
Safe|A Semantic Technique for TransformingPrograms in the Presence of ErrorsALEXANDER AIKENUniversity of California, BerkeleyandJOHN H. WILLIAMS and EDWARD L. WIMMERSIBM Almaden Research CenterLanguage designers and implementors have avoided specifying and preserving the meaning ofprograms that produce errors. This is apparently because being forced to preserve error behaviorseverely limits the scope of program optimization, even for correct programs. However, preservingerror behavior is desirable for debugging, and error behavior must be preserved in any languagethat permits user-generated errors (i.e., exceptions).This paper presents a technique for expressing general program transformations for languagesthat possess a rich collection of distinguishable error values. This is accomplished by de�ning ahigher-order function called \Safe", which can be used to annotate those portions of a programthat are guaranteed not to produce errors. It is shown that this facilitates the expression of verygeneral program transformations, e�ectively giving program transformations in a language withmany error values the same power and generality as program transformations in a language withonly a single error value.Using the semantic properties of Safe, it is possible to provide some useful su�cient conditionsfor establishing the correctness of transformations in the presence of errors. In particular, aSubstitutability Theorem is proven, which can be used to justify \in-context" optimizations|transformations that alter the meanings of subexpressions without changing the meaning of thewhole program. Finally, the e�ectiveness of the technique is demonstrated by some examples ofits use in an optimizing compiler.Categories and Subject Descriptors: D.3.4 [Processors]: OptimizationGeneral Terms: Languages,TheoryAdditional Key Words and Phrases: equational reasoning,exceptions, program optimization, pro-gram transformation1. INTRODUCTIONA laudable trend of the past two decades has been the increased use of denota-tional semantics to guide the design and implementation of programming languages.Semantics-driven language design has produced cleaner and simpler languages andprovided more precise standards for testing the correctness of language implemen-tations.An apparent exception to this trend is the treatment of error handling. All tooAddress for �rst author: Computer Science Division, 773 Soda Hall, University of Califor-nia, Berkeley, 94720-1776, email: aiken@cs.berkeley.edu. Address for second and third au-thors: IBM Almaden Research Center, 650 Harry Rd., San Jose, CA, 95120-6077, email:fwilliams,wimmersg@almaden.ibm.com. A preliminary version of this paper was presented atthe 1990 POPL Conference [Aiken et al. 1990].



2 � Alexander Aiken, et al.often, errors are considered to be outside the scope of the denotational semantics;if anything is speci�ed about error behavior, it is usually through some ad hocmechanism. Some language features|such as strong typing|reduce the negativeimpact of such a design but cannot avoid it completely; runtime errors exist inevery language and must be handled in an implementation.Many languages simply omit errors altogether from their formal semantic speci-�cation. For example, early Fortran implementations were free to report errors asthe implementor saw �t, and transformations to improve performance could changethe behavior of error-producing programs. This approach is still taken with somemodern languages, e.g., Haskell [Hudak et al. 1988] and the languages of Turner[Turner 1985], where strong typing and lazy evaluation lessen the need for errorrecovery and exception handling.Other languages include errors in the domain of values and provide some mech-anism for computing with (or recovering from) errors, but the formal speci�cationallows considerable variation in the behavior of implementations. For example, in[Steele 1984] Steele writes:\The de�nition of Common Lisp : : :explicitly requires the interpreterand compiler to impose identical semantics on correct programs so faras possible." (emphasis added)Indeed, in one Common Lisp implementation, taking the car of an atom producesa run time error when interpreted but returns the current package when compiled!One study of program transformations carefully accounts for the fact that manycommon optimizations do not preserve error behavior by giving a precise, denota-tional treatment of such transformations [Cartwright and Felleisen 1989]. In thisapproach, errors are considered to approximate other values, and program trans-formations are lifting operations that can (possibly) make programs more de�ned.Another approach [Hennessy 1981]\: : :examines the optimization di�culties imposed by common exceptionhandling facilities [and] proposes restrictions on these mechanisms thatmake the optimization of programs possible."Why have language designers and implementors avoided specifying and preserv-ing the meaning of errors? The answer appears to be that not preserving errorbehavior increases the power and e�ectiveness of transforming correct programs,i.e., the \important" programs. For instance, substituting s2 (which selects thesecond element of a sequence) for s1 � tl (which selects the �rst element of thetail of a sequence) may improve a program's running time, but a programmer whohadn't used the primitive s2 and was unaware of its existence would be confused bythe run-time error message \s2 incorrectly applied to a non-sequence argument."If the language designer opts for language clarity and ease of debugging by makinga semantic distinction between tl errors and s2 errors, then the general transfor-mation becomes invalid, and some weaker version must be substituted, perhaps inthe form of a set of rules identifying particular contexts in which the replacementis valid. This can be a signi�cant loss, since identifying such contexts in generalrequires knowledge of the entire program. Thus, including errors as semantic ob-jects in order to make a language easier to use appears to weaken the generality



