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Language designers and implementors have avoided specifying and preserving the meaning of
programs that produce errors. This is apparently because being forced to preserve error behavior
severely limits the scope of program optimization, even for correct programs. However, preserving
error behavior is desirable for debugging, and error behavior must be preserved in any language
that permits user-generated errors (i.e., exceptions).

This paper presents a technique for expressing general program transformations for languages
that possess a rich collection of distinguishable error values. This is accomplished by defining a
higher-order function called “Safe”, which can be used to annotate those portions of a program
that are guaranteed not to produce errors. It is shown that this facilitates the expression of very
general program transformations, effectively giving program transformations in a language with
many error values the same power and generality as program transformations in a language with
only a single error value.

Using the semantic properties of Safe, it is possible to provide some useful sufficient conditions
for establishing the correctness of transformations in the presence of errors. In particular, a
Substitutability Theorem is proven, which can be used to justify “in-context” optimizations—
transformations that alter the meanings of subexpressions without changing the meaning of the
whole program. Finally, the effectiveness of the technique is demonstrated by some examples of
its use in an optimizing compiler.

Categories and Subject Descriptors: D.3.4 [Processors]: Optimization

General Terms: Languages, Theory
Additional Key Words and Phrases: equational reasoning,exceptions, program optimization, pro-
gram transformation

1. INTRODUCTION

A laudable trend of the past two decades has been the increased use of denota-
tional semantics to guide the design and implementation of programminglanguages.
Semantics-driven language design has produced cleaner and simpler languages and
provided more precise standards for testing the correctness of language implemen-
tations.

An apparent exception to this trend is the treatment of error handling. All too

Address for first author: Computer Science Division, 773 Soda Hall, University of Califor-
nia, Berkeley, 94720-1776, email: aiken@cs.berkeley.edu. Address for second and third au-
thors: IBM Almaden Research Center, 650 Harry Rd., San Jose, CA, 95120-6077, email:
{williams,wimmers } @almaden.ibm.com. A preliminary version of this paper was presented at
the 1990 POPL Conference [Aiken et al. 1990].



2 . Alexander Aiken, et al.

often, errors are considered to be outside the scope of the denotational semantics;
if anything is specified about error behavior, it is usually through some ad hoc
mechanism. Some language features—such as strong typing—reduce the negative
impact of such a design but cannot avoid it completely; runtime errors exist in
every language and must be handled in an implementation.

Many languages simply omit errors altogether from their formal semantic speci-
fication. For example, early Fortran implementations were free to report errors as
the implementor saw fit, and transformations to improve performance could change
the behavior of error-producing programs. This approach is still taken with some
modern languages, e.g., Haskell [Hudak et al. 1988] and the languages of Turner
[Turner 1985], where strong typing and lazy evaluation lessen the need for error
recovery and exception handling.

Other languages include errors in the domain of values and provide some mech-
anism for computing with (or recovering from) errors, but the formal specification
allows considerable variation in the behavior of implementations. For example, in
[Steele 1984] Steele writes:

“The definition of Common Lisp ...explicitly requires the interpreter
and compiler to impose identical semantics on correct programs so far
as possible.” (emphasis added)

Indeed, in one Common Lisp implementation, taking the car of an atom produces
a run time error when interpreted but returns the current package when compiled!

One study of program transformations carefully accounts for the fact that many
common optimizations do not preserve error behavior by giving a precise, denota-
tional treatment of such transformations [Cartwright and Felleisen 1989]. In this
approach, errors are considered to approximate other values, and program trans-
formations are lifting operations that can (possibly) make programs more defined.
Another approach [Hennessy 1981]

“...examines the optimization difficulties imposed by common exception
handling facilities [and] proposes restrictions on these mechanisms that
make the optimization of programs possible.”

Why have language designers and implementors avoided specifying and preserv-
ing the meaning of errors? The answer appears to be that not preserving error
behavior increases the power and effectiveness of transforming correct programs,
i.e., the “important” programs. For instance, substituting s2 (which selects the
second element of a sequence) for s1 o t1 (which selects the first element of the
tail of a sequence) may improve a program’s running time, but a programmer who
hadn’t used the primitive s2 and was unaware of its existence would be confused by
the run-time error message “s2 incorrectly applied to a non-sequence argument.”

If the language designer opts for language clarity and ease of debugging by making
a semantic distinction between t1 errors and s2 errors, then the general transfor-
mation becomes invalid, and some weaker version must be substituted, perhaps in
the form of a set of rules identifying particular contexts in which the replacement
is valid. This can be a significant loss, since identifying such contexts in general
requires knowledge of the entire program. Thus, including errors as semantic ob-
jects in order to make a language easier to use appears to weaken the generality
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and power of the language’s program transformations.

This paper presents a technique for preserving the power of general program
transformations in the presence of a rich collection of distinguishable error values.
This is accomplished by introducing an annotation, “Safe” | to mark occurrences of
functions that cannot produce errors. Succinct and general algebraic laws can be
expressed using Safe, thereby giving program transformations in a language with
many error values the same power and generality as program transformations in a
language with only a single error value (such as FP [Backus 1978]). In fact, the Safe
mechanism accomplishes much more. It actually strengthens equational reasoning
by providing a sufficient condition on a program context E(:) and functions £ and
g, such that E(f) = E(g) even if £ # g.

