaranteed, then the user may verify that
the necessary criteria are satisfied or may modify the rule set and try again.

Our analysis methods have been developed and are presented in the context of the Starburst
Rule System [WCL91], a production rules facility integrated into the Starburst extensible relational
DBMS prototype at the IBM Almaden Research Center [HT90]. Although some aspects of the
analysis are dependent on Starburst rules, we have tried to remain as general as possible, and our

methods certainly can be adapted to other database rule languages.

1.1 Related Work

Most previous work in static analysis of production rules [HH91,Ras90,ZH90] differs from ours in
two ways. First, it considers simplified versions of the OPS5 production rule language [BFKMS85].
OPSbH has a quite different model of rule processing than most active database systems, including
Starburst. Second, the goal of previous work is to impose restrictions and/or orderings on OPS5
rule sets such that unique fixed points are guaranteed. Our goal, on the other hand, is to permit
arbitrary rule sets and provide useful information about their behavior in the database setting. In
Section 11 we make some additional, more technical, comparisons, and we explain how our analysis
techniques subsume results in [HH91,Ras90,ZH90].

In [KU91], the issue of rule set termination is discussed, along with the issue of conflicting

updates—determining when one rule may undo changes made by a previous rule. Although models



and a problem-solving architecture for rule analysis are proposed, no algorithms are given. In
[CW90] we presented preliminary methods for analyzing termination in the context of deriving
production rules for integrity constraint maintenance; these methods form the basis of our approach
to termination in this paper. An initial presentation of our analysis methods appears in [AWH92];
in this paper we provide additional intuition, refine and extend the methods in [AWH92], include

numerous examples, and provide proofs for all lemmas and theorems.

1.2 Outline of Paper

As an introduction to active databases and to establish a basis for our analysis techniques, in
Section 2 we give a syntax and semantics for the Starburst production rule language; Section 3
then motivates the termination, confluence, and observable determinism properties in the context
of this language. In Section 4 we provide examples of Starburst production rules, illustrating rule
sets that do and do not satisfy termination, confluence, and observable determinism. In Section 5
we introduce notation and definitions needed for rule analysis and we define some straightforward
preliminary analysis techniques. In Section 6 we present a model of rule processing to be used as the
formal basis for our analysis algorithms. Termination analysis is covered in Section 7 and confluence
in Section 8. In Section 9 we give methods for analyzing partial confluence, which specifies that a
rule set is confluent with respect to a portion of the database. Observable determinism is covered

in Section 10. Finally, in Section 11 we draw conclusions and discuss future work.

2 The Starburst Rule System

We provide a brief overview of the Starburst database production rule language. Examples are
given in Section 4; additional examples and further details appear in [WCL91,WF90|.

Starburst production rules are based on the notion of transitions. A transition is a database state
change resulting from execution of a sequence of data manipulation operations. Rules consider only
the net effect of transitions, meaning that: (1) if a tuple is updated several times, only the composite
update is considered; (2) if a tuple is updated then deleted, only the deletion is considered; (3) if
a tuple is inserted then updated, this is considered as inserting the updated tuple; (4) if a tuple
is inserted then deleted, this is not considered at all. A formal theory of transitions and their net
effects appears in [WF90].

The syntax for defining a rule is:

create rule name on table
when triggering-operations
[ if condition ]

then action

[ precedes rule-list |
[ follows rule-list ]

The triggering-operations are one or more of inserted, deleted, and updated(cy,...,c,), where

€1,...,Cn are columns of the rule’s table. The rule is triggered by a given transition if at least



one of the specified operations occurred in the net effect of the transition. The optional condition
specifies an SQL predicate.! The action specifies an arbitrary sequence of database operations to
be executed when the rule is triggered and its condition is true; these operations may be SQL data
modification operations (insert, delete, update), SQL data retrieval operations (select), and
transaction abort (rollback). The optional precedes and follows clauses are used to induce a
partial ordering on the set of defined rules. If a rule r; specifies a rule 75 in its precedes list, or
if 7y specifies r; in its follows list, then r; is higher than 7, in the ordering. (We also say that 7,
has precedence or priority over r.) When no direct or transitive ordering is specified between two
rules, their order is arbitrary.2

A rule’s condition and action may refer to the current state of the database through top-level
and nested SQL select operations. In addition, rule conditions and actions may refer to transition
tables, which are logical tables reflecting the changes to the rule’s table that have occurred during
the triggering transition. At the end of a given transition, transition table inserted in a rule refers
to those tuples of the rule’s table that were inserted by the transition, transition table deleted
refers to those tuples that were deleted, and transition tables new-updated and old-updated
refer to the new and old values (respectively) of the updated tuples. A rule may refer only to
transition tables corresponding to its triggering operations.

Rules are activated at rule processing points. There is an automatic rule processing point at the
end of each transaction, and there may be additional user-specified rule processing points within
a transaction. We describe the semantics of rule processing at an arbitrary point. The state
change resulting from the user-generated data modification operations executed since the last rule
processing point (or start of the transaction) creates the first relevant transition, and some rules are
triggered by this transition. As rule actions are executed, additional transitions are created which
may trigger additional rules or trigger the same rules additional times. Rule processing follows an

iterative algorithm in which:

1. A triggered rule r is selected for consideration such that no other triggered rule has precedence

over 7.
2. r’s condition is evaluated.
3. If ’s condition is true then r’s action is executed.

For step 1 in this algorithm, a rule is triggered if one or more of its triggering operations occurred
in the composite transition since the last time the rule was considered, or since the start of the

transaction if the rule has not yet been considered. (The effect of this semantics is that each rule

'In the current implementation rule conditions are SQL select statements, where the condition is true iff the
select statement produces one or more tuples. In the context of rule conditions and for the purposes of rule analysis,

predicates and select statements are equivalent [WCL91].

*The system actually orders non-prioritized rules using an algorithm based on rule creation time [ACL91], but

this is an implementation feature separate from the semantics of the rule language.



sees each modification exactly once.) Rule processing terminates when a rollback operation is
executed or when there are no more triggered rules.

User-invoked rule processing may specify that only a subset of the defined rules should be
considered for execution, rather than all rules [Wid92]. Hence, the rule programmer may want to
predict the behavior of a subset of the rules. The semantics of rule processing for rule subsets is
identical to rule processing in the general case, so our analysis methods can be applied directly to
arbitrary rule subsets.

The analysis techniques we present are based on the Starburst rule language and rule processing
semantics, but with modifications the methods also could apply to other similar languages; see
Section 11.

3 Termination, Confluence, and Observable Determinism

Suppose a set of Starburst rules has been defined using the language described in Section 2. Fur-
ther suppose that arbitrary data modification operations have been performed, creating an initial
triggering transition, and then rule processing is invoked. From the algorithm given in Section 2
it is clear that rule processing may not terminate—rules could trigger each other forever. A set of
Starburst rules has the termination property if, for any initial triggering transition, rule processing
is guaranteed to terminate, i.e. eventually rollback is executed or there are no more triggered rules.

In step 1 of the rule processing algorithm, a rule r is selected such that no other triggered
rule has precedence over r. Since the precedence of rules may be only a partial order (indeed, no
ordering is required), many rules may be eligible for selection in this step. A set of Starburst rules
has the confluence property if, for any initial triggering transition, there is some database state D
such that if rule processing terminates it terminates with the database in state D, regardless of
which eligible rule is selected each time step 1 is performed.

Finally, when rule actions are executed (step 3 in the rule processing algorithm), these actions
may be visible to the environment in which the transaction is executing. For example, actions
may perform data retrieval, or they may abort the transaction. A set of Starburst rules has the
observable determinism property if, for any initial triggering transition, the sequence of select
and rollback operations executed during rule processing (including the values returned by select

operations) is identical, regardless of which eligible rule is selected each time step 1 is performed.

4 Examples

For examples we consider a simple database schema with three tables:

emp(id, rank, salary)
bonus(emp-id, amount)
sales(emp-id, month, number)

Table emp records each employee’s rank and salary, table bonus records a bonus amount to be

awarded to each employee, and table sales records each employee’s number of sales on a monthly



basis. Because our example rules are quite simple, none includes an if clause; this does not detract

from illustrating the salient points of termination, confluence, and observable determinism.

Example 4.1 (nonterminating) Nontermination is illustrated with two (admittedly contrived)
rules. The first rule, bonus-rank, states that whenever an employee’s bonus is increased by more

than 100, that employee’s rank is increased by 1:

create rule bonus-rank on bonus
when updated(amount)
then update emp
set rank = rank + 1
where id in (select emp-id from new-updated, old-updated
where new-updated.emp-id = old-updated.emp-id
and new-updated.amount - old-updated.amount > 100)

The second rule, rank-bonus, states that whenever an employee’s rank is modified, that employee’s

bonus is increased by 10 times the new rank:

create rule rank-bonus on emp
when updated(rank)
then update bonus
set amount = amount + 10 * (select rank from new-updated
where new-updated.id = bonus.emp-id)
where emp-id in (select id from new-updated)

With these two rules, whenever an employee’s rank is modified to greater than 10, or whenever
an employee with rank at least 10 receives a bonus greater than 100, rule processing does not

terminate—the rules trigger each other forever. O

Example 4.2 (terminating, non-confluent) This is the most subtle and interesting of our ex-
amples. We specify three rules that are guaranteed to terminate. We suggest an ordering for the
rules that appears to guarantee confluence, then we explain how this ordering is in fact insufficient
for confluence. The first rule, good-sales, increases an employee’s salary by 10 whenever that

employee posts sales greater than 50 for a month:

create rule good-sales on sales
when inserted
then update emp
set salary = salary + 10
where id in (select emp-id from inserted where number > 50)

The second rule, great-sales, increases an employee’s rank by 1 whenever that employee posts

sales greater than 100 for a month:

create rule great-sales on sales
when inserted
then update emp
set rank = rank + 1
where id in (select emp-id from inserted where number > 100)



Although rules good-sales and great-sales may be triggered at the same time, their actions cannot
affect each other, so no relative ordering between the rules is needed for confluence. The third rule,
rank-raise, increases an employee’s salary by 10% whenever that employee’s rank reaches 15 (we

assume that ranks do not decrease):

create rule rank-raise on emp
when updated(rank)
then update emp
set salary = 1.1 * salary
where id in (select id from new-updated where rank = 15)

For confluence it is clear that a relative ordering is required between rule rank-raise and rule
good-sales since, if both rules are triggered at the same time, the order in which their actions
execute influences the final salary. We specify that rank-raise has priority over good-sales, so the
10% increase given by rank-raise does not reflect the increase of 10 given by good-sales. It also
is clear that a relative ordering is required between rule rank-raise and rule great-sales since, if
both rules are triggered at the same time, executing great-sales first could increase an employee’s
rank to 16 before rank-raise awards the 10% increase. Hence, we add the following clause to rule

rank-raise:

precedes good-sales, great-sales

It turns out that these orderings still are insufficient for confluence. Suppose rules good-sales
and great-sales are triggered at the same time, and there is an employee whose newly posted sales
exceeds 100, whose salary is 60, and whose rank is 14. Suppose rule good-sales is executed first.
Then good-sales increases the employee’s salary to 70, great-sales increases the employee’s rank
to 15, and finally rank-raise is triggered and increases the employee’s salary to 77. Now suppose
instead that rule great-sales is executed first. Then great-sales increases the employee’s rank
to 15, rank-raise is triggered and increases the employee’s salary to 66, and finally good-sales
increases the employee’s salary to 76. Hence there are two possible final values for the employee’s
salary, and the rules are not confluent.