Safe|A Semantic Technique for Transforming Programs in the Presence of Errors � 3and power of the language's program transformations.This paper presents a technique for preserving the power of general programtransformations in the presence of a rich collection of distinguishable error values.This is accomplished by introducing an annotation, \Safe", to mark occurrences offunctions that cannot produce errors. Succinct and general algebraic laws can beexpressed using Safe, thereby giving program transformations in a language withmany error values the same power and generality as program transformations in alanguage with only a single error value (such as FP [Backus 1978]). In fact, the Safemechanism accomplishes much more. It actually strengthens equational reasoningby providing a su�cient condition on a program context E(�) and functions f andg; such that E(f) � E(g) even if f 6� g:The Safe mechanism is presented in the context of the functional language FL[Backus et al. 1986], but it should be applicable in other source-to-source programtransformation systems. In fact, the only requirement for using these techniques inother contexts is that a suitable de�nition of the function Safe can be found forthe programming language under consideration. Section 2 describes enough of FLto illustrate the technique and prove its soundness. Section 3 introduces the Safemechanism and gives a simple example illustrating that having just two distinguish-able errors causes as much loss of algebraic generality as having arbitrarily manydi�erent kinds of errors. This shows that it is not possible through careful languagedesign to make a gradual trade-o� between the expressiveness of error reporting andalgebraic generality. Section 3 also contains the Substitutability Theorem, whichprovides a criterion for proving the soundness of transformations involving Safe.Some examples of optimization using Safe are given in Section 4. Section 5 dis-cusses some pragmatic concerns, while Section 6 reports on experience with the useof these techniques in an optimizing compiler for FL. Section 7 concludes with adiscussion of related work and suggestions for further work.2. AN OVERVIEW OF FLFL [Backus et al. 1986] is the result of an e�ort to design a practical functional lan-guage based on FP [Backus 1978]. FL has many of the features expected in modernfunctional languages, including higher-order functions, recursive de�nitions, user-de�ned functions, and datatypes. FL also di�ers from other functional languages inimportant ways. In particular, FL is combinator-based, has no static type system,and has �rst-class exceptions. Only the last feature is important to the results ofthis paper.Figure 1 gives the subset of FL needed to understand the laws and examples thatfollow. Some features of the language are ignored altogether; in particular, functionde�nitions, input/output functions, syntactic sugar are omitted. The evaluationorder of FL expressions is leftmost-innermost; thus, in [f : x; g : x]; �rst f : x isevaluated and then g:x is evaluated.In Figure 1, a de�nition of each function is given only for some arguments; for allother arguments, the function f returns an error value ferr (e.g., s1:0 � s1err ).FL functions produce more informative errors than just the name of the function,but this countable set of errors is su�cient for the purposes of this paper. Infact, the methods presented in subsequent sections are actually independent of thedescriptiveness of the error values and work even with, e.g., error values that encode



4 � Alexander Aiken, et al.f:x denotes function applicationhx1; : : : ; xni denotes sequence construction, n � 0(f � g):x = f: (g:x)[f1; : : : ; fn]:x = hf1:x; : : : ; fn:xi(p! q; r):x = 8<: p:x if p:x 2 EFLr:x if p:x = falseq:x otherwise~x:y = x�:f: hx1; : : : ; xni = hf:x1; : : : ; f:xni+: hx1; : : : ; xni = x1 + : : :+ xnsi: hx1; : : : ; xni = xitl: hx1; x2; : : : ; xni = hx2; : : : ; xnirev: hx1; : : : ; xni = hxn; : : : ; x1ial: hx; hy1; : : : ; ynii = hx; y1; : : : ; ynidistl: hx; hy1; : : : ; ynii = hhx; y1i; : : : ; hx; yniiid:x = xdom:f = s1 � [id; f]catch: hf; gi:x = � g: hx; yi if f:x = yerrf:x otherwiseFig. 1. A subset of FL.the position in the program where the error arose.In designing FL, it was recognized that one of the de�ciencies of FP is that ithas a single error message ? (or Wrong!) for all exceptional circumstances. Errormessages and exception handling are an integral part of FL; as in the current versionof Standard ML [Harper et al. 1989], errors are �rst class values rather than thespecial results of functions that fail to produce values. Semantically, error valuesin FL are treated di�erently than ordinary values. All functions are strict withrespect to errors, so that f:xerr � xerr for any function f and error value xerr:Sequence construction is also strict with respect to errors; a sequence collapses tothe leftmost error it contains. This behavior is justi�ed by the intended use of errorsin FL: errors represent a situation in which something extraordinary has happened,and therefore an error should persist until caught or until it escapes from (andbecomes the result of) the program. Some of the semantic treatment of errors canbe seen in the recursive domain equations for FL:DFL = D+FL [ EFLD+FL = A [ Seqs (D+FL) [ (D+FL !DFL)(the ordinary values)EFL = Err(D+FL) [ f?g(the error values)In these equations, A is the set of atoms, Seqs is sequence construction, and Err iserror construction. The ordering on D+FL is the standard one; in EFL, xerr � yerr ,x � y and ? � x for all x. Note that because other kinds of errors are given distinct



Safe|A Semantic Technique for Transforming Programs in the Presence of Errors � 5values, the value ? is used only to denote non-terminating computations.3. THE SAFE MECHANISMOne of the principles underlying FL is that a programming language should havea rich algebra useful for reasoning about and optimizing programs. Errors have agreat impact on the algebra; for example, if two expressions can produce distincterrors, then the order of evaluation of the expressions usually cannot be changedwithout changing the error produced. Even with errors, however, there are manygeneral identities that hold between FL programs; as usual, f � g means that fand g denote the same semantic value.f � id � f (1)id � f � f (2)[f1; : : : ; fn]�g � [f1�g; : : : ; fn�g] (3)f � (p! q; r) � p! f � q; f � r (4)(p! q; r)�f � p�f! q�f; r�f (5)These laws hold because the order of application of the component functions isunchanged.However, [g; f] � rev � [f; g] (6)which is a law in FP, is not valid for all FL functions f and g; if f produces ?and g produces tlerr; then [g; f] produces tlerr; but rev � [f; g] produces ?:This example shows there cannot be a gradual trade-o� of expressiveness of errorreporting for generality of program transformations. Having two errors is as limitingas having arbitrarily many, since the existence of just one error distinguishable from? is su�cient to invalidate any \law" that does not preserve the order of evaluationof its constituent functions.3.1 An Informal Treatment of SafeAlthough (6) is not always true, it is the case that[g; f] � rev � [f; g] if neither side makes an error. (7)That is, there are contexts in which [g; f] can be substituted for rev�[f; g]:There aremany other examples of rewrite rules that are correct provided neither side producesan error, and including them greatly enhances the power of a program transforma-tion system. The following informal examples illustrate the notion of \rewriting incontext", i.e., using rules whose validity depends on the context in which they areapplied. In these examples, an occurrence of a function f is annotated as being\safe" (written S(f) ), if it is known that that occurrence is guaranteed not toproduce an error when applied to a non-error value. The notation f 7! g simplyindicates that f is rewritten to g: (N.B. For now, S(f) is an extra-linguistic notion;the phrase \annotating f with S(f) " has no more semantic content than the phrase\painting f green".)