The Safe mechanism is presented in the context of the functional language FL
[Backus et al. 1986], but it should be applicable in other source-to-source program
transformation systems. In fact, the only requirement for using these techniques in
other contexts is that a suitable definition of the function Safe can be found for
the programming language under consideration. Section 2 describes enough of FL
to 1llustrate the technique and prove its soundness. Section 3 introduces the Safe
mechanism and gives a simple example illustrating that having just two distinguish-
able errors causes as much loss of algebraic generality as having arbitrarily many
different kinds of errors. This shows that it is not possible through careful language
design to make a gradual trade-off between the expressiveness of error reporting and
algebraic generality. Section 3 also contains the Substitutability Theorem, which
provides a criterion for proving the soundness of transformations involving Safe.
Some examples of optimization using Safe are given in Section 4. Section 5 dis-
cusses some pragmatic concerns, while Section 6 reports on experience with the use
of these techniques in an optimizing compiler for FL. Section 7 concludes with a
discussion of related work and suggestions for further work.

2. AN OVERVIEW OF FL

FL [Backus et al. 1986] is the result of an effort to design a practical functional lan-
guage based on FP [Backus 1978]. FL has many of the features expected in modern
functional languages, including higher-order functions, recursive definitions, user-
defined functions, and datatypes. FL also differs from other functional languages in
important ways. In particular, FL is combinator-based, has no static type system,
and has first-class exceptions. Only the last feature 1s important to the results of
this paper.

Figure 1 gives the subset of FL needed to understand the laws and examples that
follow. Some features of the language are ignored altogether; in particular, function
definitions, input/output functions, syntactic sugar are omitted. The evaluation
order of FL expressions is leftmost-innermost; thus, in [f: x,g: x], first £: x is
evaluated and then g:x is evaluated.

In Figure 1, a definition of each function is given only for some arguments; for all
other arguments, the function f returns an error value ferr (e.g., s1:0 = slerr ).
FL functions produce more informative errors than just the name of the function,
but this countable set of errors is sufficient for the purposes of this paper. In
fact, the methods presented in subsequent sections are actually independent of the
descriptiveness of the error values and work even with, e.g., error values that encode
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f:x denotes function application
(xq,...,%n) denotes sequence construction, n > 0

(fog)x = f:(gx)
[f1,...,fn]:x = (f1:x,...,fn:x)
p:x if prx € Epr,
(p— q;r)x = { r:x if prx = false
q:x otherwise

Xy = X
a:f:(xq,...,xn) = (f:xq,...,f:xn)
+:{x4,...,%n) = x{+...+xn
si:i(xq4,...,%n) = x4
t1l:{xq,X9,...,xn) = (Xo9,...,%n)
rev:(x{,...,%Xn) = (Xn,...,%q)
a1:<x’<Y1a"'ayn> = <X,Y1,~~~,Yn>

)
distl:(x,{(y4,...,yn)) = {{x,¥1),---,{x,yn))

idix = x
domf = sio[id,f]
) gy i fx = yerr
catch: (f,g):x = {f:x otherwise

Fig. 1. A subset of FL.

the position in the program where the error arose.

In designing FL, it was recognized that one of the deficiencies of FP is that it
has a single error message L (or Wrong!) for all exceptional circumstances. Error
messages and exception handling are an integral part of FL; as in the current version
of Standard ML [Harper et al. 1989], errors are first class values rather than the
special results of functions that fail to produce values. Semantically, error values
in FL are treated differently than ordinary values. All functions are strict with
respect to errors, so that f:Xerr = Xerr for any function £ and error value xerr.
Sequence construction is also strict with respect to errors; a sequence collapses to
the leftmost error it contains. This behavior is justified by the intended use of errors
in FL: errors represent a situation in which something extraordinary has happened,
and therefore an error should persist until caught or until it escapes from (and
becomes the result of) the program. Some of the semantic treatment of errors can
be seen in the recursive domain equations for FL:

Drr, = Dy U EpL

D = AU Seqs (D) U (Diy, — DrL)
(the ordinary values

Ere(Dify,) U{L}

(the error values)

ErL

In these equations, A is the set of atoms, Segs is sequence construction, and Erris
error construction. The ordering on D;L 1s the standard one; in &fr,, Terr < Yerr &
z < yand L <z for all z. Note that because other kinds of errors are given distinct
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values, the value L is used only to denote non-terminating computations.

3. THE SAFE MECHANISM

One of the principles underlying FL is that a programming language should have
a rich algebra useful for reasoning about and optimizing programs. Errors have a
great impact on the algebra; for example, if two expressions can produce distinct
errors, then the order of evaluation of the expressions usually cannot be changed
without changing the error produced. Even with errors, however, there are many
general identities that hold between FL programs; as usual, £ = g means that £
and g denote the same semantic value.

foid = £ (1)
idof = £ (2)
[f1,...,fn]og = [f108,...,fnog] (3)
fo(p—qr)=p—fogq;for (4)
(p — q;r)of = pof — qof;rof (5)

These laws hold because the order of application of the component functions is
unchanged.
However,

g, f] = revo|t,g] (6)

which is a law in FP, is not valid for all FL functions £ and g; if £ produces L
and g produces tlerr, then [g,f] produces tlerr, but rev o [f,g] produces L.
This example shows there cannot be a gradual trade-off of expressiveness of error
reporting for generality of program transformations. Having two errors is as limiting
as having arbitrarily many, since the existence of just one error distinguishable from
1 1s sufficient to invalidate any “law” that does not preserve the order of evaluation
of its constituent functions.