The important property to observe here is that there are two rules (good-sales and great-
sales) that appear to be unrelated and therefore appear to need no relative ordering. However, the
existence of a third rule (rank-raise) that is related to both of the first two rules means that the

first two rules must be ordered to achieve confluence. O

Example 4.3 (terminating, confluent, not observably deterministic) Consider rules good-
sales and rank-raise from Example 4.2, ordered so that rank-raise precedes good-sales. Now
add a third rule, new-rank, that displays an employee’s ID, rank, and salary, along with a “new-

rank” message, whenever that employee’s rank is modified:

create rule new-rank on emp
when updated(rank)
then select id,rank,salary,"new-rank" from new-updated



These three rules are guaranteed to terminate and they are confluent—the final database state is
guaranteed to be unique. However, the rules are not observably deterministic. Suppose all three
rules are triggered at the same time. Then the salaries displayed by rule new-rank may take
on three different values, depending on whether new-rank is executed before rank-raise, after

rank-raise but before good-sales, or after good-sales. O

Example 4.4 (terminating, confluent, observably deterministic) Consider rule bonus-rank
from Example 4.1, rule good-sales from Example 4.2, and rule new-rank from Example 4.3, with
new-rank specified to follow bonus-rank and good-sales. This set of rules exhibits all three

properties: termination, confluence, and observable determinism. O

5 Definitions and Preliminary Analysis

Let R = {ry,rs,...,rn} denote an arbitrary set of Starburst production rules to be analyzed.
Analysis is performed on a fixed set of rules—when the rule set is changed, analysis must be
repeated. (Incremental methods are certainly possible; see Section 11.) Let P denote the set of
user-defined priority orderings on rules in R (as specified by their precedes and follows clauses),
including those implied by transitivity. P = {r; > r;, 7 > 7, ...}, where r; > 7; denotes that
rule r; has precedence over r;. Let T = {t1,%5,...,t,} denote the tables in the database schema,
and let C = {t;.c;, tg.c;, ...} denote the columns of tables in 7. Finally, let O denote the set of

database modification operations:
O = {{LLt)y|teT} U {(D,t)|teT} U {(U,t.c)|t.ceC}

(I,t) denotes insertions into table ¢, (D,t) denotes deletions from table ¢, and (U,t.c) denotes
updates to column ¢ of table ¢.
The following definitions are computed using straightforward preliminary analysis of the rules

in R:

o Triggered-By takes a rule r and produces the set of operations in O that trigger r. Triggered-

By is trivial to compute based on rule syntax.

o Performs takes a rule r and produces the set of operations in O that may be performed by

r’s action. Performs is trivial to compute based on rule syntax.

e Triggers takes a rule » and produces all rules r’ that can become triggered as a result of »’s ac-
tion (possibly including » itself). Triggers(r) = {r' € R | Performs(r) N Triggered-By(r') # 0}.

o Usestakes a rule r and produces all columns in C' that may be referenced when evaluating r’s
condition or executing a data modification operation in r’s action. Uses(r) contains every t.c
referenced in r’s condition, every t.c referenced in the where clause of a delete or update
operation in r’s action, and every t.c referenced in a nested select expression in an insert,

delete, or update operation in 7’s action. In addition, for every (trans).c referenced in



this same way, where (¢rans) is one of inserted, deleted, new-updated, or old-updated,
t.c is in Uses(r) for r’s triggering table ¢. (Recall from Section 2 that inserted, deleted,

new-updated, and old-updated are transition tables based on changes to t.)

o Can-Unirigger takes a set of operations O’ C O and produces all rules that can be “un-
triggered” as a result of operations in O'. A rule is untriggered if it is triggered at some
point during rule processing but not chosen for consideration, then subsequently no longer
triggered because all triggering changes were undone by other rules.® Can-Untrigger(O') =
{r e R| (D,t) € O’ and (1,t) or (U, t.c) € Triggered-By(r) for somet € T, t.c € C}.

o Choose takes a set of triggered rules R’ C R and produces a subset of R’ indicating those
rules eligible for consideration (based on priorities). Choose(R') = {r; | 7; € R' and there is

no r; € R’ such that r; > r; € P}.

o Rollback takes a rule r and indicates whether executing r’s action is guaranteed to abort the

transaction. In Starburst, Rollback(r) is true iff one of the operations comprising r’s action

is rollback.

o Observable takes a rule r and indicates whether r’s action may be observable. In Starburst,

a rule’s action may be observable iff it includes rollback or a top-level select statement.

6 Execution Model

We now define a formal model of execution-time rule processing. The model is based on ezecution
graphs and accurately captures the semantics of rule processing described in Section 2. Note that
execution graphs are used to discuss and to prove the correctness of our analysis techniques, but
these graphs are never actually constructed and they are not part of the analysis itself.

A directed execution graph has a distinguished initial state representing the start of rule pro-
cessing (at any processing point) and zero or more final states representing termination of rule
processing. The paths in the graph represent all possible execution sequences during rule process-
ing; branches in the graph result from choosing different rules to consider when more than one is
eligible. (Hence any graph for a totally ordered rule set has no branches.) The graph may have
infinitely long paths (possibly but not necessarily due to cycles in the graph); these paths represent
nontermination of rule processing.

More formally, a state (node) S in an execution graph has two components: (1) a database
state D; (2) a set TR containing each triggered rule and its associated transition tables. We denote
this state as S = (D, TR). The initial state I is created by an initial transition, which results from
a sequence of user-generated database operations. Hence, I = (D, TRy) where Dy is a database

state and there is some set of operations O’ C O such that:

3As an example, a rule r; might be triggered by insertions, but another rule ro might delete all inserted tuples

before r1 is chosen for consideration. Untriggering is rare in practice.



TRr = {r € R | O' N Triggered-By(r) # 0}

O’ is the set of operations producing the initial transition, and TRy contains the rules triggered by
those operations. A final state F' is some (Dp, ), since no rules are triggered when rule processing
terminates. Note that a final state F may correspond to normal termination or it may correspond
to termination due to a rollback statement; in the latter case F = (Dr,0), where Dr is the
database state at the start of the transaction.

Each directed edge in an execution graph is labeled with a rule r and represents the consideration
of r during rule processing. (This includes determining whether »’s condition is true and, if so,
executing r’s action.) Using definitions from Section 5, the following lemma states certain properties
that hold for all execution graphs. The lemma is stated without proof—it follows directly from the

semantics of rule processing described in Section 2.

Lemma 6.1 (Properties of Execution Graphs) Consider any execution graph edge from a
state (D1, TRy) to a state (Dy, TRy) labeled with a rule . Then:

e 7 € Choose( TRy)
e Either:

(1) Rollback(r), Dy = Dr, and TRy = §; or

(2) There is some (possibly empty) set of operations O’ C Performs(r) such that the trig-
gered rules in TRy can be derived from the triggered rules in TR; by:

(a) removing rule r
(b) removing some subset of the rules in Can-Untrigger(O')

(c) adding all rules ' € R such that O’ N Triggered-By(r') #0 O

Case (1) corresponds to the situation in which r’s condition is true and its action includes rollback.
Case (2) corresponds to the situation in which »’s condition is false, or r’s condition is true and
its action does not include rollback. In case (2), the operations in O’ are those executed by »’s
action, where O’ is empty if »’s condition is false. If r’s condition is true then O’ still may be a
proper subset of Performs(r) since, by the semantics of SQL, for most operations there are certain
database states on which they have no effect. Finally, note that although rule r is removed in
step (a), » may be added again in step (c) if O’ N Triggered-By(r) # 0.

The properties in Lemma 6.1 are guaranteed for all execution graphs. By performing more
complex analysis on rule conditions and actions, by incorporating properties of database states,
and by considering a variety of special cases, we probably can identify additional properties of
execution graphs. Since our analysis techniques are based on execution graph properties, more
accurate properties may result in more accurate rule analysis. We believe that the properties used

here, although somewhat conservative, are sufficiently accurate to yield strong analysis techniques.

10



7 Termination

We want to determine whether the rules in R are guaranteed to terminate. That is, we want to
determine if for all user-generated operations and initial database states, rule processing always
reaches a point at which there are no triggered rules to consider. We take as an assumption that
individual rule actions terminate. Hence, in terms of execution graphs, the rules in R are guaranteed
to terminate iff all paths in every execution graph for R are finite.

As suggested in [CW90], termination is analyzed by constructing a directed triggering graph for
the rules in R, denoted T'Gg. The nodes in T'Gp represent all rules » € R such that Rollback(r) is
false; the edges in TGR represent the Triggers relationship. That is, there is an edge from »; to r;
in TGg iff rj € Triggers(r;). We exclude a rule r; from the graph if Rollback(r;), since if r; contains

rollback then it will not trigger any other rule r;, even if technically r; € Triggers(r;).*

Theorem 7.1 (Termination) If there are no cycles in T'Gg then the rules in R are guaranteed

to terminate.