6 � Alexander Aiken, et al.Consider the program rev � [~0; ~1]: Since the two constant functions cannotproduce an error unless applied to an error, neither can the construction of the twoconstant functions. Thus the program can be rewritten:rev � [~0; ~1] 7!rev � [S(~0); S(~1)] 7!rev � S([~0; ~1])Now note that because the argument to reverse is safe, the order of evaluation ofthe elements of the sequence must be irrelevant, so the application of rev can beeliminated. As a last step, the annotation S can be dropped:rev � S([~0; ~1]) 7!S([~1; ~0]) 7![~1; ~0]Intuitively, each of the above steps preserved the meaning of the program, so thisappears to be a proper `optimization'. Indeed, in this case the �nal program isequivalent to the original program; i.e., rev � [~0; ~1] � [~1; ~0]:So far, however, the safe mechanism is informal, and it is easy to make mistakes.Consider the program rev � [distl; tl� al]: Because al follows distl in the orderof evaluation, and because al produces an error for exactly the same arguments asdistl; al can be marked safe.rev � [distl; tl � al] 7! rev � [distl; tl � S(al)]Next notice that if al is error-free, then tl always succeeds and returns the secondcomponent of the original argument. Therefore S(s2) can be substituted for tl �S(al): rev � [distl; tl � S(al)] 7! rev � [distl; S(s2)]At this point, one might suppose that rev can be eliminated as in the previousexample, since only one of the functions in the sequence to be reversed can pro-duce an error and therefore the evaluation order of the elements of the sequence isirrelevant: rev � [distl; S(s2)] ?7! [S(s2); distl]Now, however, something has gone wrong: rev � [distl; tl � al] 6� [s2; distl];because rev � [distl; tl � al]: 3 produces distlerr; whereas rev � [s2; distl]: 3produces s2err (which isn't even mentioned in the original program). The factthat intuition can fail on such a small and simple example is strong motivation toprovide a precise formalism for stating and verifying these transformations.3.2 The Formal Development of SafeA �rst step towards formalizing the rewrite rules is to express quali�ed laws such as(7) equationally. Recall the intuition that a function f is safe if f cannot produceerrors in the context in which it appears. In other words, the fact that f: x is anerror is irrelevant if the context of f guarantees that f cannot be applied to x: Oneway to make this intuition explicit is to map all error values to a single \don't care"



Safe|A Semantic Technique for Transforming Programs in the Presence of Errors � 7value. In the following de�nition of Safe, ? is chosen as the \don't care" value inaddition to its role representing non-termination.1Definition 3.1. For every FL function f; Safe:f denotes the function:Safe:f :x= 8<: x if x 2 EFL? if x 62 EFL and f:x 2 EFLf:x if x 62 EFL and f:x 62 EFLFor convenience, Safe: f is often abbreviated S : f: With this de�nition of Safe;Law (7) can be expressed as:S: [g; f]� S: (rev � [f; g]) (8)Moreover, many other useful laws are expressible:f � S:f � dom:f (9)f � S: (dom:f) � S:f (10)S:f � S:g � S: (f � g) (11)S:p! S:q; S:r � S: (p! q; r) (12)[f; g] � [f; g � S: (dom:f)] (13)[S:f1; : : : ; S:fn] � S: [f1; : : : ; fn] (14)rev � S: [f1; : : : ; fn] � S: [fn; : : : ; f1] (15)S: (s1 � tl) � S:s2 (16)catch: hS:f; gi � S:f (17)catch: hf; gi � S: (dom:h) � catch: hf � S: (dom:h);gi (18)Note that some of the informal 7! steps have been captured as equivalences; e.g.,Laws (14) and (15). Unfortunately, others cannot be expressed as equivalences. Forexample, the rule tl � S(al) 7! S(s2) cannot be written as tl � S: al � s2; since(tl�S:al): h1; 2;3i � ? whereas s2: h1; 2; 3i � 2; nor could it be tl � S:al � S:s2;for the same reason.The di�culty is that � is a symmetric relation, whereas the desired property isinherently asymmetric: tl � S:al can be rewritten to S:s2; because in any programin which tl � S:al could appear, the function S:s2 produces the same result. Thus,at least some of the desired rewrite rules f 7! g are valid only when f appears in a\good" context; i.e., in one which enforces the condition that S:f cannot produce?: The following de�nitions develop the relation > (read \rewrites in context to"),which both captures this asymmetry and de�nes a set of contexts in which suchrewrite rules can be applied.Definition 3.2.(1) The set of simple expressions is the smallest set of FL functions such that:|si; tl; rev; al; distl; id; and ~a for all atoms a are simple expressions.|If e1; : : : ; en are simple expressions, then e1�e2; [e1; : : : ; en]; (e1 ! e2; e3);dom:e1; catch: he1; e2i; Safe:e1; and �:e1 are simple expressions.1The term \don't care" is meant to suggest it doesn'tmatter what this value is, because the contextguarantees that it cannot arise. However, the choice of ? is not arbitrary|see Section 3.3.