3.1 An Informal Treatment of Safe
Although (6) is not always true, it is the case that

[g,f] = rev o[£, g] if neither side makes an error. (7)

That is, there are contexts in which [g, £] can be substituted for revo[f, g]. There are
many other examples of rewrite rules that are correct provided neither side produces
an error, and including them greatly enhances the power of a program transforma-
tion system. The following informal examples illustrate the notion of “rewriting in
context”, 1.e., using rules whose validity depends on the context in which they are
applied. In these examples, an occurrence of a function f is annotated as being
“safe” (written S(f) ), if it is known that that occurrence is guaranteed not to
produce an error when applied to a non-error value. The notation £ — g simply
indicates that £ is rewritten to g. (N.B. For now, S(f) is an extra-linguistic notion;
the phrase “annotating £ with S(f) ” has no more semantic content than the phrase
“painting f green”.)
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Consider the program rev o [70, "1]. Since the two constant functions cannot
produce an error unless applied to an error, neither can the construction of the two
constant functions. Thus the program can be rewritten:

revo [ 0,"1] —
revo[S(70),8("1)]
revoS([~0,~1])

Now note that because the argument to reverse 1s safe, the order of evaluation of
the elements of the sequence must be irrelevant, so the application of rev can be
eliminated. As a last step, the annotation S can be dropped:

revoS([70,"1]) —
s(["1,70])
[*1,70]

Intuitively, each of the above steps preserved the meaning of the program, so this
appears to be a proper ‘optimization’. Indeed, in this case the final program is
equivalent to the original program; i.e., revo [~0, 1] = ["1, ~0].

So far, however, the safe mechanism is informal, and it is easy to make mistakes.
Consider the program revo[distl, tloal]. Because al follows distl in the order
of evaluation, and because al produces an error for exactly the same arguments as
distl, al can be marked safe.

revo[distl,tloal] — revo[distl,tloS(al)]

Next notice that if al is error-free, then t1 always succeeds and returns the second
component of the original argument. Therefore S(s2) can be substituted for t1o
S(al).

revo[distl,tlo S(al)] — revo [distl, S(s2)]

At this point, one might suppose that rev can be eliminated as in the previous
example, since only one of the functions in the sequence to be reversed can pro-
duce an error and therefore the evaluation order of the elements of the sequence 1s
irrelevant:

‘?
revo [distl, S(s2)] — [S(s2),distl]

Now, however, something has gone wrong: rev o [distl,tlo al] Z [s2,distl],
because rev o [distl,t1l o al]: 3 produces distlerr, whereas rev o [s2,distl]: 3
produces s2err (which isn’t even mentioned in the original program). The fact
that intuition can fail on such a small and simple example is strong motivation to
provide a precise formalism for stating and verifying these transformations.

3.2 The Formal Development of Safe

A first step towards formalizing the rewrite rules is to express qualified laws such as
(7) equationally. Recall the intuition that a function £ is safe if £ cannot produce
errors in the context in which it appears. In other words, the fact that £f:x is an
error is irrelevant if the context of £ guarantees that £ cannot be applied to x. One
way to make this intuition explicit is to map all error values to a single “don’t care”
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value. In the following definition of Safe, L is chosen as the “don’t care” value in
addition to its role representing non-termination.!

DerFINITION 3.1. For every FL function £, Safe:f denotes the function:

X if x € Epr,
Safe:f:x=<¢ L ifx & &pp, and f:x € Epr,
fix ifx & &pp, and f:x ¢ Epr,

For convenience, Safe: £ i1s often abbreviated S:£. With this definition of Safe,
Law (7) can be expressed as:

S:[g,f] = S:(revo £, g]) (8)

Moreover, many other useful laws are expressible:

f = S:ifodomft (9)

foS:(domf) = S:f (10)

S:foS:g = S:(fog) (11)
SSp—Siq;Sr = Si(p— q;¥) (12)

[£f,g] = [f,go S:(dom: £)] (13)

[S:fi,...,S:fn] = S:[f{,...,fn] (14)
revoS'[fi,.. fn] = S:[fn,..., 1] (15)
(siotl) = S:82 (16)
catch:(S:f,g) = S:f (17)

catch: (f, g) o S:(domh) = catch:(f o S:(dom:h), g) (18)

Note that some of the informal — steps have been captured as equivalences; e.g.,
Laws (14) and (15). Unfortunately, others cannot be expressed as equivalences. For
example, the rule t1 o S(al) — S(s2) cannot be written as tlo S:al = s2, since
(tloS:al):(1,2,3) = L whereas s2:(1,2,3) = 2;nor could it be tloS:al =S:s2,
for the same reason.

The difficulty is that = is a symmetric relation, whereas the desired property is
inherently asymmetric: t1o S:al can be rewritten to S:s2, because in any program
in which t1 o S:al could appear, the function S:s2 produces the same result. Thus,
at least some of the desired rewrite rules £ +— g are valid only when £ appears in a
“good” context; i.e., in one which enforces the condition that S:f cannot produce
L. The following definitions develop the relation > (read “rewrites in context to”),
which both captures this asymmetry and defines a set of contexts in which such
rewrite rules can be applied.

DEFINITION 3.2.

(1) The set of simple expressions is the smallest set of FL functions such that:
—si, tl, rev, al, distl, id, and ~a for all atoms a are simple expressions.
—If eq,..., en are simple expressions, then e oes, [eq,...,en], (61 — e5;e3),

dom:eq, catch:(eq, e5), Safe:eq, and a:eq are simple expressions.

1The term “don’t care” is meant to suggest it doesn’t matter what this value is, because the context
guarantees that it cannot arise. However, the choice of L is not arbitrary—see Section 3.3.
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(2) Eisa simple context iff E(f) is a simple expression for every simple expression
f.

The simple expressions are first-order functions that can be built from the subset
of FL given in Figure 1. Because the simple expressions are first-order, a great
deal can be shown about their termination behavior; it is this property that will be
exploited below.

It can be assumed that all expressions written by users have no occurrences
of Safe, because only the language processor introduces and manipulates Safe
expressions. Because all transformations preserve the meaning of expressions, the
transformations are required to be correct only for expressions that also can be
written without any occurrences of Safe.