Proof: We must prove that all paths in every execution graph for R are finite. Suppose, for the
sake of a contradiction, that there are no cycles in graph T'Gg but there is an infinite path p in some
execution graph for R. Then, since there are only finitely many rules, some rule » must appear on
infinitely many edges on path p. By the properties of execution graphs in Lemma 6.1, » must be
added to set TR of triggered rules (by step 3) infinitely many times. Hence there must be some
operation o € Triggered-By(r) that is performed infinitely many times. Since o is in Performs(ry)
for only a finite number of rules 7, there must be some rule 7y such that o € Performs(r;) and
r1 appears on infinitely many edges on path p. Note that, by definition, » € Triggers(ri), so there
is an edge from r; to r in TGR. Since r; appears on infinitely many edges, r; must be added
to set TR infinitely many times. By the same reasoning as above, there is some rule r; such
that 1 € Triggers(ry) (so there is an edge from 7y to 7y in T'Gg) and ry appears on infinitely
many edges on path p. This reasoning continues, generating rules r3, r4, etc. Since, by assumption,

there are no cycles in graph T'Gp, this reasoning generates infinitely many rules, a contradiction. O

Hence, to determine whether the rules in R are guaranteed to terminate, triggering graph TGg
is constructed and checked for cycles. As an example, consider the triggering graph TGpg for rules
R = {bonus-rank, rank-bonus} of Example 4.1. There are two nodes in TGg, one representing
rule bonus-rank (call the node br) and one representing rule rank-bonus (call the node rb).
Since rank-bonus € Triggers(bonus-rank), there is an edge in TGg from node br to node rb.
Similarly, since bonus-rank € Triggers(rank-bonus), there is an edge in TGg from node rb to
node br. Therefore, there is a cycle in TGg, and our analysis determines that this set of rules may
not terminate. In Examples 4.2, 4.3, and 4.4, the triggering graphs are acyclic, so our analysis

determines that the rules are guaranteed to terminate.

*If Rollback(r;) and r; € Triggers(r;), then r; must include both a data modification operation and a rollback
operation in its action. This is allowed syntactically, but semantically it makes little sense—the effect of the data

modification operation always will be undone when the rollback operation is executed.

11



Although our approach to termination may appear to be very conservative, by considering only
the known properties of our execution graph model (Lemma 6.1), we see that whenever there is a
cycle in the triggering graph, our analysis cannot rule out the possibility that there is an execution
graph with an infinite path. Clearly, however, there are a number of special cases in which there
is a cycle in the triggering graph but other properties (not captured in Lemma 6.1) guarantee

termination. Examples are:

e The action of some rule r on the cycle only deletes from a table ¢, and no other rules on the

cycle insert into ¢. Eventually »’s action has no effect.

e The action of some rule 7 on the cycle only performs a “monotonic” update (e.g. increments
values), guaranteeing that the condition of some rule 7’ on the cycle eventually becomes false

(e.g. some value is less than 10).

Although some such cases may be detected automatically, for now we assume that they are discov-
ered by the user through the interactive analysis process: Once the analyzer has built the triggering
graph for the rules in R, the user is notified of all cycles (or strong components). If the user is
able to verify that, on each cycle, there is some rule » such that repeated consideration of the rules
on the cycle guarantee that r’s condition eventually becomes false or r’s action eventually has no
effect, then the rules in R are guaranteed to terminate.

As part of a case study, we used this approach to establish termination for a set of rules in a

power network design application [CW90].

8 Confluence

Next we want to determine whether the rules in R are confluent. That is, we want to determine if
the final database state at termination of rule processing can depend on which rule is chosen for
consideration when multiple non-prioritized rules are triggered. In terms of execution graphs, the
rules in R are confluent if every execution graph for R has at most one final state. (Recall that all
final states in an execution graph have an empty set of triggered rules, so two different final states
cannot represent the same database state.)

Confluence for production rules is a particularly difficult problem because, in addition to the
standard problems associated with confluence [Hue80], we must take into account the interactions
between rule triggering and rule priorities. For example, it is not sufficient to simply consider
the combined effects of two rule actions; it also is necessary to consider all rules that can become
triggered, directly or indirectly, by those actions, and the relative ordering of these triggered rules
(recall Example 4.2). These issues are discussed further as we develop our requirements for conflu-
ence in Section 8.3. As preliminaries, we first introduce the notion of rule commutativity, and we

make a useful observation about execution graphs.

12



Figure 1: Commutative rules

8.1 Rule Commutativity

We say that two rules r; and r; are commutative (or r; and r; commute) if, given any state S in
any execution graph, considering rule r; and then rule r; from state S produces the same execution
graph state S’ as considering rule r; and then rule r;; this is depicted in Figure 1. If this equivalence
does not always hold, then »; and r; are noncommutative (or r; and r; do not commute).

Each rule clearly commutes with itself. Based on the definitions of Section 5, we give a set of

conditions for analyzing whether pairs of distinct rules commute.

Lemma 8.1 For distinct rules r; and r;, if any of the following conditions hold then r; and r; may

be noncommutative; otherwise they are commutative:
1. r; € Triggers(r;), i.e. 7; can cause r; to become triggered
2. r; € Can-Untrigger( Performs(r;)), i.e. r; can untrigger r;

3. (I,t), (D,t), or (U,t.c) is in Performs(r;) and t.c is in Uses(r;) for some t.c € C, i.e. 7;’s

operations can affect what r; uses

4. (I,t) is in Performs(r;) and (D, t) or (U, t.c) is in Performs(r;) for some t € T or t.c € C, i.e.

r;’s insertions can affect what r; updates or deletes®
5. (U,t.c) is in both Performs(r;) and Performs(r;), i.e. r;’s updates can affect r;’s updates
6. any of 1-5 with r; and r; reversed O

It is straightforward to verify that if a pair of rules does not satisfy any of 1-6 then the rules are
guaranteed to commute.

As illustration, consider the examples from Section 4:

o FEzample 4.1 — Rules bonus-rank and rank-bonus are noncommutative according to con-

dition 1 of Lemma 8.1, because rank-bonus € Triggers(bonus-rank).

®In SQL it is possible to delete from or update a table without referencing columns of the table, which is why

cases 4 and 5 are distinct from case 3.

13



o Ezample 4.2 — Rules good-sales and great-sales are commutative. Rules good-sales and
rank-raise are noncommutative according to condition 5, because (U, emp.salary) is in
both Performs(good-sales) and Performs(rank-raise). Rules great-sales and rank-raise
are noncommutative according to condition 3, because (U, emp.rank) is in Performs(great-
sales) and emp.rank is in Uses(rank-raise). (Recall from Section 5 that emp.rank is
in Uses(rank-raise) because new-updated.rank is referenced and emp is the triggering
table.) Rules great-sales and rank-raise are noncommutative also according to condition 1,

because rank-raise € Triggers(great-sales).

o FEzample 4.3 — Rules good-sales and rank-raise are noncommutative as in Example 4.2.
Rules good-sales and new-rank are commutative; rules rank-raise and new-rank also
are commutative. (Rule new-rank commutes with rules good-sales and rank-raise be-
cause, although new-rank does access column emp.salary, this column is not in Uses(new-

rank)—it is not used in the rule’s condition or in a data modification action.)

o FEzample 4.4 — Rules bonus-rank and good-sales are commutative. Rules bonus-rank and
new-rank are noncommutative according to condition 1, because new-rank € Triggers(bonus-

rank). Rules good-sales and new-rank are commutative.

The conditions in Lemma 8.1 are somewhat conservative and probably could be refined by
performing more complex analysis on rule conditions and actions and by considering a variety of

special cases. As two examples of this, consider rules r; and r; such that

1. 7; inserts into a table ¢ and r; deletes from ¢, but the tuples inserted by r; never satisfy the

delete condition of r;
2. r; and r; update the same table and column but never the same tuples

In the first example, r; and r; are noncommutative according to condition 4 of Lemma 8.1, but
they do actually commute. In the second example, 7; and r; are noncommutative according to
condition 5 but do commute. Although some such cases may be detected automatically, for now
we assume that they are specified by the user during the interactive analysis process: We allow the
user to declare that pairs of rules that appear noncommutative according to Lemma 8.1 actually

do commute. The analysis algorithms then treat these rules as commutative.

8.2 Observation

We say that two rules r; and r; are unordered if neither 7; > r; nor r; > r; is in P. (Similarly, we
say two rules r; and r; are ordered if »; > rj or 7; > r; is in P.) Based on our execution graph
model, we make the following observation about possible states, which is used in the next section

to develop our criteria for confluence.

Observation 8.2 Consider any two unordered rules r; and r; in R. It is very likely that there

is an execution graph with a state that has (at least) two outgoing edges, one labeled r; and one

14



labeled 7;. (Informally, there is very likely a scenario in which both r; and r; are triggered and
eligible for consideration. Recall that a triggered rule 7 is eligible for consideration iff there is no

other triggered rule with precedence over r.)

Justification: Let O’ = Triggered-By(r;) U Triggered-By(r;). Consider an execution graph for
which the operations in O’ are the initial user-generated operations, so that »; and r; are both
triggered in the initial state. Consider any path of length 0 or more from the initial state to a state
S = (D, TR) in which there are no rules » € TR such that » > r; or » > r; is in P, i.e. there are no
triggered rules with precedence over r; or r;.% State S has at least two outgoing edges, one labeled

r; and one labeled r;. O

8.3 Analyzing Confluence

We now return to the question of confluence. We want to determine if every execution graph for R
is guaranteed to have at most one final state. For two execution graph states S; and S, let §; — S;
denote that there is an edge in the execution graph from state S; to state S; and let S; = S; denote
that there is a path of length 0 or more from S; to S;. (= is the reflexive-transitive closure of —.)

Our first Lemma establishes conditions for confluence based on =:

Lemma 8.3 (Path Confluence) Consider an arbitrary execution graph EG and suppose that
for any three states S, S;, and S; in EG such that § 5 S; and § 5 S, there is a fourth state S’
such that S; = §’ and §; 5 S’ (Figure 2a). Then EG has at most one final state.”

