
Static Analysis Techniques forPredicting the Behavior of Database Production RulesAlexander AikenJennifer WidomJoseph M. Hellerstein�IBM Almaden Research Center650 Harry RoadSan Jose, CA 95120faiken,widomg@almaden.ibm.com, hellers@cs.wisc.eduAbstractMethods are given for statically analyzing sets of database production rules to determine ifthe rules are (1) guaranteed to terminate, (2) guaranteed to produce a unique �nal databasestate, and (3) guaranteed to produce a unique stream of observable actions. If the analysisdetermines that one of these properties is not guaranteed, it isolates the rules responsible forthe problem and determines criteria that, if satis�ed, guarantee the property. The analysismethods are presented in the context of the Starburst Rule System.1 IntroductionProduction rules in database systems allow speci�cation of data manipulation operations that areexecuted automatically whenever certain events occur or conditions are met, making the databasesystem active [DW92]. Database production rules provide a general and powerful mechanism formany database features, including integrity constraint enforcement, derived data maintenance, trig-gers, alerters, authorization checking, and versioning. In addition, active database systems providea convenient platform for large and e�cient knowledge-bases and expert systems. A signi�cantdrawback of active database systems, however, lies in the development of correct rule applications:it can be very di�cult in general to predict how a set of database production rules will behave.Rule processing occurs as a result of arbitrary database changes; certain rules are triggered initially,and their execution can trigger additional rules or trigger the same rules additional times. Theunstructured, unpredictable, and often nondeterministic behavior of rule processing can become anightmare for the database rule programmer.A signi�cant step in aiding the database rule programmer is to provide a facility that staticallyanalyzes sets of rules, providing information about the following three properties of rule behavior:� Termination: Is rule processing guaranteed to terminate after any set of changes to thedatabase in any state?�Current address: Computer Sciences Department, University of Wisconsin, Madison, WI 537061

� Con
uence: Can the execution order of non-prioritized rules make any di�erence in the �naldatabase state? That is, if multiple rules are triggered at the same time during rule processing,can the �nal database state at termination of rule processing depend on which is considered�rst? If not, the rule set is con
uent.� Observable Determinism: If a rule action is visible to the environment (e.g., if it performsdata retrieval or a rollback statement), then we say it is observable. Can the execution orderof non-prioritized rules make any di�erence in the order or appearance of observable actions?If not, the rule set is observably deterministic.These properties can be very di�cult or impossible to decide in the general case. However, wehave developed conservative static analysis algorithms that:� guarantee that a set of rules will terminate or say that it may not terminate;� guarantee that a set of rules is con
uent or say that it may not be con
uent;� guarantee that a set of rules is observably deterministic or say that it may not be observablydeterministic.Furthermore, when the answer is \may not" for any of these properties, the analysis algorithmsisolate the rules responsible for the problem and determine criteria that, if satis�ed, guaranteethe property. Hence the analysis can form the basis of an interactive environment where therule programmer invokes the analyzer to obtain information about rule behavior. If termination,con
uence, or observable determinism is desired but not guaranteed, then the user may verify thatthe necessary criteria are satis�ed or may modify the rule set and try again.Our analysis methods have been developed and are presented in the context of the StarburstRule System [WCL91], a production rules facility integrated into the Starburst extensible relationalDBMS prototype at the IBM Almaden Research Center [H+90]. Although some aspects of theanalysis are dependent on Starburst rules, we have tried to remain as general as possible, and ourmethods certainly can be adapted to other database rule languages.1.1 Related WorkMost previous work in static analysis of production rules [HH91,Ras90,ZH90] di�ers from ours intwo ways. First, it considers simpli�ed versions of the OPS5 production rule language [BFKM85].OPS5 has a quite di�erent model of rule processing than most active database systems, includingStarburst. Second, the goal of previous work is to impose restrictions and/or orderings on OPS5rule sets such that unique �xed points are guaranteed. Our goal, on the other hand, is to permitarbitrary rule sets and provide useful information about their behavior in the database setting. InSection 11 we make some additional, more technical, comparisons, and we explain how our analysistechniques subsume results in [HH91,Ras90,ZH90].In [KU91], the issue of rule set termination is discussed, along with the issue of con
ictingupdates|determining when one rule may undo changes made by a previous rule. Although models2

and a problem-solving architecture for rule analysis are proposed, no algorithms are given. In[CW90] we presented preliminary methods for analyzing termination in the context of derivingproduction rules for integrity constraint maintenance; these methods form the basis of our approachto termination in this paper. An initial presentation of our analysis methods appears in [AWH92];in this paper we provide additional intuition, re�ne and extend the methods in [AWH92], includenumerous examples, and provide proofs for all lemmas and theorems.1.2 Outline of PaperAs an introduction to active databases and to establish a basis for our analysis techniques, inSection 2 we give a syntax and semantics for the Starburst production rule language; Section 3then motivates the termination, con
uence, and observable determinism properties in the contextof this language. In Section 4 we provide examples of Starburst production rules, illustrating rulesets that do and do not satisfy termination, con
uence, and observable determinism. In Section 5we introduce notation and de�nitions needed for rule analysis and we de�ne some straightforwardpreliminary analysis techniques. In Section 6 we present a model of rule processing to be used as theformal basis for our analysis algorithms. Termination analysis is covered in Section 7 and con
uencein Section 8. In Section 9 we give methods for analyzing partial con
uence, which speci�es that arule set is con
uent with respect to a portion of the database. Observable determinism is coveredin Section 10. Finally, in Section 11 we draw conclusions and discuss future work.2 The Starburst Rule SystemWe provide a brief overview of the Starburst database production rule language. Examples aregiven in Section 4; additional examples and further details appear in [WCL91,WF90].Starburst production rules are based on the notion of transitions. A transition is a database statechange resulting from execution of a sequence of data manipulation operations. Rules consider onlythe net e�ect of transitions, meaning that: (1) if a tuple is updated several times, only the compositeupdate is considered; (2) if a tuple is updated then deleted, only the deletion is considered; (3) ifa tuple is inserted then updated, this is considered as inserting the updated tuple; (4) if a tupleis inserted then deleted, this is not considered at all. A formal theory of transitions and their nete�ects appears in [WF90].The syntax for de�ning a rule is:create rule name on tablewhen triggering-operations[if condition]then action[precedes rule-list][follows rule-list]The triggering-operations are one or more of inserted, deleted, and updated(c1; : : : ; cn), wherec1; : : : ; cn are columns of the rule's table. The rule is triggered by a given transition if at least3

one of the speci�ed operations occurred in the net e�ect of the transition. The optional conditionspeci�es an SQL predicate.1 The action speci�es an arbitrary sequence of database operations tobe executed when the rule is triggered and its condition is true; these operations may be SQL datamodi�cation operations (insert, delete, update), SQL data retrieval operations (select), andtransaction abort (rollback). The optional precedes and follows clauses are used to induce apartial ordering on the set of de�ned rules. If a rule r1 speci�es a rule r2 in its precedes list, orif r2 speci�es r1 in its follows list, then r1 is higher than r2 in the ordering. (We also say that r1has precedence or priority over r2.) When no direct or transitive ordering is speci�ed between tworules, their order is arbitrary.2A rule's condition and action may refer to the current state of the database through top-leveland nested SQL select operations. In addition, rule conditions and actions may refer to transitiontables, which are logical tables re
ecting the changes to the rule's table that have occurred duringthe triggering transition. At the end of a given transition, transition table inserted in a rule refersto those tuples of the rule's table that were inserted by the transition, transition table deletedrefers to those tuples that were deleted, and transition tables new-updated and old-updatedrefer to the new and old values (respectively) of the updated tuples. A rule may refer only totransition tables corresponding to its triggering operations.Rules are activated at rule processing points. There is an automatic rule processing point at theend of each transaction, and there may be additional user-speci�ed rule processing points withina transaction. We describe the semantics of rule processing at an arbitrary point. The statechange resulting from the user-generated data modi�cation operations executed since the last ruleprocessing point (or start of the transaction) creates the �rst relevant transition, and some rules aretriggered by this transition. As rule actions are executed, additional transitions are created whichmay trigger additional rules or trigger the same rules additional times. Rule processing follows aniterative algorithm in which:1. A triggered rule r is selected for consideration such that no other triggered rule has precedenceover r.2. r's condition is evaluated.3. If r's condition is true then r's action is executed.For step 1 in this algorithm, a rule is triggered if one or more of its triggering operations occurredin the composite transition since the last time the rule was considered, or since the start of thetransaction if the rule has not yet been considered. (The e�ect of this semantics is that each rule1In the current implementation rule conditions are SQL select statements, where the condition is true i� theselect statement produces one or more tuples. In the context of rule conditions and for the purposes of rule analysis,predicates and select statements are equivalent [WCL91].2The system actually orders non-prioritized rules using an algorithm based on rule creation time [ACL91], butthis is an implementation feature separate from the semantics of the rule language.4

sees each modi�cation exactly once.) Rule processing terminates when a rollback operation isexecuted or when there are no more triggered rules.User-invoked rule processing may specify that only a subset of the de�ned rules should beconsidered for execution, rather than all rules [Wid92]. Hence, the rule programmer may want topredict the behavior of a subset of the rules. The semantics of rule processing for rule subsets isidentical to rule processing in the general case, so our analysis methods can be applied directly toarbitrary rule subsets.The analysis techniques we present are based on the Starburst rule language and rule processingsemantics, but with modi�cations the methods also could apply to other similar languages; seeSection 11.3 Termination, Con
uence, and Observable DeterminismSuppose a set of Starburst rules has been de�ned using the language described in Section 2. Fur-ther suppose that arbitrary data modi�cation operations have been performed, creating an initialtriggering transition, and then rule processing is invoked. From the algorithm given in Section 2it is clear that rule processing may not terminate|rules could trigger each other forever. A set ofStarburst rules has the termination property if, for any initial triggering transition, rule processingis guaranteed to terminate, i.e. eventually rollback is executed or there are no more triggered rules.In step 1 of the rule processing algorithm, a rule r is selected such that no other triggeredrule has precedence over r. Since the precedence of rules may be only a partial order (indeed, noordering is required), many rules may be eligible for selection in this step. A set of Starburst ruleshas the con
uence property if, for any initial triggering transition, there is some database state Dsuch that if rule processing terminates it terminates with the database in state D, regardless ofwhich eligible rule is selected each time step 1 is performed.Finally, when rule actions are executed (step 3 in the rule processing algorithm), these actionsmay be visible to the environment in which the transaction is executing. For example, actionsmay perform data retrieval, or they may abort the transaction. A set of Starburst rules has theobservable determinism property if, for any initial triggering transition, the sequence of selectand rollback operations executed during rule processing (including the values returned by selectoperations) is identical, regardless of which eligible rule is selected each time step 1 is performed.4 ExamplesFor examples we consider a simple database schema with three tables:emp(id, rank, salary)bonus(emp-id, amount)sales(emp-id, month, number)Table emp records each employee's rank and salary, table bonus records a bonus amount to beawarded to each employee, and table sales records each employee's number of sales on a monthly5