DEeFINITION 3.3. A simple expression £ is user-definable iff there exists a simple
expression u with no occurrences of Safe such that £ = u.

DEFINITION 3.4. Let £, g be simple expressions. £ I>g iff for every simple context
E such that E(f) is user-definable, E(f) = E(g).

This definition of b allows the expression of a large number of “in-context”
transformations. Note that (22) is a correct version of the incorrect rewriting step
discussed above.

tloS:al b s2 (19)

Sif b f (20)

dom: (S:f) b id (21)
revo[S:f, g] b [g,S:f] (22)
a:foa:(Sig) > ar(foS:g) (23)
dom: (S:(e:£)) b a:(S:(dom: 1)) (24)

There is one nagging problem. Definition 3.4 provides little assistance in estab-
lishing that £ b g, because it requires reasoning about all possible contexts. The
purpose of the Substitutability Theorem (given below) is to provide a sufficient
condition that is easier to check. The following definition gives this condition; the
idea is that £ should rewrite to g if £ and g agree wherever £ does not return the
“don’t care” value.

DerFINITION 3.5. f <g g iff f:x = g:x whenever f:x # 1.

The following two lemmas precisely capture the properties of simple expressions
that are needed to make the technique of “in-context substitutions” work.

LEMMA 3.6. If E is a simple context and f <g g, then E(f) <g E(g).

ProoOF. First note that if E(f) does not contain £, then E(f) = E(g). The rest of
the proof is by induction on the structure of E. For the base case, if E(f) = £ and
E(g) = g then the result is immediate since £ <g g. In other base cases E is a single
primitive function not containing £ (Definition 3.2). The inductive step is proven
only for function composition; the other cases are similar. Let E(f) = E4(£) 0 Eo(f)
and assume that E4(f): (Eo(f):x) ZL . Then Eo(f):x #£L so Eo(f):x = Eo(g):x by
induction, and therefore E4(£): (E5(£):x) = E1(g): (Eo(g): %), also by induction. [
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Note that Lemma 3.6 is false in general for non-simple contexts. For example,
let £ and g be functions such that £ <g g and £ # g. Then "f <g ~g does not hold.

LemMa 3.7. If e is a user-definable simple expression, then e:x £ 1 whenever
xZ£ L.

PrOOF. Let e = u where u contains no occurrence of Safe. The proof is a simple
induction on the structure of u using part (1) of Definition 3.2. O

Lemma 3.7 provides the reason for working with simple expressions. Informally,
user-definable simple expressions do not return L unless applied to L. Now, pro-
gram transformation may introduce a function S:f into a user-definable simple
expression E(S: f), and it may be the case that (S:f):x =1 . Because program
transformation must preserve the meaning of the simple expression and because
expressions are strict in L, we know that the function S:f can never be applied to
x in the context E(S:f). In short, a use of Safe: f within a user-definable simple
expression indicates that £ can never produce an exception in that context. This
intuitive discussion is formalized by the Substitutability Theorem, which reduces
the problem of verifying that £ > g to the easier problem of checking that £ <g g
in the case that £ appears in a simple context.

THEOREM 3.8. If £ and g are simple expressions and £ <g g, then £ > g.

PROOF. Let E be a simple context and assume that E(f) is user-definable. By
Lemma 3.6, E(f) <g E(g). By Lemma 3.7, E(f): x # L if x # L. Together these
facts imply that E(f):x = E(g):x if x Z L. By strictness, E(f): L = L = E(g): L.
Therefore, E(f) = E(g). O

Using the Substitutability Theorem, transformations (19)-(24) are easily verified.
Note that the proof of the Substitutability Theorem depends only on Lemmas 3.6
and 3.7; therefore, this approach works with any extension of the simple expressions
that preserves these two Lemmas. Also note that pure identities, such as trans-
formations (1)-(5) and (8)-(17), apply to all expressions, not merely the simple
expressions.

3.3 Beyond Simple Expressions

At this point, it 1s natural to ask why the set of expressions to which the Substi-
tutability Theorem can be applied must be restricted at all. We conjecture that
no restriction is needed but, in fact, achieving an extension that works for all ex-
pressions appears to be a difficult technical challenge. This section explains the
difficulty.

For the theory presented in Section 3.2 to work, it is necessary to distinguish be-
tween L’s role as the “don’t care” value and L’s role representing non-termination.
This is accomplished by restricting attention to the simple expressions, which are
guaranteed to terminate. Thus, the straightforward approach to generalizing the
Safe mechanism to all expressions is to use something other than L as the value to
which Safe maps all errors. Even better, this value should be a new element of the
domain, not available to programmers. It would then be easy to distinguish “don’t
care” values from values that a programmer can define.

Let { be a new value and let Safe be redefined as follows:
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DerFINITION 3.9. For every FL function £, Safe:f denotes the function:

X if x € Epr,
Safe:f:x=<¢ 7 ifx & &pp, and f:x € Epr,
fix ifx & &pp, and f:x ¢ Epr,

Clearly, t must be included somewhere in the domain ordering. Herein lies the
problem—it appears that the only possibility is that § = L! The reasoning goes as
follows:

The proof of Lemma 3.6 and Law 10 (among others) depend on the fact that
1, once produced, cannot be “changed” by the surrounding context. Thus, all
expressions must be strict in {.

Let £ be any function and x any normal value such that f£:x is an error value.
Then (S:£):x = { by Definition 3.9. Now, (S:£): L = L by strictness, which is
also taken into account in Definition 3.9. Clearly, L < x, so by monotonicity of
application L < 7.

Let X(y) be the FL function such that K(y):x = y for all normal values x. Let x
be any normal value. Then | < x since K(T) = S:K(L) < S:K(x) = K(x).