Proof: Suppose, for the sake of a contradiction, that EG has two distinct final states, F; and F.
Let I be the initial state, so I % F; and I % F,. Then, by assumption, there must be a fourth
state S such that F; & S and F5 5 §. Since F; and F are both final states, S = F; and S = F»,
contradicting Fy # F». O

It is quite difficult in general to determine when the supposition of Lemma 8.3 holds, since it is based
entirely on arbitrarily long paths. The following Lemma gives a somewhat weaker condition that
is easier to verify and implies the supposition of Lemma 8.3; it does, however, add the requirement

that rule processing is guaranteed to terminate:

Lemma 8.4 (Edge Confluence) Consider an arbitrary execution graph EG with no infinite paths.
Suppose that for any three states S, S;, and S; in EG such that S — S; and § — §;, there is a
fourth state S’ such that S; = S’ and S; > S’ (Figure 2b). Then for any three states S, S;, and
S; in EG such that § 5 S; and S 5 S;, there is a fourth state S’ such that S; = §’ and S; = S

Proof: Classic result; see e.g. [Hue80].

®Such a path does not exist if r; or r; is untriggered along all potential paths, or if rules with precedence over
r; or r; are considered indefinitely along all potential paths. These are highly unlikely (and probably undesirable)

circumstances, but are why this is an observation rather than a theorem.

"Sometimes the term confluence is used to denote the supposition of this Lemma [Hue80], which then implies

confluence in the sense that we’ve defined it.

15



(a) Based on paths (b) Based on edges

Figure 2: Conditions for confluence

We use Lemma 8.4 as the basis for our analysis techniques. Based on this Lemma (along with

Lemma 8.3), we can guarantee confluence for the rules in R if we know

1. there are no infinite paths in any execution graph for R (i.e., the rules in R are guaranteed

to terminate), and

2. in any execution graph for R, for any three states S, S;, and S; such that § — S; and § — 5,
there is a fourth state S’ such that S; = S’ and §; 5 §'.

We assume that the first condition has been established through the analysis techniques of Section 7;
we focus our attention on analysis techniques for establishing the second condition.

Consider any execution graph for R and any three states S, S;, and S; such that § — 5; and
S — §;. This configuration is produced by every state S that has at least two unordered triggered
rules that are eligible for consideration. Let r; be the rule labeling edge S — §; and r; be the
rule labeling edge S — S, as in Figure 2b. We want to prove that there is a fourth state S’ such
that S; = §’ and §; 5 S'. It is tempting to assume that if »; and r; are commutative, then
r; can be considered from state S; and r; from S;, producing a common state S’ as in Figure 1.
Unfortunately, this is not always possible: If r; causes a rule » with precedence over r; to become
triggered, then r; is not eligible for consideration in state S; (similarly for r; in state S;). Since the
new triggered rule r must be considered before rule r;, » must commute with r;. Furthermore, r
may cause additional rules with precedence over r; to become triggered.

With this in mind, we motivate the requirements for the existence of a common state S’ that
is reachable from both §; and S;. We do this by attempting to “build” valid paths from S; and S;
towards S’; call these paths p; and ps, respectively. From state S;, triggered rules with precedence
over r; are considered until r; is eligible; call these rules R,. Similarly, from S; triggered rules
with precedence over r; are considered until r; is eligible; call these rules Ry. After this, r; can be
considered on path p; and r; can be considered on path ps. Paths p; and ps up to this point are
depicted in Figure 3.

Now suppose that from state S; we can continue path p; by considering the rules in Ry (in the

same order), i.e. suppose the rules in R, are appropriately triggered and eligible. Similarly, suppose

16



Figure 3: Paths towards common state S’

that from S ; we can consider the rules in R;. Then the same rules are considered along both paths.
Consequently, if each rule in {r;} U Ry commutes with each rule in {r;} U R,, then the two paths
are equivalent and reach a common state S’; this is depicted in Figure 4.

Unfortunately, even this scenario is not necessarily valid: There is no guarantee that the rules
in Ry are triggered and eligible from state S}; similarly for R; and S ; (For example, a rule in
Ry may not be eligible from state 5] because r; triggered a rule with higher priority.) We can
guarantee this, however, if we extend the rules originally considered in R; to include all eligible
rules with precedence over rules in Rs, and extend the rules in R, similarly. Using this mutually
recursive definition of R; and R,, the pairwise commutativity of rules in {r;} U R; with rules in
{r;} U R, guarantees the existence of state S’, and consequently guarantees confluence.

To establish confluence for the rules in R, then, we must consider in this fashion every pair of
rules 7; and r; such that some state in some execution graph for R may have two outgoing edges,
one labeled with r; and one with r;. Recall Observation 8.2: For any two unordered rules r; and
7, it is very likely that there is an execution graph with a state that has two outgoing edges, one
labeled r; and one labeled r;. Consequently, we consider every pair of unordered rules, and our

analysis requirement for confluence is stated as follows.

Definition 8.5 (Confluence Requirement) Consider any pair of unordered rules »; and 7; in
R. Let Ry C R and Ry C R be constructed by the following algorithm:

Ry {ri}
Ry — {r;}
repeat until unchanged:
Ri — RiU{r € R | r € Triggers(r,) for some r1 € Ry
and r > ry € P for some ry € Ry and r # r;}
Ry — RyU{r € R | r € Triggers(ry) for some ry € Ry
and » > ry € P for some r1 € Ry and r # r;}

For every pair of rules r; € Ry and 7y € Ry, r; and 79 must commute. O

17



Figure 4: Paths reaching common state S’

The following lemma and theorem formally prove that the requirement of Definition 8.5 indeed

guarantees confluence.

Lemma 8.6 (Confluence Lemma) Suppose the Confluence Requirement (Definition 8.5) holds
for R. Then in any execution graph EG for R, for any three states S, S;, and S; in EG such that
S — S; and S — §j, there is a fourth state S’ such that S; 5 S’ and S; = S'.

Proof: See Appendix A.1. (The formal proof parallels the motivation shown in Figure 4, although

the full construction is slightly more complex.)

Theorem 8.7 (Confluence Theorem) Suppose the Confluence Requirement holds for R and
there are no infinite paths in any execution graph for R. Then any execution graph for R has

exactly one final state, i.e. the rules in R are confluent.

Proof: Let EFG be any execution graph for R. By Confluence Lemma 8.6, for any three states 5,
S;, and S; in EG such that S — S; and § — 5, there is a fourth state S’ such that S; % 8" and
S; 2% §'. Therefore, by Edge Confluence Lemma 8.4, for any three states S, S;, and S; in EG such
that § = S; and § 5 §;, there is a fourth state S’ such that $; = S’ and S; > S’. By Path
Confluence Lemma 8.3, EG has at most one final state, hence (since there are no infinite paths)
EG has exactly one final state. O

Thus, analyzing whether the rules in R are confluent requires considering each pair of unordered
rules 7; and r; in R: Sets R, and R, are built from r; and r; according to Definition 8.5, and the
rules in R, and R, are checked pairwise for commutativity.

8.4 Examples

Consider Example 4.2 in which there are three rules: good-sales, great-sales, and rank-raise.

The only pair of unordered rules is good-sales and great-sales. Letting r; = good-sales and

18



r; = great-sales, we construct sets R; and R, of Definition 8.5. R; = {good-sales}, since
there are no rules in Triggers(good-sales). Ry = {great-sales, rank-raise}, since rank-raise €
Triggers(great-sales) and rank-raise > good-sales. Now, since good-sales € R; and rank-
raise € R, do not commute (recall Section 8.1), then according to Definition 8.5 we cannot conclude
that this set of rules is confluent. To see this in terms of execution graphs, consider a state S in
which good-sales and great-sales are both triggered. If good-sales is considered first, then
path p; from S to a final state considers rules good-sales, great-sales, and rank-raise, in that
order. If great-sales is considered first, then path p,; from S to a final state considers rules great-
sales, rank-raise, and good-sales, in that order. Although rules good-sales and great-sales do
commute, rules good-sales and rank-raise do not. Hence paths p; and p, may lead to different
final states.

Now consider Example 4.3 in which there are three rules: good-sales, rank-raise, and new-
rank. There are two pairs of unordered rules: good-sales/new-rank and rank-raise/new-rank.
For both pairs, sets Ry and Ry of Definition 8.5 contain only the rules themselves, and the rules
commute. Hence by Theorem 8.7 the rules are confluent.

Finally consider Example 4.4 in which there are three rules: bonus-rank, good-sales, and
new-rank. The only pair of unordered rules is bonus-rank and good-sales. Letting r; =
bonus-rank and r; = good-sales, we construct sets R; and Ry of Definition 8.5; consider R,
first. Ry = {good-sales}, since there are no rules in Triggers(good-sales). R; = {bonus-rank},
since although new-rank € Triggers(bonus-rank), there is no rule 7, € Ry such that new-rank

> ry. Since good-sales and bonus-rank commute, the rules are confluent.

8.5 Using Confluence Analysis

If our analysis determines that the rules in a set R are not confluent, it can be attributed to pairs
of unordered rules r; and r; that generate sets R; and Ry such that rules r; € Ry and 7y € Ry
do not commute. (In the most common case, 71 and 7, are r; and r; themselves; see Corollary 8.8
below.) With this information, it appears that the user has three possible courses of action towards

confluence (short of modifying the rules themselves):
1. Certify that rules 1 and 73 actually do commute

2. Specify a user-defined priority between rules r; and r; so they no longer must satisfy the

Confluence Requirement
3. Remove user-defined priorities so ry or 73 is no longer part of R, or R,

Approach 1 is clearly the best when it is valid. Approach 3 is non-intuitive and in fact useless:
removing orderings to eliminate ry or v from Ry or Ry simply produces a corresponding violation
to the Confluence Requirement elsewhere. Hence, if Approach 1 is not applicable (i.e. rules 7y and

r9 do not commute) then Approach 2 should be used. Note, however, that adding an ordering

19



between rules 7; and r; does not immediately guarantee confluence—sets R, or R, may increase
for other pairs of rules and indicate that the rule set is still not confluent.®

As initial guidelines for developing confluent rule sets, the following Corollaries indicate simple
properties that must be satisfied by a set of rules R if the rules in R are found to be confluent using

our methods.