basis. Because our example rules are quite simple, none includes an if clause; this does not detractfrom illustrating the salient points of termination, con
uence, and observable determinism.Example 4.1 (nonterminating) Nontermination is illustrated with two (admittedly contrived)rules. The �rst rule, bonus-rank, states that whenever an employee's bonus is increased by morethan 100, that employee's rank is increased by 1:create rule bonus-rank on bonuswhen updated(amount)then update empset rank = rank + 1where id in (select emp-id from new-updated, old-updatedwhere new-updated.emp-id = old-updated.emp-idand new-updated.amount - old-updated.amount > 100)The second rule, rank-bonus, states that whenever an employee's rank is modi�ed, that employee'sbonus is increased by 10 times the new rank:create rule rank-bonus on empwhen updated(rank)then update bonusset amount = amount + 10 * (select rank from new-updatedwhere new-updated.id = bonus.emp-id)where emp-id in (select id from new-updated)With these two rules, whenever an employee's rank is modi�ed to greater than 10, or wheneveran employee with rank at least 10 receives a bonus greater than 100, rule processing does notterminate|the rules trigger each other forever. 2Example 4.2 (terminating, non-con
uent) This is the most subtle and interesting of our ex-amples. We specify three rules that are guaranteed to terminate. We suggest an ordering for therules that appears to guarantee con
uence, then we explain how this ordering is in fact insu�cientfor con
uence. The �rst rule, good-sales, increases an employee's salary by 10 whenever thatemployee posts sales greater than 50 for a month:create rule good-sales on saleswhen insertedthen update empset salary = salary + 10where id in (select emp-id from inserted where number > 50)The second rule, great-sales, increases an employee's rank by 1 whenever that employee postssales greater than 100 for a month:create rule great-sales on saleswhen insertedthen update empset rank = rank + 1where id in (select emp-id from inserted where number > 100)6

Although rules good-sales and great-salesmay be triggered at the same time, their actions cannota�ect each other, so no relative ordering between the rules is needed for con
uence. The third rule,rank-raise, increases an employee's salary by 10% whenever that employee's rank reaches 15 (weassume that ranks do not decrease):create rule rank-raise on empwhen updated(rank)then update empset salary = 1.1 * salarywhere id in (select id from new-updated where rank = 15)For con
uence it is clear that a relative ordering is required between rule rank-raise and rulegood-sales since, if both rules are triggered at the same time, the order in which their actionsexecute in
uences the �nal salary. We specify that rank-raise has priority over good-sales, so the10% increase given by rank-raise does not re
ect the increase of 10 given by good-sales. It alsois clear that a relative ordering is required between rule rank-raise and rule great-sales since, ifboth rules are triggered at the same time, executing great-sales �rst could increase an employee'srank to 16 before rank-raise awards the 10% increase. Hence, we add the following clause to rulerank-raise:precedes good-sales, great-salesIt turns out that these orderings still are insu�cient for con
uence. Suppose rules good-salesand great-sales are triggered at the same time, and there is an employee whose newly posted salesexceeds 100, whose salary is 60, and whose rank is 14. Suppose rule good-sales is executed �rst.Then good-sales increases the employee's salary to 70, great-sales increases the employee's rankto 15, and �nally rank-raise is triggered and increases the employee's salary to 77. Now supposeinstead that rule great-sales is executed �rst. Then great-sales increases the employee's rankto 15, rank-raise is triggered and increases the employee's salary to 66, and �nally good-salesincreases the employee's salary to 76. Hence there are two possible �nal values for the employee'ssalary, and the rules are not con
uent.The important property to observe here is that there are two rules (good-sales and great-sales) that appear to be unrelated and therefore appear to need no relative ordering. However, theexistence of a third rule (rank-raise) that is related to both of the �rst two rules means that the�rst two rules must be ordered to achieve con
uence. 2Example 4.3 (terminating, con
uent, not observably deterministic) Consider rules good-sales and rank-raise from Example 4.2, ordered so that rank-raise precedes good-sales. Nowadd a third rule, new-rank, that displays an employee's ID, rank, and salary, along with a \new-rank" message, whenever that employee's rank is modi�ed:create rule new-rank on empwhen updated(rank)then select id,rank,salary,"new-rank" from new-updated7

These three rules are guaranteed to terminate and they are con
uent|the �nal database state isguaranteed to be unique. However, the rules are not observably deterministic. Suppose all threerules are triggered at the same time. Then the salaries displayed by rule new-rank may takeon three di�erent values, depending on whether new-rank is executed before rank-raise, afterrank-raise but before good-sales, or after good-sales. 2Example 4.4 (terminating, con
uent, observably deterministic) Consider rule bonus-rankfrom Example 4.1, rule good-sales from Example 4.2, and rule new-rank from Example 4.3, withnew-rank speci�ed to follow bonus-rank and good-sales. This set of rules exhibits all threeproperties: termination, con
uence, and observable determinism. 25 De�nitions and Preliminary AnalysisLet R = fr1; r2; : : : ; rng denote an arbitrary set of Starburst production rules to be analyzed.Analysis is performed on a �xed set of rules|when the rule set is changed, analysis must berepeated. (Incremental methods are certainly possible; see Section 11.) Let P denote the set ofuser-de�ned priority orderings on rules in R (as speci�ed by their precedes and follows clauses),including those implied by transitivity. P = fri > rj; rk > rl; : : :g, where ri > rj denotes thatrule ri has precedence over rj. Let T = ft1; t2; : : : ; tmg denote the tables in the database schema,and let C = fti:cj ; tk :cl; : : :g denote the columns of tables in T . Finally, let O denote the set ofdatabase modi�cation operations:O = fhI; ti j t 2 Tg [fhD; ti j t 2 Tg [fhU; t:ci j t:c 2 CghI; ti denotes insertions into table t, hD; ti denotes deletions from table t, and hU; t:ci denotesupdates to column c of table t.The following de�nitions are computed using straightforward preliminary analysis of the rulesin R:� Triggered-By takes a rule r and produces the set of operations in O that trigger r. Triggered-By is trivial to compute based on rule syntax.� Performs takes a rule r and produces the set of operations in O that may be performed byr's action. Performs is trivial to compute based on rule syntax.� Triggers takes a rule r and produces all rules r0 that can become triggered as a result of r's ac-tion (possibly including r itself). Triggers(r) = fr0 2 R j Performs(r)\Triggered-By(r0) 6= ;g.� Uses takes a rule r and produces all columns in C that may be referenced when evaluating r'scondition or executing a data modi�cation operation in r's action. Uses(r) contains every t:creferenced in r's condition, every t:c referenced in the where clause of a delete or updateoperation in r's action, and every t:c referenced in a nested select expression in an insert,delete, or update operation in r's action. In addition, for every htransi:c referenced in8

this same way, where htransi is one of inserted, deleted, new-updated, or old-updated,t:c is in Uses(r) for r's triggering table t. (Recall from Section 2 that inserted, deleted,new-updated, and old-updated are transition tables based on changes to t.)� Can-Untrigger takes a set of operations O0 � O and produces all rules that can be \un-triggered" as a result of operations in O0. A rule is untriggered if it is triggered at somepoint during rule processing but not chosen for consideration, then subsequently no longertriggered because all triggering changes were undone by other rules.3 Can-Untrigger(O0) =fr 2 R j hD; ti 2 O0 and hI; ti or hU; t:ci 2 Triggered-By(r) for some t 2 T; t:c 2 Cg.� Choose takes a set of triggered rules R0 � R and produces a subset of R0 indicating thoserules eligible for consideration (based on priorities). Choose(R0) = fri j ri 2 R0 and there isno rj 2 R0 such that rj > ri 2 Pg.� Rollback takes a rule r and indicates whether executing r's action is guaranteed to abort thetransaction. In Starburst, Rollback(r) is true i� one of the operations comprising r's actionis rollback.� Observable takes a rule r and indicates whether r's action may be observable. In Starburst,a rule's action may be observable i� it includes rollback or a top-level select statement.6 Execution ModelWe now de�ne a formal model of execution-time rule processing. The model is based on executiongraphs and accurately captures the semantics of rule processing described in Section 2. Note thatexecution graphs are used to discuss and to prove the correctness of our analysis techniques, butthese graphs are never actually constructed and they are not part of the analysis itself.A directed execution graph has a distinguished initial state representing the start of rule pro-cessing (at any processing point) and zero or more �nal states representing termination of ruleprocessing. The paths in the graph represent all possible execution sequences during rule process-ing; branches in the graph result from choosing di�erent rules to consider when more than one iseligible. (Hence any graph for a totally ordered rule set has no branches.) The graph may havein�nitely long paths (possibly but not necessarily due to cycles in the graph); these paths representnontermination of rule processing.More formally, a state (node) S in an execution graph has two components: (1) a databasestate D; (2) a set TR containing each triggered rule and its associated transition tables. We denotethis state as S = (D;TR). The initial state I is created by an initial transition, which results froma sequence of user-generated database operations. Hence, I = (DI ;TRI) where DI is a databasestate and there is some set of operations O0 � O such that:3As an example, a rule r1 might be triggered by insertions, but another rule r2 might delete all inserted tuplesbefore r1 is chosen for consideration. Untriggering is rare in practice.9

TRI = fr 2 R j O0 \ Triggered-By(r) 6= ;gO0 is the set of operations producing the initial transition, and TRI contains the rules triggered bythose operations. A �nal state F is some (DF ; ;), since no rules are triggered when rule processingterminates. Note that a �nal state F may correspond to normal termination or it may correspondto termination due to a rollback statement; in the latter case F = (DT ; ;), where DT is thedatabase state at the start of the transaction.Each directed edge in an execution graph is labeled with a rule r and represents the considerationof r during rule processing. (This includes determining whether r's condition is true and, if so,executing r's action.) Using de�nitions from Section 5, the following lemma states certain propertiesthat hold for all execution graphs. The lemma is stated without proof|it follows directly from thesemantics of rule processing described in Section 2.Lemma 6.1 (Properties of Execution Graphs) Consider any execution graph edge from astate (D1;TR1) to a state (D2;TR2) labeled with a rule r. Then:� r 2 Choose(TR1)� Either:(1) Rollback(r), D2 = DT , and TR2 = ;; or(2) There is some (possibly empty) set of operations O0 � Performs(r) such that the trig-gered rules in TR2 can be derived from the triggered rules in TR1 by:(a) removing rule r(b) removing some subset of the rules in Can-Untrigger(O0)(c) adding all rules r0 2 R such that O0 \ Triggered-By(r0) 6= ; 2Case (1) corresponds to the situation in which r's condition is true and its action includes rollback.Case (2) corresponds to the situation in which r's condition is false, or r's condition is true andits action does not include rollback. In case (2), the operations in O0 are those executed by r'saction, where O0 is empty if r's condition is false. If r's condition is true then O0 still may be aproper subset of Performs(r) since, by the semantics of SQL, for most operations there are certaindatabase states on which they have no e�ect. Finally, note that although rule r is removed instep (a), r may be added again in step (c) if O0 \ Triggered-By(r) 6= ;.The properties in Lemma 6.1 are guaranteed for all execution graphs. By performing morecomplex analysis on rule conditions and actions, by incorporating properties of database states,and by considering a variety of special cases, we probably can identify additional properties ofexecution graphs. Since our analysis techniques are based on execution graph properties, moreaccurate properties may result in more accurate rule analysis. We believe that the properties usedhere, although somewhat conservative, are su�ciently accurate to yield strong analysis techniques.10