8 � Alexander Aiken, et al.(2) E is a simple context i� E(f) is a simple expression for every simple expressionf:The simple expressions are �rst-order functions that can be built from the subsetof FL given in Figure 1. Because the simple expressions are �rst-order, a greatdeal can be shown about their termination behavior; it is this property that will beexploited below.It can be assumed that all expressions written by users have no occurrencesof Safe; because only the language processor introduces and manipulates Safeexpressions. Because all transformations preserve the meaning of expressions, thetransformations are required to be correct only for expressions that also can bewritten without any occurrences of Safe:Definition 3.3. A simple expression f is user-de�nable i� there exists a simpleexpression u with no occurrences of Safe such that f � u:Definition 3.4. Let f; g be simple expressions. f >g i� for every simple contextE such that E(f) is user-de�nable, E(f) � E(g):This de�nition of > allows the expression of a large number of \in-context"transformations. Note that (22) is a correct version of the incorrect rewriting stepdiscussed above. tl � S:al > s2 (19)S:f > f (20)dom: (S:f) > id (21)rev � [S:f; g] > [g; S:f] (22)�:f � �: (S:g) > �: (f � S:g) (23)dom: (S: (�:f)) > �: (S: (dom:f)) (24)There is one nagging problem. De�nition 3.4 provides little assistance in estab-lishing that f > g; because it requires reasoning about all possible contexts. Thepurpose of the Substitutability Theorem (given below) is to provide a su�cientcondition that is easier to check. The following de�nition gives this condition; theidea is that f should rewrite to g if f and g agree wherever f does not return the\don't care" value.Definition 3.5. f �s g i� f:x � g:x whenever f:x 6� ?:The following two lemmas precisely capture the properties of simple expressionsthat are needed to make the technique of \in-context substitutions" work.Lemma 3.6. If E is a simple context and f �s g; then E(f) �s E(g):Proof. First note that if E(f) does not contain f; then E(f) = E(g): The rest ofthe proof is by induction on the structure of E: For the base case, if E(f) = f andE(g) = g then the result is immediate since f �s g: In other base cases E is a singleprimitive function not containing f (De�nition 3.2). The inductive step is provenonly for function composition; the other cases are similar. Let E(f) = E1(f) � E2(f)and assume that E1(f): (E2(f):x) 6�? : Then E2(f):x 6�? so E2(f):x � E2(g):x byinduction, and therefore E1(f): (E2(f):x) � E1(g): (E2(g):x); also by induction.



Safe|A Semantic Technique for Transforming Programs in the Presence of Errors � 9Note that Lemma 3.6 is false in general for non-simple contexts. For example,let f and g be functions such that f �s g and f 6= g: Then ~f �s ~g does not hold.Lemma 3.7. If e is a user-de�nable simple expression, then e: x 6� ? wheneverx 6� ?:Proof. Let e � u where u contains no occurrence of Safe: The proof is a simpleinduction on the structure of u using part (1) of De�nition 3.2.Lemma 3.7 provides the reason for working with simple expressions. Informally,user-de�nable simple expressions do not return ? unless applied to ?. Now, pro-gram transformation may introduce a function S : f into a user-de�nable simpleexpression E(S : f); and it may be the case that (S : f): x =? : Because programtransformation must preserve the meaning of the simple expression and becauseexpressions are strict in ?, we know that the function S:f can never be applied tox in the context E(S: f): In short, a use of Safe: f within a user-de�nable simpleexpression indicates that f can never produce an exception in that context. Thisintuitive discussion is formalized by the Substitutability Theorem, which reducesthe problem of verifying that f > g to the easier problem of checking that f �s gin the case that f appears in a simple context.Theorem 3.8. If f and g are simple expressions and f �s g; then f > g:Proof. Let E be a simple context and assume that E(f) is user-de�nable. ByLemma 3.6, E(f) �s E(g): By Lemma 3.7, E(f): x 6� ? if x 6� ?: Together thesefacts imply that E(f): x � E(g): x if x 6� ?: By strictness, E(f):? � ? � E(g):?:Therefore, E(f) � E(g):Using the Substitutability Theorem, transformations (19)-(24) are easily veri�ed.Note that the proof of the Substitutability Theorem depends only on Lemmas 3.6and 3.7; therefore, this approach works with any extension of the simple expressionsthat preserves these two Lemmas. Also note that pure identities, such as trans-formations (1)-(5) and (8)-(17), apply to all expressions, not merely the simpleexpressions.3.3 Beyond Simple ExpressionsAt this point, it is natural to ask why the set of expressions to which the Substi-tutability Theorem can be applied must be restricted at all. We conjecture thatno restriction is needed but, in fact, achieving an extension that works for all ex-pressions appears to be a di�cult technical challenge. This section explains thedi�culty.For the theory presented in Section 3.2 to work, it is necessary to distinguish be-tween ?'s role as the \don't care" value and ?'s role representing non-termination.This is accomplished by restricting attention to the simple expressions, which areguaranteed to terminate. Thus, the straightforward approach to generalizing theSafe mechanism to all expressions is to use something other than ? as the value towhich Safe maps all errors. Even better, this value should be a new element of thedomain, not available to programmers. It would then be easy to distinguish \don'tcare" values from values that a programmer can de�ne.Let y be a new value and let Safe be rede�ned as follows:



10 � Alexander Aiken, et al.Definition 3.9. For every FL function f; Safe:f denotes the function:Safe:f :x= 8<: x if x 2 EFLy if x 62 EFL and f:x 2 EFLf:x if x 62 EFL and f:x 62 EFLClearly, y must be included somewhere in the domain ordering. Herein lies theproblem|it appears that the only possibility is that y = ?! The reasoning goes asfollows:The proof of Lemma 3.6 and Law 10 (among others) depend on the fact thaty; once produced, cannot be \changed" by the surrounding context. Thus, allexpressions must be strict in y:Let f be any function and x any normal value such that f: x is an error value.Then (S: f): x = y by De�nition 3.9. Now, (S: f):? = ? by strictness, which isalso taken into account in De�nition 3.9. Clearly, ? � x; so by monotonicity ofapplication ? � y:Let K(y) be the FL function such that K(y):x = y for all normal values x: Let xbe any normal value. Then y � x since K(y) = S:K(?) � S:K(x) = K(x):Finally, note that for any normal value x; we have K(?): x = ? and K(?): y = yby strictness of y: Since y � x; it follows by monotonicity that y � ?: But ? � y aswell. Therefore ? = y:The argument presented above is not a complete proof that a distinct y cannotbe included in the domain, because it rests on several assumptions that could bemodi�ed. Unfortunately, there is very little room for modi�cations that mightprovide a solution within the framework of standard domain theory. For example,we have used the fact that FL functions are strict in ?. However, the argumentdoesn't use the fact that all functions are strict, just that there is at least onestrict function in the domain. Thus, the problem is not strictness vs. laziness|theargument applies to non-strict languages as well.After considerable experimentation, we have not discovered any way to extendthe Safe mechanism to all user-de�nable expressions. We conjecture that it cannotbe done within standard domain theory; some quite di�erent construction appearsto be required. It is surprising (at least to us) that the simple concept of a resultthat \can't happen" during evaluation is di�cult to formalize.4. USING SAFEThis section shows the usefulness of Safe with a few short examples illustrating theelimination of function calls, the use of Safe in code generation, the optimizationof exception handling, and the use of in-context laws. Recall that dom:f:x is f:x iff:x is an error value and x otherwise (see Figure 1). The examples use the followinglaws involving dom: dom:id � id (25)dom: [f1; : : : ; fn] � dom:fn � : : : � dom:f1 (26)dom:al � dom:distl � dom:distl (27)S: (dom:tl) � S: (dom:s1) (28)



Safe|A Semantic Technique for Transforming Programs in the Presence of Errors � 11In the �rst example, nothing is known about f; but the fact that id is a totalfunction allows the construction of the two functions to be reversed.rev � [f; id]� rev � S: [f; id]� dom: [f; id] by 9� S: [id; f]� dom: [f; id] by 15� S: [id; f]� dom:id � dom:f by 26� S: [id; f]� id � dom:f by 25� S: [id; f]� dom:f by 2� S: [id; f]� dom:f � id by 1� S: [id; f]� dom:f � dom:id by 25� S: [id; f]� dom: [id; f] by 26� [id; f] by 9This transformation is an optimization, because the end result eliminates theapplication of rev: Note, however, that the intermediate steps are not necessarilyoptimizations, because they involve computing some values twice; in particular, fcould be arbitrarily expensive to compute. The law f � S:f � dom:f is very usefulfor introducing safe functions, but if the added dom cannot be discharged, then theresulting program could be less e�cient than the original program. In the worstcase, using Law 9 could result in a program that computes f once very slowly topreserve errors and then once again to produce the result! Section 6 shows howthis is avoided in practice in the optimizing compiler for FL.The second example illustrates that there are additional advantages to markingfunctions safe. rev � [distl; al]� rev � S: [distl; al]� dom: [distl;al] by 9� S: [al; distl]� dom: [distl;al] by 15� S: [al; distl]� dom:al � dom:distl by 26� S: [al; distl]� dom:distl by 27� [S:al; S:distl] � dom:distl by 14In this case, the end result is an optimization not only because the application ofrev is eliminated, but also because dom:distl permits the rest of the program to beexecuted without checking the arguments of any of the functions. The use of Safemakes it easy for a code generator to take advantage of this fact. When a primitiveis marked as safe, a code generator can produce a version of the primitive that doesnot check its argument; in this example, both al and distl can run unchecked.As noted above, it is in general undesirable to use Law 9 because it duplicatescomputation. In this particular example, it is worth factoring dom : distl outof the computation, because dom:distl can be replaced by a function that merelychecks whether the argument is a pair of which the second component is a sequence.This single check is more e�cient than the two checks performed by the primitivefunctions distl and al in the original expression.The third example presents a more substantial optimization (similar to loop-jamming optimizations for imperative languages [Aho et al. 1986]) and illustratesthe use of in-context laws:



12 � Alexander Aiken, et al.[�:s1; �:+ � �:tl]� [�:s1; �:+ � �:tl � S: (dom: (�:s1))] by 13� [�:s1; �:+ � �:tl � �: (S: (dom:s1))] by 24� [�:s1; �:+ � �: (tl � S: (dom:s1))] by 23� [�:s1; �:+ � �: (tl � S: (dom:tl))] by 28� [�:s1; �:+ � �: (S:tl)] by 10� [�:s1; �:(+ � S:tl)] by 23Even though the second, third, and last steps use in-context transformations,these steps are actually equivalences, because they occur in simple contexts. Sincethe �rst and last lines are equivalent they can be substituted freely one for theother in any program. Note that this shows that it is not necessary that the entireprogram be simple for an in-context law to apply|it is su�cient that in-contextlaws be used within simple sub-expressions.The �nal example illustrates how Safe is used to optimize exception handling.Suppose a programmer de�nes a function newtl that returns the empty sequencewhenever tl would return an error. A simple de�nition of newtl is catch: htl; []i: Ifnewtl appears in a context where it always gets an argument in the proper domainof tl; newtl can be transformed to S:tl as follows:newtl � S: (dom:tl)� catch: htl; []i � S: (dom:tl) by def. of newtl� catch: htl � S: (dom:tl); []i by 18� catch: hS:tl; []i by 10� S:tl by 175. ON SAFE AND DOMThis paper takes an algebraic approach to program optimization, expressing source-to-source program transformations as algebraic laws. There are practical limitationsto this approach. This section discusses some of these limitations, particularly thedi�culties that arise from the relationship between Safe and dom:Because the function Safe is not available to programmers, a mechanism is re-quired for introducing Safe annotations into a program. Law 9 is a general rulethat introduces Safe: Recall that the law is:f � S:f � dom:fLaw 9 expresses a fundamental principle of the algebra of Safe and, in principle,it can be used to introduce Safe wherever needed. From a pragmatic point ofview, however, using Law 9 is a disaster. To understand why, consider how aprogram optimization system based on source-to-source program transformationworks. Very brie
y, the compiler repeatedly selects program transformations toapply to the program. Ideally, the compiler is able to judge the change in programcost (say, execution time) that results from a transformation, and the compilerselects transformations that decrease program cost. This high-level descriptionignores several practical problems, of which one of the most signi�cant is that it