Corollary 8.8 If R is found to be confluent and r; and r; are unordered rules in R, then »; and

r; commute.

Proof: Unordered rules r; and r; generate sets Ry and Ry such that r; € Ry and r; € R,. Hence,

by the Confluence Requirement, r; and r; must commute. O

Corollary 8.9 If R is found to be confluent and P = 0 (i.e. there are no user-defined priorities

between any rules in R), then every pair of rules in R commutes.
Proof: Follows directly from Corollary 8.8. O

Corollary 8.10 If R is found to be confluent and r; and r; in R are such that r; may trigger r;

(or vice-versa), then r; and r; are ordered.

Proof: Since 7; € Triggers(r;), by our conditions for noncommutativity (Lemma 8.1), r; and 7;
do not commute. Suppose, for the sake of a contradiction, that r; and r; are unordered. Then by

Corollary 8.8 they must commute. O

Additional similar Corollaries certainly exist and provide useful initial tools for the rule programmer.

We used our approach to analyze confluence for several medium-sized rule applications. In
most cases the rule sets were initially found to be non-confluent. However, for those rule sets that
actually were confluent, user specification of rule commutativity eventually allowed confluence to
be verified. Furthermore, for some rule sets the analysis uncovered previously undetected sources

of non-confluence, i.e. confluence analysis successfully revealed errors in rule programming.

9 Partial Confluence

Confluence may be too strong a requirement for some applications. It sometimes is useful to allow
rule set R to be non-confluent for certain “unimportant” (e.g. scratch) tables in the database, but to
ensure that R is confluent for other “important” (e.g. data) tables. We call this partial confluence,
or confluence with respect to T', where T' is a subset of the set of tables T in the database schema.
In terms of execution graphs, the rules in R are confluent with respect to 7" if, given any execution
graph EG for R and any two final states F; = (D1,0) and F» = (D,,0) in EG, the tables in T’

8Intuitively, a source of non-confluence can appear to “move around”, requiring an iterative process of adding
orderings (or certifying commutativity) until the rule set is made confluent. This happens because our analysis
techniques simply detect that confluence requires two rules to be ordered—the user chooses an ordering, and this

choice affects which additional rules must be ordered.

20



are identical in database states Dy and Dj. (Partial confluence obviously is implied by confluence,
since confluence guarantees at most one final state.)
Partial confluence is analyzed by analyzing confluence for a subset of the rules in R: those rules

that can directly or indirectly affect the final value of tables in T".

Definition 9.1 (Significant Rules) Let 7’ C T be a set of tables. The set of rules that are
stgnificant with respect to T', denoted Sig(T"), is computed by the following algorithm:
Sig(T") — {r € R | (I,t), (D,t), or (U,t.c) is in Performs(r) for some ¢t € T'}
repeat until unchanged:
Sig(T") « Sig(T') U { r € R | there is an r' € Sig(T"') such that
r' and r do not commute } a
That is, Sig(T') contains all rules that modify any table in 7, along with (recursively) all rules that
do not commute with rules in Sig(7"'). This algorithm determines whether rules commute using our
conservative conditions for noncommutativity from Lemma 8.1. Hence, the user can influence the
computation of Sig(T') by specifying that pairs of rules that appear noncommutative according to
Lemma 8.1 actually do commute.
As in Confluence Theorem 8.7, partial confluence requires that rules are guaranteed to termi-
nate. In this case, however, the rule set under consideration is Sig(T'). Thus, before analyzing
partial confluence, termination of the rules in Sig(T’) must be established using the techniques of

Section 7.2

Theorem 9.2 (Partial Confluence) Let 7' C T be a set of tables. Suppose the Confluence
Requirement (Definition 8.5) holds for the rules in Sig(7"') and there are no infinite paths in any
execution graph for Sig(T"). Then given any two final states F; and F3 in any execution graph for

R, the tables in 7" are identical in F; and F, i.e. the rules in R are confluent with respect to 7".
Proof: See Appendix A.2.

Hence, analyzing whether the rules in R are confluent with respect to 7" requires first computing
Sig(T"), then considering each pair of unordered rules r; and r; in Sig(T"): Sets R; and R, are built
according to Definition 8.5 and checked pairwise for commutativity. If the analysis determines that
the rules in R are not partially confluent, then the same interactive approach as that described
in Section 8.5 for confluence can be used here to establish partial confluence. Examples of partial

confluence analysis are given in Section 10.1 below.

10 Observable Determinism

In some database production rule languages, such as Starburst, the final database state may not be

the only effect of rule processing—some rule actions may be visible to the environment (observable)

®That is, even though the rules in Sig(T') are never processed on their own, it must be established that if they
were processed on their own they would terminate. Asin Section 8.3, this is necessary for Definition 8.5 to guarantee

confluence.

21



while rules are being processed. When this is the case, the user may want to determine whether a
rule set is observably deterministic, i.e. whether the order and appearance of observable rule actions
is the same regardless of which rule is chosen for consideration when multiple non-prioritized rules
are triggered. Note that observable determinism and confluence are orthogonal properties: a rule
set may be confluent but not observably deterministic or vice-versa. (E.g., the rules in Example 4.2
are observably deterministic but non-confluent, while the rules in Example 4.3 are confluent but
not observably deterministic.)

We analyze observable determinism using our techniques for partial confluence. Intuitively, we
add a fictional table Obs to the database, and we pretend that those rules with observable actions
also “timestamp and log” their observable actions in table Obs. We analyze the resulting rule set
for confluence with respect to table Obs; if partial confluence holds, then the rule set is observably
deterministic.

More formally, recall the definitions of Section 5. Let T'yp, = T' U { Obs} be an extended set of
tables, let C 3, = C U {Obs.c} be an extended set of columns, and let O

extended set of operations. Let Uses

obs e the corresponding

and Performs extend the definitions of Uses and

Performs as follows. For every » € R s:ﬁl that Observab?gfr), add Obs.c to Uses(r) and (I, Obs)
to Performs(r). In addition, for every » € R such that Observable(r), add to Uses(r) every t.c
referenced in a top-level select operation in 7’s action and, for every (trans).c referenced in such a
select operation, where (trans) is one of inserted, deleted, new-updated, or old-updated, add
t.c to Uses(r) for r’s triggering table ¢{. Hereafter, for convenience we say that a rule r is observable

if Observable(r).

Theorem 10.1 (Observable Determinism) Suppose, using extended definitions Tp,, C,pss
O obs» Uses,pg, and Performs,p, that our analysis methods for partial confluence determine that
rule set R is confluent with respect to Obs. That is, suppose (from Theorem 9.2) that the Confluence
Requirement of Definition 8.5 holds for the rules in Sig({Obs}) and there are no infinite paths in

any execution graph for Sig({Obs}). Then the rules in R are observably deterministic.

Proof: By supposition, any hypothetical behavior of the rules in R that is consistent with the

definitions of Uses,;s and Performs is confluent with respect to Obs. Consider the following

s obs
such behavior. Suppose each observable rule r, in addition to its existing actions, inserts a new
tuple into Obs that contains the current number of tuples in Obs (the “timestamp”) and a complete
description of r’s observable actions (the “log”). Since there is a unique final value for Obs, the
hypothetical tuples written to Obs must be identical on all execution paths. Consequently, there
is only one possible order and appearance of observable actions, and the rules in R are observably

deterministic. O

If, using the analysis methods indicated by this theorem, the rules in R are not found to be
observably deterministic, then the same interactive approach as that described in Section 8.5 can
be used to establish confluence with respect to Obs, and consequently observable determinism.
Although this requires the user to be aware of fictional table Obs, the use of Obs in the analysis

techniques is quite intuitive and may actually guide the user in establishing observable determinism.

22



The following Corollary gives a simple property that is satisfied by the observable rules in R if

they are found to be deterministic using our methods. Additional useful Corollaries certainly exist.

Corollary 10.2 If R is found to be observably deterministic and r; and r; are distinct observable

rules in R, then r; and r; are ordered.'®

Proof: Since r; is observable, Obs.c € Uses(r;) and (I, Obs) € Performs(r;); similarly for r;.
Therefore, by Definition 9.1, 7; and r; are both in Sig({ Obs}). In addition, by Lemma 8.1, r; and
r; satisfy our conditions for noncommutativity. Suppose, for the sake of a contradiction, that »;
and r; are unordered. r; and r; generate sets Ry and R (from Definition 8.5) such that r; € R,

and r; € Ry. Hence, by the Confluence Requirement, r; and r; must commute, a contradiction. O

10.1 Examples

In Examples 4.1 and 4.2 there are no observable rules. Hence, in both cases Sig({Obs}) = 0,
the rules are partially confluent with respect Obs (vacuously by Theorem 9.2), and the rules are
observably deterministic (by Theorem 10.1).

Now consider Example 4.3 in which there are three rules: good-sales, rank-raise, and new-

rank. Since new-rank is observable, Uses;, and Performs ,;  are derived from Usesand Performs

obs
as follows: Uses(new-rank) is extended to include Obs.c, emp.id, emp.rank, and emp.salary;
Performs(new-rank) is extended to include (I, Obs). With these extensions, rule new-rank no
longer commutes with rule good-sales (by condition 3 of Lemma 8.1) or with rule rank-raise
(also by condition 3). By Definition 9.1 of significant rules, Sig({ Obs}) = {new-rank, good-sales,
rank-raise}. Hence, to analyze observable determinism, we analyze confluence for all three rules.
When we considered confluence for these rules in Section 8.4, without the extended definitions of
Uses and Performs, we found them to be confluent. However, with the extended definitions this is
not the case: unordered rules good-sales and new-rank do not commute, so by Corollary 8.8 we
cannot guarantee confluence; similarly for unordered rules rank-raise and new-rank. Therefore
we determine that the rules are not observably deterministic.

Finally consider Example 4.4 in which there are three rules: bonus-rank, good-sales, and
new-rank. Uses

and Performs are extended for observable rule new-rank as in the pre-

obs obs
vious example. With these extensions, rules good-sales and new-rank no longer commute. By
Definition 9.1, Sig({Obs}) = {new-rank, bonus-rank, good-sales}. Hence, to analyze observ-
able determinism, we analyze confluence for all three rules. The only pair of unordered rules in the
set is bonus-rank and good-sales. As in Section 8.4, R; and Ry are constructed according to
Definition 8.5, then Theorem 8.7 is applied to conclude that the rules are confluent. Therefore the

rules are observably deterministic.