7 TerminationWe want to determine whether the rules in R are guaranteed to terminate. That is, we want todetermine if for all user-generated operations and initial database states, rule processing alwaysreaches a point at which there are no triggered rules to consider. We take as an assumption thatindividual rule actions terminate. Hence, in terms of execution graphs, the rules in R are guaranteedto terminate i� all paths in every execution graph for R are �nite.As suggested in [CW90], termination is analyzed by constructing a directed triggering graph forthe rules in R, denoted TGR. The nodes in TGR represent all rules r 2 R such that Rollback(r) isfalse; the edges in TGR represent the Triggers relationship. That is, there is an edge from ri to rjin TGR i� rj 2 Triggers(ri). We exclude a rule ri from the graph if Rollback(ri), since if ri containsrollback then it will not trigger any other rule rj , even if technically rj 2 Triggers(ri).4Theorem 7.1 (Termination) If there are no cycles in TGR then the rules in R are guaranteedto terminate.Proof: We must prove that all paths in every execution graph for R are �nite. Suppose, for thesake of a contradiction, that there are no cycles in graph TGR but there is an in�nite path p in someexecution graph for R. Then, since there are only �nitely many rules, some rule r must appear onin�nitely many edges on path p. By the properties of execution graphs in Lemma 6.1, r must beadded to set TR of triggered rules (by step 3) in�nitely many times. Hence there must be someoperation o 2 Triggered-By(r) that is performed in�nitely many times. Since o is in Performs(r1)for only a �nite number of rules r1, there must be some rule r1 such that o 2 Performs(r1) andr1 appears on in�nitely many edges on path p. Note that, by de�nition, r 2 Triggers(r1), so thereis an edge from r1 to r in TGR. Since r1 appears on in�nitely many edges, r1 must be addedto set TR in�nitely many times. By the same reasoning as above, there is some rule r2 suchthat r1 2 Triggers(r2) (so there is an edge from r2 to r1 in TGR) and r2 appears on in�nitelymany edges on path p. This reasoning continues, generating rules r3, r4, etc. Since, by assumption,there are no cycles in graph TGR, this reasoning generates in�nitely many rules, a contradiction. 2Hence, to determine whether the rules in R are guaranteed to terminate, triggering graph TGRis constructed and checked for cycles. As an example, consider the triggering graph TGR for rulesR = fbonus-rank, rank-bonusg of Example 4.1. There are two nodes in TGR, one representingrule bonus-rank (call the node br) and one representing rule rank-bonus (call the node rb).Since rank-bonus 2 Triggers(bonus-rank), there is an edge in TGR from node br to node rb.Similarly, since bonus-rank 2 Triggers(rank-bonus), there is an edge in TGR from node rb tonode br. Therefore, there is a cycle in TGR, and our analysis determines that this set of rules maynot terminate. In Examples 4.2, 4.3, and 4.4, the triggering graphs are acyclic, so our analysisdetermines that the rules are guaranteed to terminate.4If Rollback(ri) and rj 2 Triggers(ri), then ri must include both a data modi�cation operation and a rollbackoperation in its action. This is allowed syntactically, but semantically it makes little sense|the e�ect of the datamodi�cation operation always will be undone when the rollback operation is executed.11

Although our approach to termination may appear to be very conservative, by considering onlythe known properties of our execution graph model (Lemma 6.1), we see that whenever there is acycle in the triggering graph, our analysis cannot rule out the possibility that there is an executiongraph with an in�nite path. Clearly, however, there are a number of special cases in which thereis a cycle in the triggering graph but other properties (not captured in Lemma 6.1) guaranteetermination. Examples are:� The action of some rule r on the cycle only deletes from a table t, and no other rules on thecycle insert into t. Eventually r's action has no e�ect.� The action of some rule r on the cycle only performs a \monotonic" update (e.g. incrementsvalues), guaranteeing that the condition of some rule r0 on the cycle eventually becomes false(e.g. some value is less than 10).Although some such cases may be detected automatically, for now we assume that they are discov-ered by the user through the interactive analysis process: Once the analyzer has built the triggeringgraph for the rules in R, the user is noti�ed of all cycles (or strong components). If the user isable to verify that, on each cycle, there is some rule r such that repeated consideration of the ruleson the cycle guarantee that r's condition eventually becomes false or r's action eventually has noe�ect, then the rules in R are guaranteed to terminate.As part of a case study, we used this approach to establish termination for a set of rules in apower network design application [CW90].8 Con
uenceNext we want to determine whether the rules in R are con
uent. That is, we want to determine ifthe �nal database state at termination of rule processing can depend on which rule is chosen forconsideration when multiple non-prioritized rules are triggered. In terms of execution graphs, therules in R are con
uent if every execution graph for R has at most one �nal state. (Recall that all�nal states in an execution graph have an empty set of triggered rules, so two di�erent �nal statescannot represent the same database state.)Con
uence for production rules is a particularly di�cult problem because, in addition to thestandard problems associated with con
uence [Hue80], we must take into account the interactionsbetween rule triggering and rule priorities. For example, it is not su�cient to simply considerthe combined e�ects of two rule actions; it also is necessary to consider all rules that can becometriggered, directly or indirectly, by those actions, and the relative ordering of these triggered rules(recall Example 4.2). These issues are discussed further as we develop our requirements for con
u-ence in Section 8.3. As preliminaries, we �rst introduce the notion of rule commutativity, and wemake a useful observation about execution graphs.12

����S����Si ����Sj����S0���	ri @@@Rrj@@@Rrj ���	 riFigure 1: Commutative rules8.1 Rule CommutativityWe say that two rules ri and rj are commutative (or ri and rj commute) if, given any state S inany execution graph, considering rule ri and then rule rj from state S produces the same executiongraph state S 0 as considering rule rj and then rule ri; this is depicted in Figure 1. If this equivalencedoes not always hold, then ri and rj are noncommutative (or ri and rj do not commute).Each rule clearly commutes with itself. Based on the de�nitions of Section 5, we give a set ofconditions for analyzing whether pairs of distinct rules commute.Lemma 8.1 For distinct rules ri and rj, if any of the following conditions hold then ri and rj maybe noncommutative; otherwise they are commutative:1. rj 2 Triggers(ri), i.e. ri can cause rj to become triggered2. rj 2 Can-Untrigger(Performs(ri)), i.e. ri can untrigger rj3. hI; ti, hD; ti, or hU; t:ci is in Performs(ri) and t:c is in Uses(rj) for some t:c 2 C, i.e. ri'soperations can a�ect what rj uses4. hI; ti is in Performs(ri) and hD; ti or hU; t:ci is in Performs(rj) for some t 2 T or t:c 2 C, i.e.ri's insertions can a�ect what rj updates or deletes55. hU; t:ci is in both Performs(ri) and Performs(rj), i.e. ri's updates can a�ect rj 's updates6. any of 1{5 with ri and rj reversed 2It is straightforward to verify that if a pair of rules does not satisfy any of 1{6 then the rules areguaranteed to commute.As illustration, consider the examples from Section 4:� Example 4.1 { Rules bonus-rank and rank-bonus are noncommutative according to con-dition 1 of Lemma 8.1, because rank-bonus 2 Triggers(bonus-rank).5In SQL it is possible to delete from or update a table without referencing columns of the table, which is whycases 4 and 5 are distinct from case 3. 13

� Example 4.2 { Rules good-sales and great-sales are commutative. Rules good-sales andrank-raise are noncommutative according to condition 5, because hU; emp:salaryi is inboth Performs(good-sales) and Performs(rank-raise). Rules great-sales and rank-raiseare noncommutative according to condition 3, because hU; emp:ranki is in Performs(great-sales) and emp.rank is in Uses(rank-raise). (Recall from Section 5 that emp.rank isin Uses(rank-raise) because new-updated.rank is referenced and emp is the triggeringtable.) Rules great-sales and rank-raise are noncommutative also according to condition 1,because rank-raise 2 Triggers(great-sales).� Example 4.3 { Rules good-sales and rank-raise are noncommutative as in Example 4.2.Rules good-sales and new-rank are commutative; rules rank-raise and new-rank alsoare commutative. (Rule new-rank commutes with rules good-sales and rank-raise be-cause, although new-rank does access column emp.salary, this column is not in Uses(new-rank)|it is not used in the rule's condition or in a data modi�cation action.)� Example 4.4 { Rules bonus-rank and good-sales are commutative. Rules bonus-rank andnew-rank are noncommutative according to condition 1, because new-rank 2 Triggers(bonus-rank). Rules good-sales and new-rank are commutative.The conditions in Lemma 8.1 are somewhat conservative and probably could be re�ned byperforming more complex analysis on rule conditions and actions and by considering a variety ofspecial cases. As two examples of this, consider rules ri and rj such that1. ri inserts into a table t and rj deletes from t, but the tuples inserted by ri never satisfy thedelete condition of rj2. ri and rj update the same table and column but never the same tuplesIn the �rst example, ri and rj are noncommutative according to condition 4 of Lemma 8.1, butthey do actually commute. In the second example, ri and rj are noncommutative according tocondition 5 but do commute. Although some such cases may be detected automatically, for nowwe assume that they are speci�ed by the user during the interactive analysis process: We allow theuser to declare that pairs of rules that appear noncommutative according to Lemma 8.1 actuallydo commute. The analysis algorithms then treat these rules as commutative.8.2 ObservationWe say that two rules ri and rj are unordered if neither ri > rj nor rj > ri is in P . (Similarly, wesay two rules ri and rj are ordered if ri > rj or rj > ri is in P .) Based on our execution graphmodel, we make the following observation about possible states, which is used in the next sectionto develop our criteria for con
uence.Observation 8.2 Consider any two unordered rules ri and rj in R. It is very likely that thereis an execution graph with a state that has (at least) two outgoing edges, one labeled ri and one14