Safe|A Semantic Technique for Transforming Programs in the Presence of Errors � 13is hard to estimate the true value of transformation at the time it is applied. Inparticular, it is very di�cult to include in the estimate of the value of a particulartransformation T the value of additional transformations that T enables.Law 9 aggravates this problem, since it duplicates the computation of an arbi-trarily expensive function. Thus, application of Law 9 is purely speculative|at thetime it is applied, it is not known whether the program is ultimately improved. Inour opinion, it is desirable to guarantee that an optimizing compiler does not, atthe very least, make programs worse. A simple way to achieve this guarantee is toensure that each individual transformation proceeds \downhill" in the direction ofimprovement. Introducing arbitrary \uphill" steps in the transformation processremoves this guarantee both in theory and, very often in our experience, in practice.Section 6 presents a program analysis that conservatively infers where Safe canbe inserted in a program without also introducing dom: Thus, this analysis avoidsthe \uphill" step of applying Law 9.There is another aspect to the relationship between Safe and dom: By introducinguses of dom; it is possible to replace almost all in-context laws by equations. Forexample, Law 19 can be expressed equationally as:tl � S:al � s2 � dom: (S:al)While this equation has the advantage of avoiding the additional concept of in-context transformations, it has the disadvantage that it is not clearly an optimiza-tion, whereas Law 19 clearly is. However, Law 19 can be recovered by furthertransformations: s2 � dom: (S:al)> s2 � id by (21)� s2 by (1)Note that this reasoning requires the use of an in-context law to remove the ap-plication of dom: Thus, it is not possible to eliminate in-context transformations,although in principle their use could be restricted to applications of Law 21. Formu-lating the laws in this way only makes sequences of transformations longer withoutreducing the number of rules; for this reason, we prefer the more direct versions ofin-context laws given in Section 3.There are instances where the introduction of dom is useful. As shown above,a function of the form dom : (S : f) or (equivalently) S : (dom : f) has little or nocost, since it always can be eliminated in favor of id: It is sometimes useful tointroduce such a function to transfer context information between portions of aprogram (e.g., Law 13). Finally, there are even limited instances where an unsafedom is introduced, which may or may not be eliminated by subsequent programtransformation; an example is given on page 11 in Section 4. However, unlike thatexample, such introductions are tightly controlled by our compiler and limited tospecial cases where the transformation can still be shown to be \downhill."6. INTRODUCING SAFEThis section describes a program analysis method that conservatively identi�esfunctions that can be annotated with Safe: That is, the analysis proves theoremsof the form E(f) � E(S:f): The program analysis is a general type inference system,



14 � Alexander Aiken, et al.but the details of type inference are not important to understand how Safe isintroduced. This section states properties satis�ed by the type inference system andshows how these properties are su�cient to introduce Safe: The interested readeris referred to [Aiken and Wimmers 1993; Aiken et al. 1994] for more informationon the type inference algorithm.Types are certain subsets of the domain DFL. The full de�nition of type requiresmore development [MacQueen et al. 1984], but the only property required here isthat a type is a set of values. A typed function has the form f :: A ! B where Aand B are types and A � D+FL and B � DFL: The notation f :: A! B is read \ f hastype A! B: " A formal semantics for the phrase f :: A! B is given below. For themoment, the intuition is that f :: A! B is an assertion saying two things:(1) For any x 2 A , it is the case that f:x 2 B:(2) The function f appears in a context where the only normal values it is appliedonly to are in A:For example, consider the following:NonEmptySeq = fhx1; : : : ; xnijn � 1; xi 2 D+FLgNotNonEmptySeq = D+FL � NonEmptySeqThen s1 :: NonEmptySeq!D+FL is interpreted as saying that s1 appears in a contextwhere it is guaranteed to be applied to a non-empty sequence and (therefore) toproduce a non-error value. Similarly, s1 :: NotNonEmptySeq! EFL is interpreted assaying that s1 appears in a context where it is guaranteed to be applied to somethingthat is not a non-empty sequence and (therefore) is guaranteed to produce an error.Finally, s1 :: D+FL ! DFL says that nothing is known about the context in whichs1 appears.The informal part of the description of f :: A ! B above is the idea that fappears in a context where it is applied to elements of A: Projections are a well-known technique for making precise the idea of a \context" [Wadler and Hughes1987].Definition 6.1. A projection is an idempotent function less than the identity.The function �:A is a projection for any type A:�:A:x= � x if x 2 A? otherwiseBecause �: A:x is either x or ? for all x; it is easy to see that �: A � id and that�:A is idempotent. Therefore, �:A is in fact a projection.2 The formal meaning off :: A! B is given in terms of projections.Definition 6.2. The expression f :: A! B is the function Propagate: (�:B�f��:A); where Propagate:f:xerr = xerr and Propagate:f:x= f:x otherwise.2A technical note: The function �:A is not necessarily continuous if A is an arbitrary set of values.For any type A; however, �: A is continuous. Note also that we abuse notation by allowing A tocontain errors even though �:A is not strict in the error values of A:



Safe|A Semantic Technique for Transforming Programs in the Presence of Errors � 15This de�nition formalizes the intuition given above by de�ning f :: A ! B to be afunction that can produce a non-bottom result only when it is applied to some x 2 Asuch that f:x 2 B: The functional Propagate simply ensures that if the argument tothe typed function is an exception that exception is propagated in keeping with thenormal semantics of FL. A typed expression is an FL expression that may includetyped functions as subexpressions. The following de�nition explains what it meansfor the types on subexpressions to be correct.Definition 6.3. Let E be a typed expression and let E0 be E with all typeserased (i.e., f :: A! B in E is replaced by f in E0 ). Then E is well-typed i� E � E0:The FL type inference system takes an FL expression and produces a well-typedexpression. For example, consider the program s1 � [~1; ~2]: The inference systemproduces the well-typed program(s1 :: Pair(Int)! Int) � [~1 :: D+FL ! Int; ~2 :: D+FL ! Int]:The type Int is the set of integers and Pair(X) is all sequences of length 2 withelements drawn from X: The system also infers types for the higher-functions com-position and sequence construction, but these types are omitted for readability. Thefollowing lemma states the main result of this section: if E(f :: A! B) is well-typedand the type B contains no error values, then f can be replaced by S:f:Lemma 6.4. Let E(f :: A ! B) be well-typed and let B \ EFL � f?g . ThenE(f) � E(S:f):Proof. We prove that S : f � f :: A ! B: The result then follows becauseE(f) � E(S: f) � E(f :: A ! B) and E(f) � E(f :: A ! B) since E(f :: A ! B) iswell-typed.If (f :: A ! B): x �? there is nothing to prove. Assume (f :: A ! B): x 6�? : Ifx 2 EFL then (f :: A ! B):x � x and S:f:x � x . Now assume that x 62 EFL: Then(f :: A ! B): x = (�: B � f � �: A): x 6�? : Therefore, �: A: x � x and f: x 6�? and�:B: (f:x)� f:x: Since B \ EFL � f?g and f:x 2 B� f?g; it follows that f:x 62 EFL:Therefore S: (f:x) = f:x = (f :: A! B):x:Returning to the example above, Lemma 6.4 shows that(s1 :: Pair(Int)! Int)� [~1 :: D+FL ! Int; ~2 :: D+FL ! Int] � S:s1� [S:~1; S:~2]:Type inference must be very accurate to be useful for proving that functions aresafe. For example, in the example with s1 above, it is necessary to prove not justthat s1 is applied to a sequence but that s1 is applied to a non-empty sequence.The standard Hindley/Milner type system [Damas and Milner 1982] cannot provesuch properties. A type inference system that can infer types accurate enough tobe useful in program optimization has been implemented for FL and is describedin [Aiken and Wimmers 1993; Aiken et al. 1994].7. SAFE IN AN OPTIMIZING COMPILER FOR FLThe Safe technique is used heavily in an optimizing compiler for FL developed atIBM Almaden. The FL compiler makes use of literally hundreds of laws, most ofwhich involve safety information. This section gives a brief qualitative summary of



16 � Alexander Aiken, et al.several years experience, both good and bad, with using Safe in the optimizationof FL programs.The overall structure of the FL compiler is simple. After parsing and desugaring,the type inference algorithm described in Section 6 annotates a program with types.Based on the types assigned, functions are then marked as Safe using Lemma 6.4.At this point, the system enters a \match-transform" loop in which subexpres-sions are matched against the left-hand sides of laws. When a match is found,the matched subexpression is replaced by the right-hand side of the law and theentire process repeats. The strategy used to search for matches is not �xed (thereare several such strategies in the compiler) but normally the program is scannedrepeatedly until no laws match. A few optimization phases that have well-de�nedalgorithms are implemented directly outside of the match-transform paradigm.The laws of the FL compiler are organized into groups according to purpose.Some laws are aimed at a particular kind of optimization (e.g., simplifying nestedconditionals) or are used merely as an adjunct to compiler phases that have alarge component implemented in a way other than via laws (e.g., compile-timeevaluation). Although the focus of these phases is something other than safetyinformation, almost all compiler phases make some use of safety information.The primary pass of the compiler that relies on safety information is a set of ap-proximately 200 laws that are best described as \peephole" optimizations. Theselaws all have the property that (1) they are improvements to the program (\down-hill" transformations) and (2) they reduce the size of the program. The laws areapplied repeatedly using a greedy strategy until no more laws apply. Most ofthe rules in this paper are included in this phase of the compiler. Property (1)guarantees that the result is an optimization of the original program; property (2)guarantees that eventually no more rules apply and the process terminates.There is another interesting property, namely the Church-Rosser property, thatthese laws do not enjoy. In our experience, this property is neither crucial norreally practical to obtain for large collections of program transformations. Thereare several reasons for this conclusion. First, experience suggests it is better toinclude an optimization rather than exclude it on the grounds that it makes aset of laws non-Church-Rosser. After all, the empty set of laws is Church-Rosser.Second, Church-Rosser does not imply termination of a set of laws and in fact thesetwo properties are sometimes in con
ict (e.g., adding a law that makes the systemChurch-Rosser may destroy termination). We regard the paramount concerns tobe optimization and termination (properties (1) and (2) above). Finally, it is anenormous task to prove Church-Rosser properties for large sets of transformations.Even if there were some chance that the laws were Church-Rosser (they are not) itwould be prohibitively di�cult to prove this fact.The overall experience with Safe has been very good. It is easy to write andadd very general laws to the compiler. Without Safe many of these laws could notbe expressed at all or could be expressed only as an enormous number of specialcases. The denotational basis for Safe has also proven to be crucial. The examplein Section 3.1 of how informal reasoning leads to incorrect transformations is notcontrived; on several occasions similar incorrect transformations were added by theauthors. Having a denotational basis for reasoning about Safe proved indispensablein these cases for identifying the incorrect transformations fromamong the hundreds