1®Note that this is not an if and only if condition: orderings between all pairs of observable rules does not necessarily

guarantee observable determinism.

23



11 Conclusions and Future Work

We have given static analysis methods that determine whether arbitrary sets of database production
rules are guaranteed to terminate, are confluent, are partially confluent with respect to a set of
tables, or are observably deterministic. Our algorithms are conservative—they may not always
detect when a rule set satisfies these properties. However, they isolate the responsible rules when
a property is not satisfied, and they determine simple criteria that, if satisfied, guarantee the
property. Furthermore, for the cases when these criteria are not satisfied, our methods often can
suggest modifications to the rule set that are likely to make the property hold. Consequently, our
methods can form the basis of a powerful interactive development environment for database rule
programmers.

Although our methods have been designed for the Starburst Rule System, we expect that they
can be adapted to accommodate the syntax and semantics of other database rule languages. In
particular, the fundamental definitions of Section 5 ( Triggers, Performs, Choose, etc.) can simply
be redefined for an alternative rule language. Alternative rule processing semantics will probably
require that the execution graph model is modified, which consequently will cause algorithms (and
proofs) to be modified. However, our fundamental “building blocks” of rule analysis techniques can
remain the same: the triggering graph for analyzing termination, the Edge and Path Lemmas for
analyzing confluence, the notion of partial confluence, and the use of partial confluence in analyzing
observable determinism.

Some technical comparisons can be drawn between this work and the results in [HH91,Ras90,
ZH90]. In [HH91], a version of the OPS5 production rule language is considered, and a class of rule
sets is identified that (conservatively) guarantees the unique fized point property, which essentially
corresponds to our notion of confluence. By defining a (reasonable) mapping between our language
and the language in [HH91|, we have shown that our confluence requirements properly subsume
their fixed point requirements: if a rule set has the unique fixed point property according to [HH91],
then our methods determine that the corresponding rule set is confluent, but not always vice-versa.
The methods in [HH91] have previously been shown to subsume those in [Ras90,ZH90], hence our
approach, although still conservative, appears quite accurate when compared with previous work.

Finally, we plan a number of improvements and extensions to this work:

e Incremental methods: In our current approach, complete analysis is performed after any
change to the rule set. In many cases it is clear that most results of previous analysis are still
valid and only incremental additional analysis needs to be performed. We plan to modify our
methods to incorporate incremental analysis. At the coarsest level, most rule applications can
be partitioned into groups of rules such that, across partitions, rules reference different sets of
tables and have no priority ordering. Although rules from different partitions are processed
at the same time and their execution may be interleaved, they have no effect on each other.
Hence, analysis can be applied separately to each partition, and it needs to be repeated for a

partition only when rules in that partition change.

24



¢ Less conservative methods: As discussed throughout the paper, many of our assumptions,
definitions, and algorithms are conservative, and there is room for refinement. This may
include more complex analysis of SQL, more accurate properties of our execution model, and

a suite of special cases.

¢ Restricted user operations: Our analysis assumes that the user-generated operations that
initiate rule processing are arbitrary. However, in some cases it may be known that these
will be of a particular type, i.e. the user will only perform certain operations on certain
tables. This may reduce possible execution paths during rule processing, and consequently
may guarantee properties that otherwise do not hold. We plan to extend our methods so
that termination, confluence, and observable determinism can be analyzed in the context of

limited user-generated operations.

¢ Implementation and experimentation: We plan to implement our algorithms as part of
an interactive development environment for the Starburst Rule System. Although we have
verified by hand that our methods are indeed useful, implementation will allow practical

experimentation with large and realistic rule applications.

A Appendix

Here we provide the two (lengthy) proofs omitted from the body of the paper.

A.1 Confluence

To prove Lemma 8.6, we first introduce some additional notation and definitions. Let S and S’
be execution graph states and let 7 be a rule in R. We write § - §’ if S’ follows from S by
consideration of rule r, whether or not r is triggered and eligible in S. If r is not triggered in
S, then the consideration of 7 in S is an identity transition, i.e. § ~+ §. (This corresponds with
the intuition that a non-triggered rule can have no effect.) With this notation we give a precise

definition of commutativity.

Definition A.1 (Commutativity) Two rules r; and r; commute if for all execution graph states

5,8 ;"2 8 if and only if § 2 §; T S,

If rule 7 is triggered and eligible in state S, then we write S = S’, which also denotes an execution
graph edge (as defined in Section 8.3). Recall that = is the reflexive-transitive closure of —.

Let a path be a sequence of rule considerations Sy 28 2 Sy . Sy 1 % S, In the proofs
below, the start state So always is fixed and obvious from context, so we generally abbreviate a path
as just the sequence of considered rules (r,...,7,). Two paths P and @ are equivalent, denoted

P = @, if they begin in the same state So and end in the same state S,,. A path is vaelid if all

""Note that a path as defined here is not necessarily a path in an execution graph, since there are no edges in

execution graphs that correspond to consideration of ineligible rules.

25



rules are eligible when they are considered; i.e. for all 4,1 <3 < n, S;_; =5 S;. Hence, a valid path
is a path in an execution graph. Finally, given two sequences of rules A and B, A; B is the path
consisting of consideration of the rules in A followed by consideration of the rules in B.

The proof of Lemma 8.6 uses the following simple lemma about paths. For a path P, let P

denote P with all considerations of non-triggered rules deleted.

Lemma A.2 Let P be a path and assume that for each rule in P, either the rule is not triggered
when it is considered, or the rule is eligible when it is considered. Then P = P and P is a valid
path.

Proof: Obvious.

The following two lemmas are used several times in the proof of Lemma 8.6.

Lemma A.3 Let r;, 7j, and r be rules such that »; and r; are unordered, and let B; and Ry be
the sets of rules constructed from r; and 7; in Definition 8.5. If » € (R; U Ry) — {r;, r;}, then either

T >7T; 0T T >T;.

Proof: Recall the algorithm in Definition 8.5 for constructing R; and Ry. The proof is by induction
on the number of loop iterations required by this algorithm to add r to either R; or Rs. As the
base case, let the number of iterations be 0. Then R; = {r;} and Ry = {r;}, so the result holds
vacuously. Assume the result holds for n iterations. If » is added in iteration n + 1, then by
definition there is some r’ added previously such that » > »'. If »' = »; or ' = r; then » > »;
or 7 > rj. Otherwise, by the induction hypothesis ¥/ > r; or ' > r;, so by transitivity » > r; or

r>T;. O

Lemma A.4 Let r; and r; be unordered rules, let R; and Ry be the sets of rules constructed from
r; and r; in Definition 8.5, and let » and ' be rules such that » > 7' and »' € Ry URy. Thenr # r;
and r # ;.

Proof: For the sake of a contradiction, suppose r = r;. Since r > ', ' # r; (since a rule cannot
have higher priority than itself) and »' # r; (since »; and r; are unordered). Hence, by Lemma A.3,
either »' > r; or ¥/ > r;. By transitivity, then, either » > r; (contradicting the fact that rules
cannot have higher priority than themselves) or 7 > r; (contradicting the assumption that r; and

r; are unordered). Thus » # r;. A parallel argument shows r # r;. O

Lemma 8.6 (Confluence Lemma) Suppose the Confluence Requirement (Definition 8.5) holds
for R. Then in any execution graph EG for R, for any three states S, S;, and S; in EG such that
S — S; and S — §j, there is a fourth state S’ such that S; 5 S’ and S; = S'.

Proof: Let r; and r; label edges § — S5; and § — §; respectively, i.e. S 5 S, and S 5, S;, where

r; and r; are distinct unordered rules.'? We must prove that there is a state S’ such that S; 5 S’

20ther than that, rules r; and r; are chosen arbitrarily, since by Observation 8.2 any pair is very likely to be

possible.

26



and S; = S’. We do this by exhibiting valid paths P, = § %S 58 andP,=S 7, S; 5 S
The proof involves three steps. First, we give an algorithm to construct initial paths P; and Ps.
Second, we extend P; and P, with some additional rules so that every rule in P; and P is either
eligible or not triggered when it is considered; by Lemma A.2, at this point P; and P, are valid,
P, = P;, and P, = P,. Third, we show that P; and P, have the same last state, i.e. P, = P,, which
proves the lemma.

Let Ry and R be the sets of rules constructed from r; and r; in Definition 8.5, let R} = Ry —{r;},
and let Ry = Ry — {r;}. The following algorithm constructs initial paths P; and P;.

A )

while there is a rule » € R] eligible in the last state of path (r;); A do A «— A;(r)
B —{)

while there is a rule » € R}, eligible in the last state of path (r;); B do B « B;(r)
Py (r;); A5 (rj); B

Py — (rj); B; (rs); 4

Before proceeding, we establish an important property of paths P, and P,. Consider path P; and
let So be the last state of path (r;); A. We show that there is no rule r such that » € R} and r is
triggered in Sp. (A symmetric argument shows that on path P, there is no rule r such that r € R}
and 7 is triggered in the last state of (r;); B.) Clearly, there is no rule » such that » € R} and r is
eligible in Sg, because this would violate the termination condition of the first while loop in the
algorithm. Suppose r € R| and r is triggered but not eligible in So. Then there is some ' such
that »’ > 7 and r’ is eligible in Sp. We show r’ € R}, a contradiction. By R} = R; — {r;} and
Definition 8.5 of Ry, r' € R} if:

(1) there is a rule 7y € Ry such that ' € Triggers(rq),
(2) there is a rule r9 € Ry such that ' > ry, and
(3) v # 7; and ' # rj.

For (1), note that by Lemma A.3, 7/ > r; or ' > r;. Thus, 7’ could not be triggered in the initial
state S, or else one of »; or r; would not be eligible in S. So »' must be triggered by some rule in
(r;); A, which implies »' € Triggers(r,) for some 71 € R;. For (2), note that r € R} implies that
there is some 7y € Ry such that r > re; by transitivity »’ > . For (3), »' > r and r € R} together
imply 7 # r; and 7 # r; by Lemma A.4 . Therefore 7 € R} and r’ is eligible in So. But, as noted
above, this is a contradiction, since the while loop adds all eligible rules in R|. We conclude that
there are no rules in R triggered in So. Similarly, there are no rules in R triggered in the last
state of (r;); B.