labeled rj . (Informally, there is very likely a scenario in which both ri and rj are triggered andeligible for consideration. Recall that a triggered rule r is eligible for consideration i� there is noother triggered rule with precedence over r.)Justi�cation: Let O0 = Triggered-By(ri) [Triggered-By(rj). Consider an execution graph forwhich the operations in O0 are the initial user-generated operations, so that ri and rj are bothtriggered in the initial state. Consider any path of length 0 or more from the initial state to a stateS = (D;TR) in which there are no rules r 2 TR such that r > ri or r > rj is in P , i.e. there are notriggered rules with precedence over ri or rj .6 State S has at least two outgoing edges, one labeledri and one labeled rj . 28.3 Analyzing Con
uenceWe now return to the question of con
uence. We want to determine if every execution graph for Ris guaranteed to have at most one �nal state. For two execution graph states Si and Sj , let Si ! Sjdenote that there is an edge in the execution graph from state Si to state Sj and let Si �! Sj denotethat there is a path of length 0 or more from Si to Sj . (�! is the re
exive-transitive closure of !.)Our �rst Lemma establishes conditions for con
uence based on �!:Lemma 8.3 (Path Con
uence) Consider an arbitrary execution graph EG and suppose thatfor any three states S, Si, and Sj in EG such that S �! Si and S �! Sj , there is a fourth state S0such that Si �! S 0 and Sj �! S 0 (Figure 2a). Then EG has at most one �nal state.7Proof: Suppose, for the sake of a contradiction, that EG has two distinct �nal states, F1 and F2.Let I be the initial state, so I �! F1 and I �! F2. Then, by assumption, there must be a fourthstate S such that F1 �! S and F2 �! S. Since F1 and F2 are both �nal states, S = F1 and S = F2,contradicting F1 6= F2. 2It is quite di�cult in general to determine when the supposition of Lemma 8.3 holds, since it is basedentirely on arbitrarily long paths. The following Lemma gives a somewhat weaker condition thatis easier to verify and implies the supposition of Lemma 8.3; it does, however, add the requirementthat rule processing is guaranteed to terminate:Lemma 8.4 (Edge Con
uence) Consider an arbitrary execution graphEG with no in�nite paths.Suppose that for any three states S, Si, and Sj in EG such that S ! Si and S ! Sj , there is afourth state S0 such that Si �! S0 and Sj �! S 0 (Figure 2b). Then for any three states S, Si, andSj in EG such that S �! Si and S �! Sj , there is a fourth state S 0 such that Si �! S 0 and Sj �! S0.Proof: Classic result; see e.g. [Hue80].6Such a path does not exist if ri or rj is untriggered along all potential paths, or if rules with precedence overri or rj are considered inde�nitely along all potential paths. These are highly unlikely (and probably undesirable)circumstances, but are why this is an observation rather than a theorem.7Sometimes the term con
uence is used to denote the supposition of this Lemma [Hue80], which then impliescon
uence in the sense that we've de�ned it. 15

����S����Si ����Sj����S0���	� @@@R�@@@R� ���	 �(a) Based on paths ����S����Si ����Sj����S0���	ri @@@Rrj@@@R� ���	 �(b) Based on edgesFigure 2: Conditions for con
uenceWe use Lemma 8.4 as the basis for our analysis techniques. Based on this Lemma (along withLemma 8.3), we can guarantee con
uence for the rules in R if we know1. there are no in�nite paths in any execution graph for R (i.e., the rules in R are guaranteedto terminate), and2. in any execution graph for R, for any three states S, Si, and Sj such that S ! Si and S ! Sj ,there is a fourth state S 0 such that Si �! S 0 and Sj �! S 0.We assume that the �rst condition has been established through the analysis techniques of Section 7;we focus our attention on analysis techniques for establishing the second condition.Consider any execution graph for R and any three states S, Si, and Sj such that S ! Si andS ! Sj . This con�guration is produced by every state S that has at least two unordered triggeredrules that are eligible for consideration. Let ri be the rule labeling edge S ! Si and rj be therule labeling edge S ! Sj , as in Figure 2b. We want to prove that there is a fourth state S0 suchthat Si �! S 0 and Sj �! S0. It is tempting to assume that if ri and rj are commutative, thenrj can be considered from state Si and ri from Sj , producing a common state S0 as in Figure 1.Unfortunately, this is not always possible: If ri causes a rule r with precedence over rj to becometriggered, then rj is not eligible for consideration in state Si (similarly for ri in state Sj). Since thenew triggered rule r must be considered before rule rj , r must commute with rj . Furthermore, rmay cause additional rules with precedence over rj to become triggered.With this in mind, we motivate the requirements for the existence of a common state S 0 thatis reachable from both Si and Sj . We do this by attempting to \build" valid paths from Si and Sjtowards S0; call these paths p1 and p2, respectively. From state Si, triggered rules with precedenceover rj are considered until rj is eligible; call these rules R1. Similarly, from Sj triggered ruleswith precedence over ri are considered until ri is eligible; call these rules R2. After this, rj can beconsidered on path p1 and ri can be considered on path p2. Paths p1 and p2 up to this point aredepicted in Figure 3.Now suppose that from state S 0i we can continue path p1 by considering the rules in R2 (in thesame order), i.e. suppose the rules in R2 are appropriately triggered and eligible. Similarly, suppose16

����S����Si ����Sj���� ��������S0i ����S0j
���	ri @@@Rrj? ?R1 � R2�?rj ?riFigure 3: Paths towards common state S 0that from S 0j we can consider the rules in R1. Then the same rules are considered along both paths.Consequently, if each rule in frig [R1 commutes with each rule in frjg [R2, then the two pathsare equivalent and reach a common state S 0; this is depicted in Figure 4.Unfortunately, even this scenario is not necessarily valid: There is no guarantee that the rulesin R2 are triggered and eligible from state S 0i; similarly for R1 and S0j . (For example, a rule inR2 may not be eligible from state S 0i because rj triggered a rule with higher priority.) We canguarantee this, however, if we extend the rules originally considered in R1 to include all eligiblerules with precedence over rules in R2, and extend the rules in R2 similarly. Using this mutuallyrecursive de�nition of R1 and R2, the pairwise commutativity of rules in frig [R1 with rules infrjg [R2 guarantees the existence of state S0, and consequently guarantees con
uence.To establish con
uence for the rules in R, then, we must consider in this fashion every pair ofrules ri and rj such that some state in some execution graph for R may have two outgoing edges,one labeled with ri and one with rj . Recall Observation 8.2: For any two unordered rules ri andrj , it is very likely that there is an execution graph with a state that has two outgoing edges, onelabeled ri and one labeled rj . Consequently, we consider every pair of unordered rules, and ouranalysis requirement for con
uence is stated as follows.De�nition 8.5 (Con
uence Requirement) Consider any pair of unordered rules ri and rj inR. Let R1 � R and R2 � R be constructed by the following algorithm:R1 frigR2 frjgrepeat until unchanged:R1 R1 [fr 2 R j r 2 Triggers(r1) for some r1 2 R1and r > r2 2 P for some r2 2 R2 and r 6= rjgR2 R2 [fr 2 R j r 2 Triggers(r2) for some r2 2 R2and r > r1 2 P for some r1 2 R1 and r 6= rigFor every pair of rules r1 2 R1 and r2 2 R2, r1 and r2 must commute. 217

����S����Si ����Sj���� ��������S0i ����S0j����S0
���	ri @@@Rrj? ?R1 � R2�?rj ?ri@@@R ���	R2 � R1�Figure 4: Paths reaching common state S0The following lemma and theorem formally prove that the requirement of De�nition 8.5 indeedguarantees con
uence.Lemma 8.6 (Con
uence Lemma) Suppose the Con
uence Requirement (De�nition 8.5) holdsfor R. Then in any execution graph EG for R, for any three states S, Si, and Sj in EG such thatS ! Si and S ! Sj , there is a fourth state S 0 such that Si �! S0 and Sj �! S 0.Proof: See Appendix A.1. (The formal proof parallels the motivation shown in Figure 4, althoughthe full construction is slightly more complex.)Theorem 8.7 (Con
uence Theorem) Suppose the Con
uence Requirement holds for R andthere are no in�nite paths in any execution graph for R. Then any execution graph for R hasexactly one �nal state, i.e. the rules in R are con
uent.Proof: Let EG be any execution graph for R. By Con
uence Lemma 8.6, for any three states S,Si, and Sj in EG such that S ! Si and S ! Sj , there is a fourth state S0 such that Si �! S0 andSj �! S0. Therefore, by Edge Con
uence Lemma 8.4, for any three states S, Si, and Sj in EG suchthat S �! Si and S �! Sj , there is a fourth state S0 such that Si �! S0 and Sj �! S0. By PathCon
uence Lemma 8.3, EG has at most one �nal state, hence (since there are no in�nite paths)EG has exactly one �nal state. 2Thus, analyzing whether the rules in R are con
uent requires considering each pair of unorderedrules ri and rj in R: Sets R1 and R2 are built from ri and rj according to De�nition 8.5, and therules in R1 and R2 are checked pairwise for commutativity.8.4 ExamplesConsider Example 4.2 in which there are three rules: good-sales, great-sales, and rank-raise.The only pair of unordered rules is good-sales and great-sales. Letting ri = good-sales and18

rj = great-sales, we construct sets R1 and R2 of De�nition 8.5. R1 = fgood-salesg, sincethere are no rules in Triggers(good-sales). R2 = fgreat-sales, rank-raiseg, since rank-raise 2Triggers(great-sales) and rank-raise > good-sales. Now, since good-sales 2 R1 and rank-raise 2 R2 do not commute (recall Section 8.1), then according to De�nition 8.5 we cannot concludethat this set of rules is con
uent. To see this in terms of execution graphs, consider a state S inwhich good-sales and great-sales are both triggered. If good-sales is considered �rst, thenpath p1 from S to a �nal state considers rules good-sales, great-sales, and rank-raise, in thatorder. If great-sales is considered �rst, then path p2 from S to a �nal state considers rules great-sales, rank-raise, and good-sales, in that order. Although rules good-sales and great-sales docommute, rules good-sales and rank-raise do not. Hence paths p1 and p2 may lead to di�erent�nal states.Now consider Example 4.3 in which there are three rules: good-sales, rank-raise, and new-rank. There are two pairs of unordered rules: good-sales/new-rank and rank-raise/new-rank.For both pairs, sets R1 and R2 of De�nition 8.5 contain only the rules themselves, and the rulescommute. Hence by Theorem 8.7 the rules are con
uent.Finally consider Example 4.4 in which there are three rules: bonus-rank, good-sales, andnew-rank. The only pair of unordered rules is bonus-rank and good-sales. Letting ri =bonus-rank and rj = good-sales, we construct sets R1 and R2 of De�nition 8.5; consider R2�rst. R2 = fgood-salesg, since there are no rules in Triggers(good-sales). R1 = fbonus-rankg,since although new-rank 2 Triggers(bonus-rank), there is no rule r2 2 R2 such that new-rank> r2. Since good-sales and bonus-rank commute, the rules are con
uent.8.5 Using Con
uence AnalysisIf our analysis determines that the rules in a set R are not con
uent, it can be attributed to pairsof unordered rules ri and rj that generate sets R1 and R2 such that rules r1 2 R1 and r2 2 R2do not commute. (In the most common case, r1 and r2 are ri and rj themselves; see Corollary 8.8below.) With this information, it appears that the user has three possible courses of action towardscon
uence (short of modifying the rules themselves):1. Certify that rules r1 and r2 actually do commute2. Specify a user-de�ned priority between rules ri and rj so they no longer must satisfy theCon
uence Requirement3. Remove user-de�ned priorities so r1 or r2 is no longer part of R1 or R2Approach 1 is clearly the best when it is valid. Approach 3 is non-intuitive and in fact useless:removing orderings to eliminate r1 or r2 from R1 or R2 simply produces a corresponding violationto the Con
uence Requirement elsewhere. Hence, if Approach 1 is not applicable (i.e. rules r1 andr2 do not commute) then Approach 2 should be used. Note, however, that adding an ordering19