Finally, note that for any normal value x, we have K(L):x = L and K(L):7 =
by strictness of 7. Since 7 < x, it follows by monotonicity that { < L. But L <} as
well. Therefore L = {.

The argument presented above is not a complete proof that a distinct } cannot
be included in the domain, because it rests on several assumptions that could be
modified. Unfortunately, there is very little room for modifications that might
provide a solution within the framework of standard domain theory. For example,
we have used the fact that FL functions are strict in L. However, the argument
doesn’t use the fact that all functions are strict, just that there is at least one
strict function in the domain. Thus, the problem is not strictness vs. laziness—the
argument applies to non-strict languages as well.

After considerable experimentation, we have not discovered any way to extend
the Safe mechanism to all user-definable expressions. We conjecture that it cannot
be done within standard domain theory; some quite different construction appears
to be required. Tt is surprising (at least to us) that the simple concept of a result
that “can’t happen” during evaluation is difficult to formalize.

4. USING SAFE

This section shows the usefulness of Safe with a few short examples illustrating the
elimination of function calls, the use of Safe in code generation, the optimization
of exception handling, and the use of in-context laws. Recall that dom:f:x is f:x if
f:x is an error value and x otherwise (see Figure 1). The examples use the following
laws involving dom:

dom:id = id (25)
dom:[f{,...,fn] = domfpo...odom £y (26)
dom:al o dom:distl = dom:distl (27)
S:(dom:tl) = S:(dom:s1) (28)
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In the first example, nothing is known about £, but the fact that id is a total
function allows the construction of the two functions to be reversed.

revo [f, id]
revo S:[f,id] o dom: [, id] by 9

= S:[id, f] o dom: [£, id] by 15
= S:[id,f]odom:idodom:f by 26
= S:[id,f]o id o dom: £ by 25
= S:[id, f]odom: £ by 2
= S:[id,f]odom: f o id by 1
= S:[id,f]odom:f odom:id by 25
= S:[id, f] o dom: [id, £] by 26
= [i4,1] by 9

This transformation is an optimization, because the end result eliminates the
application of rev. Note, however, that the intermediate steps are not necessarily
optimizations, because they involve computing some values twice; in particular, £
could be arbitrarily expensive to compute. The law £ = S: f o dom: £ is very useful
for introducing safe functions, but if the added dom cannot be discharged, then the
resulting program could be less efficient than the original program. In the worst
case, using Law 9 could result in a program that computes £ once very slowly to
preserve errors and then once again to produce the result! Section 6 shows how
this is avoided in practice in the optimizing compiler for FL.

The second example illustrates that there are additional advantages to marking
functions safe.

revo[distl,al]
revo S:[distl,al]odom: [distl,al] by 9

= S:[al,distl]odom: [distl,al] by 15
= S:[al,distl]odomal o dom:distl by 26
= S:[al,distl]odomdistl by 27
= [S:al,S:distl] o dom:distl by 14

In this case, the end result is an optimization not only because the application of
rev is eliminated, but also because dom:distl permits the rest of the program to be
executed without checking the arguments of any of the functions. The use of Safe
makes it easy for a code generator to take advantage of this fact. When a primitive
i1s marked as safe, a code generator can produce a version of the primitive that does
not check its argument; in this example, both al and distl can run unchecked.

As noted above, it 1s in general undesirable to use Law 9 because it duplicates
computation. In this particular example, it is worth factoring dom: distl out
of the computation, because dom:distl can be replaced by a function that merely
checks whether the argument is a pair of which the second component is a sequence.
This single check is more efficient than the two checks performed by the primitive
functions distl and al in the original expression.

The third example presents a more substantial optimization (similar to loop-
jamming optimizations for imperative languages [Aho et al. 1986]) and illustrates
the use of in-context laws:
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Q

81, a0+ 0 artl]

:sl,ai+oa:tloS:(dom (a:s1))] by 13
:sl,ac+oaitloa:(S:(domsl))] by 24
:sl,ai+oa:(tloS:(doms1))] by 23

a:sl,ac+oa:(tloS:(domtl))] by 28
a:sl, a4 0 a:(S:tl)] by 10
a:sl,a:(+08:tl)] by 23

Even though the second, third, and last steps use in-context transformations,
these steps are actually equivalences, because they occur in simple contexts. Since
the first and last lines are equivalent they can be substituted freely one for the
other in any program. Note that this shows that it 1s not necessary that the entire
program be simple for an in-context law to apply—it is sufficient that in-context
laws be used within simple sub-expressions.

The final example illustrates how Safe is used to optimize exception handling.
Suppose a programmer defines a function newtl that returns the empty sequence
whenever t1 would return an error. A simple definition of newtl is catch: (t1,[]). If
newtl appears in a context where it always gets an argument in the proper domain
of t1, newtl can be transformed to S:t1l as follows:

newtlo S:(dom:tl)

catch: (t1,[]) o S:(dom:t1) by def. of newtl
catch: (tlo S:(dom:tl),[]} by 18

catch: (S:t1,[]) by 10

S:tl by 17

5. ON SAFE AND DOM

This paper takes an algebraic approach to program optimization, expressing source-
to-source program transformations as algebraic laws. There are practical limitations
to this approach. This section discusses some of these limitations, particularly the
difficulties that arise from the relationship between Safe and dom.