As the second step of the proof, we show that P; and P, are valid. To do this, we modify P;
and P, so that every rule is either eligible or not triggered when it is considered—that is, there
should be no rules that are triggered but not eligible when they are considered. We show how to
modify path Pi; the construction for P, is symmetric. In path P;, every rule in the portion (r;); A

is eligible, because r; is eligible in the initial state S and every rule added by while loop is eligible.

27



Thus, we consider latter portion (r;); B. As above, let Sy be the last state of (r;); A. Assume, for
the sake of a contradiction, that r; is triggered in Sy but is not eligible. Then there must be a rule
r such that » > r; and r is eligible in Sg. We show r € R}, a contradiction. Consider (1), (2), and
(3) above. For (1), note that » cannot be triggered in the initial state S since 7; is eligible in S and
r > r;. So r is triggered by a rule in (r;); A, which implies » € Triggers(r,) for some r; € Ry. For
(2), note that » > r; and r; € Ry. For (3), r # »; and r # r; because r > r;. Thus, » € R|. But r
cannot be in R}, because there are no eligible rules in R} at So. We conclude that if 7; is triggered
in So, then r; is eligible.

Now we must guarantee that rules in B are either eligible or not triggered when they are
considered on path P;. For this property, it may be necessary to add more rules from R} to B.
We simultaneously consider paths Py = (r;); A; (r;); B and P = (r;); B; (r;); A. Let r be a rule in
B, let 51 be the state where 7 is considered in P;, and let S5 be the state where r is considered in
P,. By construction, r is eligible in S5, because the second while loop adds only eligible rules to
B. Suppose 7 is triggered but not eligible in S;. Then there is some rule r’ such that ' > r and »’
is eligible in S;. Clearly 7’ is not triggered in S, or else 7 could not be eligible in S5. So we can
insert 7’ before » in B with two effects: an eligible rule is added to P; and a non-triggered rule is
added to Ps.

This observation motivates the following modification to B: Repeatedly select the first rule r
from B that is triggered but not eligible in the state S; where 7 is considered in P;. Insert a rule
r' before r in B, where ' > » and 7' is eligible in S;. By repeating this procedure for all rules with
precedence over 7, eventually » becomes an eligible rule in P;. Thus, eventually all rules in P; are
either triggered and eligible or not triggered when they are considered. This procedure terminates
because at each step P; is extended by an eligible rule; since (by assumption) rule processing always
terminates, only a finite number of rules can be added. Note that when this procedure terminates,
P, is valid, and all rules added to B are not triggered when they are considered in Ps.

Before proceeding to the third step, we show that for every ' added to B by the procedure
above, »’ € RS,. In P;, 7' can be triggered in three ways: it is triggered in the initial state S, it
is triggered by a rule in (r;); A, or it is triggered by a rule in (r;); B. We consider each of these

separately:

e Suppose 7’ is triggered in the initial state S. We know »' > r and » € R}, so by Lemma A.3
and transitivity, »’ > »; or ¥’ > r;. But r; and r; are eligible in S, so 7' cannot be triggered

in S.

e Suppose 7’ is triggered by a rule in (r;); A. To derive a contradiction, we first show »' € R].
For (1), every rule in (r;); A is in R, implying that »' € Triggers(r,) for some r; € Ry. For
(2), » > r and r € Ry. For (3), ' > r and r € R, together imply »' # r; and ' # r; by
Lemma A.4 . Thus, ' € R|. But there are no eligible rules of R} in the last state of (r;); A.

Hence 7' is not triggered by a rule in (r;); A.

e Then ' must be triggered by a rule in (r;); B. This implies ' € Rj: For (1), every rule in
(rj); B is in Ry, implying »' € Triggers(ry) for some ry € Ry. For (2), because 7 € R there

28



is a rule r; such that 1 € Ry and r > rq; by transitivity »' > r1. For (3), 7' > r and » € R,
together imply ' # r; and 7’ # r; by Lemma A 4.

For a path P, let the set of rules appearing on P be denoted Rules(P). We have shown that
rules can be added to B such that P is valid, Rules(A) C Ry, Rules(B) C R, and the modifications
to B add only non-triggered rules to P,. A symmetric argument adds rules to A such that P, is
valid, Rules(A) C Ry, Rules(B) C Rj, and the modifications to A add only non-triggered rules to
P;. Thus, we can construct P; and Py such that P, = (r;); 4; (r;); B, Py = (r;); B;{r;); A, P; and
P are valid, Rules(A) C Ry, and Rules(B) C R,.

To complete the proof, we show P; = P,, i.e. P; and P, have the same last state. By Lemma A.2,
P, = P, and P, = P,, so it suffices to show P, = P,. Consider any path with two consecutive
rules, one from R; and the other from R,. Since R; and R, are pairwise commutative, we can
interchange the two rules without changing the last state. Path (r;); A consists entirely of rules
from R,, while path (r;); B consists entirely of rules from R,. Hence, by repeatedly interchanging
consecutive rules from R; and Ry, we can prove (r;); 4; (r;); B = (r;); B; (r;); A, and consequently
P=P. O

A.2 Partial Confluence

To prove Theorem 9.2, we use some notation introduced in Appendix A.1 and give some additional
notation and definitions. OQur method for establishing partial confluence uses the confluence of a
set of rules Sig(T') C R to prove partial confluence for the rules in R. Confluence is a property of
execution graphs, but Sig(T') and R may not have the same execution graphs. Thus, to prove the
correctness of our method, we need to translate between execution graphs of Sig(T’) and execution
graphs of R. As a first step, we subscript ~ and — with sets of rules. Let R’ C R. We write
S Lp 8 if §' follows from S by consideration of rule » when the set of rules is R'. We write
S L S if, additionally, = is triggered and eligible in state S. Since R denotes the entire set
of rules, for consistency with previous sections we write S ~ S’ and § — §' for § ~g S’ and
S —pg S, respectively.

Let P = S %> ... "% S, be any path. P is a path with respect to R' if each r; is in R’ and
for each state S; = (D;, TR;), the set of triggered rules in TR; is a subset of R'. If S; 4 LA Si,
1 < i < n, then P is a valid path with respect to R’, and P is a path in an execution graph for
R’ (recall Section A.1). Let S be any state. A rule r is eligible with respect to R' in S if r € R/,
7 is triggered in S, and there is no rule »' such that ' € R’, ' > r, and 7’ is triggered in S. The
following lemma provides a way to convert certain paths with respect to R into valid paths with

respect to R’'.

Lemma A.5 Let R’ C R, let (Do,TRo) > ...~2 (D,,TR,) be a path (with respect to R), and
suppose r; is eligible with respect to R’ in state (D;_1,TR;_1),1 < i < n. Then (Do, TRoNR') .
. Bp (Dp,TR,NR'),ie. (Do, TRoNR)Z ... %2 (D,, TR, N R') is a valid path with respect

to R'.

29



Proof: Let TR, = TR; N R'. Rule 7; is eligible in (D;_1,TR;_;), 1 < ¢ < n, since 7; is eligible with
respect to R' in (D;_1,TR;_1). Therefore, (D;_1,TR;_,) L. (D;,TR),1<i<n. O

The following lemma provides the key construction for proving Theorem 9.2. This lemma
shows that any path in an execution graph for R can be transformed by commuting rules into an
equivalent path RS; RN such that RS contains only rules from Sig(T"'), RN contains only rules from
R — Sig(T'), and all rules in RS are eligible with respect to Sig(T").

Lemma A.6 Let 7' C T be a set of tables and assume there are no infinite paths in any execution
graph for Sig(T'). If P is a path in an execution graph for R ending in a final state then there
exists a path P’ such that

(1) P! = RS; RN, where Rules(RS) C Sig(T") and Rules(RN) C R — Sig(T"),

(2) P'= P,

(3) in P’, every rule in Sig(T") is eligible with respect to Sig(T') when it is considered, and
(4) TRN Sig(T') = 0, where (D, TR) is the last state of RS.

Proof: Let path P’ be constructed by the following algorithm:
P — P
while P’ # RS; RN where Rules(RS) C Sig(T') and Rules(RN) C R — Sig(T') do
let P’ = RS; RN; (r;); A
where Rules(RS) C Sig(T'), Rules(RN) C R — Sig(T"), |RN| > 0, and r; € Sig(T")
if 7; is eligible with respect to Sig(T") in last state of RS then
[a] P'« RS;(r;); RN; A
else if r; is not triggered in the last state of RS then
[b] P' — RS;RN; A
else
let 7; > 7; be eligible with respect to Sig(T") in the last state of RS
[c] P' < RS;(r;); RN;(r;); A
while P/ = RS; RN and r € Sig(T") is eligible with respect to Sig(T") in the last state of RS do
P' — RS;(r); RN

We must show that (1)-(4) hold and that the algorithm for constructing P’ always terminates. We
first show that (1)—(3) hold after the first while loop and that the loop terminates. We then show
that the second while loop preserves (1)—(3), establishes (4), and terminates.

Consider the first while loop. Note that if the loop condition is true, then P’ must have the
form described by the first let clause; i.e. P’ must begin with a (possibly empty) set of rules RS
from Sig(T"), followed by a non-empty set of rules RN from R — Sig(T"), followed by at least one
rule r; from Sig(T"'). From the termination condition of this loop, it is clear that (1) holds when
the loop terminates. We prove by induction on the number of iterations that (2) and (3) also hold
when the loop terminates. For the base case, (2) holds after 0 iterations since P’ = P. Clearly (3)
holds as well, since P is a valid path for R. For the induction step, let P, = RS,; RN,; (r;); An be

30



P’ after n iterations. As the induction hypothesis, assume P, = P and for every rule » in P, if r
is in Sig(T') then 7 is eligible with respect to Sig(T"') when it is considered. In iteration n + 1 of
the loop either [a], [b], or [c] is executed; we consider each separately.