between rules ri and rj does not immediately guarantee con
uence|sets R1 or R2 may increasefor other pairs of rules and indicate that the rule set is still not con
uent.8As initial guidelines for developing con
uent rule sets, the following Corollaries indicate simpleproperties that must be satis�ed by a set of rules R if the rules in R are found to be con
uent usingour methods.Corollary 8.8 If R is found to be con
uent and ri and rj are unordered rules in R, then ri andrj commute.Proof: Unordered rules ri and rj generate sets R1 and R2 such that ri 2 R1 and rj 2 R2. Hence,by the Con
uence Requirement, ri and rj must commute. 2Corollary 8.9 If R is found to be con
uent and P = ; (i.e. there are no user-de�ned prioritiesbetween any rules in R), then every pair of rules in R commutes.Proof: Follows directly from Corollary 8.8. 2Corollary 8.10 If R is found to be con
uent and ri and rj in R are such that ri may trigger rj(or vice-versa), then ri and rj are ordered.Proof: Since rj 2 Triggers(ri), by our conditions for noncommutativity (Lemma 8.1), ri and rjdo not commute. Suppose, for the sake of a contradiction, that ri and rj are unordered. Then byCorollary 8.8 they must commute. 2Additional similarCorollaries certainly exist and provide useful initial tools for the rule programmer.We used our approach to analyze con
uence for several medium-sized rule applications. Inmost cases the rule sets were initially found to be non-con
uent. However, for those rule sets thatactually were con
uent, user speci�cation of rule commutativity eventually allowed con
uence tobe veri�ed. Furthermore, for some rule sets the analysis uncovered previously undetected sourcesof non-con
uence, i.e. con
uence analysis successfully revealed errors in rule programming.9 Partial Con
uenceCon
uence may be too strong a requirement for some applications. It sometimes is useful to allowrule set R to be non-con
uent for certain \unimportant" (e.g. scratch) tables in the database, but toensure that R is con
uent for other \important" (e.g. data) tables. We call this partial con
uence,or con
uence with respect to T 0, where T 0 is a subset of the set of tables T in the database schema.In terms of execution graphs, the rules in R are con
uent with respect to T 0 if, given any executiongraph EG for R and any two �nal states F1 = (D1; ;) and F2 = (D2; ;) in EG, the tables in T 08Intuitively, a source of non-con
uence can appear to \move around", requiring an iterative process of addingorderings (or certifying commutativity) until the rule set is made con
uent. This happens because our analysistechniques simply detect that con
uence requires two rules to be ordered|the user chooses an ordering, and thischoice a�ects which additional rules must be ordered. 20

are identical in database states D1 and D2. (Partial con
uence obviously is implied by con
uence,since con
uence guarantees at most one �nal state.)Partial con
uence is analyzed by analyzing con
uence for a subset of the rules in R: those rulesthat can directly or indirectly a�ect the �nal value of tables in T 0.De�nition 9.1 (Signi�cant Rules) Let T 0 � T be a set of tables. The set of rules that aresigni�cant with respect to T 0, denoted Sig(T 0), is computed by the following algorithm:Sig(T 0) fr 2 R j hI; ti, hD; ti, or hU; t:ci is in Performs(r) for some t 2 T 0grepeat until unchanged:Sig(T 0) Sig(T 0) [f r 2 R j there is an r0 2 Sig(T 0) such thatr0 and r do not commute g 2That is, Sig(T 0) contains all rules that modify any table in T 0, along with (recursively) all rules thatdo not commute with rules in Sig(T 0). This algorithm determines whether rules commute using ourconservative conditions for noncommutativity from Lemma 8.1. Hence, the user can in
uence thecomputation of Sig(T 0) by specifying that pairs of rules that appear noncommutative according toLemma 8.1 actually do commute.As in Con
uence Theorem 8.7, partial con
uence requires that rules are guaranteed to termi-nate. In this case, however, the rule set under consideration is Sig(T 0). Thus, before analyzingpartial con
uence, termination of the rules in Sig(T 0) must be established using the techniques ofSection 7.9Theorem 9.2 (Partial Con
uence) Let T 0 � T be a set of tables. Suppose the Con
uenceRequirement (De�nition 8.5) holds for the rules in Sig(T 0) and there are no in�nite paths in anyexecution graph for Sig(T 0). Then given any two �nal states F1 and F2 in any execution graph forR, the tables in T 0 are identical in F1 and F2, i.e. the rules in R are con
uent with respect to T 0.Proof: See Appendix A.2.Hence, analyzing whether the rules in R are con
uent with respect to T 0 requires �rst computingSig(T 0), then considering each pair of unordered rules ri and rj in Sig(T 0): Sets R1 and R2 are builtaccording to De�nition 8.5 and checked pairwise for commutativity. If the analysis determines thatthe rules in R are not partially con
uent, then the same interactive approach as that describedin Section 8.5 for con
uence can be used here to establish partial con
uence. Examples of partialcon
uence analysis are given in Section 10.1 below.10 Observable DeterminismIn some database production rule languages, such as Starburst, the �nal database state may not bethe only e�ect of rule processing|some rule actions may be visible to the environment (observable)9That is, even though the rules in Sig(T 0) are never processed on their own, it must be established that if theywere processed on their own they would terminate. As in Section 8.3, this is necessary for De�nition 8.5 to guaranteecon
uence. 21

while rules are being processed. When this is the case, the user may want to determine whether arule set is observably deterministic, i.e. whether the order and appearance of observable rule actionsis the same regardless of which rule is chosen for consideration when multiple non-prioritized rulesare triggered. Note that observable determinism and con
uence are orthogonal properties: a ruleset may be con
uent but not observably deterministic or vice-versa. (E.g., the rules in Example 4.2are observably deterministic but non-con
uent, while the rules in Example 4.3 are con
uent butnot observably deterministic.)We analyze observable determinism using our techniques for partial con
uence. Intuitively, weadd a �ctional table Obs to the database, and we pretend that those rules with observable actionsalso \timestamp and log" their observable actions in table Obs. We analyze the resulting rule setfor con
uence with respect to table Obs; if partial con
uence holds, then the rule set is observablydeterministic.More formally, recall the de�nitions of Section 5. Let Tobs = T [fObsg be an extended set oftables, let Cobs = C [fObs:cg be an extended set of columns, and let Oobs be the correspondingextended set of operations. Let Usesobs and Performsobs extend the de�nitions of Uses andPerforms as follows. For every r 2 R such that Observable(r), add Obs:c to Uses(r) and hI;Obsito Performs(r). In addition, for every r 2 R such that Observable(r), add to Uses(r) every t:creferenced in a top-level select operation in r's action and, for every htransi:c referenced in such aselect operation, where htransi is one of inserted, deleted, new-updated, or old-updated, addt:c to Uses(r) for r's triggering table t. Hereafter, for convenience we say that a rule r is observableif Observable(r).Theorem 10.1 (Observable Determinism) Suppose, using extended de�nitions Tobs, Cobs,Oobs, Usesobs, and Performsobs, that our analysis methods for partial con
uence determine thatrule setR is con
uent with respect toObs. That is, suppose (fromTheorem 9.2) that the Con
uenceRequirement of De�nition 8.5 holds for the rules in Sig(fObsg) and there are no in�nite paths inany execution graph for Sig(fObsg). Then the rules in R are observably deterministic.Proof: By supposition, any hypothetical behavior of the rules in R that is consistent with thede�nitions of Usesobs and Performsobs is con
uent with respect to Obs. Consider the followingsuch behavior. Suppose each observable rule r, in addition to its existing actions, inserts a newtuple into Obs that contains the current number of tuples in Obs (the \timestamp") and a completedescription of r's observable actions (the \log"). Since there is a unique �nal value for Obs, thehypothetical tuples written to Obs must be identical on all execution paths. Consequently, thereis only one possible order and appearance of observable actions, and the rules in R are observablydeterministic. 2If, using the analysis methods indicated by this theorem, the rules in R are not found to beobservably deterministic, then the same interactive approach as that described in Section 8.5 canbe used to establish con
uence with respect to Obs, and consequently observable determinism.Although this requires the user to be aware of �ctional table Obs, the use of Obs in the analysistechniques is quite intuitive and may actually guide the user in establishing observable determinism.22

The following Corollary gives a simple property that is satis�ed by the observable rules in R ifthey are found to be deterministic using our methods. Additional useful Corollaries certainly exist.Corollary 10.2 If R is found to be observably deterministic and ri and rj are distinct observablerules in R, then ri and rj are ordered.10Proof: Since ri is observable, Obs:c 2 Uses(ri) and hI;Obsi 2 Performs(ri); similarly for rj.Therefore, by De�nition 9.1, ri and rj are both in Sig(fObsg). In addition, by Lemma 8.1, ri andrj satisfy our conditions for noncommutativity. Suppose, for the sake of a contradiction, that riand rj are unordered. ri and rj generate sets R1 and R2 (from De�nition 8.5) such that ri 2 R1and rj 2 R2. Hence, by the Con
uence Requirement, ri and rj must commute, a contradiction. 210.1 ExamplesIn Examples 4.1 and 4.2 there are no observable rules. Hence, in both cases Sig(fObsg) = ;,the rules are partially con
uent with respect Obs (vacuously by Theorem 9.2), and the rules areobservably deterministic (by Theorem 10.1).Now consider Example 4.3 in which there are three rules: good-sales, rank-raise, and new-rank. Since new-rank is observable, Usesobs and Performsobs are derived fromUses and Performsas follows: Uses(new-rank) is extended to include Obs:c, emp.id, emp.rank, and emp.salary;Performs(new-rank) is extended to include hI;Obsi. With these extensions, rule new-rank nolonger commutes with rule good-sales (by condition 3 of Lemma 8.1) or with rule rank-raise(also by condition 3). By De�nition 9.1 of signi�cant rules, Sig(fObsg) = fnew-rank, good-sales,rank-raiseg. Hence, to analyze observable determinism, we analyze con
uence for all three rules.When we considered con
uence for these rules in Section 8.4, without the extended de�nitions ofUses and Performs, we found them to be con
uent. However, with the extended de�nitions this isnot the case: unordered rules good-sales and new-rank do not commute, so by Corollary 8.8 wecannot guarantee con
uence; similarly for unordered rules rank-raise and new-rank. Thereforewe determine that the rules are not observably deterministic.Finally consider Example 4.4 in which there are three rules: bonus-rank, good-sales, andnew-rank. Usesobs and Performsobs are extended for observable rule new-rank as in the pre-vious example. With these extensions, rules good-sales and new-rank no longer commute. ByDe�nition 9.1, Sig(fObsg) = fnew-rank, bonus-rank, good-salesg. Hence, to analyze observ-able determinism, we analyze con
uence for all three rules. The only pair of unordered rules in theset is bonus-rank and good-sales. As in Section 8.4, R1 and R2 are constructed according toDe�nition 8.5, then Theorem 8.7 is applied to conclude that the rules are con
uent. Therefore therules are observably deterministic.10Note that this is not an if and only if condition: orderings between all pairs of observable rules does not necessarilyguarantee observable determinism. 23