Safe|A Semantic Technique for Transforming Programs in the Presence of Errors � 17of laws in the compiler.On an engineering level, Safe has also been successful. A key concern in thedesign of the compiler was the speed of the match-transform step. Because the FLcompiler relies heavily on matching and transforming expressions, it is very impor-tant that matching common constructs be fast. The function Safe was engineeredto be fast to match; it is implemented simply as a one-bit 
ag attached to functionsand adds a negligible overhead to the matching process.Using Safe does have two drawbacks, however, both of which are related to theuse of in-context transformations. The �rst problem is that when writing an in-context law it is easy to write a law that is less accurate than desired. To see this,recall that S:f>f (Law 20), so it is always permissible to drop Safe from a function.Thus, for example, S: (s1 � tl) � S: s2 also can be written S: (s1 � tl) > s2: Thedisadvantage of the second form is that safety information is lost, so that additionallaws are less likely to match, which degrades the quality of program optimization.To see how easy it is to write laws with \safety leaks," note that in Law 19 thes2 on the right-hand side is in fact Safe: Even the authors failed to notice thisthrough many revisions of this paper.Safety leaks are hard to detect. The only hint of a problem is that a program thatshould optimize well does not, and lost safety information is not the only potentialcause. Losing safety information turned out to be a real but not insurmountableproblem in the FL compiler, although considerable time was spent inspecting forand removing safety leaks from laws.The second problem with in-context laws is that they are not invertible. Thisis, of course, inherent. The whole point of a law f > g is that g can replace f butnot vice-versa. In-context laws are one-way tickets: if the compiler makes a poorchoice in applying an in-context law, there is no way to undo it. This should notbe taken as an argument against in-context laws. Such laws are very useful andeven necessary for good optimization. The problem is that it may be di�cult todecide when to apply in-context laws because other (perhaps better) avenues foroptimization may be lost.The FL experience is that, while this latter problem does occur, the practicale�ect is small. There are programs for which some optimization is missed becausean in-context law is applied that cannot be undone in a later phase. However, theseexamples are relatively few and the cost in lost optimization is usually small. Itwas judged not to be worthwhile to make any special e�ort to selectively applyin-context laws. The FL compiler currently makes no distinction between laws thatare equivalences and laws that apply only in-context.8. RELATED WORK, CONCLUSIONS, AND FUTURE WORKThe �rst mention of quali�ed or \in context" laws for FP appeared in Backus'original paper [Backus 1978]. Backus proposed quali�ed equational laws, whichconsist of an equation between functions f � g and a predicate p: The meaning ofquali�ed equational law is that f: x = g: x whenever p: x is true. In the contextof this paper, the combinator Safe replaces the predicate so that equations can beexpressed without side conditions.Safety analysis is related to projection analysis [Wadler and Hughes 1987]. Theidea of projection analysis is to express formally properties of programs using pro-



18 � Alexander Aiken, et al.jections (see Section 7). The following lemma shows that projections can be usedto characterize safety analysis:Lemma 8.1. S:f � f � p for some projection p:Proof. The projection p is dom: (S:f): Since dom: (S:f):x� x or dom: (S:f):x�?for all x; it follows that dom: (S:f) � id and that dom: (S:f) is idempotent. Hence,dom: (S:f) is in fact a projection.It is easy to check that dom: (S:f)� dom:f � dom: (S:f): Then,S:f� S: (S:f)� dom: (S:f) by Law 9� S:f � dom: (S:f) S is idempotent� S:f � dom:f � dom: (S:f)� f � dom: (S:f) by Law 9Beyond the connection with the theory of projections, there are other similaritiesin the use of the two techniques. Both techniques deal with manipulating \annota-tions". For projection analysis, these annotations are projections; for safety analy-sis, the annotation is the function Safe. Many of the techniques for manipulatingthe annotations are also similar.However, safety analysis and projection analysis are addressed at two di�erentproblems. Projection analysis is primarily concerned with determining (in a lazysystem) whether a function is strict in its arguments and gives a nice way of ad-dressing that problem. Safety analysis (as presented here for a strict language) isconcerned not only with determining when a function is \safe" but also with tryingto use that fact to facilitate program transformations. For example, to the best ofour knowledge the counterpart of in-context laws for projection analysis has notbeen developed, although it certainly could be using the techniques presented here.There is another, perhaps deeper, di�erence between safety analysis and projec-tion analysis. In the basic formulation of projection analysis, a lifted domain isused with a new element y below ? to which projections map elements outsidethe domain of interest [Wadler and Hughes 1987]. As discussed in Section 3.3,it appears that no standard domain with Safe allows y to be separated from ?.The crux of the di�erence between the two techniques is that projection analysisis concerned with program analysis only and thus can avoid giving semantics toprograms that contain projections. However, Safe is intended for use in a programtransformation system where programs contain occurrences of Safe; and thus it iscrucial that programs with Safe be given semantics directly.It would strengthen the theoretical treatment if the restriction to simple expres-sions of in-context laws could be removed. As discussed in Section 3.3, such ageneralization appears to present di�cult semantic problems. On a practical level,most of the common uses of Safe are covered even with the restriction to simpleexpressions. However, a model that worked for all expressions would help clarifythe semantic role of Safe and add some power to the algebra. We leave as futurework whether techniques that extend projection analysis to higher-order programs(e.g., [Hunt and Sands 1991]) can be used to generalize safety analysis.
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