Because the function Safe is not available to programmers, a mechanism 1s re-
quired for introducing Safe annotations into a program. Law 9 is a general rule
that introduces Safe. Recall that the law is:

f=Sfodomf

Law 9 expresses a fundamental principle of the algebra of Safe and, in principle,
it can be used to introduce Safe wherever needed. From a pragmatic point of
view, however, using Law 9 is a disaster. To understand why, consider how a
program optimization system based on source-to-source program transformation
works. Very briefly, the compiler repeatedly selects program transformations to
apply to the program. Ideally, the compiler is able to judge the change in program
cost (say, execution time) that results from a transformation, and the compiler
selects transformations that decrease program cost. This high-level description
ignores several practical problems, of which one of the most significant 1s that it
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is hard to estimate the true value of transformation at the time it is applied. In
particular, it is very difficult to include in the estimate of the value of a particular
transformation 7' the value of additional transformations that 7" enables.

Law 9 aggravates this problem, since it duplicates the computation of an arbi-
trarily expensive function. Thus, application of Law 9 is purely speculative—at the
time it is applied, it is not known whether the program is ultimately improved. In
our opinion, it is desirable to guarantee that an optimizing compiler does not, at
the very least, make programs worse. A simple way to achieve this guarantee is to
ensure that each individual transformation proceeds “downhill” in the direction of
improvement. Introducing arbitrary “uphill” steps in the transformation process
removes this guarantee both in theory and, very often in our experience, in practice.

Section 6 presents a program analysis that conservatively infers where Safe can
be inserted in a program without also introducing dom. Thus, this analysis avoids
the “uphill” step of applying Law 9.

There is another aspect to the relationship between Safe and dom. By introducing
uses of dom, it is possible to replace almost all in-context laws by equations. For
example, Law 19 can be expressed equationally as:

tloS:al = s2odom:(S:al)

While this equation has the advantage of avoiding the additional concept of in-
context transformations, it has the disadvantage that it is not clearly an optimiza-
tion, whereas Law 19 clearly is. However, Law 19 can be recovered by further
transformations:

s2 o dom: (S:al)
B> s20id by (21)
= s2 by (1)

Note that this reasoning requires the use of an in-context law to remove the ap-
plication of dom. Thus, it is not possible to eliminate in-context transformations,
although in principle their use could be restricted to applications of Law 21. Formu-
lating the laws in this way only makes sequences of transformations longer without
reducing the number of rules; for this reason, we prefer the more direct versions of
in-context laws given in Section 3.

There are instances where the introduction of dom is useful. As shown above,
a function of the form dom: (S: £) or (equivalently) S: (dom: £) has little or no
cost, since it always can be eliminated in favor of id. It is sometimes useful to
introduce such a function to transfer context information between portions of a
program (e.g., Law 13). Finally, there are even limited instances where an unsafe
dom 1s introduced, which may or may not be eliminated by subsequent program
transformation; an example is given on page 11 in Section 4. However, unlike that
example, such introductions are tightly controlled by our compiler and limited to
special cases where the transformation can still be shown to be “downhill.”

6. INTRODUCING SAFE

This section describes a program analysis method that conservatively identifies
functions that can be annotated with Safe. That is, the analysis proves theorems
of the form E(f) = E(S: £). The program analysis is a general type inference system,
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but the details of type inference are not important to understand how Safe is
introduced. This section states properties satisfied by the type inference system and
shows how these properties are sufficient to introduce Safe. The interested reader
is referred to [Aiken and Wimmers 1993; Aiken et al. 1994] for more information
on the type inference algorithm.

Types are certain subsets of the domain Dyr,. The full definition of type requires
more development [MacQueen et al. 1984], but the only property required here is
that a type is a set of values. A typed function has the form £ :: A — B where A
and B are types and A C D;L and B C Dpr,. The notation £ :: A — B isread “ f has
type A — B.” A formal semantics for the phrase £ :: A — B is given below. For the
moment, the intuition is that £ :: A — B is an assertion saying two things:

(1) For any x € & | it is the case that f:x € B.

(2) The function £ appears in a context where the only normal values it is applied
only to are in 4.

For example, consider the following:

NonEmptySeq = {(z1,...,z,)|n > 1, z; € DF, }
NotNonEmptySeq = D;L — NonEmptySeq

Then s1 :: NonEmptySeq — D;L is interpreted as saying that s1 appears in a context
where it is guaranteed to be applied to a non-empty sequence and (therefore) to
produce a non-error value. Similarly, s1 :: NotNonEmptySeq — &r, is interpreted as
saying that s1 appears in a context where 1t is guaranteed to be applied to something
that is not a non-empty sequence and (therefore) is guaranteed to produce an error.
Finally, s1 : D;L — Dy, says that nothing is known about the context in which
s1 appears.

The informal part of the description of £ :: A — B above is the idea that f
appears in a context where it 1s applied to elements of A. Projections are a well-
known technique for making precise the idea of a “context” [Wadler and Hughes

1987].
DEFINITION 6.1. A projection is an idempotent function less than the identity.

The function A: 4 is a projection for any type A:

Adx— xif xea
BX=Y 1 otherwise

Because A:A:x is either x or L for all x, it is easy to see that A: 4 < id and that
A: A is idempotent. Therefore, A: 4 is in fact a projection.? The formal meaning of
f:: A — B is given in terms of projections.

DEFINITION 6.2. The expression f :: A — B is the function Propagate: (A:BofoA:
A), where Propagate: f:xerr = Xerr and Propagate:f:x = f:x otherwise.

2 A technical note: The function A: A is not necessarily continuous if A is an arbitrary set of values.
For any type A, however, A: A is continuous. Note also that we abuse notation by allowing A to
contain errors even though A:A is not strict in the error values of A.
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This definition formalizes the intuition given above by defining £ :: A — B to be a
function that can produce a non-bottom result only when it is applied to some x € 4
such that £:x € B. The functional Propagate simply ensures that if the argument to
the typed function is an exception that exception is propagated in keeping with the
normal semantics of FL. A typed expression is an FL expression that may include
typed functions as subexpressions. The following definition explains what it means
for the types on subexpressions to be correct.