11 Conclusions and Future WorkWe have given static analysis methods that determine whether arbitrary sets of database productionrules are guaranteed to terminate, are con
uent, are partially con
uent with respect to a set oftables, or are observably deterministic. Our algorithms are conservative|they may not alwaysdetect when a rule set satis�es these properties. However, they isolate the responsible rules whena property is not satis�ed, and they determine simple criteria that, if satis�ed, guarantee theproperty. Furthermore, for the cases when these criteria are not satis�ed, our methods often cansuggest modi�cations to the rule set that are likely to make the property hold. Consequently, ourmethods can form the basis of a powerful interactive development environment for database ruleprogrammers.Although our methods have been designed for the Starburst Rule System, we expect that theycan be adapted to accommodate the syntax and semantics of other database rule languages. Inparticular, the fundamental de�nitions of Section 5 (Triggers, Performs, Choose, etc.) can simplybe rede�ned for an alternative rule language. Alternative rule processing semantics will probablyrequire that the execution graph model is modi�ed, which consequently will cause algorithms (andproofs) to be modi�ed. However, our fundamental \building blocks" of rule analysis techniques canremain the same: the triggering graph for analyzing termination, the Edge and Path Lemmas foranalyzing con
uence, the notion of partial con
uence, and the use of partial con
uence in analyzingobservable determinism.Some technical comparisons can be drawn between this work and the results in [HH91,Ras90,ZH90]. In [HH91], a version of the OPS5 production rule language is considered, and a class of rulesets is identi�ed that (conservatively) guarantees the unique �xed point property, which essentiallycorresponds to our notion of con
uence. By de�ning a (reasonable) mapping between our languageand the language in [HH91], we have shown that our con
uence requirements properly subsumetheir �xed point requirements: if a rule set has the unique �xed point property according to [HH91],then our methods determine that the corresponding rule set is con
uent, but not always vice-versa.The methods in [HH91] have previously been shown to subsume those in [Ras90,ZH90], hence ourapproach, although still conservative, appears quite accurate when compared with previous work.Finally, we plan a number of improvements and extensions to this work:� Incremental methods: In our current approach, complete analysis is performed after anychange to the rule set. In many cases it is clear that most results of previous analysis are stillvalid and only incremental additional analysis needs to be performed. We plan to modify ourmethods to incorporate incremental analysis. At the coarsest level, most rule applications canbe partitioned into groups of rules such that, across partitions, rules reference di�erent sets oftables and have no priority ordering. Although rules from di�erent partitions are processedat the same time and their execution may be interleaved, they have no e�ect on each other.Hence, analysis can be applied separately to each partition, and it needs to be repeated for apartition only when rules in that partition change.24

� Less conservative methods: As discussed throughout the paper, many of our assumptions,de�nitions, and algorithms are conservative, and there is room for re�nement. This mayinclude more complex analysis of SQL, more accurate properties of our execution model, anda suite of special cases.� Restricted user operations: Our analysis assumes that the user-generated operations thatinitiate rule processing are arbitrary. However, in some cases it may be known that thesewill be of a particular type, i.e. the user will only perform certain operations on certaintables. This may reduce possible execution paths during rule processing, and consequentlymay guarantee properties that otherwise do not hold. We plan to extend our methods sothat termination, con
uence, and observable determinism can be analyzed in the context oflimited user-generated operations.� Implementation and experimentation: We plan to implement our algorithms as part ofan interactive development environment for the Starburst Rule System. Although we haveveri�ed by hand that our methods are indeed useful, implementation will allow practicalexperimentation with large and realistic rule applications.A AppendixHere we provide the two (lengthy) proofs omitted from the body of the paper.A.1 Con
uenceTo prove Lemma 8.6, we �rst introduce some additional notation and de�nitions. Let S and S0be execution graph states and let r be a rule in R. We write S r; S0 if S 0 follows from S byconsideration of rule r, whether or not r is triggered and eligible in S. If r is not triggered inS, then the consideration of r in S is an identity transition, i.e. S r; S. (This corresponds withthe intuition that a non-triggered rule can have no e�ect.) With this notation we give a precisede�nition of commutativity.De�nition A.1 (Commutativity) Two rules ri and rj commute if for all execution graph statesS, S ri; Si rj; S0 if and only if S rj; Sj ri; S 0.If rule r is triggered and eligible in state S, then we write S r! S 0, which also denotes an executiongraph edge (as de�ned in Section 8.3). Recall that �! is the re
exive-transitive closure of !.Let a path be a sequence of rule considerations S0 r1; S1 r2; S2 : : :Sn�1 rn; Sn.11 In the proofsbelow, the start state S0 always is �xed and obvious from context, so we generally abbreviate a pathas just the sequence of considered rules hr1; : : : ; rni. Two paths P and Q are equivalent, denotedP � Q, if they begin in the same state S0 and end in the same state Sn. A path is valid if all11Note that a path as de�ned here is not necessarily a path in an execution graph, since there are no edges inexecution graphs that correspond to consideration of ineligible rules.25

rules are eligible when they are considered; i.e. for all i, 1 � i � n, Si�1 ri! Si. Hence, a valid pathis a path in an execution graph. Finally, given two sequences of rules A and B, A;B is the pathconsisting of consideration of the rules in A followed by consideration of the rules in B.The proof of Lemma 8.6 uses the following simple lemma about paths. For a path P , let Pdenote P with all considerations of non-triggered rules deleted.Lemma A.2 Let P be a path and assume that for each rule in P , either the rule is not triggeredwhen it is considered, or the rule is eligible when it is considered. Then P � P and P is a validpath.Proof: Obvious.The following two lemmas are used several times in the proof of Lemma 8.6.Lemma A.3 Let ri, rj, and r be rules such that ri and rj are unordered, and let R1 and R2 bethe sets of rules constructed from ri and rj in De�nition 8.5. If r 2 (R1[R2)�fri; rjg, then eitherr > ri or r > rj .Proof: Recall the algorithm in De�nition 8.5 for constructing R1 and R2. The proof is by inductionon the number of loop iterations required by this algorithm to add r to either R1 or R2. As thebase case, let the number of iterations be 0. Then R1 = frig and R2 = frjg, so the result holdsvacuously. Assume the result holds for n iterations. If r is added in iteration n + 1, then byde�nition there is some r0 added previously such that r > r0. If r0 = ri or r0 = rj then r > rior r > rj . Otherwise, by the induction hypothesis r0 > ri or r0 > rj , so by transitivity r > ri orr > rj . 2Lemma A.4 Let ri and rj be unordered rules, let R1 and R2 be the sets of rules constructed fromri and rj in De�nition 8.5, and let r and r0 be rules such that r > r0 and r0 2 R1[R2. Then r 6= riand r 6= rj .Proof: For the sake of a contradiction, suppose r = ri. Since r > r0, r0 6= ri (since a rule cannothave higher priority than itself) and r0 6= rj (since ri and rj are unordered). Hence, by Lemma A.3,either r0 > ri or r0 > rj . By transitivity, then, either r > ri (contradicting the fact that rulescannot have higher priority than themselves) or r > rj (contradicting the assumption that ri andrj are unordered). Thus r 6= ri. A parallel argument shows r 6= rj . 2Lemma 8.6 (Con
uence Lemma) Suppose the Con
uence Requirement (De�nition 8.5) holdsfor R. Then in any execution graph EG for R, for any three states S, Si, and Sj in EG such thatS ! Si and S ! Sj , there is a fourth state S 0 such that Si �! S0 and Sj �! S 0.Proof: Let ri and rj label edges S ! Si and S ! Sj respectively, i.e. S ri! Si and S rj! Sj , whereri and rj are distinct unordered rules.12 We must prove that there is a state S 0 such that Si �! S 012Other than that, rules ri and rj are chosen arbitrarily, since by Observation 8.2 any pair is very likely to bepossible. 26

and Sj �! S0. We do this by exhibiting valid paths P1 = S ri! Si �! S 0 and P2 = S rj! Sj �! S0.The proof involves three steps. First, we give an algorithm to construct initial paths P1 and P2.Second, we extend P1 and P2 with some additional rules so that every rule in P1 and P2 is eithereligible or not triggered when it is considered; by Lemma A.2, at this point P1 and P2 are valid,P1 � P1, and P2 � P2. Third, we show that P1 and P2 have the same last state, i.e. P1 � P2, whichproves the lemma.Let R1 and R2 be the sets of rules constructed from ri and rj in De�nition 8.5, let R01 = R1�frig,and let R02 = R2 � frjg. The following algorithm constructs initial paths P1 and P2.A hiwhile there is a rule r 2 R01 eligible in the last state of path hrii;A do A A; hriB hiwhile there is a rule r 2 R02 eligible in the last state of path hrji;B do B B; hriP1 hrii;A; hrji;BP2 hrji;B; hrii;ABefore proceeding, we establish an important property of paths P1 and P2. Consider path P1 andlet S0 be the last state of path hrii;A. We show that there is no rule r such that r 2 R01 and r istriggered in S0. (A symmetric argument shows that on path P2 there is no rule r such that r 2 R02and r is triggered in the last state of hrji;B.) Clearly, there is no rule r such that r 2 R01 and r iseligible in S0, because this would violate the termination condition of the �rst while loop in thealgorithm. Suppose r 2 R01 and r is triggered but not eligible in S0. Then there is some r0 suchthat r0 > r and r0 is eligible in S0. We show r0 2 R01, a contradiction. By R01 = R1 � frig andDe�nition 8.5 of R1, r0 2 R01 if:(1) there is a rule r1 2 R1 such that r0 2 Triggers(r1),(2) there is a rule r2 2 R2 such that r0 > r2, and(3) r0 6= ri and r0 6= rj .For (1), note that by Lemma A.3, r0 > ri or r0 > rj . Thus, r0 could not be triggered in the initialstate S, or else one of ri or rj would not be eligible in S. So r0 must be triggered by some rule inhrii;A, which implies r0 2 Triggers(r1) for some r1 2 R1. For (2), note that r 2 R01 implies thatthere is some r2 2 R2 such that r > r2; by transitivity r0 > r2. For (3), r0 > r and r 2 R01 togetherimply r 6= ri and r 6= rj by Lemma A.4 . Therefore r0 2 R01 and r0 is eligible in S0. But, as notedabove, this is a contradiction, since the while loop adds all eligible rules in R01. We conclude thatthere are no rules in R01 triggered in S0. Similarly, there are no rules in R02 triggered in the laststate of hrji;B.As the second step of the proof, we show that P1 and P2 are valid. To do this, we modify P1and P2 so that every rule is either eligible or not triggered when it is considered|that is, thereshould be no rules that are triggered but not eligible when they are considered. We show how tomodify path P1; the construction for P2 is symmetric. In path P1, every rule in the portion hrii;Ais eligible, because ri is eligible in the initial state S and every rule added by while loop is eligible.27