Let P, be the result of interchanging r; and RN,, (branch [a]). Recall from Definition 9.1 of
Sig(T') that rules in R — Sig(T') commute with rules in Sig(T"); therefore r; commutes with all
rules in RN,,. Hence:

Py, = RSp; RNn; (ri); An
= RSn; (ri); RN,; Ap since r; commutes with all rules in RN,
= Pri

This shows that (2) holds. For (3), we must show that every rule in Sig(T") is eligible with respect
to Sig(T') when it is considered in P, ;. A rulein RS, is considered in the same state in P, ; as in
P}, so rules in RS, are eligible with respect to Sig(7"’) when considered in P, ;. By the condition
for the [a] branch, r; is eligible with respect to Sig(T’) in the last state of RS,. By definition, no
rules in RN, are in Sig(T’). Finally, because r; commutes with rules in RN, the first state of 4,
is the same in P} and P, ,, so each rule in A, is considered in the same state in P, and P;_;.
Therefore, rules in A, that are also in Sig(T’) are eligible with respect to Sig(T”) in P} ;.

Now suppose P, ., = RS,; RN,; A, (branch [b]). Let S be the last state of RS,. By the

condition for the [b] branch, we know that ; is not triggered in S, i.e. § X> 5. Hence:

P7’1 = Rsn; RN,; <ri>; Ap

= RSn; (ri); RN,; Ap since r; commutes with all rules in RN,
= RS,; RN,; A, since r; is not triggered in S
= P7{L-|—1

This shows that (2) holds. For (3), we must show that every rule in Sig(T"’) is eligible with respect
to Sig(T') when it is considered in P, ;. A rule in RS, is considered in the same state in P, as
in P,, so rules in RS, are eligible with respect to Sig(T') when considered in P, ;. By definition,
no rules in RN, are in Sig(T"). Finally, by the equivalences above, the first state of A, is the same
in P} and P, ,, so each rule in A, is considered in the same state in P}, and P, ;. Therefore, rules
in A, that are also in Sig(T") are eligible with respect to Sig(T') in P, ;.

For the last case, suppose P, ; = RSy; (rj); RNy; (;); Ay (branch [c]). Let S be the last state
of RS, and let S’ be the last state of RN,,. The new rule r; must exist, since if r; is triggered
but not eligible with respect to Sig(T') in S, then there is a rule r; such that »; > »; and r; is
eligible with respect to Sig(T”) in S. Now, r; cannot be triggered in S, or else r; is not eligible
with respect to Sig(T') in S’. Note also that r; commutes with rules in RN, since r; € Sig(T")
and Rules(RN,) C R — Sig(T'). Hence:

P = RS,; RNyp; (r;); An
= RS,; RNy; (rj,75); An since r; is not triggered in S’
= RSy; (rj); RNy; (ri); A, since 7j commutes with all rules in RN,
= P7{L-|—1

31



This shows that (2) holds. For (3), we must show that every rule in Sig(T"’) is eligible with respect
to Sig(T’) when it is considered in P, ;. A rule in RS, is considered in the same state in P, ; as
in P,, so rules in RS, are eligible with respect to Sig(T') when considered in P, ;. By the choice
of r; in the let clause preceding [c|, ; is eligible with respect to Sig(T') in the last state of RS,.
By definition, no rules in RN,, are in Sig(T"'). Finally, by the equivalences above, the first state of
(r5); Ap is the same in P, and P, _,, so each rule in (r;); A, is considered in the same state in P,
and P, ;. Therefore, rules in (r;); A, that are also in Sig(T’) are eligible with respect to Sig(T")
in Py ;.

We have shown that (1)—(3) hold after the first while loop. Next we show that the first while
loop always terminates. In iteration n, either RS, is extended by one rule, or a rule not in RS, is
deleted from the path. Hence, to prove termination it suffices to show that RS,, cannot be infinite.
By (3) and the fact that Rules(RS,) C Sig(T'), we know that every rule in RS, is eligible with
respect to Sig(T’). Therefore, by Lemma A.5, there is a path RS, that is valid with respect Sig(T"),
and |RS],| = |RS,|. By assumption, there are no infinite paths in any execution graph for Sig(T");
hence RS! must be finite, implying that RS, is finite as well. We conclude that the first while
loop terminates.

Now consider the second while loop. Condition (1) obviously holds throughout loop execution.
We prove by induction on the number of loop iterations that (2) and (3) also hold. The result is
trivial for 0 iterations. Let P, = RS; RN be P’ after n iterations of the second while loop. Assume
that there is a rule r € Sig(T") eligible with respect to Sig(T") in the last state of RS. Recall that
no rules are triggered in the last state of P because P ends in a final state. Since P, = P, no rules
are triggered in the last state of P.. Therefore:

P, = RS;RN

= RS; RN; (r) since r is not triggered after RN

= RS;(r); RN by commutativity of r with rules in RN

= P7{L-|—1
This shows that (2) holds. For (3), note that all rules in RS are considered in the same state in
both P, and P, ,, by definition 7 is eligible with respect to Sig(T") in the last state of RS, and no
rules in RN are in Sig(T’). Finally, note that the second while loop does not terminate until (4)
holds. To complete the proof, we must show that the second while loop always terminates. This

directly parallels the proof of termination for the first while loop. O

Theorem 9.2 (Partial Confluence) Let 7' C T be a set of tables. Suppose the Confluence
Requirement (Definition 8.5) holds for the rules in Sig(T’) and there are no infinite paths in any
execution graph for Sig(T"). Then given any two final states F; and F3 in any execution graph for

R, the tables in 7’ are identical in F; and F5, i.e. the rules in R are confluent with respect to 7".

Proof: Let P; and P, be any two execution graph paths leading to final states F; and Fj, re-
spectively. Let P{ = (RS1; RNy) and Pj = (RS; RN) be the paths of Lemma A.6 for P; and P,
respectively. By part (2) of Lemma A.6, P/ = P; and P, = P,. We show that the tables in T’ are
identical in the last states of RS; and RS;. Because none of the rules in RN; or RN, modify the

32



tables in T” (by Definition 9.1 of Sig(T")), it then follows that the tables in T’ are identical in the
last states of P{ and P;. Consequently, the tables in 7' are identical in the last states of P; and
Py, which are F; and F5.

Consider RS;. By Lemma A.5 and part (3) of Lemma A.6, a path RS that is valid with respect
to Sig(T’) can be constructed from RS;. Let (D1,TR;) be the last state of RS; and let (D1, TR})
be the last state of RS]. By Lemma A.5 and part (4) of Lemma A.6, TR} = TRy N Sig(T') = 0, so
RS ends in final state (Dq,0). A symmetric argument shows that a path RS that is valid with
respect to Sig(T') can be constructed from RS;, where RS, ends in a state (Dj, TR;) and RSY
ends in final state (Dg,0). Paths RS} and RSY have the same start state, which is produced by
the same initial operations producing the start state of paths P; and P,. Hence, since paths RS/
and RSY both end in a final state, RS| and RS are two paths in an execution graph for Sig(T").
By assumption, Definition 8.5 holds for the rules in Sig(T’) and there are no infinite paths in any
execution graph for Sig(T’). Hence, by Confluence Theorem 8.7, every execution graph for Sig(T")
has exactly one final state. Therefore D; = D,, which shows that the tables in 7’ are identical in
the last states of RS, and RS;. O

References

[ACL91] R. Agrawal, R.J. Cochrane, and B. Lindsay. On maintaining priorities in a production rule
system. In Proceedings of the Seventeenth International Conference on Very Large Data Bases,
pages 479-487, Barcelona, Spain, September 1991.

[AWH92] A. Aiken, J. Widom, and J.M. Hellerstein. Behavior of database production rules: Termination,
confluence, and observable determinism. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 59—68, San Diego, California, June 1992.

[BFKM85] L. Brownston, R. Farrell, E. Kant, and N. Martin. Programming Ezpert Systems in OPS5: An
Introduction to Rule-Based Programming. Addison-Wesley, Reading, Massachusetts, 1985.

[CW90] S. Ceri and J. Widom. Deriving production rules for constraint maintenance. In Proceedings
of the Sizteenth International Conference on Very Large Data Bases, pages 566-577, Brisbane,
Australia, August 1990.

[DW92] U. Dayal and J. Widom. Active database systems. In ACM SIGMOD International Conference
on Management of Data (tutorial), San Diego, California, June 1992.

[H190] L.M. Haas et al. Starburst mid-flight: As the dust clears. JEEE Transactions on Knowledge and
Data Engineering, 2(1):143-160, March 1990.

[HH91] J.M. Hellerstein and M. Hsu. Determinism in partially ordered production systems. IBM Re-
search Report RJ 8009, IBM Almaden Research Center, San Jose, California, March 1991.

[Hue80] G. Huet. Confluent reductions: Abstract properties and applications to term rewriting systems.
Journal of the ACM, 27(4):797-821, October 1980.

[KU91] A P. Karadimce and S.D. Urban. Diagnosing anomalous rule behavior in databases with integrity
maintenance production rules. In Third Workshop on Foundations of Models and Languages for
Data and Objects, Aigen, Austria, September 1991.

[Ras90] L. Raschid. Maintaining consistency in a stratified production system. In Proceedings of the
AAAI National Conference on Artificial Intelligence, 1990.

33



[WCL91] J. Widom, R.J. Cochrane, and B.G. Lindsay. Implementing set-oriented production rules as
an extension to Starburst. In Proceedings of the Seventeenth International Conference on Very
Large Data Bases, pages 275-285, Barcelona, Spain, September 1991.

[WF90] J. Widom and S.J. Finkelstein. Set-oriented production rules in relational database systems.
In Proceedings of the ACM SIGMOD International Conference on Management of Data, pages
259-270, Atlantic City, New Jersey, May 1990.

[Wid92] J. Widom. The Starburst Rule System: Language design, implementation, and applications.
IEEE Data Engineering Bulletin, Special Issue on Active Databases, 15(4):15-18, December
1992.

[ZH90] Y. Zhou and M. Hsu. A theory for rule triggering systems. In Advances in Database Technology—
EDBT ’90, Lecture Notes in Computer Science 416, pages 407-421. Springer-Verlag, Berlin,
March 1990.

34