DEFINITION 6.3. Let E be a typed expression and let E' be E with all types
erased (i.e., £ :: A — B in E is replaced by £ in E' ). Then E is well-typed iff E = E'.

The FL type inference system takes an FL expression and produces a well-typed
expression. For example, consider the program s1 o [~1, “2]. The inference system
produces the well-typed program

s1:: Pair(Int) — Int)o [“1 :: Dt — Int, "2 :: D& — Int].
FL FL

The type Int is the set of integers and Pair(X) is all sequences of length 2 with
elements drawn from X. The system also infers types for the higher-functions com-
position and sequence construction, but these types are omitted for readability. The
following lemma states the main result of this section: if E(f :: A — B) is well-typed
and the type B contains no error values, then £ can be replaced by S:f.

LEMMA 6.4. Let E(f :: A — B) be well-typed and let BN &pr, € {L} . Then
E(f) = E(S:1).

ProoF. We prove that S: £ > £ :: A — B. The result then follows because
E(f) > E(S:f) > E(f : A — B) and E(f) = E(f :: A — B) since E(f :: A — B) is
well-typed.

If (f :: A — B):x =L there is nothing to prove. Assume (f :: A — B):x #1 . If
x € &pr, then (f A — B):x =x and S:f:x = x . Now assume that x ¢ Epr,. Then
(f :4—B):x=(A:Bofol:h):x ZL . Therefore, A:A:x = x and f:x ZL and
A:B:(f:x)=f:x. Since BN Epr, € {L} and f:x € B— {1}, it follows that £:x & Epr..
Therefore S:(f:x) = f:x=(f :A—B)x. O

Returning to the example above, Lemma 6.4 shows that
(s1::Pair(Int) — Int)o["1 D, — Int, 2 :Df} — Int] = Sislofs:"1,S:72].

Type inference must be very accurate to be useful for proving that functions are
safe. For example, in the example with s1 above, it is necessary to prove not just
that s1 is applied to a sequence but that si is applied to a non-empty sequence.
The standard Hindley/Milner type system [Damas and Milner 1982] cannot prove
such properties. A type inference system that can infer types accurate enough to
be useful in program optimization has been implemented for FL. and is described

in [Aiken and Wimmers 1993; Aiken et al. 1994].

7. SAFE IN AN OPTIMIZING COMPILER FOR FL

The Safe technique is used heavily in an optimizing compiler for FL developed at
IBM Almaden. The FL compiler makes use of literally hundreds of laws, most of
which involve safety information. This section gives a brief qualitative summary of
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several years experience, both good and bad, with using Safe in the optimization
of FL programs.

The overall structure of the FL compiler is simple. After parsing and desugaring,
the type inference algorithm described in Section 6 annotates a program with types.
Based on the types assigned, functions are then marked as Safe using Lemma 6.4.
At this point, the system enters a “match-transform” loop in which subexpres-
sions are matched against the left-hand sides of laws. When a match is found,
the matched subexpression is replaced by the right-hand side of the law and the
entire process repeats. The strategy used to search for matches is not fixed (there
are several such strategies in the compiler) but normally the program is scanned
repeatedly until no laws match. A few optimization phases that have well-defined
algorithms are implemented directly outside of the match-transform paradigm.

The laws of the FL compiler are organized into groups according to purpose.
Some laws are aimed at a particular kind of optimization (e.g., simplifying nested
conditionals) or are used merely as an adjunct to compiler phases that have a
large component implemented in a way other than via laws (e.g., compile-time
evaluation). Although the focus of these phases is something other than safety
information, almost all compiler phases make some use of safety information.

The primary pass of the compiler that relies on safety information is a set of ap-
proximately 200 laws that are best described as “peephole” optimizations. These
laws all have the property that (1) they are improvements to the program (“down-
hill” transformations) and (2) they reduce the size of the program. The laws are
applied repeatedly using a greedy strategy until no more laws apply. Most of
the rules in this paper are included in this phase of the compiler. Property (1)
guarantees that the result is an optimization of the original program; property (2)
guarantees that eventually no more rules apply and the process terminates.

There is another interesting property, namely the Church-Rosser property, that
these laws do not enjoy. In our experience, this property is neither crucial nor
really practical to obtain for large collections of program transformations. There
are several reasons for this conclusion. First, experience suggests it 1s better to
include an optimization rather than exclude it on the grounds that it makes a
set of laws non-Church-Rosser. After all, the empty set of laws is Church-Rosser.
Second, Church-Rosser does not imply termination of a set of laws and in fact these
two properties are sometimes in conflict (e.g., adding a law that makes the system
Church-Rosser may destroy termination). We regard the paramount concerns to
be optimization and termination (properties (1) and (2) above). Finally, it is an
enormous task to prove Church-Rosser properties for large sets of transformations.
Even if there were some chance that the laws were Church-Rosser (they are not) it
would be prohibitively difficult to prove this fact.

The overall experience with Safe has been very good. It is easy to write and
add very general laws to the compiler. Without Safe many of these laws could not
be expressed at all or could be expressed only as an enormous number of special
cases. The denotational basis for Safe has also proven to be crucial. The example
in Section 3.1 of how informal reasoning leads to incorrect transformations is not
contrived; on several occasions similar incorrect transformations were added by the
authors. Having a denotational basis for reasoning about Safe proved indispensable
in these cases for identifying the incorrect transformations from among the hundreds
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of laws in the compiler.