Thus, we consider latter portion hrji;B. As above, let S0 be the last state of hrii;A. Assume, forthe sake of a contradiction, that rj is triggered in S0 but is not eligible. Then there must be a ruler such that r > rj and r is eligible in S0. We show r 2 R01, a contradiction. Consider (1), (2), and(3) above. For (1), note that r cannot be triggered in the initial state S since rj is eligible in S andr > rj . So r is triggered by a rule in hrii;A, which implies r 2 Triggers(r1) for some r1 2 R1. For(2), note that r > rj and rj 2 R2. For (3), r 6= ri and r 6= rj because r > rj . Thus, r 2 R01. But rcannot be in R01, because there are no eligible rules in R01 at S0. We conclude that if rj is triggeredin S0, then rj is eligible.Now we must guarantee that rules in B are either eligible or not triggered when they areconsidered on path P1. For this property, it may be necessary to add more rules from R02 to B.We simultaneously consider paths P1 = hrii;A; hrji;B and P2 = hrji;B; hrii;A. Let r be a rule inB, let S1 be the state where r is considered in P1, and let S2 be the state where r is considered inP2. By construction, r is eligible in S2, because the second while loop adds only eligible rules toB. Suppose r is triggered but not eligible in S1. Then there is some rule r0 such that r0 > r and r0is eligible in S1. Clearly r0 is not triggered in S2, or else r could not be eligible in S2. So we caninsert r0 before r in B with two e�ects: an eligible rule is added to P1 and a non-triggered rule isadded to P2.This observation motivates the following modi�cation to B: Repeatedly select the �rst rule rfrom B that is triggered but not eligible in the state S1 where r is considered in P1. Insert a ruler0 before r in B, where r0 > r and r0 is eligible in S1. By repeating this procedure for all rules withprecedence over r, eventually r becomes an eligible rule in P1. Thus, eventually all rules in P1 areeither triggered and eligible or not triggered when they are considered. This procedure terminatesbecause at each step P1 is extended by an eligible rule; since (by assumption) rule processing alwaysterminates, only a �nite number of rules can be added. Note that when this procedure terminates,P1 is valid, and all rules added to B are not triggered when they are considered in P2.Before proceeding to the third step, we show that for every r0 added to B by the procedureabove, r0 2 R02. In P1, r0 can be triggered in three ways: it is triggered in the initial state S, itis triggered by a rule in hrii;A, or it is triggered by a rule in hrji;B. We consider each of theseseparately:� Suppose r0 is triggered in the initial state S. We know r0 > r and r 2 R02, so by Lemma A.3and transitivity, r0 > ri or r0 > rj . But ri and rj are eligible in S, so r0 cannot be triggeredin S.� Suppose r0 is triggered by a rule in hrii;A. To derive a contradiction, we �rst show r0 2 R01.For (1), every rule in hrii;A is in R1, implying that r0 2 Triggers(r1) for some r1 2 R1. For(2), r0 > r and r 2 R2. For (3), r0 > r and r 2 R2 together imply r0 6= ri and r0 6= rj byLemma A.4 . Thus, r0 2 R01. But there are no eligible rules of R01 in the last state of hrii;A.Hence r0 is not triggered by a rule in hrii;A.� Then r0 must be triggered by a rule in hrji;B. This implies r0 2 R02: For (1), every rule inhrji;B is in R2, implying r0 2 Triggers(r2) for some r2 2 R2. For (2), because r 2 R02 there28

is a rule r1 such that r1 2 R1 and r > r1; by transitivity r0 > r1. For (3), r0 > r and r 2 R2together imply r0 6= ri and r0 6= rj by Lemma A.4.For a path P , let the set of rules appearing on P be denoted Rules(P). We have shown thatrules can be added to B such that P1 is valid, Rules(A) � R1, Rules(B) � R2, and the modi�cationsto B add only non-triggered rules to P2. A symmetric argument adds rules to A such that P2 isvalid, Rules(A) � R1, Rules(B) � R2, and the modi�cations to A add only non-triggered rules toP1. Thus, we can construct P1 and P2 such that P1 = hrii;A; hrji;B, P2 = hrji;B; hrii;A, P1 andP2 are valid, Rules(A) � R1, and Rules(B) � R2.To complete the proof, we show P1 � P2, i.e. P1 and P2 have the same last state. By LemmaA.2,P1 � P1 and P2 � P2, so it su�ces to show P1 � P2. Consider any path with two consecutiverules, one from R1 and the other from R2. Since R1 and R2 are pairwise commutative, we caninterchange the two rules without changing the last state. Path hrii;A consists entirely of rulesfrom R1, while path hrji;B consists entirely of rules from R2. Hence, by repeatedly interchangingconsecutive rules from R1 and R2, we can prove hrii;A; hrji;B � hrji;B; hrii;A, and consequentlyP1 � P2. 2A.2 Partial Con
uenceTo prove Theorem 9.2, we use some notation introduced in Appendix A.1 and give some additionalnotation and de�nitions. Our method for establishing partial con
uence uses the con
uence of aset of rules Sig(T 0) � R to prove partial con
uence for the rules in R. Con
uence is a property ofexecution graphs, but Sig(T 0) and R may not have the same execution graphs. Thus, to prove thecorrectness of our method, we need to translate between execution graphs of Sig(T 0) and executiongraphs of R. As a �rst step, we subscript ; and ! with sets of rules. Let R0 � R. We writeS r;R0 S0 if S 0 follows from S by consideration of rule r when the set of rules is R0. We writeS r!R0 S 0 if, additionally, r is triggered and eligible in state S. Since R denotes the entire setof rules, for consistency with previous sections we write S ; S0 and S ! S 0 for S ;R S 0 andS !R S0, respectively.Let P = S0 r1; : : : rn; Sn be any path. P is a path with respect to R0 if each ri is in R0 andfor each state Si = (Di; TRi), the set of triggered rules in TRi is a subset of R0. If Si�1 ri!R0 Si,1 � i � n, then P is a valid path with respect to R0, and P is a path in an execution graph forR0 (recall Section A.1). Let S be any state. A rule r is eligible with respect to R0 in S if r 2 R0,r is triggered in S, and there is no rule r0 such that r0 2 R0, r0 > r, and r0 is triggered in S. Thefollowing lemma provides a way to convert certain paths with respect to R into valid paths withrespect to R0.Lemma A.5 Let R0 � R, let (D0; TR0) r1; : : : rn; (Dn; TRn) be a path (with respect to R), andsuppose ri is eligible with respect to R0 in state (Di�1; TRi�1), 1 � i � n. Then (D0; TR0\R0) r1!R0: : : rn!R0 (Dn; TRn \ R0), i.e. (D0; TR0 \ R0) r1; : : : rn; (Dn; TRn \ R0) is a valid path with respectto R0. 29

Proof: Let TR0i = TRi \R0. Rule ri is eligible in (Di�1; TR0i�1), 1 � i � n, since ri is eligible withrespect to R0 in (Di�1; TRi�1). Therefore, (Di�1; TR0i�1) ri!R0 (Di; TR0i), 1 � i � n. 2The following lemma provides the key construction for proving Theorem 9.2. This lemmashows that any path in an execution graph for R can be transformed by commuting rules into anequivalent path RS;RN such that RS contains only rules from Sig(T 0), RN contains only rules fromR� Sig(T 0), and all rules in RS are eligible with respect to Sig(T 0).Lemma A.6 Let T 0 � T be a set of tables and assume there are no in�nite paths in any executiongraph for Sig(T 0). If P is a path in an execution graph for R ending in a �nal state then thereexists a path P 0 such that(1) P 0 = RS;RN, where Rules(RS) � Sig(T 0) and Rules(RN) � R� Sig(T 0),(2) P 0 � P ,(3) in P 0, every rule in Sig(T 0) is eligible with respect to Sig(T 0) when it is considered, and(4) TR \ Sig(T 0) = ;, where (D;TR) is the last state of RS.Proof: Let path P 0 be constructed by the following algorithm:P 0 Pwhile P 0 6= RS;RN where Rules(RS) � Sig(T 0) and Rules(RN) � R� Sig(T 0) dolet P 0 = RS;RN; hrii;Awhere Rules(RS) � Sig(T 0), Rules(RN) � R� Sig(T 0), jRNj > 0, and ri 2 Sig(T 0)if ri is eligible with respect to Sig(T 0) in last state of RS then[a] P 0 RS; hrii;RN;Aelse if ri is not triggered in the last state of RS then[b] P 0 RS;RN;Aelselet rj > ri be eligible with respect to Sig(T 0) in the last state of RS[c] P 0 RS; hrji;RN; hrii;Awhile P 0 = RS;RN and r 2 Sig(T 0) is eligible with respect to Sig(T 0) in the last state of RS doP 0 RS; hri;RNWe must show that (1){(4) hold and that the algorithm for constructing P 0 always terminates. We�rst show that (1){(3) hold after the �rst while loop and that the loop terminates. We then showthat the second while loop preserves (1){(3), establishes (4), and terminates.Consider the �rst while loop. Note that if the loop condition is true, then P 0 must have theform described by the �rst let clause; i.e. P 0 must begin with a (possibly empty) set of rules RSfrom Sig(T 0), followed by a non-empty set of rules RN from R� Sig(T 0), followed by at least onerule ri from Sig(T 0). From the termination condition of this loop, it is clear that (1) holds whenthe loop terminates. We prove by induction on the number of iterations that (2) and (3) also holdwhen the loop terminates. For the base case, (2) holds after 0 iterations since P 0 = P . Clearly (3)holds as well, since P is a valid path for R. For the induction step, let P 0n = RSn;RNn; hrii;An be30

P 0 after n iterations. As the induction hypothesis, assume P 0n � P and for every rule r in P 0n, if ris in Sig(T 0) then r is eligible with respect to Sig(T 0) when it is considered. In iteration n + 1 ofthe loop either [a], [b], or [c] is executed; we consider each separately.Let P 0n+1 be the result of interchanging ri and RNn (branch [a]). Recall from De�nition 9.1 ofSig(T 0) that rules in R � Sig(T 0) commute with rules in Sig(T 0); therefore ri commutes with allrules in RNn. Hence:P 0n = RSn;RNn; hrii;An� RSn; hrii;RNn;An since ri commutes with all rules in RNn= P 0n+1This shows that (2) holds. For (3), we must show that every rule in Sig(T 0) is eligible with respectto Sig(T 0) when it is considered in P 0n+1. A rule in RSn is considered in the same state in P 0n+1 as inP 0n, so rules in RSn are eligible with respect to Sig(T 0) when considered in P 0n+1. By the conditionfor the [a] branch, ri is eligible with respect to Sig(T 0) in the last state of RSn. By de�nition, norules in RNn are in Sig(T 0). Finally, because ri commutes with rules in RNn, the �rst state of Anis the same in P 0n and P 0n+1, so each rule in An is considered in the same state in P 0n and P 0n+1.Therefore, rules in An that are also in Sig(T 0) are eligible with respect to Sig(T 0) in P 0n+1.Now suppose P 0n+1 = RSn;RNn;An (branch [b]). Let S be the last state of RSn. By thecondition for the [b] branch, we know that ri is not triggered in S, i.e. S ri; S. Hence:P 0n = RSn;RNn; hrii;An� RSn; hrii;RNn;An since ri commutes with all rules in RNn� RSn;RNn;An since ri is not triggered in S= P 0n+1This shows that (2) holds. For (3), we must show that every rule in Sig(T 0) is eligible with respectto Sig(T 0) when it is considered in P 0n+1. A rule in RSn is considered in the same state in P 0n+1 asin P 0n, so rules in RSn are eligible with respect to Sig(T 0) when considered in P 0n+1. By de�nition,no rules in RNn are in Sig(T 0). Finally, by the equivalences above, the �rst state of An is the samein P 0n and P 0n+1, so each rule in An is considered in the same state in P 0n and P 0n+1. Therefore, rulesin An that are also in Sig(T 0) are eligible with respect to Sig(T 0) in P 0n+1.For the last case, suppose P 0n+1 = RSn; hrji;RNn; hrii;An (branch [c]). Let S be the last stateof RSn and let S0 be the last state of RNn. The new rule rj must exist, since if ri is triggeredbut not eligible with respect to Sig(T 0) in S, then there is a rule rj such that rj > ri and rj iseligible with respect to Sig(T 0) in S. Now, rj cannot be triggered in S 0, or else ri is not eligiblewith respect to Sig(T 0) in S 0. Note also that rj commutes with rules in RNn, since rj 2 Sig(T 0)and Rules(RNn) � R� Sig(T 0). Hence:P 0n = RSn;RNn; hrii;An� RSn;RNn; hrj; rii;An since rj is not triggered in S 0� RSn; hrji;RNn; hrii;An since rj commutes with all rules in RNn= P 0n+1 31

This shows that (2) holds. For (3), we must show that every rule in Sig(T 0) is eligible with respectto Sig(T 0) when it is considered in P 0n+1. A rule in RSn is considered in the same state in P 0n+1 asin P 0n, so rules in RSn are eligible with respect to Sig(T 0) when considered in P 0n+1. By the choiceof rj in the let clause preceding [c], rj is eligible with respect to Sig(T 0) in the last state of RSn.By de�nition, no rules in RNn are in Sig(T 0). Finally, by the equivalences above, the �rst state ofhrii;An is the same in P 0n and P 0n+1, so each rule in hrii;An is considered in the same state in P 0nand P 0n+1. Therefore, rules in hrii;An that are also in Sig(T 0) are eligible with respect to Sig(T 0)in P 0n+1.We have shown that (1){(3) hold after the �rst while loop. Next we show that the �rst whileloop always terminates. In iteration n, either RSn is extended by one rule, or a rule not in RSn isdeleted from the path. Hence, to prove termination it su�ces to show that RSn cannot be in�nite.By (3) and the fact that Rules(RSn) � Sig(T 0), we know that every rule in RSn is eligible withrespect to Sig(T 0). Therefore, by LemmaA.5, there is a path RS 0n that is valid with respect Sig(T 0),and jRS 0nj = jRSnj. By assumption, there are no in�nite paths in any execution graph for Sig(T 0);hence RS 0n must be �nite, implying that RSn is �nite as well. We conclude that the �rst whileloop terminates.Now consider the second while loop. Condition (1) obviously holds throughout loop execution.We prove by induction on the number of loop iterations that (2) and (3) also hold. The result istrivial for 0 iterations. Let P 0n = RS;RN be P 0 after n iterations of the second while loop. Assumethat there is a rule r 2 Sig(T 0) eligible with respect to Sig(T 0) in the last state of RS. Recall thatno rules are triggered in the last state of P because P ends in a �nal state. Since P 0n � P , no rulesare triggered in the last state of P 0n. Therefore:P 0n = RS;RN� RS;RN; hri since r is not triggered after RN� RS; hri;RN by commutativity of r with rules in RN= P 0n+1This shows that (2) holds. For (3), note that all rules in RS are considered in the same state inboth P 0n and P 0n+1, by de�nition r is eligible with respect to Sig(T 0) in the last state of RS, and norules in RN are in Sig(T 0). Finally, note that the second while loop does not terminate until (4)holds. To complete the proof, we must show that the second while loop always terminates. Thisdirectly parallels the proof of termination for the �rst while loop. 2Theorem 9.2 (Partial Con
uence) Let T 0 � T be a set of tables. Suppose the Con
uenceRequirement (De�nition 8.5) holds for the rules in Sig(T 0) and there are no in�nite paths in anyexecution graph for Sig(T 0). Then given any two �nal states F1 and F2 in any execution graph forR, the tables in T 0 are identical in F1 and F2, i.e. the rules in R are con
uent with respect to T 0.Proof: Let P1 and P2 be any two execution graph paths leading to �nal states F1 and F2, re-spectively. Let P 01 = hRS1;RN1i and P 02 = hRS2;RN2i be the paths of Lemma A.6 for P1 and P2,respectively. By part (2) of Lemma A.6, P 01 � P1 and P 02 � P2. We show that the tables in T 0 areidentical in the last states of RS1 and RS2. Because none of the rules in RN1 or RN2 modify the32

tables in T 0 (by De�nition 9.1 of Sig(T 0)), it then follows that the tables in T 0 are identical in thelast states of P 01 and P 02. Consequently, the tables in T 0 are identical in the last states of P1 andP2, which are F1 and F2.Consider RS1. By Lemma A.5 and part (3) of Lemma A.6, a path RS 01 that is valid with respectto Sig(T 0) can be constructed from RS1. Let (D1; TR1) be the last state of RS1 and let (D1; TR01)be the last state of RS 01. By Lemma A.5 and part (4) of Lemma A.6, TR01 = TR1 \ Sig(T 0) = ;, soRS 01 ends in �nal state (D1; ;). A symmetric argument shows that a path RS 02 that is valid withrespect to Sig(T 0) can be constructed from RS2, where RS2 ends in a state (D2;TR2) and RS 02ends in �nal state (D2; ;). Paths RS 01 and RS 02 have the same start state, which is produced bythe same initial operations producing the start state of paths P1 and P2. Hence, since paths RS 01and RS 02 both end in a �nal state, RS 01 and RS 02 are two paths in an execution graph for Sig(T 0).By assumption, De�nition 8.5 holds for the rules in Sig(T 0) and there are no in�nite paths in anyexecution graph for Sig(T 0). Hence, by Con
uence Theorem 8.7, every execution graph for Sig(T 0)has exactly one �nal state. Therefore D1 = D2, which shows that the tables in T 0 are identical inthe last states of RS1 and RS2. 2References[ACL91] R. Agrawal, R.J. Cochrane, and B. Lindsay. On maintaining priorities in a production rulesystem. In Proceedings of the Seventeenth International Conference on Very Large Data Bases,pages 479{487, Barcelona, Spain, September 1991.[AWH92] A. Aiken, J. Widom, and J.M. Hellerstein. Behavior of database production rules: Termination,con
uence, and observable determinism. In Proceedings of the ACM SIGMOD InternationalConference on Management of Data, pages 59{68, San Diego, California, June 1992.[BFKM85] L. Brownston, R. Farrell, E. Kant, and N. Martin. Programming Expert Systems in OPS5: AnIntroduction to Rule-Based Programming. Addison-Wesley, Reading, Massachusetts, 1985.[CW90] S. Ceri and J. Widom. Deriving production rules for constraint maintenance. In Proceedingsof the Sixteenth International Conference on Very Large Data Bases, pages 566{577, Brisbane,Australia, August 1990.[DW92] U. Dayal and J. Widom. Active database systems. In ACM SIGMOD International Conferenceon Management of Data (tutorial), San Diego, California, June 1992.[H+90] L.M. Haas et al. Starburst mid-
ight: As the dust clears. IEEE Transactions on Knowledge andData Engineering, 2(1):143{160, March 1990.[HH91] J.M. Hellerstein and M. Hsu. Determinism in partially ordered production systems. IBM Re-search Report RJ 8009, IBM Almaden Research Center, San Jose, California, March 1991.[Hue80] G. Huet. Con
uent reductions: Abstract properties and applications to term rewriting systems.Journal of the ACM, 27(4):797{821, October 1980.[KU91] A.P. Karadimce and S.D. Urban. Diagnosing anomalous rule behavior in databases with integritymaintenance production rules. In Third Workshop on Foundations of Models and Languages forData and Objects, Aigen, Austria, September 1991.[Ras90] L. Raschid. Maintaining consistency in a strati�ed production system. In Proceedings of theAAAI National Conference on Arti�cial Intelligence, 1990.33

[WCL91] J. Widom, R.J. Cochrane, and B.G. Lindsay. Implementing set-oriented production rules asan extension to Starburst. In Proceedings of the Seventeenth International Conference on VeryLarge Data Bases, pages 275{285, Barcelona, Spain, September 1991.[WF90] J. Widom and S.J. Finkelstein. Set-oriented production rules in relational database systems.In Proceedings of the ACM SIGMOD International Conference on Management of Data, pages259{270, Atlantic City, New Jersey, May 1990.[Wid92] J. Widom. The Starburst Rule System: Language design, implementation, and applications.IEEE Data Engineering Bulletin, Special Issue on Active Databases, 15(4):15{18, December1992.[ZH90] Y. Zhou and M. Hsu. A theory for rule triggering systems. In Advances in Database Technology|EDBT '90, Lecture Notes in Computer Science 416, pages 407{421. Springer-Verlag, Berlin,March 1990.

34