On an engineering level, Safe has also been successful. A key concern in the
design of the compiler was the speed of the match-transform step. Because the FL
compiler relies heavily on matching and transforming expressions, it is very impor-
tant that matching common constructs be fast. The function Safe was engineered
to be fast to match; it is implemented simply as a one-bit flag attached to functions
and adds a negligible overhead to the matching process.

Using Safe does have two drawbacks, however, both of which are related to the
use of in-context transformations. The first problem is that when writing an in-
context law it is easy to write a law that is less accurate than desired. To see this,
recall that S:f > (Law 20), so it is always permissible to drop Safe from a function.
Thus, for example, S:(s1 0 t1l) = S:s2 also can be written S:(s1 0 tl) b s2. The
disadvantage of the second form 1is that safety information is lost, so that additional
laws are less likely to match, which degrades the quality of program optimization.
To see how easy it 1s to write laws with “safety leaks,” note that in Law 19 the
s2 on the right-hand side is in fact Safe. Even the authors failed to notice this
through many revisions of this paper.

Safety leaks are hard to detect. The only hint of a problem is that a program that
should optimize well does not, and lost safety information is not the only potential
cause. Losing safety information turned out to be a real but not insurmountable
problem in the FL compiler, although considerable time was spent inspecting for
and removing safety leaks from laws.

The second problem with in-context laws is that they are not invertible. This
is, of course, inherent. The whole point of a law £ b g is that g can replace £ but
not vice-versa. In-context laws are one-way tickets: if the compiler makes a poor
choice in applying an in-context law, there is no way to undo it. This should not
be taken as an argument against in-context laws. Such laws are very useful and
even necessary for good optimization. The problem is that it may be difficult to
decide when to apply in-context laws because other (perhaps better) avenues for
optimization may be lost.

The FL experience is that, while this latter problem does occur, the practical
effect 1s small. There are programs for which some optimization is missed because
an in-context law is applied that cannot be undone in a later phase. However, these
examples are relatively few and the cost in lost optimization is usually small. It
was judged not to be worthwhile to make any special effort to selectively apply
in-context laws. The FL compiler currently makes no distinction between laws that
are equivalences and laws that apply only in-context.

8. RELATED WORK, CONCLUSIONS, AND FUTURE WORK

The first mention of qualified or “in context” laws for FP appeared in Backus’
original paper [Backus 1978]. Backus proposed gqualified equational laws, which
consist of an equation between functions £ = g and a predicate p. The meaning of
qualified equational law is that £:x = g:x whenever p:x is true. In the context
of this paper, the combinator Safe replaces the predicate so that equations can be
expressed without side conditions.

Safety analysis is related to projection analysis [Wadler and Hughes 1987]. The
idea of projection analysis is to express formally properties of programs using pro-
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jections (see Section 7). The following lemma shows that projections can be used
to characterize safety analysis:

LEMMA 8.1. S:f = £ o p for some projection p.

ProoOF. The projection p is dom: (S:f). Since dom: (S:f):x = x or dom: (S:f):x =1
for all x, it follows that dom: (S:f) < id and that dom: (S: f) is idempotent. Hence,
dom: (S:f) is in fact a projection.

It is easy to check that dom:(S:f) = dom: f o dom: (S: £). Then,

S:
= S:(S:f)odom: (S:f) by Law 9
= S:fodom: (S:f) S is idempotent
= S:fodomf odom:(S:f)
= fodom:(S:f) by Law 9

|

Beyond the connection with the theory of projections, there are other similarities
in the use of the two techniques. Both techniques deal with manipulating “annota-
tions”. For projection analysis, these annotations are projections; for safety analy-
sis, the annotation is the function Safe. Many of the techniques for manipulating
the annotations are also similar.

However, safety analysis and projection analysis are addressed at two different
problems. Projection analysis is primarily concerned with determining (in a lazy
system) whether a function is strict in its arguments and gives a nice way of ad-
dressing that problem. Safety analysis (as presented here for a strict language) is
concerned not only with determining when a function is “safe” but also with trying
to use that fact to facilitate program transformations. For example, to the best of
our knowledge the counterpart of in-context laws for projection analysis has not
been developed, although it certainly could be using the techniques presented here.

There 1s another, perhaps deeper, difference between safety analysis and projec-
tion analysis. In the basic formulation of projection analysis, a lifted domain is
used with a new element | below L to which projections map elements outside
the domain of interest [Wadler and Hughes 1987]. As discussed in Section 3.3,
it appears that no standard domain with Safe allows | to be separated from L.
The crux of the difference between the two techniques is that projection analysis
is concerned with program analysis only and thus can avoid giving semantics to
programs that contain projections. However, Safe is intended for use in a program
transformation system where programs contain occurrences of Safe, and thus it is
crucial that programs with Safe be given semantics directly.

It would strengthen the theoretical treatment if the restriction to simple expres-
sions of in-context laws could be removed. As discussed in Section 3.3, such a
generalization appears to present difficult semantic problems. On a practical level,
most of the common uses of Safe are covered even with the restriction to simple
expressions. However, a model that worked for all expressions would help clarify
the semantic role of Safe and add some power to the algebra. We leave as future
work whether techniques that extend projection analysis to higher-order programs
(e.g., [Hunt and Sands 1991]) can be used to generalize safety analysis.
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The Safe mechanism resolves the tension between the desire to make functional
programs run fast through optimization and the desire to have a language in which
it 1s easy to write and debug programs. This tension is perhaps at a maximum in
FL, because no distinction is made between user-generated exceptions and system-
generated errors—both are legitimate error values. Thus, it would be disastrous
for an FL compiler to fail to preserve the error behavior of a program; on the other
hand, preserving errors creates problems for optimization. Safe solves this dilemma
by providing a way to express the program transformations of a language with a
single error value in a language with many error values.
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